
HAL Id: hal-01020241
https://hal.science/hal-01020241

Submitted on 8 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logical Foundations of Multilevel Databases
Frédéric Cuppens, Alban Gabillon

To cite this version:
Frédéric Cuppens, Alban Gabillon. Logical Foundations of Multilevel Databases. Data and Knowledge
Engineering, 1999, 29, pp.259-291. �hal-01020241�

https://hal.science/hal-01020241
https://hal.archives-ouvertes.fr


1

Logical Foundations of Multilevel Databases

Frederic Cuppens Alban Gabillon

ONERA/CERT Université de Toulon et du Var

2 Avenue E. Belin GECT

31055, Toulouse Cedex B.P.132, 83 957, La Garde cedex.

France France

email: cuppens@cert.fr email : gabillon@univ-tln.fr

Abstract

In this paper, we propose a formal model for multilevel databases. This model aims at being a

generic model, that is it can be interpreted for any kind of database (relational, object-oriented…).

Our model has three layers. The first layer corresponds to a model for a non-protected database.

The second layer corresponds to a model for a multilevel database. In this second layer, we

propose a list of theorems that must be respected in order to build a secure multilevel database.

We also propose a new solution to manage cover stories without using the ambiguous technique of

polyinstantiation.  The third layer corresponds to a model for a MultiView database, that is, a

database that provides at each security level a consistent view of the multilevel database. Finally,

as an illustration, we interpret our 3-layer model in the case of an object-oriented database.

Keywords: Database Security, Security Model, Multilevel Security Policy, Cover Story

Management, Mathematical Logic.



2

1. Introduction

The work presented in this paper applies to the context of multilevel security policies. In a

multilevel security policy every piece of information is associated with a classification level, and

every agent is associated with a clearance level. Classification and clearance levels are taken

from a set of security levels associated with a partial order relation. Traditional examples of

security levels are U (Unclassified), C (Confidential), S (Secret) and TS (Top Secret) with the

following order relation: U < C < S < TS. The confidentiality property in the multilevel security

policy states that an agent can only know a given piece of information if the clearance level of this

agent is higher than or equal to the classification level of the information.

Projects, whose objective is to realize a database management system, which supports a multilevel

security policy, have been undertaken for more than twenty-five years. Several commercial

products coming from the main vendors of database management systems are now available.

Currently, database security is also an active field of research. Several theoretical models have

been suggested for multilevel databases (see for instance  [DLSSH88,Wil89,HOST90,SW92,

CS95,QL96,JK90,Lun90,ML92,KTT89]). However, none of them is fully satisfactory because they

are not free of semantic ambiguities. Most of these ambiguities come from the use of the concept

called polyinstantiation. Polyinstantiation occurs when different tuples with the same key, each at

a different classification level, are allowed. Even though models for multilevel security generally

include the possibility to have polyinstantiated tuples, there is currently no consensus on a non-

ambiguous interpretation of polyinstantiation.

The objective of this paper is to propose a formal model for multilevel database. This model is

then interpreted in the case of an object-oriented database. The proposed model has three layers

(see figure 1). The first layer corresponds to a model for a non-protected database. The second

layer corresponds to a model for a multilevel database. This multilevel database is obtained by

applying the classification process to data stored in the non-protected database. However, this

model includes the possibility of classifying data, which are not stored in the non-protected

database. These data correspond to cover stories. Cover stories are lies introduced in the

multilevel database in order to protect the existence of higher classified data. In this second layer,

it is possible to explicitly state which information is a cover story. We claim that this approach is

free of ambiguity and is therefore better than using polyinstantiation. Finally, the purpose of the

third layer is to derive, from the second layer, a consistent view of the multilevel database at each

security level.

We show that there is a one to one correspondence between the second layer and the third layer.

This means that, knowing how data are classified and which data are cover stories, we can

provide each user with a consistent view of the multilevel database. Conversely, knowing what is

the view of the multilevel database at each security level, we can derive how data are classified

and which data correspond to cover stories. From a more practical point of view, this also means

that there are two ways of implementing a multilevel database:

• storing how data are classified, which data are cover stories, and then deriving a view at each

security level (implementation of second layer) or,



3

• storing a view at each security level and then deriving data classification and cover stories

(implementation of third layer). We argue that implementing the third layer is generally easier.

