
HAL Id: hal-01020245
https://hal.science/hal-01020245

Submitted on 11 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enforcing Protection Mechanisms for Geographic Data
Alban Gabillon, Patrick Capolsini

To cite this version:
Alban Gabillon, Patrick Capolsini. Enforcing Protection Mechanisms for Geographic Data. 11th
International Symposium on Web and Wireless Geographical Information Systems (W2GIS), Apr
2012, Naples, Italy. pp.185-202, �10.1007/978-3-642-29247-7_14�. �hal-01020245�

https://hal.science/hal-01020245
https://hal.archives-ouvertes.fr


Enforcing Protection Mechanisms for Geographic Data 

Alban Gabillon and Patrick Capolsini 

 
Université de la Polynésie Française, BP 6570, 98702 FAA’A, French Polynesia 

{Alban.Gabillon,Patrick.Capolsini}@upf.pf 

Abstract. In the framework of a geographic application displaying maps, there 
are several solutions for protecting a sensitive object. Sensitive objects can be 
hidden, masked, blurred or even replaced by fake objects. In this paper we 
suggest a framework to specify protection mechanisms to enforce whenever a 
prohibition is derived from the security policy. This framework includes (i) 
logical rules allowing us to derive protection mechanisms from prohibitions, 
and (ii) an algorithm which builds the map to display, according to the derived 
protection mechanisms.  

Keywords: Access Control, Geo-spatial Data visualization, Map service, 
Policy Enforcement Point. 

1 Introduction 

Given a query, the security policy of a database application specifies which objects 
are authorized and which objects are unauthorized. In a traditional database approach, 
enforcement of the security policy is simply done by removing the unauthorized 
objects from the final answer to the query. In a geographic database application, 
things are more complicated. Let us consider a map service building maps from 
various spatial objects. In such an application, there are several methods for 
protecting unauthorized objects. Some unauthorized objects are simply removed from 
the final map as it is the case in a traditional database application, but some other 
sensitive objects are protected by using methods which are specific to geographic 
applications. Examples of such specific methods are referred to as blurring, masking, 
pixelization or “cut and paste” (i.e. overlay a sensitive object with another fake 
objects). Figure 1 shows some examples of sensitive objects which were protected by 
using such methods in well known geographic applications. These examples are all 
taken from [1]. The top left map shows a masked area at the state border between 
Yukon and Alaska. The top right map shows a pixelizated factory at Toulouse in 
southwestern France. On the bottom left map, part of the Michael Army Airfield 
(Utah) is blurred. On the bottom right map a fake landscape object overlays a 
sensitive military area of Xinshe in Taiwan. 



Ma
sk
ed

National Organization for Powder and Explosives

Lo
w

re
so
lut
ion

  

Blu
rre
d

 

Fig. 1. Sensitive spatial objects protected with various methods 
 

 
Fig. 2. Protection Mechanisms Model 



Existing security models [2-5] for geo-spatial applications focus on how to express 
security policies. Figure 2 shows that the work presented in this paper is located 
downstream of these models. The studies cited above deal with what is represented 
inside the dashed rectangle. They provide models for expressing contextual security 
policies for geographic data. Given a query that addresses a set of spatial objects, the 
security policy determines which objects are authorized and which objects are not 
authorized. The work presented in this paper deals with what is inside the dotted 
rectangle. It breaks down as follows:  
• It defines a formal framework for deriving security mechanisms to be enforced on 

unauthorized objects. 
• It proposes a Policy Enforcement Point (PEP) algorithm to display the final map 

taking into account the protection mechanisms that should be enforced on 
unauthorized objects.   

To our knowledge, we are the first to propose a complete formal framework for 
specifying the mechanisms that should be enforced on prohibited objects. Let us 
mention, that we published a preliminary version of this work as a position paper in 
[6]. 
In section 2 of this paper, we felt the need to recall the basics of a security model we 
already defined in [4] and [5]. This security model allows us to express contextual 
security policies for geographic applications. In section 3 we define our logical 
framework for specifying protection rules. In section 4, we define the PEP algorithm 
which enforces protection mechanisms and builds the map to display. In section 5 we 
illustrate our proposal with a complete application example. In section 6, we give a 
sketch of the implementation of our proposal within the framework of the OpenGIS® 
Styled Layer Descriptor (SLD) Profile [7] of the OpenGIS® Web Map Service 
(WMS) Encoding Standard [8]. A prototype showing the feasibility of our approach 
can be found at the following url:  
http://pages.upf.pf/Patrick.Capolsini/rech/protect/index.htm.  
In section 7, we review related works. Finally section 8 concludes this paper. 

