N

N
N

HAL

open science

A View-Based Access Control Model for SPARQL
Alban Gabillon, Léo Letouzey

» To cite this version:

Alban Gabillon, Léo Letouzey. A View-Based Access Control Model for SPARQL. 4th International
Conference on Network and System Security (NSS), 2010, Sep 2010, Melbourne, Australia. pp.105 -

112, 10.1109/NSS.2010.35 . hal-01020253

HAL Id: hal-01020253
https://hal.science/hal-01020253

Submitted on 11 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01020253
https://hal.archives-ouvertes.fr

A View Based Access Control Model for SPARQL

Alban Gabillon, Léo Letouzey
Université de la Polynésie Francaise

BP 6570,

98702 FAA'A

French Polynesia
{alban.gabillon,leo.letouzey}@upf.pf

Abstract

Existing security models for RDF use RDF patteros f
defining the security policy. This approach leadsat
number of security rules which rapidly tends to be
unmanageable. In this paper we define a new sgcurit
model which follows the traditional approach of atieg
security views, which has long been used by SQL
database administrators. Our model first logically
distributes RDF data into SPARQL views and then it

submitted to the SQL engine then the query definimy
view is first dynamically evaluated; (2) then shergs
access rights on views (and possibly tables) tasuse
and/or roles. In SQL, the existing access rightsespond
to the four SQL query forms namely, SELECT, INSERT,
DELETE and UPDATE. By managing access rights on
views rather than on tables, the application desigras
more flexibility to restrict access to rows andwuhs of
data. Views provide also an elegant way of impleimgn
security rules involving data distributed into sele

defines security rules regulating SPARQL access totables. SPARQL (recursive acronym that stands for

views. Moreover our model supports rights delegati
and dynamic security rules (i.e. rules which carabiéve
or not, depending on the context).

1. Introduction

Several access control models for

RDF (Resource model

SPARQL Protocol and RDF Query Language) [12] is a
standardized query language for RDF data. SPARQL
queries reference one or several R@Bphs. SPARQL
has four query forms (SELECT, CONSTRUCT, ASK,
DESCRIBE). Both the CONSTRUCT and DESCRIBE
queries return an RDF graph. The core of the sgcuri
we propose in this paper is basically an

Description Framework) [15] data have been proposedinterpretation of the SQL security models for SPARQ

[2][3][4][5]. Most of these models have the sameotw
drawbacks: (1) the security policy consists of RDF
patterns defining the RDF triples which can be ased.
Even though, this approach allows for fine graiaedess
control, it does not scale to large RDF datasetsesthe
number of security rules becomes rapidly excesqi®E;
none of these models include an administration tnode
specifying how the security policy can be updated.

The SQL (Structured Query Language) security mélel
a View Based Access Control model (VBAC) for
relational databases which has proved to be pedditd
scalable. In this model, each application desigmers a
set of SQL tables for which she manages the sgcurit
policy. Basically, to define access rights, thelaation
designer proceeds as follows: (1) she first defmast of
SQL views. A view is a virtual table that consists of
columns and rows from one or more tables. Congretel
view is a query stored as an object that derives its data
from one or more tables. A view can be referenced i
query like any table. If a user query referencingeav is

where (i) RDF graphs play the role of tables, RIDF
views are CONSTRUCT or DESCRIBE queries stored as
objects and (iii) the security rules regulate tlecsition

of the four SPARQL query forms. On top of this, our
model supports rights delegation and enables dynami
security rules, i.e. rules which become active ahlg
certain context is true. Organization of the rerdamof
this paper is the following. In section 2, we quyck
introduce SPARQL. In section 3, we review existing
access control models for RDF data and we give an
example motivating our work. Section 4 describes ou
security model. In section 5, we sketch the archite of

a secure proxy for RDF data implementing our mobrel.
particular we give the algorithms used by the Bwolic
Decision Point and the Policy Enforcement Poimahy,
section 6 concludes this paper.

2. SPARQL

With the greater adoption of RDF, many languages ha
been proposed to query RDF repositories (RDQL (RDF

Data Query Language) [10], RQL (RDF Query Language)
[11], SPARQL [12]). Since January 2008, SPARQLhis t

W3C recommended language to query RDF document.
SPARQL can be used to express queries across éiversagainst RDF repositories,

data sources, whether the data is stored nativeRR2F

or viewed as RDF via middleware. SPARQL contains
capabilities for querying required and optional pjra
patterns along with their conjunctions and disjiong.

