
HAL Id: hal-01020253
https://hal.science/hal-01020253

Submitted on 11 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A View-Based Access Control Model for SPARQL
Alban Gabillon, Léo Letouzey

To cite this version:
Alban Gabillon, Léo Letouzey. A View-Based Access Control Model for SPARQL. 4th International
Conference on Network and System Security (NSS), 2010, Sep 2010, Melbourne, Australia. pp.105 -
112, �10.1109/NSS.2010.35�. �hal-01020253�

https://hal.science/hal-01020253
https://hal.archives-ouvertes.fr

A View Based Access Control Model for SPARQL

Alban Gabillon, Léo Letouzey

Université de la Polynésie Française
BP 6570, 98702 FAA’A

French Polynesia
{alban.gabillon,leo.letouzey}@upf.pf

Abstract

Existing security models for RDF use RDF patterns for
defining the security policy. This approach leads to a
number of security rules which rapidly tends to be
unmanageable. In this paper we define a new security
model which follows the traditional approach of creating
security views, which has long been used by SQL
database administrators. Our model first logically
distributes RDF data into SPARQL views and then it
defines security rules regulating SPARQL access to
views. Moreover our model supports rights delegation
and dynamic security rules (i.e. rules which can be active
or not, depending on the context).

1. Introduction

Several access control models for RDF (Resource
Description Framework) [15] data have been proposed
[2][3][4][5]. Most of these models have the same two
drawbacks: (1) the security policy consists of RDF
patterns defining the RDF triples which can be accessed.
Even though, this approach allows for fine grained access
control, it does not scale to large RDF datasets since the
number of security rules becomes rapidly excessive; (2)
none of these models include an administration model
specifying how the security policy can be updated.
The SQL (Structured Query Language) security model is
a View Based Access Control model (VBAC) for
relational databases which has proved to be practical and
scalable. In this model, each application designer owns a
set of SQL tables for which she manages the security
policy. Basically, to define access rights, the application
designer proceeds as follows: (1) she first defines a set of
SQL views. A view is a virtual table that consists of
columns and rows from one or more tables. Concretely, a
view is a query stored as an object that derives its data
from one or more tables. A view can be referenced in a
query like any table. If a user query referencing a view is

submitted to the SQL engine then the query defining the
view is first dynamically evaluated; (2) then she grants
access rights on views (and possibly tables) to users
and/or roles. In SQL, the existing access rights correspond
to the four SQL query forms namely, SELECT, INSERT,
DELETE and UPDATE. By managing access rights on
views rather than on tables, the application designer has
more flexibility to restrict access to rows and columns of
data. Views provide also an elegant way of implementing
security rules involving data distributed into several
tables. SPARQL (recursive acronym that stands for
SPARQL Protocol and RDF Query Language) [12] is a
standardized query language for RDF data. SPARQL
queries reference one or several RDF graphs. SPARQL
has four query forms (SELECT, CONSTRUCT, ASK,
DESCRIBE). Both the CONSTRUCT and DESCRIBE
queries return an RDF graph. The core of the security
model we propose in this paper is basically an
interpretation of the SQL security models for SPARQL
where (i) RDF graphs play the role of tables, (ii) RDF
views are CONSTRUCT or DESCRIBE queries stored as
objects and (iii) the security rules regulate the execution
of the four SPARQL query forms. On top of this, our
model supports rights delegation and enables dynamic
security rules, i.e. rules which become active only if a
certain context is true. Organization of the remainder of
this paper is the following. In section 2, we quickly
introduce SPARQL. In section 3, we review existing
access control models for RDF data and we give an
example motivating our work. Section 4 describes our
security model. In section 5, we sketch the architecture of
a secure proxy for RDF data implementing our model. In
particular we give the algorithms used by the Policy
Decision Point and the Policy Enforcement Point. Finally,
section 6 concludes this paper.