2 Security Policy Model 

In [4] and [5], we proposed a security policy model for geographic applications, based 
on the OrBAC model [9] and the ABAC model [10]. Our model considers dynamic 
spatial security rules. A spatial dynamic security rule can be activated or deactivated 
depending on some spatial context. Generally, a spatial context is considered to be a 
spatial condition that holds on the subject and/or the object. In [4], we identified and 
modelled various types of spatial contexts based on the user location and/or the spatial 
object location. We also showed how to model geo-temporal contexts and contexts 
related to movement. In [5], we focused on visualization of geo-data i.e. we showed 
how to model various types of visualization contexts (such as zoom-in factor, layers 
transparency, brightness …etc) for geo-data and how to express dynamic security 
rules based on such contexts. 
Since this paper focuses on policy implementation and not on the security policy 
itself, we present here a simplified version of our model. It mainly defines a logical 



language for expressing security policies for geographic applications. Note, however, 
that we also use the predicates and functions defined in this section to express our 
protection rules in section 3.  
In section 2.1 we define the objects of our model. In sections 2.2 and 2.3 we define 
elements of our language for writing security policies. In section 2.4, we define the 
concept of spatial query. In section 2.5 we define authorization rules.  

2.1 Geometric Entities 

A georeferenced (geometric) object is a granule of information that is relevant to an 
identifiable subset of the Earth's surface [11]. Any geometric object has the following 
two components [12] : a description: the entity is described by a set of descriptive 
attributes (e.g. the name of a city) and a geometry which indicates the entity’s location 
and its shape. The geometry model we consider is the OpenGIS Geometry Model 
[13]. 

2.2 Spatial Analysis Functions 

Spatial analysis functions take one or more geometric objects as input and return 
either a number or another geometric object. We consider the following functions. Let 
a and b be two geometric objects and x a scalar: 
• distance(a,b) – Returns the shortest distance (a scalar) between any two points in 

the two geometric objects a and b 
• buffer(a,x) – Returns a geometric object that represents all points whose distance 

from geometric object a is less then or equal to x 
• convexHull(a) – Returns a geometric object that represents the convex hull 

(mathematical definition) of geometric object a 

• a ∩ b, a ∪ b, a \ b, a ∆ b, – Respectively returns a geometric object that 
represents the point set intersection (resp. union, resp. difference, resp. symmetric 
difference) of object a with object b 

• I(a), B(a), E(a) and dim(a) respectively returns the interior, boundary, exterior and 
dimension (-1 for the empty geometry Ø, 0 for Point, 1 for Linestring and 2 for 
Polygon) of a. 

• speed(a) – Returns the speed of the object. The speed is a scalar value greater than 
or equal to 0. 

• direction(a) – Returns the direction taken by the object. The direction is an angle 
value between 0 and 360 degrees. It is equal to N/A (Not Applicable) if the speed 
is equal to 0. 

2.3 Spatial Predicates 

Spatial predicates are used to test for the existence of a specified topological 
relationship between two geometric entities. Using functions I(g) and dim(g) returning 
respectively the interior and dimension of geographic object g, [13] defines eight 
spatial predicates namely, Equals, Disjoint, Intersects, Touches, Crosses, Within, 
Contains and Overlaps  



( ) ( )21212121 ),(,, ggggggEqualsgg ∪=∩↔∀∀  (1) 

∅=∩↔∀∀ 212121 ),(,, ggggDisjointsgg  (2) 

( ) ( )∅≠∩∧∅=∩↔∀∀ 21212121 )()(),(,, gggIgIggTouchesgg  (3) 

( ) ( )( ) ( ) ( )2211212121

2121

)(),()()(

),(,,

gggggggdimgdimmaxgIgIdim

ggCrossesgg

≠∩∧≠∩∧<∩
↔∀∀  

(4) 

( ) ( )∅≠∩∧=∩↔∀∀ )()(),(,, 211212121 gEgIgggggWithingg  (5) 

),(),(,, 122121 ggWithinggContainsgg ↔∀∀  (6) 

( ) ( ) ( )( )
( ) ( )221121

21212121 )()()()(),(,,

gggggg

gIgIdimgIdimgIdimggOverlapsgg

≠∩∧≠∩∧
∩==↔∀∀  

(7) 

),(),(,, 122121 ggDisjointggIntersectsgg ¬↔∀∀  (8) 

2.4 Spatial Query 

In the framework of a map service a spatial query outputs a map. This map is 
constructed from a set of geo-referenced objects which are all displayed at the same 
zoom-in factor. This zoom-in factor is a parameter of the query. 
Let q be a spatial query. We denote O(q), the set of objects addressed by query q and 
zf(o) the zoom-in factor of object o. This zoom-in factor is inherited from query q and 
is the same for all objects addressed by query q.  

2.5 Contextual Authorization Rules 

Security rules specify how subjects can execute actions on objects. Our model 
includes permissions (positive rules) and prohibitions (negative rules). Given a query, 
authorized objects addressed by the query are used to build up the map. 
We define a positive authorization rule as a logical rule having the following form: 

( )),( osPermitConditionos →∀∀  (9) 

Permit(s,o)  reads “s is permitted to view object o.” 
We define a negative authorization rule as a logical rule having the following form: 

( )),( osDenyConditionos →∀∀  (10) 

Deny(s, o) reads “s is forbidden to view object o.” 
In both rules Condition is a logical expression used to express some properties 
regarding the subject, the object and the context. 



Let us consider the following example of security policy which consists of the four 
following rules: 
The first security rule says that civilians are forbidden to view tanks. 