<t version="1.0"7>
<rdf:ROF xmlns: foaf="http://xnlns.con/foaf/@.1/" xmlns:rdf="http://wni.u3.0rg/1999/02/22- rdf-syntax-ns#”
xmns :xsd="http:/ /i, w3c.org/2001/XLSchenat">
<foaf:Person»
<foaf:nane=Bobe/foaf:nanes
<foaf:surnamesRob</foaf : surnanes
<foaf:interest>ITe/foaf: interests
<foaf:ingoportrait. jpge/foaf:ing>
<foaf:nbox=robGhome. come/foaf:mbox>
<foaf :gender-Malec/foaf :gender>
<foaf:knows>
<foaf:Person>
<foafiname=Alice</foaf :names
<foaf :mbox>aliceghone. cone/foaf:mbox>
<foaf:surnane>Ali</foaf :surnanes
<foaf intereststudies</foaf: interest>
<foaf:interestsMaths</foaf:interests
<foaf:age rdf:datatype="xsd:integer">22¢/foaf age>
<foaf:based_near>Paris</foaf:based near>
</foaf:Person=
</foaf knowss
<foaf :knows>
<foaf :Person>
<foaf :name>Hans</foaf:name>
<foaf :nbox=Hans@home. com</ foaf :nbox>
<foaf:interest>IT</foaf: interest>
<foaf:interest=Maths</foaf: interests
<foaf based_near>Paris</foaf :based_near>
</foaf:Person=
</foaf knows=>
<foaf:knows>
<foaf:Person>
<foaf :name>Charlie</foaf :name>
<foaf:age rdf:datatype="xsd:integer">20</foaf age>
<foaf:mbox=Charlieghome. con</foaf:mbox>
<foaf:based nearPapeste</foaf based near>
<foaf:interestsMaths</foaf: interest>
<foaf:interest>Diving</foaf :interest>
‘ </foaf:Person=
</foaf :knows=
</foaf:Person>
</rdf :RDF>

Figure 1 myfoaffile.rdf

A SPARQL query is of one of the 4 following types:
SELECT, ASK, CONSTRUCT and DESCRIBE.
SELECT queries are the most common. A SELECT query
returns all, or a subset of, the variables bound guery
pattern match (see example below). A ASK queryrnstu

True or False depending on whether a graph pattern

matches or not. The two other query types returr-RD
graphs. A CONSTRUCT query returns a RDF graph
constructed by substituting variables in a set rgfle
templates (see section 3 for an example of
CONSTRUCT query). A DESCRIBE form returns a

single result RDF graph containing RDF data about
resources.

In order to describe how SPARQL queries are pramkss
let us consider the RDF
document in figure 1. This document is defined lie t
FOAF (Friend Of A Friend) ontology [19]. The FOAF
project is a community driven effort to define abR
vocabulary for expressing metadata about peopld, an
their interests, relationships and activities.

Let us consider the following SELECT query:

PREFIX foaf:<http://xmlns.com/foaf/0.1/=
.SELECT ?name

WHERE {

.?x foaf:name "Bob" .

.Tx foaf:knows 7y .

.7y foaf:name 7name .

}

Variablex line 2 is bound to subject foaf:Person whose
predicate foaf:name targets object “Bob”. Variapl@ine

3) is bound to the foaf:Person elements that aosvkrby

X. In line 4, variablename matches objects so that
triple (s, p, 0) belongs to the RDF document, with
being one of the values found fprandp being predicate
foaf:name. Answer to this query is the set {Ali¢¢ans
and Charlie}.

The result set of a SPARQL SELECT (or ASK) query ca
be serialized to XML. The SPARQL Variable Binding
Results XML Format is the W3C recommended language
for serializing the result of SPARQL query to a $R3L
Results Document (SRD) [20].

3. Related Works and Motivations

1]

In this section, we review the main existing acaassrol
models for RDF data [2][3][4][5]. Several authoiseé
[2][3] for instance) have underlined the fact teaisting
access control models for XML data cannot be aggle
RDF data. We agree on this point. Therefore, w# sba
consider access control models for XML in this teda
work section.

In all existing access control models for RDF, siégu
rules use RDF patterns to match RDF triples. AnFRD
pattern is an RDF tripldsubject, predicate,

object) wheresubject , predicate andobject

can be substituted by variables. In [2], the aghi@fine a
set of actions that can be performed on an RDFestor
They define several operations for updating theestmd
two operations for querying the store. The secyrijcy
consists of permissions or prohibitions to perfawtions
on some RDF triples. Each permission or prohibitan
be subject to a condition. This condition is eithased on
metadata that the RDF store maintains or on tipdetri

