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Introduction

Let (M n , g) be a spin compact Riemannian manifold with positive scalar curvature, more precisely such that Scal • := min m∈M Scal(m) > 0. Under this assumption, the only groups G in Berger's list such that the restricted holonomy group of M verifies Hol • ⊂ G are (cf. for instance [START_REF] Besse | Einstein Manifolds[END_REF]) G = U m , n = 2m, (M is then Kähler), G = Sp m • Sp 1 , n = 4m, (M is then Quaternion-Kähler) or G = Spin 9 , n = 16, and then M is isometric to the Cayley plane OP 2 = F 4 /Spin 9 , [START_REF] Alekseevskii | Riemannian spaces with exceptional holonomy groups[END_REF], [START_REF] Brown | Riemannian manifolds with holonomy group Spin(9), Differential Geometry[END_REF]. Assuming n = 4m in order to compare all the possible cases, there exist sharp lower bounds for the square of the eigenvalues of the Dirac operator whose dependence on the holonomy is summarized in the following illustration:
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Friedrich's inequality [START_REF] Th | Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalar-krümmung[END_REF] n n-2

Scal• 4

Hol • ⊂ U 2m (Kähler) [START_REF] Kirchberg | An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature[END_REF] n+12 n+8

Scal• 4

Hol

• ⊂ Sp m • Sp 1 (Quaternion-Kähler) [KSW99] n = 16 Hol • = Spin 9 OP 2 = F 4 /Spin 9
The study of limiting manifolds, that are manifolds for which there exists a spinorfield Ψ such that (1.1)

D 2 Ψ = λ 2 Ψ ,
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where D is the Dirac operator, and where λ 2 is one of the bounds quoted above is due to C. Bär in the general case, [START_REF] Bär | Real Killing spinors and holonomy[END_REF], to A. Moroianu in the case of Kähler manifolds, [START_REF] Moroianu | La première valeur propre de l'opérateur de Dirac sur les variétés kählériennes compactes[END_REF], [START_REF]Kähler Manifolds with Small Eigenvalues of the Dirac Operator and a Conjecture of Lichnerowicz[END_REF], and to W. Kramer, U. Semmelmann and G. Weingart in the case of Quaternion-Kähler manifolds, [START_REF] Kramer | The First Eigenvalue of the Dirac Operator on Quaternionic Kähler Manifolds[END_REF].

The study of limiting manifolds in the Kähler and Quaternion-Kähler cases involves a special condition for spinor fields Ψ verifying (1.1), which is linked to the decomposition of the spinor space Σ into irreducible components under the action of the holonomy group.

The spinor bundle Σ(M ) of a spin Kähler manifold (M, g, J) of complex dimension m decomposes into a sum of parallel subbundles Σ(M ) = ⊕ m r=0 Σ r (M ), each section of the bundle Σ r (M ) being an eigenvector for the eigenvalue i (m -2r), for the fiberwise action of the Kähler form Ω on spinors, [START_REF] Kirchberg | An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature[END_REF]. It is then a characteristic of limiting Kähler manifolds that in the space of spinor fields Ψ verifying (1.1), there always exists an element such that Ω • Ψ = 0 if m is even, or Ω • Ψ = ±i, if m is odd. We also may formulate this property as :

• In the space of spinor fields Ψ verifying (1.1), there always exists an element such that

(1.2) Ω • Ψ 2 Ψ 2 is minimal.
In order to illustrate how this property corresponds to a "lower action" of the "Kähler holonomy", recall that the above decomposition of the spinor bundle corresponds to the decomposition of the spinor space Σ 2m under the action of the groups U 1 × SU m when m is even, or S(U 1 × U m ) when m is odd, actions given by the commutative diagrams This decomposition may be easily expressed in the case m even, [START_REF]Theory and Quaternionic Kähler Manifolds[END_REF],

U 1 × SU m / / (m
(1.3)

Σ 2m = m r=0 L -1 2 (m-2r) ⊗ Λ r E ,
where L k := L ⊗k is the k-symmetric power of the standard representation L of U 1 , and E is the standard representation of the group SU m . The action of the Kähler form corresponds to twice the action of the Lie algebra of U 1 on Σ 2m , hence is equal to i (m -2r) id on each component of the sum (1.3). So, limiting Kähler manifolds of even complex dimension are characterized by the existence of a spinor field verifying (1.1), which is also a section of the bundle corresponding to the component L 0 ⊗ Λ m/2 in (1.3), this component being, roughly speaking, the one with minimal "U 1 holonomy" in (1.3). There is an analogous description in the case m odd.

There exists an analogous criterion for Quaternion-Kähler limiting manifolds. The spinor bundle Σ(M ) of a spin Quaternion-Kähler manifold (M, g) of dimension 4m decomposes into a sum of parallel subbundles Σ(M ) = ⊕ m r=0 Σ r (M ) , each section of the bundle Σ r (M ) being an eigenvector for the eigenvalue 6m -4r(r + 2), for the fiberwise action of the fundamental 4-form Ω on spinors, [START_REF] Hijazi | Décomposition spectrale du fibré des spineurs d'une variété spin Kähler-quaternionienne[END_REF]. This decomposition corresponds to the decomposition of the spinor space Σ 4m into irreducible components under the action of the group Sp m × Sp 1 given by the commutative diagram

Sp m × Sp 1 / / ( ( Q Q Q Q Q Q Q Q Q Q Q Q Q Spin 4m Sp m .Sp 1 ⊂ SO 4m One gets [BS83], [Wan89], [HM95a], (1.4) Σ 4m = m r=0 S r H ⊗ Λ m-r • E ,
where S k H is the k-symmetric power of the standard representation H of Sp 1 in the space H ≃ C 2 , E is the standard representation of the group Sp m in the space

H m ≃ C 2m , and Λ k • E is the irreducible hermitian complement of ω ∧ Λ k-2 • E in Λ k E,
ω being the standard symplectic form on E. Quaternion-Kähler limiting manifolds are characterized by the fact that, among the spinor fields Ψ verifying (1.1), there always exists a section of the bundle corresponding to the space S 0 H ⊗ Λ m

• E. This space may be characterized by the fact that it is the only component in the decomposition (1.4) on which the Casimir operator of the subgroup Sp 1 acts trivially (roughly speaking, one could say that this is the component with minimal "Sp 1 holonomy" in (1.4)). From a geometrical point of view, the invariant given by this action of the Casimir operator, gives raise to the operator Ω-6m id, where Ω is the 4-fundamental form Ω acting on spinor fields by Clifford multiplication. Hence, we may re-formulate the characterization of Quaternion-Kähler limiting manifolds as:

• In the space of spinor fields Ψ verifying (1.1), there always exists an element such that (Ω -6m id) • Ψ = 0. • In the space of spinor fields Ψ verifying (1.1), there always exists an element such that

(1.5) (Ω -6m id) • Ψ 2 Ψ 2
is minimal. Now, the following example makes think that the above criteria are not characteristic of limiting manifolds. Consider the grassmannian Gr 2 (C m+2 ) = SUm+2 S(U2×Um) , endowed with its canonical metric induced by the Killing form of SU m+2 sign-changed, which is both Kähler and Quaternion-Kähler (cf. 14.53 in [START_REF] Besse | Einstein Manifolds[END_REF] for details). It is shown in [START_REF] Milhorat | Spectrum of the Dirac Operator on Gr 2 (C m+2 )[END_REF] that there exists a spinorfield Ψ such that (1.1) is verified for the first eigenvalue λ and (1.5) is verified for the fundamental "Quaternion-Kähler" 4-form. Actually, it may also be checked that (1.2) is also verified for the Kähler form. Hence it seems natural to conjecture that the above property is not a characteristic of limiting manifolds and the aim of this paper is to prove that the conjecture is true for compact spin symmetric spaces.