( )),()()( osDenyoTanksCivilianos →∧∀∀  (11) 

The second security rule says that civilians are forbidden to view barracks at a zoom-
in factor greater than 1. 

( )),(1)()()( osDenyozfoBarracksCivilianos →>∧∧∀∀  (12) 

The third security rule says that soldiers have the permission to view tanks: 

( )),()()( osPermitoTanksSoldieros →∧∀∀  (13) 

The fourth security rule says that soldiers do not have the permission to view tanks 
which are not within the military zone: 

( )),(),()()( osDenyneMilitaryZooWithinoTanksSoldieros →¬∧∧∀∀  (14) 

Note that there is a conflict between the last two rules regarding tanks which are not 
within MilitaryZone area. It is not the purpose of this paper to discuss this issue. The 
reader can refer to [4], where we use the conflict resolution strategy defined in the 
OrBAC model. This conflict resolution strategy is based on separation constraints and 
priorities assigned to rules. Our first aim, in this paper, is to devise a logical 
framework to specify the security mechanisms which are to be enforced whenever we 
derive an instance of the Deny predicate from the security policy, regardless of the 
conflict resolution strategy which is used. We define this framework in the next 
section. 

3 Contextual Protection Rules 

3.1 Definition 

In this section, we define a complete framework for specifying the protection 
mechanism which should be enforced in case a user is denied to view a given object. 
The logical language we use is based on the language we defined in the previous 
section.  
A Protection Rule is a rule of the form: 

( )),(),( MoProtectosDenyConditionos →∧∀∀  (15) 

As it is the case with authorization rules, Condition is used to express some properties 
that should hold on the subject, the object and the context. This means in particular 
that given an unauthorized object, the protection mechanism that should be enforced 
may vary from one context to another. 



Protect(o,M)  reads “o should be protected with mechanism M”. M is a protection 
mechanism function which is one of the followings: 
Let g be a geometric object and i a scalar: 
• reject_query: reads “reject the query which requires o to be displayed” i.e. empty 

map is returned even if the query addressed some authorized objects. 
• blur : reads “blur o” 
• mask: reads “mask o”  
• pixelizate: reads “lower o’s resolution”. 
• hide: reads “remove o” 
• paste(g): reads “cut and paste g” i.e. “overlay o with g”. . paste(g) is very often 

used to build what is referred to as a cover story i.e. a lie. It can be a fake object 
which does not exists in the real world. It can be an existing object from which 
some visual details have been hidden. It can be an existing object, but shown at an 
incorrect location etc. 

• zoom_in(i): reads “forces the zoom-in factor of object o to a value which is less 
than or equal to i". As we will see in section 4, this protection method would also 
decrease the zoom-in factor of other objects, even authorized ones, since given a 
map the zoom-in factor is the same for all objects.  

Note that, to define our model, we do not need to enter into the details of the blur, 
mask and pixelizate functions. However, in a real implementation, these protection 
mechanisms would require some parameters such as the intensity for the blur 
function, the shape and the position of the mask for the mask function and the 
resolution for the pixelizate function. 

Let us consider the following two examples of protection rules:   

( )),(),()( hideoProtectosDenyoTankos →∧∀∀  (16) 

( )))1(_,(),()( inzoomoProtectosDenyoBarrackos →∧∀∀  (17) 

The first rule says that if someone who is forbidden to see tanks request to see them 
then tanks should be removed from the returned map. The second rule says that 
someone who is forbidden to see barracks can in fact see them but at a zoom-in factor 
equal to 1. 
If for a given prohibition there is no specific protection rule then a default mechanism 
applies. This default mechanism depends on the application.  For example the 
following default rule says that the default mechanism is blur. 

( )),(),( bluroProtectosDenyos →∀∀  (18) 

If for a given prohibition, several mechanisms can be derived then only one of them 
should be selected. Such selection should be done on a priority basis. However, we 
have two options for assigning priorities: 
• either we assign priorities to the mechanism themselves. For example, the 

following list could represent the hierarchy of mechanisms (from the lowest 
priority to the highest priority): {zoom-in, pixelizate, blur, mask, paste, hide, 
reject_query}, 



• or we assign priorities to protection rules (with the default rule having the lowest 
priority). 

In section 4, we design a Policy Enforcement Point (PEP) algorithm which works 
with both approaches. 

3.2 Merging Prohibitions and Protection Rules 

In our model, we distinguish between the prohibitions and the protection rules. 
However, we could envisage merging the two types of rules as follows: 

( )),(),( MoProtectosDenyConditionos ∧→∀∀  (19) 

In the above definition, we directly specify in the prohibition rule the protection 
mechanism that should be enforced.  If we apply this principle to the example 
described in section 3.1, then rules 11, 12 and 14 are merged with rules 16 and 17 as 
follows: 

 

( )),(),()()( hideoProtectosDenyoTanksCivilianos ∧→∧∀∀  (20) 










∧→
>∧∧

∀∀
))1(_,(),(

1)()()(

inzoomoProtectosDeny

ozfoBarracksCivilian
os  

(21) 










∧→
¬∧∧

∀∀
),(),(

),()()(

hideoProtectosDeny

neMilitaryZooWithinoTanksSoldier
os  

(22) 

The obvious advantage of merging prohibitions and protection rules is that we end up 
with managing only one set of rules. However, this approach has the following 
disadvantages: 
• If we need to enforce the same protection mechanism for several different 

prohibitions then we have to specify this mechanism in each of the prohibition 
rules. For example, we had to specify that the protection mechanism should be hide 
in rules 20 and 22. 