@ themselves. Enforcement of the security policy (foery

actions) requires filtering out unauthorized triplrom

the result set. In [3], the authors deal with nheNil
security in RDF stores. They assign security lakels
RDF triples. In order to prevent unauthorized iaferes,
they consider the entailment rules defined in th8ON
RDF Semantics [17] and suggest some rules for
automatically assigning security labels to entaiROF
statements. In [4], the authors consider the reamss
only. The security policy consists of permissions o
prohibitions to access some RDF statements. Each
authorization can be subject to a condition based o
contextual information. Regarding policy enforcemen
authors argue that approaches used in [2] andré3hat
efficient since they require to instantiate the pyra
patterns used in the security policy. They propostead
an algorithm to rewrite a given query into a seayery
according to the security policy. In [5], the autho
consider the read access only. Like in [16], an
authorization (positive or negative) can be remersor
local. If it is recursive then it propagates (egpli
propagation) to lower classes and lower propetigesed
on the RDF schema. The authors also define theepdnc
of implicit authorization in the RDF inference. The
authors propose then a solution to detect the ictsfl
which may arise between authorizations.
Most of these models have the same major drawhlaey:
use RDF patterns for identifying the RDF triplesiath
can be accessed. This approach does not scaleg® la
RDF datasets. As a matter of fact, let us constter
FOAF rdf file myfoaffile.rdf shown in figure 1 (ston 2)
and consider the following security policy applyitagthis
file:
“Alice is permitted to see name, surname, email and
interests of Bob’s friends who live in Paris andowndre
interested in mathematics.”
Figure 2 shows how to express this security pdlicthe
framework of the model defined in [2]. Figure Jowls
the same policy in the framework of the model dediin
[4].
As we can see both models requires writing 4 rues,
for each of the following patterns:

(X, foaf:name, Y)

(X, foaf:surname, Y)

(X, foaf:interest, Y)

(X, foaf:mbox, Y)
Moreover, since access to these patterns is sulgect
some conditions, these conditions have to be redeat
each rule. In fact, using RDF patterns for ideimifyRDF
triples leads to a number of security rules whiciickly
tends to be unmanageable and unreadable.
Existing models have another drawback. None of them
include an administration model specifying how the
security policy can be updated. In fact, all erigtimodels
implicitly assume that the definition of the setypolicy
should be carried out by a central authority. Hosvein

an open environment like the Web, metadata conma fro
different sources and should be managed in
decentralized way.

PREFIX rdf:<http:/ fwwa.w3.0rg/1998/02/22- rdf - syntax-ns#>
PREFLY foaf:<http://xmlns.com/Toat/0.1/>
Permit(ses(Alice, (X, foafiname, 7))) :-sxistTriple(Y, rdf:type, foaf:Person)
& existTriple(Y, foaf:name, "Bob')
& existTriple(Y, foaf:knows, X
& eistTriple(X, foaf:interest, "Maths')
& existTriple(X, foaf:based near, "Paris")

a

PREFTY. rdf:<http://www.w3.0rq/1998/02/22- rdf - syntax- ns#>
PREFLX foaf:<http://xmlns.com/foat/0.1/>
Permit(see(Alice, (X, foafimbox, 7))) :-existTriple(Y, rdf:type, foaf:Person)
& extstTriple(Y, foaf:name, 'Bob")
& existTriple(Y, foaf:knows, X
& eaistTriple(X, foaf:name, 7)
& existTriple(X, foaf:interest, "Maths')
& extstTriple(X, foaf:based near, 'Paris')

PREFLY rdf:<http: /fwww.w3.0rg/1999/02/22- rdf - syntax-nsé=

PREFLX foaf:<http://xmlns.com/Toat/0.1/>

Permit(see(Alice, (X, foaf:interest, 7))) :-extstTriple(Y, rdf:type, foaf:Person)
& existTriple(Y, foaf:name, "Bob")
& existTriple(Y, foaf:knows, X)
& extstTriple(X, foaf:name, 7)
& existTriple(X, foaf:interest, "Maths')
& extstTriple(X, foaf:based near, 'Paris')

PREFLY rdf:<http: //www.w3.0rg/1999/02/22- rdf - syntax- ns#=

PREFTY foaf:<http://xmlns.com/Toat/0.1/>

Permit(see(Alice, (X, foaf:surname, 7)) :-existTriple(y, rdf:type, foaf:Person)
& existTriple(Y, foaf:name, "Bob")
& existTriple(Y, foaf:knows, X)
& existTriple(X, foaf:name, ?)
& existTriple(X, foaf:interest, "Maths')
& existTriple(X, foaf:based near, "Paris")

Figure 2. Policy Based Access Control for An RDF
Store. Reddivari, Finin, Joshi 2005 [2]

The model we define in this paper does not have the
inconveniences of the existing models. In our moelath
RDF graph has an owner who manages the securityypol
protecting the graph. Typically, the owner of apgirdirst
creates various views on her graph, by means olRERA
CONSTRUCT or DESCRIBE queries. She then grants the
SPARQL SELECT privilege on these views to other
users. As a matter of fact, for writing a secupiylicy
saying that Alice has the permission to see name,
surname, email and interests of Bob's friends vite in
Paris and who are interested in mathematics, Babeo

of the foaf file myfoaffile.rdf (figure 1), procesdas
follows: (1) he first creates the view shown inufig 4.
This view definition is referred by the URL foafweixt.