Proposition 1.1. Any spin compact simply connected irreducible symmetric space G/K of "type I", endowed with a Kähler or Quaternion-Kähler structure, verifies the following criterion. Among the spinorfields Ψ verifying D 2 Ψ = λ 2 Ψ, where λ is the first eigenvalue of the Dirac operator, there exists at least one such that

Ω • Ψ 2 Ψ 2 , respectively (Ω -6m id) • Ψ 2 Ψ 2 , is minimal,
where Ω is respectively the Kähler form or the fundamental "Quaternion-Kähler" 4-form of the manifold under consideration.

There is an analogous result for the Cayley plane OP 2 = F 4 /Spin 9 , Ω being in this case the canonical 8-form on manifolds with holonomy Spin 9 .

2. Preliminaries for the proof 2.1. Spectrum of the Dirac operator on spin compact irreducible symmetric spaces. We consider a spin compact simply connected irreducible symmetric space G/K of "type I", where G is a simple compact and simply-connected Lie group and K is the connected subgroup formed by the fixed elements of an involution σ of G. This involution induces the Cartan decomposition of the Lie algebra

g of G into g = k ⊕ p ,
where k is the Lie algebra of K and p is the vector space {X ∈ g ; σ * • X = -X}.

The symmetric space G/K is endowed with the Riemannian metric induced by the restriction to p of the Killing form of G sign-changed.

The spin condition implies that the homomorphism

α : h ∈ K -→ Ad G (h) |p ∈ SO(p)
lifts to a homomorphism α : H -→ Spin(p) such that ξ • α = α where ξ is the two-fold covering Spin(p) → SO(p), [START_REF] Cahen | Spin Structures on Compact Simply Connected Riemannian Symmetric Spaces[END_REF].

Then the group K inherits a spin representation given by

ρ K : K α -→ Spin(p) ρ -→ GL C (Σ) ,
where ρ is the spinor representation in the complex spinor space Σ.

The Dirac operator has a real discrete spectrum, symmetric with respect to the origin. A real number λ belongs to the spectrum if and only if there exists an irreducible representation γ : G → GL C (V γ ) whose restriction Res G K (γ) to the subgroup K, contains in its decomposition into irreducible parts, a representation equivalent to some irreducible component of the decomposition of the spin representation ρ K of K. Then (2.1)

λ 2 = c γ + n/16 ,
where c γ is the Casimir eigenvalue of the irreducible representation γ (which only depens on the equivalence class of γ) and where n = dim(G/K), n/16 being Scal/8 for the choice of the metric (cf. [BHM+] or [START_REF] Ginoux | The Dirac spectrum[END_REF] for details).

2.2.

A characterization of the decomposition of the spin representation of K. We henceforward assume that G and K have same rank and consider a fixed common maximal torus T . Hence G/K has even dimension n = 2m. It is shown in [START_REF]The First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces[END_REF] that the lowest eigenvalue λ min of the Dirac operator verifies (2.2)

λ 2 min = 2 min 1≤i≤N β i 2 + n 8 ,
where the β i , 1 ≤ i ≤ N , are the dominant weights (relative to the choice of T ) occurring in the decomposition of the spin representation of K, and where the norm • on the space of weights is induced by the Killing form of G sign-changed. The proof of proposition (1.1) is based on a characterization of those dominant weigths β i for which β i 2 is minimum, a characterization which appears implicitly in [START_REF]A formula for the first eigenvalue of the Dirac operator on compact spin symmetric spaces[END_REF]. It is based on a lemma of R. Parthasaraty in [START_REF] Parthasarathy | Dirac operator and the discrete series[END_REF] (cf. lemma 2.2), which gives the following characterization of dominant weights occurring in the decomposition of the spin representation of K. Let Φ be the set of non-zero roots of the group G with respect to T . According to a classical terminology, a root θ is called compact if the corresponding root space is contained in k C (that is, θ is a root of K with respect to T ) and non compact if the root space is contained in p C . Let Φ + G be the set of positive roots of G, Φ + K be the set of positive roots of K, and Φ + p be the set of positive non compact roots with respect to a fixed lexicographic ordering in Φ. The half-sums of the positive roots of G and K are respectively denoted δ G and δ K and the half-sum of non compact positive roots is denoted by δ p . The Weyl group of G is denoted W G . The space of weights is endowed with the W G -invariant scalar product , induced by the Killing form of G sign-changed. To introduce the result of Parthasaraty first note that the common torus T may be chosen in such a way that the weights of the spin representation of K are

(2.3) 1 2 (±α 1 ± α 2 • • • ± α m ) ,
where α 1 , . . . , α m is an enumeration of the non compact positive roots, the weights of the half-spin representations Σ ± corresponding to an even (resp. odd) number of negative signs. Thus weights of the spin representation of K have the form

(2.4) δ p - i∈I α i , I ⊂ {1, . . . , m} . Lemma 2.1 (R. Parathasaraty, [Par71]). Let (2.5) W := {w ∈ W G ; w • Φ + G ⊃ Φ + K } .
The spin representation of K decomposes into irreducible components as

(2.6) ρ K = w∈W ρ K |w ,
where ρ K |w has for dominant weight

(2.7)

β w := w • δ G -δ K .

2.3.

A characterization of highest weights of the spin representation of K with minimal norm.

Proposition 2.2. Let

I -:={i ∈ {1, . . . , m} , δ K , α i < 0} , and 
I 0 :={i ∈ {1, . . . , m} , δ K , α i = 0} .
Then, for any subset I ⊂ I 0

(2.8)

β I := δ p - i∈I- α i - i∈I α i ,
is a highest weight of the spin representation of K with minimal norm. So there are exactly 1 + #I 0 such highest weights.

Proof. Let I be a subset of I 0 . First β I is a weight of the spin representation of K by (2.4). If β I is not a highest weight, then there exists a K-positive root θ such that β I + θ is a weight. So there exists a subset J ⊂ {1, . . . , m} such that

β I + θ = δ p - i∈J α i . Then, - i∈I-\J α i - i∈I\J α i + θ = - i∈J\(I-∪I) α i . Now, it is well known that θ, δ K > 0, (cf. for instance § 10.2 in [Hum72]), hence -i∈I-\J α i -i∈I\J α i + θ, δ K > 0, whereas -i∈J\(I-∪I) α i , δ K ≤ 0, hence a contradiction.
By the lemma 2.1, there exists a w I ∈ W such that

β I = w I • δ G -δ K = δ p - i∈I- α i - i∈I α i .
Now, using the W G -invariance of the scalar product,

β I 2 = δ G 2 + δ K 2 -2 w I • δ G , δ K = δ G 2 + δ K 2 -2 β I + δ K , δ K = δ G 2 + δ K 2 -2 δ G , δ K + 2 i∈I- α i , δ K = δ p 2 + 2 i∈I- α i , δ K . (2.9)
Hence all the highest weights β I , with I ⊂ I 0 have the same norm. In order to prove that among the highest weights of the spin representation of K, they are those with lower norm, we use the same argument as in [START_REF]A formula for the first eigenvalue of the Dirac operator on compact spin symmetric spaces[END_REF]. Let θ 1 , . . . , θ p be an enumeration of the K-positive roots. Let w ∈ W (or ∈ W G as well). By the lemma 3.1 in [START_REF]A formula for the first eigenvalue of the Dirac operator on compact spin symmetric spaces[END_REF], using the expression of w in reduced form, one has

w • δ G = δ G - i∈Iw α i - j∈Jw θ j ,
where I w is a subset of {1, . . . m}, and J w a subset of {1, . . . p}.