We illustrate it in the context of an object-oriented database.

The remainder of this paper is organized as follows. Section 2 proposes a model for a non-

protected database (first layer of figure 1). Section 3 is a model for a multilevel database (second

layer). In this section, two inference control rules are introduced: the first rule, called deductive

channels control rule, is to prevent illegal inference of higher classified information; the second

one, called signalling channels control rule, is to protect the existence of sensitive information. We

also formally define the concept of cover story and provide means to explicitly state which data

are cover stories. Section 4 is a model for a MultiView database (third layer). We provide

axioms, which guarantee a one to one correspondence between the second and third layers.

Sections 5 through 7 provide interpretation of the three layers in the case of an object-oriented

database. In section 8, we suggest some ideas to implement a MultiView object-oriented database.

Finally, section 9 concludes this paper.

Non Protected DB Layer 1

Multilevel DB Layer 2

MultiView DB
Layer 3

Classification Process
Cover Stories

Layer2-Layer3
correspondence axioms

Figure 1. Three-layers model

2. Non-protected database

Mathematical logic has been used to formalize databases in two main directions. These directions

are usually called the proof theoretics approach and the model theoretics approach. The former

represents a database as a logical theory, the latter represents a database as an interpretation of a

logical theory [Rei83]. In the remainder of this paper, we adopt the proof theoretics approach, that

is, each database is associated with its logical theory T.



4

2.1. Language

The language L of the theory T is based on first-order logic with equality. Thus, in order to

represent the non-protected Database we use first-order predicates.

Example:

Employee(Dupont) (that reads “Dupont is an employee”)

Salary(Dupont,2000) (that reads “Dupont’s salary is 2000”)

2.2. Axiomatic

The axiomatic A of the theory T corresponds to the classical axiom schemata of first order logic

with equality plus some proper axioms.  These proper axioms are divided into two sets:

1. A set DB of atomic facts that represents the Database content

Example:

Employee(Dupont), Salary(Dupont,2000) …

2. A set IC of integrity constraints

Example:

∀x∀y,Salary(x, y) → Employee(x) (1)

(that reads “If x has a salary then x is an employee”)

∀x, Employee(x) → ∃y,Salary(x, y) (2)

(that reads “each employee has a salary”)

We shall assume that the database content enforces the set of integrity constraints, that is, the

integrity constraints may be derived from the database content: DB − IC

Among all possible types of integrity constraints, we distinguish two particular types of integrity

constraints that will be useful for the remainder of this paper.

• Type 1

 
  
∀x1K∀xn ,P1(x1) ∧K ∧ Pn (xn ) → Q(y) (3)

 where x1,…,xn are tuples of variables respectively compatible with the arity of predicates P1,…,Pn

and y is another tuple compatible with the arity of Q. We assume that each variable in tuple y

appears in at least one of the tuples x1,…,xn.

 Integrity constraint (1) is of Type 1.

• Type 2

  
∀x1

K∀xn ,P1(x1) ∧K ∧ Pn (xn ) → ∃y,Q1(y1) ∧ K∧ Qp (yp ) (4)

where x1,…,xn, y1,…,yp are tuples of variables respectively compatible with the arity of predicates

P1,…,Pn, Q1,…,Qp and y is another tuple of variables. We assume that each variable in tuple y



5

appears in at least one of the tuples y1,…,yp and each variable in tuples y1,…,yp appears in at least

one of the tuples x1,…,xn, y.

Integrity constraint (2) is of Type 2.

Finally, notice that we could have considered the following form of integrity constraint as another

particular Type 3:

  
∀x1

K∀xn ,P1(x1) ∧K ∧ Pn (xn ) → Q1(y1) ∧ Q2(y2) ∧K ∧ Qp(yp )

where x1,…,xn are tuples of variables respectively compatible with the arity of predicates P1,…,Pn

and y1,…,yp are other tuples compatible with the arity of Q1,…,Qp. Each variable in tuples y1,…,yp

appears in at least one of the tuples x1,…,xn.