It contains a CONSTRUCT statement which selects the
name, surname, mbox and interests of Bob's frievius

live in Paris and who are interested in mathemgfg$e
then defines a single simple security rule granting

SELECT privilege on the view foafview.txt to Aligsee
section 3 for the definition of security rules):

Permit(Alice, SELECT ,foafview.txt)

This rule says Alice is permitted to execute a SELE
statement on the view which is referred by the URL
foafview.txt.

PREFIX rdf:<http://www.w3.0rg/1998/02/22- rdf-syntax-ns#=
PREFIX foaf:<http://xmlns.com/foaf/0.1/=
Allow access to triples (X, foaf:name, N} IF
Requester = 'Alice' AND
(Y, rdf:type, foaf:Person) AND
Y, foaf:name, "Bob") AND
Y, foaf:knows, X) AND
X, foaf:interest, "Maths) AND
X, foaf:based near, "Paris")

PREFIX rdf:<http://www.w3.0rg/1998/02/22- rdf-syntax-ns#=
PREFIX foaf:<http://xmlns.com/foaf/0.1/>
Allow access to triples (X, foaf:mail, M) IF
Requester = 'Alice' AND
(Y, rdf:type, foaf:Person) AND
foaf:name, "Bob") AND
foaf:knows, X) AND
foafiname, N) AND
foaf:interest, "Maths) AND
foaf:based near, "Paris")

(v,
(v,
(x,
(X,
(x,

><><><—<

PREFIX rdf:<http://www.w3.0rg/1998/02/22- rdf - syntax-ns#=

PREFIX foaf:<http://xmlns.com/foaf/0.1/=>

Allow access to triples (X, foaf:interest, M} IF
Requester = 'Alice' AND
(Y, rdf:type, foaf:Person) AND

foaf:name, "Bob") AND

foaf:knows, X) AND

foaf:name, N) AND

foaf:interest, "Maths) AND

foaf:based_near, "Paris")

(v,
(v,
(x,
(X,
(X,

><><><—<

PREFIX rdf:<http://www.w3.0rg/1998/02/22- rdf - syntax-ns#=

PREFIX foaf:<http://xmlns.com/foaf/0.1/=>

Allow access to triples (X, foaf:surname, M) IF
Requester = 'Alice' AND

rdf:type, foaf:Person) AND

foaf:name, "Bob") AND

, foaf:knows, X) AND

¥, foaf:name, N) AND

X, foaf:interest, "Maths) AND

, foaf:based near, "Paris")

F|gure3 Enabling Advanced and Context-Dependent
Access Control in RDF Store. Abel et al, 2007 [4]

If Alice submits a SPARQL SELECT query on
foafview.txt then, the CONSTRUCT query defining the
view is first dynamically evaluated and then, titel ECT
query submitted by Alice is evaluated on the RD&pdr
which is returned by the CONSTRUCT query.

The advantage of using security views for mana@bdr
data is obvious. Since a view represents a compsélre
set of semantically related data, we do not needcdlade
these semantics relationships as conditions irs¢leerity
rules, as it is done in models [2] and [4]. Morep&nce

we can group several RDF patterns of interest thto
same view, we can reduce the number of rules.
Consequently, we gain in readability and concision.
Again, we would like to reiterate that this approdas
long been used successfully by many SQL database
administrators.

PREFIX rdf:<http://www.w3.0rg/1999/02/22- rdf - syntax-ns#=

PREFIX foaf:<http://xmlns.com/foaf/0.1/=>

COMSTRUCT {
?x foaf:
7x foaf:
7x foaf:
7x foaf:

name in .
interest ?int .
mbox 7m .
surname 7sn .

WHERE {

rdf:type foaf:Person .
foaf:name "Bob" .
foaf:knows 7x .

foaf:name ?n .
foaf:based_near "Paris" .
foaf:interest "Maths" .

?x foaf:interest ?int .
OPTIONAL { 7x foaf:mbox 7m .}
OPTIONMAL { ?x foaf:surname ?sn .}
1

Figure 4. View foafview.txt. Interest and mbox are

defined as OPTIONAL in the query since some persons
may not have surname and mail box

4. Security Model

Subjects, Objects, Actions, Views and Contexts

Definition of an access control model requires the
definition of the objects to be protected, the @ddito be
executed on objects and the subjects that exette t
actions [9]. In our model, subjects are users oc@sses.
Objects are either RDF graphs or views. Views db&R
graphs created by means of CONSTRUCT or DESCRIBE
queries. Actions (privileges) correspond to the rfou
SPARQL query types, namely SELECT, ASK,
CONSTRUCT and DESCRIBE. Security rules can be
dynamic i.e. become active only if a certain cohtisx
true. As it is done in the ABAC model [1] or in the
OrBAC model [18], we define a context as a conjiamct
and/or disjunctions of logical conditions applyitw the
subject, the object and the environment. Handling
contexts allows us in particular to write secuntyes
which do not require authenticating every user.sThi
feature is particularly desirable in an open envinent
like Internet where it is often unrealistic to aenticate
every user.