Since θ j , δ K > 0, j = 1, . . . , p, as we remark before, and since α i , δ K > 0 if i does not belong to I -or I 0 , one gets

w • δ G , δ K ≤ δ G - i∈Iw ∩(I-∪I0) α i , δ K (2.10) ≤ δ G - i∈I-∪I0 α i , δ K ≤ δ G - i∈I- α i , δ K = w ∅ • δ G , δ K . Hence w • δ G -δ K 2 = δ G 2 + δ K 2 -2 w • δ G , δ K ≥ δ G 2 + δ K 2 -2 w ∅ • δ G , δ K = β ∅ 2 .
Note that if the above inequality is an equality, then all the inequalities (2.10) are equalities, hence J w = ∅ and I w = I -∪ I, where

I ⊂ I 0 , so w • δ G -δ K = β I .
As the above result is valid for any w ∈ W G , it may be concluded that for any subset

I ⊂ I 0 , min w∈WG w • δ G -δ K 2 = min w∈W w • δ G -δ K 2 = β I 2 .
Now the proof of (2.2) consists in the following steps ( [START_REF]The First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces[END_REF]):

(1) For any w ∈ W such that the highest weight w

• δ G -δ K has minimal norm, δ G -w -1 • δ K is the dominant weight of an irreducible representation γ of G.
(2) The restriction of γ to K contains in its decomposition into irreducible components a representation with dominant weight w • δ Gδ K .

(3) The Casimir eigenvalue for γ is given by

c γ = 2 w • δ G -δ K 2 + n 16 (hence equal to 2 δ p 2 + 4 i∈I-α i , δ K + n 16
, by (2.9)). (4) The above Casimir eigenvalue gives the lowest eigenvalue of the Dirac operator.

In the preparation of this paper, we found a gap in the proof of the first item. We give a different proof in appendix, which is indeed based on the result of proposition 2.2.

2.4. The space of eigenvectors of the Dirac operator corresponding to the lowest eigenvalue. In order to understand the action of a form characterized by the holonomy on the eigenvectors of the Dirac operator for the lowest eigenvalue, we now review some well-known results (see [BHM+] for details). First, recall that a spinor field Ψ on G/K may be viewed as a function

Ψ : G -→ Σ , ∀g ∈ G , ∀k ∈ K , Ψ(gk) = ρ(k -1 ) • Ψ(g) .
Denoting by Σ w the irreducible K-space of Σ with dominant weight β w , w ∈ W , and by Π w the projection Σ → Σ w , any spinor field Ψ decomposes into

(2.11) Ψ = w∈W Ψ w , Ψ w := Π w • Ψ .
Since the restricted holonomy group of G/K is K, the spin Levi-Civita connection ∇ respects the above decomposition, hence by the Lichnerowicz-Schrödinger formula,

D 2 = ∇ * ∇ + Scal 4 ,
if a spinor field Ψ is an eigenspinor of the Dirac operator D for the eigenvalue λ, then each non-trivial component Ψ w in the above decomposition is an eigenspinor of D 2 for the eigenvalue λ 2 . Now, as it was recalled above (see (2.1)), any eigenvalue λ of the Dirac operator D corresponds (up to equivalence) to an irreducible complex G-representation γ : G → GL C (V γ ), whose restriction Res G K (γ) to the subgroup K, contains in its decomposition into irreducible parts, a representation with dominant weight β w , w ∈ W . The corresponding eigenvectors are given by a pair (v γ , A γ ), where

v γ ∈ V γ and A γ ∈ Hom K (V γ , Σ) := {A ∈ Hom C (V γ , Σ) , ∀k ∈ K , A • γ(k) = ρ K (k) • A}, giving raise to the spinor field Ψ vγ ,Aγ : G -→ Σ , Ψ vγ ,Aγ (g) = A γ γ(g -1 ) • v γ . Moreover dim Hom K (V γ , Σ) = w∈W mult.(Res G K (γ), ρ K |w ) , where mult.(Res G K (γ), ρ K |w ) denotes the multiplicity of the irreducible representa- tion ρ K |w in Res G K (γ). So, if mult.(Res G K (γ), ρ K |w ) = 0, then the component Ψ w in the decomposition of Ψ given by (2.11) is a non-trivial eigenvector of D 2 for λ 2 . All that discussion applies to the irreducible G-representation γ with dominant weight δ G -w -1 • δ K , where β w = w • δ G -δ K is
a highest weight of the spin representation of K with minimal norm (cf. prop. 4.1). As we recall it above, this irreducible G-representation gives raise to the lowest eigenvalue λ of the Dirac operator. Moreover by prop. 4.2, the representation Res G K (γ) contains in its decomposition into irreducible components all the irreducible K-representations with dominant weights (2.8). Hence we may conclude Lemma 2.3. For any subset I ⊂ I 0 = {i ∈ {1, . . . , n} , δ K , α i = 0}, denoting by Σ I the irreducible component of Σ with highest weight β I = δ p -i∈I-α i -i∈I α i , there exists a spinor field Ψ I : G → Σ I , such that

D 2 Ψ I = λ 2 Ψ I ,
where λ is the lowest eigenvalue of the Dirac operator. Now let Ω be a parallel form on G/K. First, Ω may be viewed as a K-equivariant function

Ω : G -→ Λ * (p) , ∀g ∈ G , ∀k ∈ K , Ω(gk) = α(k -1 ) • Ω(g), .
By the fundamental principle of holonomy, parallel forms correspond to K-invariants of Λ * (p). Hence there exists a

K-invariant Ω in Λ * (p) such that Ω is the constant function ∀g ∈ G , Ω(g) = Ω . Note that as Ω is K-invariant, Ω is K-equivariant since ∀g ∈ G , ∀k ∈ K , Ω(gk) = Ω = α(k -1 ) • Ω = α(k -1 ) • Ω(g) .
The form Ω acts on a spinor field Ψ by Clifford multiplication, giving a spinor field Ω • Ψ defined by the function

Ω • Ψ : G -→ Σ , Ω • Ψ(g) := Ω(g) • Ψ(g) = Ω • Ψ(g) ,
where Ω is viewed as an element of the Clifford algebra, which acts on the spinor Ψ(g) by means of the standard representation of this algebra.

Since Ω is K-invariant, the Schur lemma implies that the action of Ω on spinor fields with values in some K-irreducible subspace Σ w , w ∈ W , of Σ, is a scalar multiple of the identity, the value of the scalar depending only of w ∈ W .

In particular, the spinor fields Ψ I , I ⊂ I 0 , introduced in lemma 2.3, which are eigenspinors for the square of the Dirac operator for the lowest eigenvalue, are also eigenvectors for the action of any parallel form.

3. Proof of the result 3.1. The Kähler case. On a spin Kähler manifold of complex dimension m, the Kähler 2-form Ω acts fiberwise on spinors as an anti-hermitian operator with eigenvalues i (m -2r), r = 0, . . . , m, [START_REF] Kirchberg | An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature[END_REF]. Hence (3.1) min

Ψ =0 Ω • Ψ 2 Ψ 2 = 0 , if m is even 1 , if m is odd .
We are going to prove that (3.1) is verified for one of the spinor fields Ψ I of lemma 2.3. First, an irreducible symmetric space G/K is Kähler if and only if K has a center