• We reduce the expressive power of our model. In rule 19, the same condition 
triggers both the prohibition and the protection mechanism, whereas in rules 10 
and 15, the condition triggering the prohibition can be different from the condition 
triggering the protection mechanism.  

In the remainder of this paper we will not consider any more the possibility of 
merging the two types of rules since we want our model to have the highest possible 
expressive power. However, from a practical point of view, we are perfectly aware 
that a single set of rules might be easier to manage than two separate sets of rules. 



4 Policy Enforcement Point Algorithm 

In this section we define an algorithm for (i) enforcing protection mechanisms and (ii) 
construct the map to display. O(q) denotes the set of objects addressed by query q. 
zf(q) denotes the zoom-in factor of query q (see section 2.4). map denotes the map to 
construct. empty_map denotes the empty map. minzf denotes the zoom-in factor at 
which the final map is going to be displayed. insert(o,map) denotes a procedure which 
inserts geo-referenced object o into map map. overlay(o,g) denotes a procedure which 
overlays geo-referenced object o with geo-referenced object g. mask(o) denotes a 
function which overlays o with a mask, blur(o) denotes a function which blurs o, 
pixelizate(o) denotes a function which lowers o’s resolution. applyzf(i,map) is a 
function which applies zoom-in factor i on map map 

/* Protect(o,M) should be read “Protect(o,M) can be  derived from 
the Protection Rules” */ 
1.  map � empty_map 
2. minzf ���� zf(q) 
3. For o in O(q)  
4.   If Protect(o,reject_query) then  
5.    Return(empty_map) 
6.   Else  
7.    If NOT Protect(o,hide) then 
8.     insert(o,map) 
9.     If  Protect(o,paste(g)) then  
10.      overlay(o,g) 
11.     Else   
12.      If Protect(o,mask) then  
13.       mask(o) 
14.      Else 
15.       If Protect(o,blur) then  
16.        blur(o) 
17.       Else 
18.        If Protect(o,pixelizate) then 
19.         pixelizate(o) 
20.        Else 
21.         If Protect(o,zoom_in(i)) then  
22.         minzf ����min(i,minzf) 
23. Return(applyzf(minzf,map))  

This algorithm works in the following two cases: 
• Mechanisms have different priorities and the following mechanism hierarchy is 

used (from the lowest priority to the highest priority): {zoom-in, pixelizate, blur, 
mask, paste, hide, reject_query}. The algorithm is designed to select the highest 
priority mechanism in case more than one mechanism can be derived from a single 
prohibition.  

• Priorities are assigned to protection rules (with the default rule having the lowest 
priority). The algorithm selects the mechanism derived from the highest priority 
rule in case more than one mechanism can be derived from a single prohibition. 
However, it might happen that several mechanisms are selected. This can be the 
case if some protection rules have the same priority.  If this occurs, then the 



algorithm selects the mechanism to enforce on the basis of the mechanisms 
hierarchy. 

Regarding this algorithm we can make the following comments: 
• If, for any object, mechanism, reject_query should be enforced then the algorithm 

terminates (line 5) and an empty map is returned, even if the query addressed some 
authorized objects. 

• Prohibited objects that should be removed from the final map are ignored (line 7). 
• Line 8 inserts authorized objects. It also inserts prohibited objects on which a 

protection mechanism should be applied. 
• The returned map is displayed at the lowest zoom-in factor imposed by protection 

rules (line 22). For example, let the zoom-in-factor of the query be equal to 5. 
Assume there are two objects addressed by the query which are protected and 
should be displayed respectively at zoom-in factor equal to 4 and zoom-in factor 
equal to 3. The lowest zoom-in factor imposed by protection rules is selected and 
the map is displayed at zoom-in factor equal to 3. 

• Lines 10, 13, 16 and 19 apply various protection methods. 
• Line 23 applies the zoom-in factor and returns the final map. 
• This algorithm is linear with the number of objects addressed by the query. 
Of course this algorithm could be written differently. We could consider another 
mechanism hierarchy or we could consider a partial order on the set of mechanisms. 
In this latter case, if two mechanisms which cannot be compared can be derived from 
the same prohibition then priorities on rules should be used to select one of these 
mechanisms. 

5 Application Example 

5.1 Contextual Security Policy 

We consider an organization simultaneously managing a fleet of taxis and a fleet of 
ambulances. While driving, drivers from this company use a spatial application 
displaying surrounding objects. Fig 3 shows that subjects are drivers who can be 
either taxi drivers or ambulance drivers. Objects are buildings, roads and military 
areas (including military hospitals). Basically, the security policy expresses the fact 
that drivers can view spatial data which are within a radius of 40 km around their 
position. However, there are some restrictions to this general rule.  