Security Policy Formulation

Definition of an access control model requires alse
definition of a language for assigning rights tenss As in
many Rule Based Access Control models [21][22], our

language is based on first-order logic. Syntax of a
authorization rule is the following:

condition - Permit(s,a,0)

wherecondition is a possibly empty set of constraints
applying to the subject, the object and the envirent.
Permit(s,a,o) reads “subjects is permitted to
execute actiora on objecto”. If a security rule is not
constrained (i.e. condition is empty) then is itld form
Permit(s,a,o) (see example in section 3). The
default policy of our model isclosed. This means that,
given a subjecs requesting to execute actianon object
o, if Permit(s,a,o0) cannot be derived from the
security policy then subjest should be denied to execute
actiona on objecto. In the following examples, for better
readability, we omit the universal quantifiers.

With the following statement, Bob grants privileg&SK
on foafview.txt to everybody but only during dawé:

Time(CLOCK,t) O(t>8) O(t < 20)
- Permit(s,ASK,foafview.txt)
PredicateTime(CLOCK,t) reads “current time (given

by the system CLOCK) is”
With the following statement, Bob grants privilege
SELECT on foafview.txt to whoever connects from the
university network:
IP(s,i) O NetUniv(i)

- Permit(s,SELECT ,foafview.txt)
Predicate IP(s,i) reads “IP address of is i”.
Predicate NetUniv(i) reads [belongs to the
university network”
Some existing security models for RDF deal wiggative
authorizations. For example, the security policy in [4]
uses allow/deny rules. Negative authorizationsvalibe
security administrator to specify an exceptional
prohibition to a general permission (or vice versi)e
problem with having positive and negative authdiares
is conflict management. There have been many relsear
works on this issue mainly in the area of accesgrob
models for XML (see [16] for instance). Howeveresk
works should be revised to take into account tloe tfzat
in modern applications security rules are ratharadyic
and are based on contextual conditions. Therefaigng
security policies including positive and negative
authorizations requires being ablepiedict the potential
conflicts which may arise between authorizationse(s
[23] for more details about this topic).

Administration

Most of existing models for RDF data are designed f
centralized RDF stores. They implicitly assume ttet
definition of the security policy should be carrieat by a
central authority. On the contrary, we designedroadel
with in mind a decentralized system where peopéater

their own RDF data and publish them through a secur
proxy whose function is to regulate access to these
various datasets according to the security polidefshed

by the users themselves. Let us consider Bob wkdse
to publish his foaf RDF data and who needs to agul
access to these data. In our scenario, Bob wilhtere
several views on his original dataset. He will tiperlish
his original dataset and his views through a sepuoay
along with the security policy regulating accessthe
original dataset and the views. Typically, he drbid
everybody to directly access to the original déatasg he
will define some rules regulating access to thevsieThe
proxy will then be in charge of implementing thesgty
policy. For defining the security policy, Bob ustdse
logical language defined in the previous subsectlan
order to better structure the security policy, hayralso
create roles which will be local to his proxy sclemlore
formally, the administration model of our secunibpdel
can be described as follows: each RDF graph/viesvalma
owner who is the user who created it. The ownen of
graph/view holds all privileges on it. Each useiirtes the
security policy for the RDF graphs/views she owns b
means of, (1) CONSTRUCT or DESCRIBE queries
stored as objects, (2) a (possibly empty) role anary
and (3) logical security rules, as defined in tmevpus
subsection. Creating roles and assigning rolesséwsuor
other roles can be done with the following two pcates:

Role(r) which readst* is a role”

Isa(r,r) If r is a role then it reads “is a sub-
role of roler’ ”. If r is a user then it reads “usemlays
roler’ ”

Note that, regarding the role/user hierarchy, tileing
entailment rule applies:

Isa(r,r) Olsa(r,r) - Isa(r,r)

For example, with the following logical facts, Boleates
role Friend which he grants to Alice:

Role(Friend)

Isa(Alice,Friend)