2. SPARQL

With the greater adoption of RDF, many languages have
been proposed to query RDF repositories (RDQL (RDF

Data Query Language) [10], RQL (RDF Query Language)
[11], SPARQL [12]). Since January 2008, SPARQL is the
W3C recommended language to query RDF document.
SPARQL can be used to express queries across diverse
data sources, whether the data is stored natively as RDF
or viewed as RDF via middleware. SPARQL contains
capabilities for querying required and optional graph
patterns along with their conjunctions and disjunctions.

Figure 1 myfoaffile.rdf

A SPARQL query is of one of the 4 following types:
SELECT, ASK, CONSTRUCT and DESCRIBE.
SELECT queries are the most common. A SELECT query
returns all, or a subset of, the variables bound in a query
pattern match (see example below). A ASK query returns
True or False depending on whether a graph pattern
matches or not. The two other query types return RDF
graphs. A CONSTRUCT query returns a RDF graph
constructed by substituting variables in a set of triple
templates (see section 3 for an example of a
CONSTRUCT query). A DESCRIBE form returns a

single result RDF graph containing RDF data about
resources.
In order to describe how SPARQL queries are processed
against RDF repositories, let us consider the RDF
document in figure 1. This document is defined in the
FOAF (Friend Of A Friend) ontology [19]. The FOAF
project is a community driven effort to define an RDF
vocabulary for expressing metadata about people, and
their interests, relationships and activities.
Let us consider the following SELECT query:

Variable x line 2 is bound to subject foaf:Person whose
predicate foaf:name targets object “Bob”. Variable y (line
3) is bound to the foaf:Person elements that are known by
x . In line 4, variable name matches objects o so that
triple (s, p, o) belongs to the RDF document, with s
being one of the values found for y and p being predicate
foaf:name. Answer to this query is the set {Alice, Hans
and Charlie}.

The result set of a SPARQL SELECT (or ASK) query can
be serialized to XML. The SPARQL Variable Binding
Results XML Format is the W3C recommended language
for serializing the result of SPARQL query to a SPARQL
Results Document (SRD) [20].

3. Related Works and Motivations

In this section, we review the main existing access control
models for RDF data [2][3][4][5]. Several authors (see
[2][3] for instance) have underlined the fact that existing
access control models for XML data cannot be applied to
RDF data. We agree on this point. Therefore, we shall not
consider access control models for XML in this related
work section.
In all existing access control models for RDF, security
rules use RDF patterns to match RDF triples. An RDF
pattern is an RDF triple (subject, predicate,
object) where subject , predicate and object
can be substituted by variables. In [2], the authors define a
set of actions that can be performed on an RDF store.
They define several operations for updating the store and
two operations for querying the store. The security policy
consists of permissions or prohibitions to perform actions
on some RDF triples. Each permission or prohibition can
be subject to a condition. This condition is either based on
metadata that the RDF store maintains or on the triples
themselves. Enforcement of the security policy (for query
actions) requires filtering out unauthorized triples from

the result set. In [3], the authors deal with multilevel
security in RDF stores. They assign security labels to
RDF triples. In order to prevent unauthorized inferences,
they consider the entailment rules defined in the W3C
RDF Semantics [17] and suggest some rules for
automatically assigning security labels to entailed RDF
statements. In [4], the authors consider the read access
only. The security policy consists of permissions or
prohibitions to access some RDF statements. Each
authorization can be subject to a condition based on
contextual information. Regarding policy enforcement,
authors argue that approaches used in [2] and [3] are not
efficient since they require to instantiate the graph
patterns used in the security policy. They propose instead
an algorithm to rewrite a given query into a secure query
according to the security policy. In [5], the authors
consider the read access only. Like in [16], an
authorization (positive or negative) can be recursive or
local. If it is recursive then it propagates (explicit
propagation) to lower classes and lower properties based
on the RDF schema. The authors also define the concept
of implicit authorization in the RDF inference. The
authors propose then a solution to detect the conflicts
which may arise between authorizations.
Most of these models have the same major drawback: they
use RDF patterns for identifying the RDF triples which
can be accessed. This approach does not scale to large
RDF datasets. As a matter of fact, let us consider the
FOAF rdf file myfoaffile.rdf shown in figure 1 (section 2)
and consider the following security policy applying to this
file:
“Alice is permitted to see name, surname, email and
interests of Bob’s friends who live in Paris and who are
interested in mathematics.”
Figure 2 shows how to express this security policy in the
framework of the model defined in [2]. Figure 3 shows
the same policy in the framework of the model defined in
[4].
As we can see both models requires writing 4 rules, one
for each of the following patterns:

(X, foaf:name, Y)
(X, foaf:surname, Y)
(X, foaf:interest, Y)
(X, foaf:mbox, Y)

Moreover, since access to these patterns is subject to
some conditions, these conditions have to be repeated in
each rule. In fact, using RDF patterns for identifying RDF
triples leads to a number of security rules which quickly
tends to be unmanageable and unreadable.
Existing models have another drawback. None of them
include an administration model specifying how the
security policy can be updated. In fact, all existing models
implicitly assume that the definition of the security policy
should be carried out by a central authority. However, in

an open environment like the Web, metadata come from
different sources and should be managed in a
decentralized way.

Figure 2. Policy Based Access Control for An RDF
Store. Reddivari, Finin, Joshi 2005 [2]

The model we define in this paper does not have the
inconveniences of the existing models. In our model, each
RDF graph has an owner who manages the security policy
protecting the graph. Typically, the owner of a graph first
creates various views on her graph, by means of SPARQL
CONSTRUCT or DESCRIBE queries. She then grants the
SPARQL SELECT privilege on these views to other
users. As a matter of fact, for writing a security policy
saying that Alice has the permission to see name,
surname, email and interests of Bob’s friends who live in
Paris and who are interested in mathematics, Bob, owner
of the foaf file myfoaffile.rdf (figure 1), proceeds as
follows: (1) he first creates the view shown in figure 4.
This view definition is referred by the URL foafview.txt.
It contains a CONSTRUCT statement which selects the
name, surname, mbox and interests of Bob’s friends who
live in Paris and who are interested in mathematics (2) he
then defines a single simple security rule granting the

SELECT privilege on the view foafview.txt to Alice (see
section 3 for the definition of security rules):

Permit(Alice,SELECT,foafview.txt)

This rule says Alice is permitted to execute a SELECT
statement on the view which is referred by the URL
foafview.txt.

Figure 3. Enabling Advanced and Context-Dependent

Access Control in RDF Store. Abel et al, 2007 [4]

If Alice submits a SPARQL SELECT query on
foafview.txt then, the CONSTRUCT query defining the
view is first dynamically evaluated and then, the SELECT
query submitted by Alice is evaluated on the RDF graph
which is returned by the CONSTRUCT query.
The advantage of using security views for managing RDF
data is obvious. Since a view represents a comprehensive
set of semantically related data, we do not need to include
these semantics relationships as conditions in the security
rules, as it is done in models [2] and [4]. Moreover, since

we can group several RDF patterns of interest into the
same view, we can reduce the number of rules.
Consequently, we gain in readability and concision.
Again, we would like to reiterate that this approach has
long been used successfully by many SQL database
administrators.

Figure 4. View foafview.txt. Interest and mbox are
defined as OPTIONAL in the query since some persons
may not have surname and mail box

4. Security Model
Subjects, Objects, Actions, Views and Contexts
Definition of an access control model requires the
definition of the objects to be protected, the actions to be
executed on objects and the subjects that execute the
actions [9]. In our model, subjects are users or processes.
Objects are either RDF graphs or views. Views are RDF
graphs created by means of CONSTRUCT or DESCRIBE
queries. Actions (privileges) correspond to the four
SPARQL query types, namely SELECT, ASK,
CONSTRUCT and DESCRIBE. Security rules can be
dynamic i.e. become active only if a certain context is
true. As it is done in the ABAC model [1] or in the
OrBAC model [18], we define a context as a conjunction
and/or disjunctions of logical conditions applying to the
subject, the object and the environment. Handling
contexts allows us in particular to write security rules
which do not require authenticating every user. This
feature is particularly desirable in an open environment
like Internet where it is often unrealistic to authenticate
every user.