 
Fig. 3. Synopsis of our example 

Subjects 

Driver View Building 

Road 

MilitaryArea 

MilitaryHospital 
 

Ambulances 

Taxi 

Actions Objects 



Default policy: The default policy is closed i.e. given a subject s and an object o, if 
Permit(s,o) cannot be derived from the security policy then Deny(s,o) should be 
derived. 
Drivers have the permission to view at a maximum zoom-in factor of 10 any object 
that is within a radius of 40km around their position. 

( )),(10)(40),()( osPermitozfosdistancesDriveros →≤∧≤∧∀∀  (23) 

Drivers have the permission to view roads at a maximum zoom-in factor of 10 (even 
those which are not within a radius of 40km).  

( )),(10)()()( osPermitozfoRoadsDriveros →≤∧∧∀∀  (24) 

Taxis driving at a speed greater than 100km per hour are forbidden to view any 
object. This rule does not apply to ambulances since they are emergency vehicles.  

( )),(100)()( osDenysspeedsTaxios →≥∧∀∀  (25) 

Drivers are prohibited to view military areas . 

( )),()()( osDenyoeaMilitaryArsDriveros →∧∀∀  (26) 

Drivers are prohibited to view buildings which are contiguous to military areas  

( )),(),()()()( osDenymoTouchesmeaMilitaryAroBuildingsDrivermos →∧∧∧∀∀∀  (27) 

Ambulances are permitted to view military hospitals at a maximum zoom-in factor of 
5. 

( )),(5)()()( osPermitozfospitalMilitaryHosAmbulanceos →≤∧∧∀∀  (28) 

The above security policy may lead to conflicts. Rule 23 and rule 24 conflict with the 
default policy. For a taxi driving at more than 100 km per hour, rule 25 conflicts with 
rules 23 and 24. For military areas, rule 26 conflicts with rule 23. For buildings 
contiguous to military areas, rule 27 conflicts with rule 23. For ambulances, military 
hospitals and a zoom-in factor lower than 5, rule 28 conflicts with rule 26. As we said 
before, it is not the purpose of this paper to discuss conflict resolution. In this 
example, we simply assume that rules 23 and 24 override the default policy, rule 25 
overrides rules 23 and 24, rule 26 overrides rule 23, rule 27 overrides rule 23 and rule 
28 overrides rule 26.  

5.2 Protection Rules 

Default mechanism: We define the default mechanism as hide: 

( )),(),( hideoProtectosDenyos →∀∀  (29) 

Rule 30 says that if a taxi driving at 100km is forbidden to view an object then his 
query should be rejected 

( ))_,(),(100)()( queryrejectoProtectosDenysspeedsTaxios →∧≥∧∀∀  (30) 



Rule 31 says that if a subject is forbidden to view a building within a radius of 40km 
then the resolution of this building should be lowered. 

( )),),(40),()( pixelizateProtect(oosDenyosdistanceoBuildingos →∧≤∧∀∀  (31) 

Rule 32 says that if a subject is forbidden to view a military area within a radius of 
40km then this military area should be masked. 

( ))),(40),()( maskProtect(o,osDenyosdistanceoeaMilitaryAros →∧≤∧∀∀  (32) 

Rule 33 says that if an ambulance is forbidden to view a military hospital within a 
radius of 40km then the zoom-in factor should be lowered to 5. 










→
∧≤∧∧

∀∀
))5(_,Protect(

),(40),()()(

inzoomo

osDenyosdistancesAmbulanceospitalMilitaryHo
os  

(33) 

We assign priorities to protection rules. The default rule 29 has the lowest priority. 
Rule 30 has the highest priority. Rules 31 and 32 have the same priority. Rule 33 has 
a higher priority than rule 32. 
The default mechanism applies whenever it is not possible to derive any mechanism 
for a given prohibition. Therefore we can easily see that the default mechanism (rule 
29) applies to instances of the Deny predicate which are derived from the default 
(closed) policy. These instances address objects which are not the roads and which are 
outside of a 40km radius. Rule 30 applies to instances of the Deny predicate which are 
derived from rule 25. Taxis driving too fast should see their query rejected i.e. taxis 
are in fact forbidden to use the application as long as they drive too fast. Rule 31 
applies to the instances of the Deny predicate which are derived from rule 27, i.e. 
buildings touching military areas should be pixelizated. Rule 33 applies to some 
instances of the Deny predicate which are derived from rule 26. These instances 
address ambulances requesting to view military hospital at a zoom-in factor greater 
than 5 (recall that rule 28 say that  ambulances are permitted to view military 
hospitals at a zoom-in factor lower than 5). Rule 32 applies to all the other instances 
of the Deny predicate which are derived from rule 26. 

5x

B1

B2

B3

B4

B5

Mi1

5x

B1

B2

B3

B4

B5

Mi1

 
Fig. 4. Original map and Taxi driver view 
The left picture of figure 4 shows an example of an original road map. The right 
picture shows the taxi driver view of the same map. The zoom-in factor is 5, the circle 
represents the 40km radius, objects outside this radius are hidden (except roads), the 
military area is masked and the building near the military area is pixelizated. Note that 

5x

B2

B5

B4

Mi1
5x

B2

B5

B4

Mi1



under the assumption that the military area is not a military hospital, the ambulance 
view is the same as the taxi view. 