Z ≃ U 1 , [KN69]. Let p + C , (resp. p - C
) be the space generated by root-vectors corresponding to the positive non compact roots (resp. negative non compact roots). Any element H in the Lie algebra z of the center has a K-invariant adjoint action on p + C , (resp. p - C ), hence by the Schur lemma acts as a scalar multiple of identity. The element H is chosen such that ad(H) |p + C = i id (hence α j (H) = i, j = 1, . . . , m) and ad(H) |p - C = -i id. This action defines a K-invariant homomorphism J of p such that J 2 = -id, which induces a Kähler structure on G/K. The Kähler form is then defined by the K-invariant Ω corresponding to α * (H) by the isomorphism Λ 2 (p) ≃ so(p). Hence the action of the Kähler form on spinor fields is given by the action of Ω on Σ, which corresponds to 2 times the action of H on Σ by the spinor representation of K, since viewed as a 2-form, Ω is identified with an element of the Clifford algebra, whereas viewed as α * (H) ∈ so(p), it acts on spinors by the isomorphism ξ * : spin(p) → so(p), which generates a factor 2. Finally, as H belongs to the Lie algebra of the maximal torus 1 T , the Kähler form acts on spinor fields with values in Σ w , w ∈ W , as a scalar multiple of identity, the eigenvalue being given by 2 β w (H). Hence we only have to prove that there exists a subset

I ⊂ I 0 = {i ∈ {1, . . . , m} , δ K , α i = 0}, such that β I (H) = 0 if m is even and β I (H) = ±i/2, if m is odd, where β I = δ p -i∈I-α i -i∈I α i . Let I + = {i ∈ {1, . . . , m} , α i , δ K > 0}. Then β I (H) = 1 2 j∈I+ α j (H) - 1 2 j∈I- α j (H) + 1 2 j∈I0\I α j (H) - 1 2 j∈I α j (H) .
1 since the center of K is the intersection of the maximal tori.

Lemma 3.1. The sets I + and I -have the same number of elements.

Proof. Let Φ - K be the set of negative roots of K. There exists an element w 0 in the Weyl group of K (hence in the Weyl group of G) which sends Φ + K to Φ - K , see for instance theorem 3.1.9. in [START_REF] Goodman | Symmetry, Representations, and Invariants[END_REF]. Note that, as H belongs to the Lie algebra z of the center Z of K, one has for any K-root θ, θ(H) = 0, since for any root vector

Y θ , 0 = [H, Y θ ] = θ(H) Y θ .
From this remark, one deduces that w 0 (Φ + p ) ⊂ Φ + p . Indeed, as H belongs to z, if k ∈ K is some representative of w 0 , one has since Ad(k -1 ) • H = H, and α j (H) = i, j = 1, . . . , m,

w 0 • α j (H) = α j (Ad(k -1 ) • H) = α j (H) = i , j = 1, . . . , m . Now let j ∈ I + so that α j , δ K > 0. Then w 0 •α j , w 0 •δ K > 0, so as w 0 •δ K = -δ K , one gets w 0 • α j , δ K < 0 ,
hence there exists i j ∈ I -such that α ij = w 0 • α j . This defines a one-to-one correspondence between I + and I -.

Hence since α j (H) = i, j = 1, . . . , m, we obtain from the lemma

β I (H) = 1 2 j∈I0\I α j (H) - 1 2 j∈I α j (H) .
Now if m is even, then by the result of the lemma, the set I 0 has an even number of elements. If I 0 = ∅, then β ∅ (H) = 0. If I 0 = ∅, then choosing a subset I ⊂ I 0 such that # I = 1 2 # I 0 , one gets β I (H) = 0. If m is odd, then by the result of the lemma, the set I 0 has an odd number 2r + 1 of elements. Choosing now a subset I ⊂ I 0 such that # I = r, (resp. r + 1) , one gets β I (H) = 1 2 i, (resp. -1 2 i), and the result is proved. 3.2. The Quaternion-Kähler case. A Quaternion-Kähler manifold is a n = 4mdimensional Riemannian manifold (M, g) whose restricted holonomy group is contained in the group Sp m .Sp 1 = Sp m × Z2 Sp 1 , m ≥ 2. This group is identified with a subgroup of SO 4m by the representation

(A, q) ∈ Sp m .Sp 1 -→ x ∈ H m ≃ R 4m → Axq .
Let i, j, k be the standard basis of imaginary quaternions. The action on the right of -i, -j, -k on H m defines three hermitian operators I, J, K, verifying the same multiplication rules as the imaginary quaternions. The space Q generated by I, J, K is K-invariant, hence by transport on the fibres, it defines a globally parallel subbundle Q(M ) of the bundle End(T M ). By transporting the operators I, J, K on fibres with the help of a trivialization, one gets three local almost complex structures I, J, K, for which the metric g is hermitian, verifying the same multiplication rules as the imaginary quaternions. Using the metric, one obtains three local 2-forms Ω I , Ω J , Ω K . Now, the 4-form

Ω = Ω I ∧ Ω I + Ω J ∧ Ω J + Ω K ∧ Ω K ,
is well-defined over M , parallel and non-degenerate, [START_REF] Kraines | Topology of quaternionic manifolds[END_REF], [START_REF] Bonan | Sur les G-structures de type quaternionien[END_REF].

On any spin Quaternion-Kähler manifold this 4-form Ω acts fiberwise on spinors as an hermitian operator with eigenvalues 6m -4r(r + 2), r = 0, . . . , m, [START_REF] Hijazi | Décomposition spectrale du fibré des spineurs d'une variété spin Kähler-quaternionienne[END_REF]. Hence

(3.2) min Ψ =0 (Ω -6m id) • Ψ 2 Ψ 2 = 0 .
We are going to prove that (3.2) is verified for one of the spinor fields Ψ I of lemma 2.3. Compact symmetric spaces with a Quaternion-Kähler structure were classified by J. A. Wolf in [START_REF] Wolf | Complex homogeneous contact manifolds and quaternionic symmetric spaces[END_REF]. It is well known in the theory of representations of compact groups that any root associated to the choice of a maximal torus gives raise to a subgroup of G isomorphic to Sp 1 . J. A. Wolf has shown that compact symmetric spaces with a Quaternion-Kähler are all inner symmetric space of type I of the form G/K, where G is a simple group and K = K 1 Sp 1 , where K 1 is the centralizer of Sp 1 in G. The subgroup Sp 1 of K in consideration here being defined by the maximal root β (for a fixed ordering of roots). Indeed, let H β ∈ t such that for any

H ∈ t, H β , H = -i β(H). Then H β 2 = -i β(H β ) = β 2 . Let H • β := 2/ β 2 H β .
Let X β be a root-vector for the root β. There exists a root-vector X -β for the root

-β such that [X β , X -β ] = -i H • β . Then (H • β , Y β := i (X -β + X β ), Z β := X -β -X β ) defined a basis of a subagebra of g isomorphic to sp 1 as [H • β , Y β ] = 2 Z β , [H • β , Z β ] = -2 Y β and [Y β , Z β ] = 2 H • β . Now, the condition that β is the maximal root implies that ad(H • β ) |p + C = i id, [ Wol65 
], so the action of H • β , Y β and Z β on p by α * : k → so(p), induces three hermitian operators I, J, K, verifying the same multiplication rules as the vectors i, j, k of the standard basis of imaginary quaternions. The space Q generated by I, J, K, which is K-invariant, generates the Quaternion-Kähler structure on G/K. Identifying I, J and K with 2-forms Ω I , Ω J , Ω K , via the metric, one gets the K-invariant 4-form on p

Ω = Ω I ∧ Ω I + Ω J ∧ Ω J + Ω K ∧ Ω K ,
which induces the Quaternion-Kähler parallel fundamental 4-form Ω on G/K. Now, if the symmetric space has a spin structure, the 4-form Ω acts on the spinor space Σ as the operator ( [START_REF]Minoration des valeurs propres de l'opérateur de Dirac sur les variétés spin Kähler-quaternioniennes[END_REF])

Ω = 6m id + Ω I • Ω I + Ω J • Ω J + Ω K • Ω K ,
where the 2-forms Ω I , Ω J , Ω K act by Clifford multiplication. Hence 2

(3.3) Ω -6m id = 4 ρ * (H 0 β ) 2 + ρ * (Y β ) 2 + ρ * (Z β ) 2 .
Note that the second term in the r.h.s. of the above equation is the Casimir operator 3 of the representation ρ * restricted to sp 1 .