Roles are local to the schema of the user who edeat
them. This means in particular that two differesens
may create a role Friend. This point deserves to be
stressed since in many SQL databases (see Ordgliof2
example), roles are global to the system and toerdfvo
different users cannot create two roles having sheme
name. Following principles of the ABAC model, wedt
roles like any other subject attribute. Conseqyentl
privileges are not granted to roles but to users ate
member of roles. For example, for specifying tHahis
friends have the permission to create views onvibes
foafview.txt, Bob would write the following secuyitule:

Isa(s,Friend)
- Permit(s, CONSTRUCT foafview.txt)

Now, Bob’s friends have the right to define vievie.(
CONSTRUCT queries stored as objects) on foafvidw.tx
This latter security rule allows us to introduce ttoncept

of delegation. We say that there is delegation when a user
defines the security policy for data she does mat.dn

our model, this happens in the following case: ifiser

user account data. Users who are willing to pubdiata
do need an account. End-users, who only need toyque
data may or not create an account, depending othehe
they need to be authenticated or not to accessen gi
resource. Thesecurity policy database contains the role
hierarchy and the access control lists of eachbdat

has been granted the CONSTRUCT privilege on a RDF schema. Th&kDF database stores RDF graphs and view

dataset for which she is not the owner, then thex thas
the privilege to create views on this RDF dataset.
Consequently, she can define the security policy
regulating access to these views since she owns. fBg
regulating access to her views, she, in fact, audiy
regulates access to some source RDF data. Asterroft
fact, let us consider the previous example wheré Bo
grants to his friends the privlege CONSTRUCT on
foafview.txt. Bob’s friends are nowde facto
administrators of the RDF data included in the view
foafview.txt, i.e. they can create views on foafviext and
define the security policy protecting these viewsthis
example, Bob hagartially delegated the administration
of his original dataset to his friends since he guanted
the CONSTRUCT privilege on foafview.txt and not on
the original dataset myfoaffile.rdf. To summarisewh
delegation works in our model, we state the folluyvi
principles: lets be the owner of an RDF dataset
- If s does not need to delegate the security
administration of then she shall not grant to anybody
neither the CONSTRUCT nor the DESCRIBE
privilege onr or on any view she would have created
onr.
- If s needs to delegate the security administration of
the whole set, then she shall grant to another user
the CONSTRUCT and DESCRIBE privilegeston

definitions which are distributed into user databas
schemas. It is important to note that users alveagate
graphs and views in their own schema. Thereforesea u
who has been granted a CONSTRUCT (or DESCRIBE)
privilege on some data owned by another user, deed

an account to create views from these data. For
performance issue, our proxy manages a cache which
stores the most frequently computed views. Our ypiex
implemented as a Web application running on tophef
Tomcat Application Server [13]. We use SESAME Java
API [14] for storing and querying RDF data.

Access Control Lists(ACL)

Security Rules are implemented as ACLs. Each object
(RDF dataset of view) is linked to an ACL. Figure 6
shows the ACL of foafview.txt corresponding to tles
defined in section 3 and 4. Whenever a user regjuest
access to the view defined in foafview.txt, corudit
applying to the requested privilege are evaluatetess

is granted if at least one of the conditions hdlisthe
user requesting the access.

Policy Decision and Enfor cement Points

The Internet Engineering Task Force (IETF) defiaes
abstract model for policy enforcement which is used
most commercial implementation of access control
mechanisms. This abstract model makes a clear

- If s needs to delegate the security administration of a distinction between thePolicy Decision Point (PDP)

subset ofr, then she would create a view computing
this subset and grant to another user the
CONSTRUCT and/or DESCRIBE privilege on that
view.
Of course, our model enableklegation chains to be
created. For example, if a friend of Bob createsew v
on foafview.txt and then grants to another user the
CONSTRUCT privilege on view then this other user
will have the possibility to define views om and
consequently will have to define the security pplic
protecting these views.

5. Secure Proxy Server

Architecture

We have implemented our model within the framewafrk

a proxy server. This proxy is online at the follogiURL.:
http://projets.upf.pf:8080/ProxyServer
login: guest Password: GuestPass

Figure 5 sketches the architecture of our proxysicly,
our proxy uses three databases. ptuxy database stores

component and thieolicy Enforcement Point (PEP):

- The PEP intercepts the access request and fonitards
to the PDP. After it has received the decision fthm
PDP, it enforces the decision against the requester

- The PDP analyzes the access request, evaluates
contextual conditions and then decides on the edacr
outcome of the request (i.e. access granted orsscce
denied).

The access control processor of our proxy serves tie

following algorithm: letu be the user submitting queay

Let s(q) denote the source views/datasets queried by

query q. Let q(v) denote the CONSTRUCT or

DESCRIBE query defining view. Leto(v) denote the

owner of viewv. Lett(q) denote the type (SELECT,

ASK, CONSTRUCT or DESCRIBE) of query.