However such an integrity constraint can be decomposed into several integrity constraints of Type

1:

  
∀x1K∀xn ,P1(x1) ∧K ∧ Pn (xn ) → Q1(y1)

  
∀x1K∀xn ,P1(x1) ∧K ∧ Pn (xn ) → Q2 (y2)

…

  
∀x1K∀xn ,P1(x1) ∧K ∧ Pn (xn ) → Qp(yp )

3. Multilevel database

The central idea of our approach is to assign a classification level to any piece of information

represented by an atomic formula in the non-protected database.

Let us extend the theory T, used to represent the non-protected database, into a theory Tc, used to

represent the multilevel database.

3.1. Language

The language Lc used to represent the multilevel database is an extension of the language L

developed in section 2.1.

We first extend our language to represent a finite set of classification levels. For this purpose, we

shall use a one-place predicate level. The formula level(l) reads “l is a classification level”. We

assume that the set of levels is a lattice associated with a partial order relation ≤. Therefore, the

least upper bound and greatest lower bound are defined. For this purpose, we shall use two

functions lub and glb. If l1 and l2 are two security levels, then lub(l1, l2) and glb(l1, l2) are

respectively the least upper bound and greatest lower bound of l1 and l2. There is a level that is also

lower than all other levels, we denote it Low and a level that is higher than all other levels, we

denote it High. The formula l1 ≤ l2  reads “l1 is dominated by l2”. Axioms associated with the

predicates Level and ≤ are the following:

Only levels can be compared with ≤:

∀l1∀l2 , l1 ≤ l2 → level(l1) ∧ level(l2) (5)



6

≤ is transitive:

∀l1∀l2∀l3, l1 ≤ l2 ∧ l2 ≤ l3 → l1 ≤ l3 (6)

≤  is reflexive:

∀l1,level(l1) → l1 ≤ l1 (7)

≤ is anti-symmetric:

∀l1∀l2 , l1 ≤ l2 ∧ l2 ≤ l1 → l1 = l2 (8)

In the remainder of this paper we shall also use < and <>:

The formula l1 < l2  reads “l1 is strictly dominated by l2”.

∀l1∀l2 , l1 < l2 ↔ l1 ≤ l2 ∧ ¬(l1 = l2 )

The formula l1 <> l2  reads “l1 and  l2 are not comparable”

∀l1∀l2 , l1 <> l2 ↔ level(l1 ) ∧ level(l2 ) ∧ ¬(l1 ≤ l2 ) ∧ ¬(l2 ≤ l1 )

For each predicate P of arity n, which is used to represent the non-protected database content,

there is a predicate Pc of arity (n+1). Predicates Pc are used to represent the multilevel database

content.  Intuitively, if l is a classification level then Pc(t1, …,tn,l) reads “the piece of information

P(t1,…,tn) is classified at level l”

Example:

In this example we assume that our set of security levels contains two security levels only

{(U)nclassified, (S)ecret}(High=S and Low=U).

Employeec(Dupont,U)

(that reads “the fact that Dupont is an employee is an unclassified information”)

Salaryc(Dupont,2000,S)

(that reads “the fact that Dupont’s salary is 2000 is a secret information”)

Notice that we might also apply the classification process to the predicates Level and ≤:

• We might consider a two place predicate Levelc with the sentence Levelc(l1, l2) which reads “the

fact that l1 is a security level is classified at level l2”. For example the fact

Levelc(Top_Secret,Secret) means that the Top Secret security level itself is classified at the

Secret level. As a consequence, only secret and top secret users can learn that there exists a

Top Secret level and therefore, there may be some top-secret data in the multilevel database.

However, for the sake of simplicity we do not include this possibility in our model. This

implicitly means that we assume the extension of the predicate Level to be classified at the

lowest level Low:

 ∀l
1
∀l

2
, level

c
(l

1
, l

2
) ↔ level(l

1
) ∧ l

2
= Low (9)

• We might consider a three place predicate ≤c with the sentence ≤c(l1, l2, l3) that reads “the fact

that level l1 is dominated by level l2 is classified at level l3”. We shall also not use this



7

possibility in the remainder of this paper. This means that we assume the extension of the

predicate ≤ to be classified at the lowest level Low:

∀l1∀l2∀l3,≤
c

(l1,l2, l3 ) ↔ l1 ≤ l2 ∧ l3 = Low (10)

Finally, we assume the integrity constraints to be all implicitly classified at the lowest level low.