2 here again the presence of the scalar factor 4 is due to the use of the isomorphism ξ * : spin(p) → so(p), when the two-forms Ω I , Ω J , Ω K are identified with H • β , Y β , Z β , acting on spinors by the representation ρ * of k.

3 up to some normalization.

Expressing the r.h.s. of (3.3) in the basis (H

c β := -i H • β , X β , X -β ) of sp 1,C ≃ sl 2,C , one gets Ω -6m id = -4 ρ * (H c β ) 2 + 2 ρ * (X β ) • ρ * (X -β ) + 2 ρ * (X -β ) • ρ * (X β ) = -4 ρ * (H c β ) 2 + 2 ρ * (H c β ) + 4 ρ * (X -β ) • ρ * (X β ) . (3.4)
Hence we may conclude Lemma 3.2. For any subset I ⊂ I 0 ,

(Ω -6m id) • Ψ I = 0 ⇐⇒ β I (H • β ) = 0 . Proof.
By the Schur lemma, Ω -6m acts on the K-irreducible space Σ I as a scalar multiple of identity. If c I is the eigenvalue, one then has (Ω -6m id)

• Ψ I = c I Ψ I .
To compute the eigenvalue, one applies (3.4) to a highest weight vector of Σ I . Since the action of ρ * (X β ) is zero on such a vector, whereas ρ * (H c β ) acts by a non-negative integer multiple of identity on it, one has c I = 0 if and only if ρ * (H c β ) acts trivially, hence the result.

Let I + = {i ∈ {1, . . . , m} , α i , δ K > 0}. Then (3.5) β I (H • β ) = 1 2 j∈I+ α j (H • β )- 1 2 j∈I- α j (H • β )+ 1 2 j∈I0\I α j (H • β )- 1 2 j∈I α j (H • β ) .
Lemma 3.3. Apart from G 2 /SO 4 , for any Quaternion-Kähler compact spin symmetric space, one has

# I -+ # I 0 = # I + .
Proof. Note first that

(3.6) ∀θ ∈ Φ K , θ = ±β , β, θ = 0 .
Indeed if X θ is a root-vector for the root θ, one has [H β , X θ ] = 0, since K 1 is the centralizer of Sp 1 in K. So θ(H β ) = 0. Now, let H θ ∈ t be such that for any H ∈ t H θ , H = -i θ(H). We then have H θ , H β = 0, hence θ, β = 0. By this remark, positive non compact roots α are then characterized by the condition α, β = 1 2 β 2 . Let α i be a positive non compact root. Then βα i is a positive compact root. It is a root since α i , β > 0 (cf. for instance 4 § 9.4 in [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF]). And it is positive since βα i , β = 1 2 β 2 . Note furthermore that βα i = α i , since otherwise 2α i = β should be a root, which is impossible. Now by (3.6),

δ K , β = 1 2 β 2 , hence δ K , β -α i = 1 2 β 2 -δ K , α i . Hence, if j ∈ I -∪ I 0 , then δ K , β -α j ≥ 1 2 β 2 , hence β -α j = α ij , with i j ∈ I + .
We thus get an injective map I -∪I 0 → I + , so we may conclude # I -+# I 0 ≤ # I + . On the other hand, if δ K , α j > 0, then as δ K is an integral weight 5 , one has

δ K , α j ≥ 1 2 α j 2 , hence δ K , β -α j ≤ 1 2 ( β 2 -α j 2 ) .
4 or note that σ β (α i ) = α i -β, where σ β the reflection across the hyperplane β ⊥ . 5 since δ K is a difference of integral weights:

δ K = w • δ G -(w • δ G -δ K ), w ∈ W .
Now as G is a simple group, the root system is irreducible and there are at most two root lengths (see for instance § 10.4. in [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF]). If all the roots have same length, then δ K , βα j ≤ 0, so βα j = α ij , where i j ∈ I -∪ I 0 . In this case, there is an injective map I + → I -∪ I 0 , so # I + ≤ # I -+ # I 0 , and the result is proved. Now by the result [START_REF] Wolf | Complex homogeneous contact manifolds and quaternionic symmetric spaces[END_REF], using furthermore the result [START_REF] Cahen | Spin Structures on Compact Simply Connected Riemannian Symmetric Spaces[END_REF], the list of spin compact Quaternion-Kähler symmetric spaces is given by

G K G/K dim G/K Spin structure Sp m+1 Sp m × Sp 1 Quaternionic 4m (m ≥ 1) Yes (unique) projective space HP m SU m+2 S(U m × U 2 ) Grassmannian 4m (m ≥ 1) iff m even Gr 2 (C m+2 ) unique in that case Spin m+4 Spin m Spin 4 Grassmannian 4m (m ≥ 3) iff m even, Gr 4 (R m+4 ) unique in that case G 2 SO 4 8 Yes (unique) F 4 Sp 3 SU 2 28 No E 6 SU 6 SU 2 40 Yes (unique) E 7 Spin 12 SU 2 64 Yes (unique) E 8 E 7 SU 2 112 Yes (unique) 
Note that all of them are inner as it was noticed in [START_REF] Wolf | Complex homogeneous contact manifolds and quaternionic symmetric spaces[END_REF]. Now, apart from6 Sp(m + 1) and G 2 , there are only one root length for the groups G in the above list, hence the result is proved for the corresponding symmetric spaces. So it remains to prove the result for quaternionic projective spaces HP m = Sp(m + 1)/Sp(m) × Sp 1 , m ≥ 1. We consider the standard maximal torus T of Sp m+1 made up of diagonal matrices with entries of the form e β i := cos(β) + sin(β) i, β ∈ R. We denote by (x 0 , x 1 , . . . , x m ) the standard basis of t * such that the value of x k on a diagonal matrix with entries (β 0 i, . . . , β m i) is β k , k = 0, . . . , m. We set x k = i x k . The scalar product on i t * induced by the Killing form sign-changed verifies xi , xj = 1 4(m+2) δ ij . We choose as positive roots

x i ± x j , 0 ≤ i < j ≤ m ; 2 x i , 0 ≤ i ≤ m .
The roots x ix i+1 , 0 ≤ i ≤ m -1, and 2 xm then define a basis of the root system. In order to avoid a re-ordering of roots, we consider K = Sp 1 × Sp m , (instead of Sp m × Sp 1 ) in such a way that the positive compact roots are

x i ± x j , 1 ≤ i < j ≤ m ; 2 x i , 0 ≤ i ≤ m .
Then, the positive non compact roots are

x 0 ± x k , 1 ≤ k ≤ m .
The maximal root is β = 2 x0 . Note that

x 0 ± x k = β -( x 0 ∓ x k ), and β, x 0 ± x k = 1/2 β 2 . Now δ K = x0 + m k=1 (m -k + 1) xk . Hence it is easy to verify that δ, x 0 + x k > 0 , 1 ≤ m , δ, x 0 + x k < 0 , 1 ≤ m -1 , δ, x 0 + x m = 0 . So # I -+ # I 0 = # I + .
Going back to (3.5), one deduces from the above lemma, as ad(H

• β ) |p + C = i id, β I0 (H • β ) = 1 2 i (# I + -# I --# I 0 ) = 0 .
Hence by the lemma 3.2, (Ω -6m id) • Ψ I0 = 0, and the result of proposition 1.1 is proved.