If decision(u,q) then
output(enforce(q))

Else
output(“Access Denied”)

The PDP of our server computes functidecision
which is recursive. It takes as input a user anogexy. It
returns a boolean.

Function decision(u,q) : Boolean
for vin s(q)
If Permit(u,t(g),v) cannot be derived from
the Security Policy then
Return False

Else
If v is a view
q < q(v)
u’ < o(v)

If not decision(u’,q’)then
return False
return True

Regarding this algorithm, the following points shltbbe
noted:

Proxy Database

- Facts belonging to thBermit
after context evaluation.

- Variable u is not always instantiated when function
decision is called since users may connect to the
proxy without being authenticated (in that casesasc
decisions are taken based on contextual conditions
applying to them).

- If a user is permitted to query a view then thieryu
may still be rejected if the owner of the view is
forbidden to dynamically evaluate the view (rec¢hadt
permissions are not always active since they are
context-based).

- A view can be computed from several sources. If the
security check fails for one of these sources then
access is denied.

predicate are derived

US ER :::?91: Alice :;E:ezi Bob ngr:!e}: Char les|
| pass: **% pass ;A | pass: At
Connection
User Security Policy
Datab
USER 1 USER 3
ROLES ROLES
P roxy Se rve r |— : Access Control Lists - Access Cantrol Lists
RDF Database
RDF Database cache USER 1 USER 3
View Files View Files
Computed - .
Views | RDF Files RDF Files
Figure5. View Proxy Server
<l version="1.0"7> Ll
<rdf:ROF xmlns:acl="http://home.org/acl4" <acL:Rule> aclifule) .)
xnlns: rdf="http: / /.3, 0rg/1999/02/22- rdf-syntax-nsé"> <acl:TypesGrantholes/acl:Type> sacL:Typesernite/acl:Type>
eacl:Role rdf:nodelD="ra Client"> <acl:Role rdf:nodeD="ro_Friend"/> <acL:Nane>Rulebl</act:Nane>
<acl:Name>(lient§/ad:Name> <acl:To> <acL:RightoASke/acl:Right>
</acl:Role> <acl:Users <acl:0n rdf:nodeld="v_foafview'/>
roles aacl:Role rdf:nodeld="ro Friends <acl:NamesAlice</acl:Nane <acl:When>TIME(clock,t) and (t&qt;8) and (t<28)</acl:When>
<acl:Name>Friend2/acl:Name> </acl:Users </acl:Rule>
¢Jacl:ole> </acl:To> <acl:Rule>
ACL| </acl:Rule> AL <acl:Type>Pernite/acl:Type>
<acl:ROFData rdf:nodeID="rd myfoaffile"> <acl:Rule> <acL:Nanesfulede/acl ane>
<acl: Name>myf0affil§</acl: Name> <acl:Type>Pernite/acl:Type> <acL:Right>SELECT</ac :Right>
<acl:Filesnyfoaffile. rdf</acl:Files <acl:Nane>RuleBl</acl :Nane> <acl:0n rdfinodeld="v foafviex'/>
</acl:RORData> <acl:Right>SELECT</acl:Right> <acl:bihen>IP(s,1) and NetUniv(i)</acl:When>
RDF Data <acl:0n rdf:nodeID="v_foafview' /> </acl:Rule>
and Views| <acl:view rdfinoden="y foafvien's <acl:When>Requester (Alice)</acl:When> <acl:Rule>
<acl:Name>foafview</acl:Name> <facl:Rule> <acl:TypePernite/acl:Type>
<acl:0nDatasmyfoaffile</acl:Ondata» <ac1:N§me>Ru1ea4</ac1:Name>_
<acl:File>foafview. txt</acl:File> <acl:Right>CONSTRUCT</acl:Right>
</acl:Views <acl:on rdf :nodeId="v_foafview'/>
' <acl:When>PlayRole=Friend</acl:When>
</acl:Rule>
</rdf:RDF>

Figure 6. Access Control List of foafview.txt

The Policy Enforcement Point of our proxy serveplsgs
the following recursivenforce

document depending on the query type.

function which takes as
input a query. It returns an RDF graph or an SRD

Function enforce(q) : RDF graph or SRD doc
for vin s(q)
If v is a view then
v < enforce(q(v))
return result of query q on s(q)

Performances Control in RDF Stores. LNCS volume 4825/2008.
October 2007.

For evaluating the performances of our proxy, wedua 5] Jaehoon Kim, Kangsoo Jung and Seog Park. An
RDF dataset containing over 400.000 statementstabou Introduction to Authorization Conflict Problem inDf
French cities. We showed that both the executime tf Access Control. LNCS Volume 5178/2009. Know|edge.
a user query (PEP) and the execution time of aribgcu Based Intelligent Information and Engineering Syste
decision (PDP) are linear with the number of vieviich 2008.

are not in the cache. We also showed that the égecu [7] T. Yu, M. Winslett, and K. E. Seamons, Suppgt
time of a security decision is negligible compateche Structured Credentials and Sensitive Policies thinou

Interoperable Strategies for Automated Trust Nexgjiotn.

time required for evaluating views.
q 9 ACM TISSEC, volume 6, number 1, February 2003.