6 Sketch of Implementation 

In this section, we sketch the implementation of our model within the framework of 
the OpenGIS® Styled Layer Descriptor (SLD) [7] Profile of the OpenGIS® Web 
Map Service (WMS) [8] specification.  

6.1 The OpenGIS® Web Map Service specification 

Among all the specifications published by the OGC [14] regarding Geographic 
Databases and data exchange protocols, the most popular and widely used is 
undoubtedly the OpenGIS® Web Map Service (WMS). WMS servers support the 
creation and display of registered and superimposed map-like views of information 
coming from multiple heterogeneous sources including other WMS servers. The 
underlying protocol for WMS is the Hypertext Transfer Protocol (HTTP). Most WMS 
servers implement a common gateway interface (cgi-bin) and may be requested via an 
URL issued from a standard web-browser or any WMS-enabled software. The main 
parameters of a basic GetMap request to a WMS server include an ordered (bottom to 
top) list of layers (spatial objects), an ordered list of styles in which each layer is to be 
rendered (with a one-to-one correspondence with the list of layers), a Bounding Box 
specifying the geographical extent of the region to map and two parameters (width 
and height) specifying the final size of the requested image. The response of the 
server to a valid WMS GetMap request is an image file in the specified format 
(MIME type such as PNG, GIF or JPEG) having the dimension width by height 
pixels. Two points are fundamental in WMS requests: (i) conjunction of the requested 
image size (width and height parameters) with the in situ geographical extent 
(Bounding Box parameter) leads to the definition of the zoom-in factor for the final 
map and (ii) applying a specific style to a specific layer (geographical object) leads to 
the concept of Styled Layers developed in the next subsection. 

6.2 The OpenGIS® Styled Layer Descriptor profile 

A styled layer represents a particular combination of a ‘layer’ and a ‘style’ in which 
that layer can be symbolized. Conceptually, the layer defines a stream of features and 
the style defines how those features are symbolized. Defined by OGC in 2007, the 
Styled Layer Descriptor (SLD) is an XML-based description format for formatting 
data from a WMS flow. It plays the same role as a CSS file to an HTML page, the 
goal being to completely separate the style from the data. For example the same 
geographic object of type point may be symbolized as a small blue dot, a large red 
cross or a medium green square. A polygonal object may be drawn as a light blue 
transparent hatch, a fully opaque black polygon as well as a green grass-looking 
textured object. Named-styles are predefined using SLD files and used within the 
Styles parameter of the WMS request. 



6.3 Rewriting WMS queries 

Our prototype acts as a front-end engine rewriting WMS queries issued from an 
authenticated user on the basis of the outcome produced by the PEP algorithm 
presented in section 4. User queries are rewritten as follows: 
• Each object that should be hidden (line 7 of the PEP algorithm) is simply removed 

from the list of requested layers. 
• Each object o that should be overlaid by another object g (line 11 of the algorithm) 

is replaced by object g in the list of requested layers.  
• Reducing the zoom-in factor (line 23 of the algorithm) is achieved by modifying 

the width and height of the final image so that the ratio between the bounding box 
and the size of the image respects the zoom-in factor imposed by the PEP 
algorithm. 

• We wrote three SLD protection styles simulating respectively the three protection 
mechanisms blur, mask and pixelizate (line 14, 17 and 20 of the PEP algorithm). 
For each object that should be blurred, masked or pixelizated, the corresponding 
protection style replaces the style of the original query. 

Let us assume for example that the following query is issued by a taxi driver. It 
requests all layers (objects) with the default style for each layer (see Figure 4). 

http://yourWmsServer.com/wms?SERVICE=wms&VERSION=1. 3.0&REQUEST=G
etMap&LAYERS=Roads,B1,B2,B3,B4,B5,Mi1&STYLES=&BBOX= x1,y1,x2,y2&W
IDTH=600&HEIGHT=600&FORMAT=image/png&SRS=epsg:4326 

This query would be rewritten as follows by our front-end engine: 

http://yourWmsServer.com/wms?SERVICE=wms&VERSION=1. 3.0&REQUEST=G
etMap&LAYERS=Roads,B2,B4,B5,Mi1&STYLES=,,PixelSLD,, MaskSLD&BBOX=
x1,y1,x2,y2&WIDTH=600&HEIGHT=600&FORMAT=image/png&S RS=epsg:4326 

The rewritten query addresses buildings within a radius of 40km, requests the military 
area Mi1 with the mask style MaskSLD, requests the building B4 with the pixelizate 
style PixelSLD and requests other objects with the server default style. 
Currently, our prototype (http://pages.upf.pf/Patrick.Capolsini/rech/protect/index.htm) 
is only at the proof-of-concept stage. It implements the mask and pizelizate SLD and 
uses some predefined examples. Our prototype considers a set of prohibited objects. 
First, it asks the user to set some context parameters. Second it shows how the 
original user WMS query is rewritten into a secure WMS query. Third, it displays the 
map returned by the map engine. In a near future, we will implement it as a secure 
proxy for publishing geo-data. 