3.3. The case of G 2 /SO 4 . The group SO 4 is identified with Sp 1 •Sp 1 ≃ Sp 1 × Z2 Sp 1 . The inclusion Sp 1 • Sp 1 ⊂ Sp 2
• Sp 1 is not the "natural" one since the group acts irreducibly on H 2 = R 8 with highest weight 3 ω 1 +ω 2 , where (ω 1 , ω 2 ) is the standard basis of fundamental weights corresponding to the half spinors representations, see for instance §11 in [START_REF] Salamon | Riemannian geometry and holonomy groups[END_REF].

We use the result of [START_REF] Seeger | The spectrum of the Dirac operator on G 2 /SO(4)[END_REF], where all the roots data for G and K are expressed in the basis (ω 1 , ω 2 ) by

Φ + G = {2 ω 1 , -3 ω 1 + ω 2 , -ω 1 + ω 2 , ω 1 + ω 2 , 2 ω 2 , 3 ω 1 + ω 2 } Φ + K = {2 ω 1 , 2 ω 2 } , Φ + p = {-3 ω 1 + ω 2 , -ω 1 + ω 2 , ω 1 + ω 2 , 3 ω 1 + ω 2 } .
The scalar product on weights induced by the Killing form sign-changed is given by

a 1 ω 1 + a 2 ω 2 , b 1 ω 1 + b 2 ω 2 = 1 16 1 3 a 1 b 1 + a 2 b 2 .
The highest weights of the spin representation are obtained by means of the Parthasaraty formula, [START_REF] Seeger | The spectrum of the Dirac operator on G 2 /SO(4)[END_REF] 4 ω 1 , 2 ω 2 and 3 ω 1 + ω 2 .

The half spin representation Σ - 8 is irreducible with highest weight 3 ω 1 +ω 2 , the half spin representation Σ + 8 decomposes into two components with respective highest weights 4 ω 1 and 2 ω 2 . So, denoting by H the standard representation of Sp 1 , the spin representation decomposes as

(3.7) Σ 8 = (S 3 H ⊗ S 1 H) ⊕ (S 4 H ⊗ S 0 H) ⊕ (S 0 H ⊗ S 2 H) .
There are two weights for which the norm is minimal:

β ∅ = 2 ω 2 = δ p and β I0 = 3 ω 1 + ω 2 = δ p -(-3 ω 1 + ω 2 ).
Hence the spinor field Ψ ∅ verifies DΨ ∅ = λ 2 Ψ ∅ , where λ is the lowest eigenvalue of the Dirac operator, and is also a section of the bundle corresponding to the component S 0 H ⊗S 2 H in the decomposition (3.7), on which the action (on the first component) of Sp 1 is trivial, thus our "holonomy criterion" is verified. However, it has to be noticed that the Quaternion-Kähler structure of G 2 /SO 4 corresponds to the action of Sp 1 on the second component, and that this criterion is not verified for that action. Indeed, it easy to see that θ 1 = 2 ω 1 and θ 2 = -3ω 1 + ω 2 are simple G-roots, and that the maximal root is β := 2 ω 2 = 3 θ 1 + 2 θ 2 . Now note that

β, α = 0 if α ∈ Φ K , α = ±β, β, α = 1 2 β 2 if α ∈ Φ +
p , hence we are in the description of Wolf spaces given above. It may be checked that for any positive non compact positive root α, δ K , α = 0, 1/24, 1/12 or 1/8, so # I + = 3, # I 0 = 1 and # I -= 0, hence the result of lemma 3.3 is not verified here. Moreover note that, by definition of

H • β , β ∅ (H • β ) = 2 i β 2 β, β ∅ = 0 and β I0 (H • β ) = 2 i
β 2 β, β I0 = 0, so by lemma 3.2, the criterion is not verified for the action of Sp 1 on the second component. As an additional argument, one may remark that since β, 4 ω 1 = 0, 4 ω 1 (H • β ) = 0, so by the proof of lemma 3.2, the action of Ω -6m id on spinors is zero only on the K irreducible subspace of Σ with highest weight 4 ω 1 . But, by the results of [START_REF] Seeger | The spectrum of the Dirac operator on G 2 /SO(4)[END_REF], this is not a highest weight for the restriction to K of the G 2 irreducible representation giving raise to the lowest eigenvalue of the Dirac operator. Indeed, the action of Sp 1 on the first component may also be described in terms of the action of fundamental 4-form on spinors by Clifford multiplication. This is a consequence of a more general result. 

β w + 2 δ K , β w .
Hence, by the W G -invariance of the scalar product,

β w + 2 δ K , β w = w • δ G + δ K , w • δ G -δ K = δ G 2 -δ K 2 .
Hence, since δ G 2δ K 2 = 1 2 here, the Casimir operator C K of the spin representation of K acts on each irreducible component as 1 2 id. Denote by C 1 (resp. C 2 ) the Casimir operator of the restriction of the spinor representation to the first (resp. second) Sp 1 component in K, (for the scalar product given by the Killing form sign-changed of G 2 ). One has C K = C 1 + C 2 . The eigenvalue of C 1 (C 2 ) acting on S k H is a scalar multiple of k(k + 2) times the identity. Using the result of the above lemma, one gets by (3.7)

C 1|S k H = 1 48 k(k + 2) id and C 2|S k H = 1 16 k(k + 2) id .
representation, then the Schur lemma implies that ρ K * (C 2 ) and ρ K * (C 4 ) acts on it as scalar multiples of identity. Furthermore, we already note in lemma 3.4, that ρ * (C 2 ) acts on each irreducible component as a scalar multiple of identity with the same eigenvalue. Finally, to prove our holonomy criterion, we only have to examine the eigenvalues of ρ * (C 4 ) on the irreducible components of the spin representation of K. Those eigenvalues may be computed with the help of a formula given in [START_REF] Calderbank | Refined Kato inequalities and conformal weights in Riemannian geometry[END_REF].

Denoting by (e 1 , e 2 , e 3 , e 4 ) the standard basis of R 4 , the root system of F 4 is the set of elements x = 4 i=1 x i e i with integer or half-integer coordinates in R 4 such that x 2 = 1 or 2, [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF], [START_REF] Bremner | Tables of Dominant Weight Multiplicities for Representations of Simple Lie Algebras[END_REF]. Using the results in [START_REF] Cahen | Spin Structures on Compact Simply Connected Riemannian Symmetric Spaces[END_REF], we may consider The scalar product induced by the Killing form sign-changed is a scalar multiple of the restriction to the set of roots of the usual scalar product on R 4 . Using the "strange" formula of Freudenthal and De Vries, [START_REF] Freudenthal | Linear Lie Groups[END_REF], one obtains δ G 2 = dim g 24 = 13/6, hence this scalar product is given by 4 i=1

Φ + G = {e i , i = 1, 2, 3, 4 ; e i ± e j , 1 ≤ i < j ≤ 4 ; 1 2 (e 1 ± e 2 ± e 3 ± e 4 )} Φ + K = {e i , i = 1, 2, 3, 4 ; e i ± e j , 1 ≤ i < j ≤ 4} , Φ + p = { 1 
x i e i , x i y i .