Security Policy Formulation
Definition of an access control model requires also the
definition of a language for assigning rights to users. As in
many Rule Based Access Control models [21][22], our

language is based on first-order logic. Syntax of an
authorization rule is the following:

condition � Permit(s,a,o)

where condition is a possibly empty set of constraints
applying to the subject, the object and the environment.
Permit(s,a,o) reads “subject s is permitted to
execute action a on object o”. If a security rule is not
constrained (i.e. condition is empty) then is it of the form
Permit(s,a,o) (see example in section 3). The
default policy of our model is closed. This means that,
given a subject s requesting to execute action a on object
o, if Permit(s,a,o) cannot be derived from the
security policy then subject s should be denied to execute
action a on object o. In the following examples, for better
readability, we omit the universal quantifiers.
With the following statement, Bob grants privilege ASK
on foafview.txt to everybody but only during daytime:

Time(CLOCK,t) ∧ (t > 8) ∧ (t < 20)
� Permit(s,ASK,foafview.txt)

Predicate Time(CLOCK,t) reads “current time (given
by the system CLOCK) is t ”
With the following statement, Bob grants privilege
SELECT on foafview.txt to whoever connects from the
university network:

IP(s,i) ∧ NetUniv(i)
� Permit(s,SELECT,foafview.txt)

Predicate IP(s,i) reads “IP address of s is i ”.
Predicate NetUniv(i) reads “i belongs to the
university network”
Some existing security models for RDF deal with negative
authorizations. For example, the security policy in [4]
uses allow/deny rules. Negative authorizations allow the
security administrator to specify an exceptional
prohibition to a general permission (or vice versa). The
problem with having positive and negative authorizations
is conflict management. There have been many research
works on this issue mainly in the area of access control
models for XML (see [16] for instance). However, these
works should be revised to take into account the fact that
in modern applications security rules are rather dynamic
and are based on contextual conditions. Therefore, writing
security policies including positive and negative
authorizations requires being able to predict the potential
conflicts which may arise between authorizations (see
[23] for more details about this topic).

Administration
Most of existing models for RDF data are designed for
centralized RDF stores. They implicitly assume that the
definition of the security policy should be carried out by a
central authority. On the contrary, we designed our model
with in mind a decentralized system where people create

their own RDF data and publish them through a secure
proxy whose function is to regulate access to these
various datasets according to the security policies defined
by the users themselves. Let us consider Bob who needs
to publish his foaf RDF data and who needs to regulate
access to these data. In our scenario, Bob will create
several views on his original dataset. He will then publish
his original dataset and his views through a secure proxy
along with the security policy regulating access to the
original dataset and the views. Typically, he will forbid
everybody to directly access to the original dataset but he
will define some rules regulating access to the views. The
proxy will then be in charge of implementing the security
policy. For defining the security policy, Bob uses the
logical language defined in the previous subsection. In
order to better structure the security policy, he may also
create roles which will be local to his proxy schema. More
formally, the administration model of our security model
can be described as follows: each RDF graph/view has an
owner who is the user who created it. The owner of a
graph/view holds all privileges on it. Each user defines the
security policy for the RDF graphs/views she owns by
means of, (1) CONSTRUCT or DESCRIBE queries
stored as objects, (2) a (possibly empty) role hierarchy
and (3) logical security rules, as defined in the previous
subsection. Creating roles and assigning roles to users or
other roles can be done with the following two predicates:

Role(r) which reads “r is a role”
Isa(r,r’) If r is a role then it reads “r is a sub-
role of role r’ ”. If r is a user then it reads “user r plays
role r’ ”.