7 Related Work 

Several access control models and approaches have been proposed for geo-spatial 
resources. Some of them such as the Geospatio-temporal Authorization Model 
(GSAM) focus on the visualization of raster geo-spatial data like multi-resolution 
satellite imagery (see [15], [16], [17] and [3] for details) while others like Geo-RBAC 



[2, 18] may be described as Location Based Systems. On our side, we proposed an 
extension to the generic Or-BAC model to derive a geospatial context aware access 
control system ([4] and [5]). Regarding security standards, the Open Geospatial 
Consortium (OGC) [14] published the Digital Rights Management Reference Model 
(GeoDRM RM) [19] which is a reference model for digital rights management 
functionality for geospatial resources and geo-XACML [20] which extends the 
OASIS XACML [21] language for expressing authorization policies. The interested 
reader can refer to [22] for a summary of the current state of the art in the field of geo-
spatial databases security. 
As we already mentioned, to our knowledge it is the first time that a security model 
includes a framework for specifying protection mechanisms to be enforced. Most of 
the existing works on geo-data security focus on the expressive power of the security 
policy and on conflict resolution between permissions and prohibitions. This is the 
case in [23] where the authors, in the context of an XML-based Framework, propose 
to use Scalable Vector Graphics (SVG) [24] to represent geo-spatial objects and 
layers. They then define an access control model where an authorizations rule 
involves a subject, an object and an action as well as a Level of Details factor and an 
operative region. The SVG representation of the map and R-tree based indexes are 
used in the policy enforcement algorithm to determine which geo-spatial objects are 
addressed by the request and whether they can be accessed or not. In [25], authors 
assume that all spatial data are stored in a spatial database accessed by a Geographic 
Information System (GIS). A security object may be a spatial component, a set of 
spatial components or indirectly a query result. The algorithm which analyzes access 
requests includes a step of potential conflicts detection between security rules 
involving geo-spatial objects which can touch, intersect or be contained in each other. 
The authors distinguish between two potential cases of conflict depending on whether 
an object is totally or partially included in another. In [26], the author makes the 
distinction between object-based restrictions (on a particular object), class-based 
restrictions (on all objects of type “Building” or type “Road” for example) or spatial 
access restrictions (based on the geometry of objects). Objects are encoded using the 
Geographic MarkUp Language (GML) [27]. Security rules are expressed using 
XACML and geoXACML and may contain a spatial condition. Evaluation of the 
security policy may result in either “Permit”, “Deny”, “N/A” or “indeterminate”. The 
paper focuses on the “approximate” detection of contrary spatial permissions i.e. one 
spatial rule evaluates to permission while another one evaluates to prohibition. For 
this “approximate” detection, no actual request is required. The author states that a 
complex access control system has to ensure appropriate and error-free enforcement 
of declared permissions. He suggests using a permission repository and testing it for 
the a priori detection of inconsistent spatial authorization rules. 

8 Conclusion 

In this paper we focused on how to enforce the security policy in the framework of a 
Map Service supporting the creation and display of map-like views of information. 
We proposed a rule-based PEP which selects the protection mechanism to enforce 



whenever a prohibition is derived from the security policy. We suggested seven 
protection mechanisms, namely: {zoom-in, pixelizate, blur, mask, paste, hide, 
reject_query} . We defined the logical framework to express some protection rules. 
These rules specify mechanisms to enforce whenever prohibitions are derived from 
the security policy. If, given a prohibition, several mechanisms could be used then 
only one of them should be selected according to priorities which are either assigned 
to the protection mechanisms themselves or to the protection rules. We defined the 
PEP algorithm which enforces the mechanisms and builds the map to display. We 
presented an example to illustrate how our proposal could be used and useful in a real 
application. We sketched the implementation of our proposal within the framework of 
the SLD profile of the WMS encoding standard and finally, we implemented a 
prototype showing the feasibility of our approach. Finally, let us also mention the 
following point: geographic data are a special case of multimedia data. Therefore, we 
also proposed a version of our model for the more generic case of multimedia data 
[28]. We used our model to protect images published in a social network.  

Acknowledgment 
This work was conducted as part of the ANR funded project under reference ANR-
SESUR-2007-FLUOR. 

References 
1. 2011 WikiPedia. Satellite map images with missing or unclear data. 

http://en.wikipedia.org/wiki/Satellite_map_images_with_missing_or_unclear_data 
2. Bertino, E., Catania, B., Damiani, M.L., Perlasca, P.: GEO-RBAC : A spatially 

Aware RBAC. ACM Symposium on Access Control Models and Technologies 
(SACMAT'05), Stockholm, Sweeden (2005) 29-37 

3. Atluri, V., Chun, S.A.: A geotemporal role-based authorization system. 
International Journal of Information and Computer Security 1 (2007) 143-168 

4. Gabillon, A., Capolsini, P.: Dynamic Security rules for Geo Data. In: Sciences, 
L.N.i.C. (ed.): International workshop on Autonomous and Spontaneous Security 
(SETOP'09), Vol. Lecture Notes in Computer Science 5939. LNCS 5939 - 
Springer-Verlag, St Malo, France (2009) 136-152 