With the help of the Parthasaraty formula, it is easy to find the highest weights of the spin representation of K. The half spin representation Σ - 16 is irreducible with highest weight 1 2 (3 e 1 + e 2 + e 3 + e 4 ), whereas the half spin representation Σ + 16 decomposes into two components with highest weights e 1 + e 2 + e 3 and 2 e 1 . Note that the sets I -and I 0 have both only one element since for any positive non compact root α, one has δ K , α < 0 ⇐⇒ α = 1 2 (e 1e 2e 3e 4 ), and δ K , α = 0 ⇐⇒ α = 1 2 (e 1e 2e 3 + e 4 ). Indeed, there are two weights for which the norm is minimal

β ∅ = 1 2 (3 e 1 + e 2 + e 3 + e 4 ) = δ p - 1 2 (e 1 -e 2 -e 3 -e 4 ) , and 
β I0 = e 1 + e 2 + e 3 = δ p - 1 2 (e 1 -e 2 -e 3 -e 4 ) - 1 2 (e 1 -e 2 -e 3 + e 4 ) .
By the result of [START_REF]The First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces[END_REF], the square of the first eigenvalue of the Dirac operator is then given by 2 β ∅ 2 + 2 = 2 β I0 2 + 2, hence Proposition 3.5. On the symmetric space F 4 /Spin 9 endowed with the Riemannian metric induced by the Killing form of F 4 sign-changed, the square of the first eigenvalue λ of the Dirac operator verifies

λ 2 = 7 3 = 7 6 Scal 4 .
We now verify the holonomy criterion by determining explicitly the eigenvalues of the operator ρ K * (C 4 ). This may be done with the help of a formula given in [START_REF] Calderbank | Refined Kato inequalities and conformal weights in Riemannian geometry[END_REF] which applies here as follows.

For each dominant weight µ of SO 9 (relatively to the usual maximal torus), denote by d(µ) the dimension of a complex K-irreducible representation (ρ µ , V (µ)) with highest weight µ. Let V (µ • ) be the standard representation of SO 9 corresponding to the weight µ • = (1, 0, 0, 0). For each highest weight β 1 , β 2 , β 3 of the spin representation of K where

β 1 = 1 2
(3 e 1 + e 2 + e 3 + e 4 ) , β 2 = e 1 + e 2 + e 3 and β 3 = 2 e 1 , denote by Π i the set of highest weights occurring in the decomposition into irreducible components of the tensor product V (β i ) ⊗ V (µ • ). So

V (β i ) ⊗ V (µ • ) = λij ∈Πi V (λ ij ) .
For each highest weight λ ij , let m(λ ij ) be the so called conformal weight given by

m(λ ij ) := 1 2 (9 -δ K + λ ij 2 + δ K + β i 2 -1) ,
where • is the standard norm on the sets of weights of SO 9 : if µ = (µ 1 , µ 2 , µ 3 , µ 4 ), then µ 2 = 4 i=1 µ 2 i . The eigenvalue c βi,k of the operator (ρ βi ) * (C k ) is then given by (see for instance [START_REF] Homma | Casimir elements and Bochner identities on Riemannian manifolds[END_REF])

c βi,k = 1 d(β i ) λij ∈Πi -m(λ ij ) k d(λ ij ) .
The values of c βi,k , i = 1, 2, 3, k = 2, 3, 4 are given in the following table. They were obtained with the help of the LiE Program7 . The first line is not a surprise by lemma 3.4. The second line too since C 3 may be expressed in terms of C 2 . Finally, the last line shows that the lowest eigenvalue of the operator ρ K * (C 4 ) is obtained for the space with highest weight β 2 = (1, 1, 1, 0). But β 2 = β I0 , which as we saw it before, is linked to the first eigenvalue of the Dirac operator. Hence the "holonomy criterion" of prop. 1.1 is verified.

β 1 = 1 2 (3,
The scalar product on i T * induced by the Killing form sign-changed is given by

a 1 ω 1 + a 2 ω 2 , b 1 ω 1 + b 2 ω 2 = 1 16 1 3 a 1 b 1 + a 2 b 2 .
The highest weights of the spin representation are ([See99]):

β 1 = 4 ω 1 , β 2 = 2 ω 2 and β 3 = 3 ω 1 + ω 2 .

Note that there are two highest weights for which the norm is minimal: β 2 and β 3 . One has

β 2 = δ G -δ K and β 3 = σ 2 • δ G -δ K ,
where σ 2 is the reflection across the hyperplane orthogonal to the simple root θ 2 . Note that

σ -1 2 • β 3 = σ 2 • β 3 = 2 ω 2 . Now 2
2 ω 2 , θ 1 θ 1 , θ 1 = 0 and 2 2 ω 2 , θ 2 θ 2 , θ 2 = 1 , hence the weight 2 ω 2 = β 2 = σ -1 2 • β 3 is G-dominant, so the result is also proven in that case. On the other hand, as i ∈ I 0 , δ K , α i = 0, so

σ αi • δ K = δ K .
Hence, considering w ∅ and w I ∈ W such that β ∅ = w ∅ •δ G -δ K , and β I = w I •δ G -δ K , one gets

w I • δ G -δ K = β I = β ∅ -α I = σ αi • β ∅ = σ αi w ∅ • δ G -δ K .

This implies

w -1 I σ αi w ∅ • δ G = δ G . But this is only possible if w I = σ αi w ∅ , (see for instance § 122 in [ Žel73]). Thus

β G I = δ G -w -1 I • δ K = δ G -w -1 ∅ σ αi • δ K = δ G -w -1 ∅ • δ K = β G ∅ .
Repeating the argument, the result follows by induction on the cardinal of I ⊂ I 0 .

Lemma 3. 4 .

 4 The eigenvalue of the Casimir operator of the spin representation of K has the same value for all irreducible components. Proof. By the Parthasaraty formula, any highest weight of the spin reresentation of K has the form β w := w • δ Gδ K , where w is an element of the Weyl group W G of G. By the Freudenthal formula, the eigenvalue of the Casimir operator of K acting on the K-representation with highest weight β w is given by

  2 (e 1 ± e 2 ± e 3 ± e 4 )} .Thusδ G = 1 2(11 e 1 + 5 e 2 + 3 e 3 + e 4 ) , 1 + 5 e 2 + 3 e 3 + e 4 ) , δ p = 2 e 1 .

4. 2 .

 2 Proof of prop. 4.2. By the result of prop. 2.2, there exist two distinct elements w 0 and w 1 in W such thatβ w1 2 = β w0 2 = min w∈W β w 2 , only if I 0 = ∅. Hence we suppose I 0 = ∅. Let i ∈ I 0 and let I = {i}. By (2.8), β I = β ∅α I . Since β I 2 = β ∅ 2 , one obtains 2 β ∅ , α i = α i , α i ,hence denoting by σ αi the reflection across the hyperplane α ⊥ i , σ αi • β ∅ = β ∅α i = β I .

there are two root lengths for G = F 4 , but the corresponding symmetric space is not spin.

http://www-math.univ-poitiers.fr/ ~maavl/LiE/.

Hence using (3.4), one obtains

(Ω + 20 id) .

So for the symmetric space G 2 /SO 4 , the holonomy criterion is valid for the 4fundamental form acting (by Clifford multiplication) on spinors as Ω + 20 id.

3.4. The Cayley plane F 4 /Spin 9 . The above "holonomy criterion" is also valid for the Cayley plane F 4 /Spin 9 . As it is said in [START_REF] Besse | Einstein Manifolds[END_REF], the Spin(9) holonomy is extremely special since a Riemannian manifold whose holonomy group is contained in Spin( 9) is either flat or (locally) isometric to the Cayley plane F 4 /Spin 9 , or its non-compact dual, [START_REF] Alekseevskii | Riemannian spaces with exceptional holonomy groups[END_REF], [START_REF] Brown | Riemannian manifolds with holonomy group Spin(9), Differential Geometry[END_REF]. There is an analogy between Spin(9)structures (for 16-dimensional manifolds) and Quaternion-Kähler structures, since such a structure on a manifold M may be characterized by the existence of a 9dimensional subbundle of the bundle End(T M ), with local sections