Note that, regarding the role/user hierarchy, the following
entailment rule applies:

Isa(r,r’) ∧ Isa(r’,r”) � Isa(r,r”)

For example, with the following logical facts, Bob creates
role Friend which he grants to Alice:
Role(Friend)
Isa(Alice,Friend)

Roles are local to the schema of the user who created
them. This means in particular that two different users
may create a role Friend. This point deserves to be
stressed since in many SQL databases (see Oracle [24] for
example), roles are global to the system and therefore two
different users cannot create two roles having the same
name. Following principles of the ABAC model, we treat
roles like any other subject attribute. Consequently,
privileges are not granted to roles but to users who are
member of roles. For example, for specifying that all his
friends have the permission to create views on the view
foafview.txt, Bob would write the following security rule:

Isa(s,Friend)
 � Permit(s,CONSTRUCT,foafview.txt)

Now, Bob’s friends have the right to define views (i.e.
CONSTRUCT queries stored as objects) on foafview.txt.
This latter security rule allows us to introduce the concept
of delegation. We say that there is delegation when a user
defines the security policy for data she does not own. In
our model, this happens in the following case: if a user
has been granted the CONSTRUCT privilege on a RDF
dataset for which she is not the owner, then this user has
the privilege to create views on this RDF dataset.
Consequently, she can define the security policy
regulating access to these views since she owns them. By
regulating access to her views, she, in fact, indirectly
regulates access to some source RDF data. As a matter of
fact, let us consider the previous example where Bob
grants to his friends the privilege CONSTRUCT on
foafview.txt. Bob’s friends are now de facto
administrators of the RDF data included in the view
foafview.txt, i.e. they can create views on foafview.txt and
define the security policy protecting these views. In this
example, Bob has partially delegated the administration
of his original dataset to his friends since he has granted
the CONSTRUCT privilege on foafview.txt and not on
the original dataset myfoaffile.rdf. To summarise how
delegation works in our model, we state the following
principles: let s be the owner of an RDF dataset r .
- If s does not need to delegate the security

administration of r then she shall not grant to anybody
neither the CONSTRUCT nor the DESCRIBE
privilege on r or on any view she would have created
on r .

- If s needs to delegate the security administration of
the whole set r , then she shall grant to another user
the CONSTRUCT and DESCRIBE privileges on r .

- If s needs to delegate the security administration of a
subset of r , then she would create a view computing
this subset and grant to another user the
CONSTRUCT and/or DESCRIBE privilege on that
view.

Of course, our model enables delegation chains to be
created. For example, if a friend of Bob creates a view v
on foafview.txt and then grants to another user the
CONSTRUCT privilege on view v then this other user
will have the possibility to define views on v and
consequently will have to define the security policy
protecting these views.

5. Secure Proxy Server
Architecture
We have implemented our model within the framework of
a proxy server. This proxy is online at the following URL:
http://projets.upf.pf:8080/ProxyServer
login: guest Password: GuestPass

Figure 5 sketches the architecture of our proxy. Basically,
our proxy uses three databases. The proxy database stores

user account data. Users who are willing to publish data
do need an account. End-users, who only need to query
data may or not create an account, depending on whether
they need to be authenticated or not to access a given
resource. The security policy database contains the role
hierarchy and the access control lists of each database
schema. The RDF database stores RDF graphs and view
definitions which are distributed into user database
schemas. It is important to note that users always create
graphs and views in their own schema. Therefore a user
who has been granted a CONSTRUCT (or DESCRIBE)
privilege on some data owned by another user, does need
an account to create views from these data. For
performance issue, our proxy manages a cache which
stores the most frequently computed views. Our proxy is
implemented as a Web application running on top of the
Tomcat Application Server [13]. We use SESAME Java
API [14] for storing and querying RDF data.