5. Capolsini, P., Gabillon, A.: Security policies for the Visualization of Geo Data. 
ACM SIGSPATIAL GIS 2009 International Workshop on Security and Privacy in 
GIS and LBS (SPRINGL'09). ACM, Seattle, WA, USA (2009) 02-11 

6. Gabillon, A., Capolsini, P.: Rule-based Policy Enforcement Point for Map 
Services. ACM SIGSPATIAL GIS 2010 International Workshop on Security and 
Privacy in GIS and LBS (SPRINGL'10). ACM, San Jose, CA, USA (2010) 12-17 

7. Lupp, M.: Styled Layer Descriptor profile of the Web Map Service 
Implementation Specification. Open Geospatial Consortium Inc. OGC(R) 05-
078r4 (2007)  

8. Beaujardiere, J.d.l.: OpenGIS(R) Web Map Server Implementation Specification. 
Open Geospatial Consortium Inc. OGC(R) 06-042 (2006)  

9. El-Kalam, A., El-Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y., 
Miège, A., Saurel, C., Trouessin, G.: Organization Based Access Control. 4th 
IEEE International Workshop on Policies for Distributed Systems and Networks 
(Policy'03). IEEE, Como, Italy (2003) 



10. Yuan, E., Tong, J.: Attributed Based Access Control (ABAC) for Web Services. 
Proceedings of the IEEE International Conference on Web Services (ICWS'05), 
Orlando, Florida - USA (2005) 

11. Janée, G., Frew, J., Hill, L.L.: Issues in Geo-referenced Digital Libraries. D-Lib 
Magazine, Vol. 10 (2004) 

12. Rigaux, P., Scholl, M., Voisard, A.: Spatial Databases with application to GIS. 
Elsevier (2002) 

13. Herring, J.R.: OpenGIS(R) Implementation Specification for Geographic 
information - Simple feature access - Part 1 : Common architecture. Open 
Geospatial Consortium Inc. OGC(R) 06-103r3 (2006)  

14. [OGC2008] OGC. Open Geospatial Consortium Inc. - About Us; 
http://www.opengeospatial.org/about. 

15. Chun, S.A., Atluri, V.: Protecting privacy from continuous high-resolution 
satellite surveillance. In Proceedings of the 14th IFIP 11.3 Annual Working 
Conference on Database Security, Schoorl, The Netherlands (2000) 233-244 

16. Atluri, V., Mazzoleni, P.: A uniform indexing scheme for geo-spatial data and 
authorizations. In Proceedings of the 16th IFIP WG 11.3 Conference on Data and 
Application Security (2002) 

17. Atluri, V., Chun, S.A.: An authorization Model for Geospatial Data. IEEE 
Transactions on Dependable and Secure Computing 1 (2004) 238-254 

18. Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: GEO-RBAC : A spatially 
Aware RBAC. ACM Transactions on Information Systems and Security 00 (2006) 
1-34 

19. Volwes, G.: Geospatial Digital Rights Management Reference Model (GeoDRM 
RM). Open Geospatial Consortium Inc. OGC(R) 06-004r3 (2006)  

20. Matheus, A., Herrmann, J.: Geospatial eXtensible Access Control Markup 
Language (GeoXACML). Open Geospatial Consortium Inc. OGC(R) 07-026r2 
(2008)  

21. [XACML22005] OASIS. eXtensible Access Control Markup Language 
(XACML) Version 2.0; http://www.oasis-open.org. 

22. Chun, S.A., Atluri, V.: Geospatial Database Security. In: Gertz, M., Jajodia, S. 
(eds.): Handbook of Database Security Applications and Trends. Springer US 
(2008) 247-266 

23. Purevjii, B.-O., Amagasa, T., Imai, S., Kanamori, Y.: An access control model for 
geographic data in an XML-based framework. 2nd International workshop on 
Security in Information Systems (WOSIS'04), Porto, Portugal (2004) 251-260 

24. [SVG2010] W3C. Scalable Vector Graphics (SVG) 1.1 (Second Edition); 
http://www.w3.org/Graphics/SVG/. 

25. Sasaoka, L.K., Medeiros, C.B.: Access Control in Geographic Databases 
Advances in Conceptual Modeling - Theory and Practice (Lecture Notes in 
Computer Science) 4231/2006 (2006) 110-119 

26. Matheus, A.: Declaration and enforcement of fine-grained access restrictions for a 
service-based geospatial data infrastructure. 10th ACM Symposium on Access 
Control Models and Technologies (SACMAT'05), Stockholm, Sweden (2005) 21-
28 

27. Portele, C.. OpenGIS(R) Geography Markup Language (GML) Encoding 
Standard. Open Geospatial Consortium Inc. OGC(R) 07-036 (2007)  



28. Bechara al Bouna, Richard Chbeir, Alban Gabillon: The Image Protector - A 
Flexible Security Rule Specification Toolkit . SECRYPT 2011: 345-350. 
Proceedings of the International Conference on Security and Cryptography, 
Seville, Spain, 18 - 21 July, 2011 

 
 