There is also an analogy by the existence of a canonical 8-form Ω, which corresponds to the unique parallel 8-form on F 4 /Spin 9 . This canonical 8-form was first introduced in [BG72] by means an integral formula. Explicit algebraic expressions of this form are far from being simple [START_REF] Brada | Calcul explicite de la courbure et de la 8-forme canonique du plan projectif des octaves de Cayley[END_REF], [START_REF] Abe | Invariant forms of the exceptional symmetric spaces FII and EIII[END_REF], [START_REF] Castrillón López | The Canonical 8-form on Manifolds with Holonomy Group Spin(9)[END_REF], [START_REF] Parton | Spin(9) and almost complex structures on 16-dimensional manifolds[END_REF]. Roughly speaking, the form is constructed by means of the Kähler 2-forms associated to the almost complex structures J αβ := I α • I β , [START_REF] Castrillón López | The Canonical 8-form on Manifolds with Holonomy Group Spin(9)[END_REF], [START_REF] Parton | Spin(9) and almost complex structures on 16-dimensional manifolds[END_REF]. To avoid an explicit expression, we will use here the fact that it may be expressed in terms of "higher Casimir operators", see §125 and §126 in [ Žel73] or [START_REF] Homma | Casimir elements and Bochner identities on Riemannian manifolds[END_REF]. Indeed, this parallel 8-form is induced by an Ad(K)-invariant 8-form Ω on p = R 16 . From the expression of Ω given in [START_REF] Castrillón López | The Canonical 8-form on Manifolds with Holonomy Group Spin(9)[END_REF], [START_REF] Parton | Spin(9) and almost complex structures on 16-dimensional manifolds[END_REF], the action of Ω on spinors is (up to a shift by a scalar multiple of the identity) a sum of terms of the form

), where the Ω αβ are the Kähler 2-forms, identified with elements of the Lie algebra spin 9 , associated to the almost complex structures J αβ . We thus may identify the action of Ω on spinors as the action of an element of the universal enveloping algebra U(spin 9,C ), also denoted Ω. Furthermore this element belongs to the center Z of U(spin 9,C ) since Ω is Ad(K)invariant. Now it is known that the center Z is algebraically generated by a system of "higher Casimir elements", cf. §.125 and §.126 in [ Žel73], which we briefly introduce in that context. Let (e i ) 1≤i≤9 be the standard basis of R 9 . Denote by e ij = e i ∧e j the standard basis of spin 9 ≃ so 9 ≃ Λ 2 (R 9 ). For any non negative integer q, consider e q ij ∈ U(so 9,C ) defined by e q ij := 1≤k1,...,kq-1≤9 e ik1 e k1k2 . . . e kq-1j , q ≥ 1 , δ ij , q = 0 .

Then the trace of e q ij , C q := 9 i=1 e q ii belongs to the center Z. For q = 0, C 0 = 9, for q = 1, C 1 = 0 and for q = 2, C 2 = ij e ij e ji is the usual Casimir element. It may be shown that the center Z is algebraically generated by C 2 , C 4 , C 6 and C 8 , [ Žel73]. Now, the above description of the element Ω ∈ U(spin 9,C ) shows that it is expressed only in terms of C 2 and C 4 . If we consider an irreducible component of the spin

Appendix

Recall that the highest weights of the spin representation of K are given by

where W is the subset of the Weyl group W G defined by

In this appendix, we review the proof of the following result.

Proposition 4.1. Let w 0 ∈ W be such that (4.1)

Then the weight

We will also justify the following remark : Proposition 4.2. Let w 0 and w 1 ∈ W be such that

Then the G-dominant weights

Review of the proof of prop. 4.1. The main error in the proof given in [START_REF]The First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces[END_REF] concerns a technical assumption which is used at the end, asserting that the highest weights with same minimal length may be ordered with respect to the usual order of K-weights. As it can be seen in (2.8), this is actually not correct since two such highest weights may only differ by a non compact positive root 8 . Before that, there is also an imprecise statement, asserting that a certain weight of the spin representation does lie in the W G -orbit of a highest weight, which makes the proof not satisfactory. Hence we propose here an alternative proof we think correct.

Proof. First note that considering the sets

Hence since

8 whereas, if it is a root, a sum of compact roots is necessarily a compact one.

Now by the result of prop. 2.2, there exists a subset I w0 ⊂ I 0 such that (4.3)

Comparing (4.2) and (4.3), we get the following alternative : if a positive G-root is such that w 0 • θ is a non compact root, then either w 0 • θ is negative and then w 0 •θ = -α i , i ∈ I -∪I w0 , so w 0 •θ, δ K ≥ 0, or w 0 •θ is positive and then w 0 •θ = α i , i / ∈ I -∪ I w0 , so w 0 • θ, δ K ≥ 0. So we may conclude that Remark 4.3. If α is a positive G-root such that w 0 • α is a non compact root then, whatever w 0 • α is positive or not, one always has

G be the set of simple roots. It is sufficient to prove that 2

is a non-negative integer for any simple root θ i . First, as T is a maximal common torus of G and K, β w0 , which is an integral weight for K is also an integral weight for G. Now since the Weyl group W G permutes the weights, β G w0 = w -1 0 •β w0 is also a integral weight for G, hence 2

is an integer for any simple root θ i . So we only have to prove that

) is verified in this case, since w 0 • θ i is a linear combination with non-negative integer coefficients of K-simple roots. Suppose now that w 0 • θ i / ∈ Φ K , that is w 0 • θ i is a non compact root. We are going to prove that (4.5)

is impossible. Suppose that (4.5) is true. Note first that since 2 δG,θi θi,θi = 1, (see for instance §10.2 in [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF]) and since the scalar product

This implies that δ K , w 0 • θ i > 0 . Now since δ K is a linear combination with non-negative coefficients of K-simple roots, this implies that there exists a K-simple root θ ′ such that

By property of roots (cf. for instance §9.4 in [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF]), this implies that

is a root, and moreover a non compact root by the bracket relations [k, p] ⊂ p.

is an integer. Thus (4.8) is an equality :

This implies that there exists j ∈ I 0 such that θ ′w 0 • θ i = ±α j . So, by the result of prop. 2.2

• either θ ′w 0 • θ i = α j and j ∈ I w0 or θ ′w 0 • θ i = -α j and j / ∈ I w0 and then

is a highest weight of the spin representation with minimal length, • either θ ′w 0 • θ i = α j and j / ∈ I w0 or θ ′w 0 • θ i = -α j and j ∈ I w0 and then

is a highest weight of the spin representation with minimal length. In the first case, one gets using µ 0

whereas in the second case, one obtains

But inequality (4.7) implies as 2 θ ′ ,w0•θi θ ′ ,θ ′ is an integer

This implies that θ ′w 0 • θ i is a short root, hence that

In the first case, this implies

Let σ i be the reflection across the hyperplane θ

a positive root which, being a long root, is different from θ i . Hence as σ i permutes the positive roots other than θ i , (see for instance § 10.2 in [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF]), σ i w -1 0 • θ ′ is a positive root. Then as δ G , θ j > 0 for any simple G-root θ j , (4.11) is impossible. So the result is proven in the case where θ ′ 2 / θ i 2 = 2. We finally examine the case where θ ′ 2 / θ i 2 = 3. The only simple group for which this is possible is the group G 2 , and there is only one symmetric space of type I to be considered: G 2 /SO 4 . So we may give a direct proof of proposition 4.1 in that case. We use the result of [START_REF] Seeger | The spectrum of the Dirac operator on G 2 /SO(4)[END_REF], where all the roots data for G and K are expressed in terms of the fundamental weights (ω 1 , ω 2 ) of SO 4 , corresponding to the half spinors representations.

Φ + G = {2 ω 1 , -3 ω 1 + ω 2 , -ω 1 + ω 2 , ω 1 + ω 2 , 2 ω 2 , 3 ω 1 + ω 2 } Φ + K = {2 ω 1 , 2 ω 2 } . Note that θ 1 = 2 ω 1 and θ 2 = -3ω 1 + ω 2 are simple G-roots, and that δ G = ω 1 + 3 ω 2 and δ K = ω 1 + ω 2 .