6. Conclusion [8] Simon Schenk and Paul Gearon. SPARQL UPDATE 1.
http://www.w3.org/TR/sparql11-update/.

In this paper, we have defined a new access camiwdel [9] Samarati Pierangela and Vimercati Sabrina Rgitani

for RDF data. Our main objective was to designewvi di. Access Control: Policies, Models, and Mechasisin

based model which was as convenient as the SQlisecu Proc. of FOSAD "00. Year 2001.

model. We believe we have obtained a powerful model [10] A. Seabome. Rdql - a query language for teth. Rep.,
allowing us to define flexible security policiesnsisting 2004.
of dynamic security rules. We have successfully
implemented our model in the framework of a proxy

[11] G. Karvounarakis, S. Alexaki, V. ChristophideB.
Plexousakis, F. V. Vouton, and M. Scholl.Rql: A
declarative query language for rdf. pp. 592-603,VAC

server for publishing RDF data. Our further workil w Press, 2002.
follow the evolution of SPARQL. In particular, the [12] Eric Prud'hommeaux and Andy Seaborne. SPARQErQ
SPARQL update 1.1 working draft [8] defines an upda Language for RDF. W3C Recommendation. 2008.

language for RDF graphs. Operations are provided to http://www.w3.0rg/TR/rdf-spargl-query/.

change existing RDF graphs. We are planning taide! [13] Apache tomcat. http://tomcat.apache.org/.

privileges corresponding to these operations in our [14] Sesame, openrdf. http://www.openrdf.org/.

security model. Another aspect, we could investigat [15] RD'_:' Suite of W3C REcommendations. Home Page:
how to extend our model to support trust negotia(gee http://wS org/standards/techs/rdffiw3c_all.

—_ | Indeed. i del A [16] Damiani E., Vimercati SDC, Paraboshi S, Satiafa A
[7] for example). Indeed, in our model, access s fine grained access control for XML documents. ACM

are very often made on the basis of subject at&thu transactions on Information and System Security),5(2
These attributes can be digital credentials tha ar 2002.

themselves sensitive objects which should be disclo [17] Patrick Hayes and Brian McBride. RDF semantid6C
only after trust has been established between the Recommendation. http://www.w3.org/TR/rdf-mt/. 2004.
requesting party and the service holding the resour [18] Frédéric Cuppens and Alexandre Miege. Modgllin

Trust can be gradually established between the two gonte?;tspi\n t:_‘e ?r-BACC MdeeI' In i%g:gn,gg' Cz%%‘g”t
parties, through the iterative exchange of digital ecurity Applications Conference () '

. ' . [19] FOAF Project. http://lwww.foaf-project.org/.
credentials. This means that we need security nides [20] D. Beckett and J. Broekstra. Sparql queryuitesxml

define the security policy protecting not only theline format. tech. Rep., 2008.

resource (RDF data) but also the credentials exygthn [21] E. Bertino, B. Catania, E. Ferrari and P. Berh. A

during the negotiation. Logical framework for Reasoning About Access Cointro
- Models. ACM transactions on Information and System

Bibliography Security, 6(1), February 2003.

[22] S. Jajodia, S. Samarati, ML Sapino ad VS Soumanian.
Flexible Support for Multiple Access Control Poési
ACM Transactions on Database Systems, 26(2), June
2001.

[1] Yuan, E., Tong, J.: Attribute Based Access tan
(ABAC) for Web Services. In Proc. of the IEEE
International Conference on Web Services (ICWS'05).

2] Reddivari, Pavan and Finin, Tim and Joshi, Azp - . .

2 Policy based Access Control for a RDF Store. Inckrfo [23] Fredéric Cuppens, Nora Cuppens-Boulahia et idter

: 8 Ben Ghorbel. High-level conflict management stragg
tzhoeogollcy Management for the Web Workshop seriay M in advanced access control models. Workshop on

Information and Computer Security (ICS'06). Timisna
Roumania 2006.

[24] Oracle Database Management System.
http://www.oracle.com

[3] Jain Amit and Farkas Csilla. Secure resourescdption
framework: an access control model. SACMAT '06:cPro
of the eleventh ACM symposium on Access control
models and technologies. Year 2006. USA.

[4] Fabian Abel , Juri Luca De Coi , Nicola Henzérne
Wolf Koesling , Daniel Krause and Daniel Olmedilla.
Enabling Advanced and Context-Dependent Access