Access Control Lists (ACL)
Security Rules are implemented as ACLs. Each object
(RDF dataset of view) is linked to an ACL. Figure 6
shows the ACL of foafview.txt corresponding to the rules
defined in section 3 and 4. Whenever a user requests
access to the view defined in foafview.txt, conditions
applying to the requested privilege are evaluated. Access
is granted if at least one of the conditions holds for the
user requesting the access.

Policy Decision and Enforcement Points
The Internet Engineering Task Force (IETF) defines an
abstract model for policy enforcement which is used in
most commercial implementation of access control
mechanisms. This abstract model makes a clear
distinction between the Policy Decision Point (PDP)
component and the Policy Enforcement Point (PEP):
- The PEP intercepts the access request and forwards it

to the PDP. After it has received the decision from the
PDP, it enforces the decision against the requester.

- The PDP analyzes the access request, evaluates
contextual conditions and then decides on the concrete
outcome of the request (i.e. access granted or access
denied).

The access control processor of our proxy server uses the
following algorithm: let u be the user submitting query q.
Let s(q) denote the source views/datasets queried by
query q. Let q(v) denote the CONSTRUCT or
DESCRIBE query defining view v . Let o(v) denote the
owner of view v . Let t(q) denote the type (SELECT,
ASK, CONSTRUCT or DESCRIBE) of query q.
If decision(u,q) then

output(enforce(q))
Else

output(“Access Denied”)

The PDP of our server computes function decision
which is recursive. It takes as input a user and a query. It
returns a boolean.
Function decision(u,q) : Boolean
for v in s(q)
 If Permit(u,t(q),v) cannot be derived from

the Security Policy then
 Return False
 Else
 If v is a view
 q’ � q(v)
 u’ � o(v)
 If not decision(u’,q’)then
 return False
return True

Regarding this algorithm, the following points should be
noted:

- Facts belonging to the Permit predicate are derived
after context evaluation.

- Variable u is not always instantiated when function
decision is called since users may connect to the
proxy without being authenticated (in that case access
decisions are taken based on contextual conditions
applying to them).

- If a user is permitted to query a view then this query
may still be rejected if the owner of the view is
forbidden to dynamically evaluate the view (recall that
permissions are not always active since they are
context-based).

- A view can be computed from several sources. If the
security check fails for one of these sources then
access is denied.

Figure 5. View Proxy Server

Figure 6. Access Control List of foafview.txt

The Policy Enforcement Point of our proxy server applies
the following recursive enforce function which takes as
input a query. It returns an RDF graph or an SRD
document depending on the query type.

Function enforce(q) : RDF graph or SRD doc
for v in s(q)
 If v is a view then
 v � enforce(q(v))
return result of query q on s(q)

Performances
For evaluating the performances of our proxy, we used a
RDF dataset containing over 400.000 statements about
French cities. We showed that both the execution time of
a user query (PEP) and the execution time of a security
decision (PDP) are linear with the number of views which
are not in the cache. We also showed that the execution
time of a security decision is negligible compared to the
time required for evaluating views.

6. Conclusion

In this paper, we have defined a new access control model
for RDF data. Our main objective was to design a view-
based model which was as convenient as the SQL security
model. We believe we have obtained a powerful model
allowing us to define flexible security policies consisting
of dynamic security rules. We have successfully
implemented our model in the framework of a proxy
server for publishing RDF data. Our further works will
follow the evolution of SPARQL. In particular, the
SPARQL update 1.1 working draft [8] defines an update
language for RDF graphs. Operations are provided to
change existing RDF graphs. We are planning to include
privileges corresponding to these operations in our
security model. Another aspect, we could investigate is
how to extend our model to support trust negotiation (see
[7] for example). Indeed, in our model, access controls
are very often made on the basis of subject attributes.
These attributes can be digital credentials that are
themselves sensitive objects which should be disclosed
only after trust has been established between the
requesting party and the service holding the resource.
Trust can be gradually established between the two
parties, through the iterative exchange of digital
credentials. This means that we need security rules to
define the security policy protecting not only the online
resource (RDF data) but also the credentials exchanged
during the negotiation.

Bibliography

[1] Yuan, E., Tong, J.: Attribute Based Access Control
(ABAC) for Web Services. In Proc. of the IEEE
International Conference on Web Services (ICWS'05).

[2] Reddivari, Pavan and Finin, Tim and Joshi, Anupam.
Policy based Access Control for a RDF Store. In Proc.of
the Policy Management for the Web Workshop series May
2005.

[3] Jain Amit and Farkas Csilla. Secure resource description
framework: an access control model. SACMAT '06: Proc.
of the eleventh ACM symposium on Access control
models and technologies. Year 2006. USA.

[4] Fabian Abel , Juri Luca De Coi , Nicola Henze , Arne
Wolf Koesling , Daniel Krause and Daniel Olmedilla.
Enabling Advanced and Context-Dependent Access

Control in RDF Stores. LNCS volume 4825/2008.
October 2007.

[5] Jaehoon Kim, Kangsoo Jung and Seog Park. An
Introduction to Authorization Conflict Problem in RDF
Access Control. LNCS Volume 5178/2009. Knowledge-
Based Intelligent Information and Engineering Systems.
2008.

[7] T. Yu, M. Winslett, and K. E. Seamons, Supporting
Structured Credentials and Sensitive Policies through
Interoperable Strategies for Automated Trust Negotiation.
ACM TISSEC, volume 6, number 1, February 2003.

[8] Simon Schenk and Paul Gearon. SPARQL UPDATE 1.1.
http://www.w3.org/TR/sparql11-update/.

[9] Samarati Pierangela and Vimercati Sabrina De Capitani
di. Access Control: Policies, Models, and Mechanisms. In
Proc. of FOSAD '00. Year 2001.

[10] A. Seaborne. Rdql - a query language for rdf. tech. Rep.,
2004.

[11] G. Karvounarakis, S. Alexaki, V. Christophides, D.
Plexousakis, F. V. Vouton, and M. Scholl.Rql: A
declarative query language for rdf. pp. 592–603, ACM
Press, 2002.

[12] Eric Prud'hommeaux and Andy Seaborne. SPARQL Query
Language for RDF. W3C Recommendation. 2008.
http://www.w3.org/TR/rdf-sparql-query/.

[13] Apache tomcat. http://tomcat.apache.org/.
[14] Sesame, openrdf. http://www.openrdf.org/.
[15] RDF. Suite of W3C REcommendations. Home Page:

http://w3.org/standards/techs/rdf#w3c_all.
[16] Damiani E., Vimercati SDC, Paraboshi S, Samarati, P. A

fine grained access control for XML documents. ACM
transactions on Information and System Security 5(2),
2002.

[17] Patrick Hayes and Brian McBride. RDF semantics. W3C
Recommendation. http://www.w3.org/TR/rdf-mt/. 2004.

[18] Frédéric Cuppens and Alexandre Miège. Modelling
Contexts in the Or-BAC Model. In 19th Annual Computer
Security Applications Conference (ACSAC '03). 2003.

[19] FOAF Project. http://www.foaf-project.org/.
[20] D. Beckett and J. Broekstra. Sparql query results xml

format. tech. Rep., 2008.
[21] E. Bertino, B. Catania, E. Ferrari and P. Perlasca. A

Logical framework for Reasoning About Access Control
Models. ACM transactions on Information and System
Security, 6(1), February 2003.

[22] S. Jajodia, S. Samarati, ML Sapino ad VS Subrahmanian.
Flexible Support for Multiple Access Control Policies.
ACM Transactions on Database Systems, 26(2), June
2001.

[23] Fredéric Cuppens, Nora Cuppens-Boulahia et Meriam
Ben Ghorbel. High-level conflict management strategies
in advanced access control models. Workshop on
Information and Computer Security (ICS'06). Timisoara,
Roumania 2006.

[24] Oracle Database Management System.
http://www.oracle.com