3.2. Axiomatic

The axiomatic Ac of the theory Tc includes the following axioms:

1. All axioms A of theory T (cf. section 2.2)

2. Axioms (5) to (10).

3. A set of atomic facts that represents the multilevel database content

Example:

Employee c(Dupont,U), Salary c(Dupont,2000,S) …

4. An axiom schema which is used to specify the link between the non-protected database and the

multilevel database:

For each n-place predicate P, we have the following axioms:

  
∀t1K∀tn ,P(t1,K,tn ) → ∃l, Level(l) ∧ P

c
(t1,K, tn, l) (11)

This axiom says that any fact in the non-protected database is classified in the multilevel

database.

5. An axiom schema saying that a fact cannot be associated with two distinct comparable security

levels.

  
∀t1K∀tn∀l∀ ′ l , P

c
(t1,K,tn ,l) ∧ P

c
(t1,K, tn , ′ l ) ∧ l ≤ ′ l → l = ′ l (12)

This axiom says that if a fact P(t1,…,tn) is classified with two levels l and l’ and if l’ dominates

l then l and l’ are the same. This axiom implicitly suggests that P(t1,…,tn) may be associated

with more than one security level provided these security levels cannot be compared between

each other.

Example :

Let us assume we have the following set of security levels:

{U, C1, C2, S}

The following partial order is defined in this set:

C1 > U, C2 > U, S > C1, S > C2 and C1 <> C2

According to axiom schema (12), Employee
c
(Dupont,U ) ∧ Employee

c
(Dupont,C

1
)is not

possible since C1 > U whereas Employee
c
(Dupont,C

1
) ∧ Employee

c
(Dupont ,C

2
)is possible

since C1 <> C2
.



8

3.3. Inference channels control theorems

Our objective in this section is to derive general constraint theorems that must be enforced when

classifying the database content (for instance, what condition(s) must be satisfied when classifying

Salary(Dupont,2000) at level l and Employee(Dupont) at level l’ ?). These inference channels

control theorems can be classified into the following two categories:

• Deductive channels control theorems. These theorems must be respected in order to prevent

unauthorized disclosure of facts. They are derived from the integrity constraints of Type 1.

• Signalling channels control theorems. These theorems must be respected in order to prevent

unauthorized disclosure of the existence of facts. They are derived from the integrity

constraints of Type 2.

3.3.1. Deductive channels control theorems

When classifying any piece of information at a given classification level, the following deductive

channels control rule must be enforced  (this rule is added to the axiomatic Ac):

• Rule 1

If 
  
∀x1K∀xn ,P1(x1) ∧K ∧ Pn (xn ) → Q(y) is an integrity constraint of Type 1 (see section 2.2) in

the non-protected database, then the following constraint must be enforced in the multilevel

database:

  
∀x1

K∀xn∀l1K∀ln, P1

c
(x1,l1) ∧ K ∧ Pn

c
(xn , ln ) → ∃l,Q

c
(y,l) ∧ l ≤ lub( l1,l2,K, ln )

If this rule is not satisfied, then a subject cleared at level lub(l1,l2, … ,ln) can access every Pi(xi)

and use the axiom1 (3) to derive Q(y). In other words, if the classification of Q(y) is not lower than

or equal to lub(l1,l2, … ,ln) then a deductive channel that enables prohibited information to be

disclosed is created.

Example:

By directly applying Rule 1 onto axiom (1) we can derive the following theorem:

∀x∀y∀l∀ ′ l ,Salary
c
(x, y, ′ l ) → ∃l, Employee

c
(x, l) ∧ l ≤ ′ l (13)

This theorem says that if the fact “y is the salary of x” is classified at level l’ then there must exist

a security level l protecting the fact that “x is an employee” with l’ dominating l.

3.3.2. Signalling channels control theorems

When classifying any piece of information at a given classification level, the following signalling

channels control rule must be enforced in order to protect the existence of sensitive information

(this rule is added to the axiomatic Ac):

                                                            
1

Recall that we implicitly assumed all integrity constraints to be classified at the lowest level Low. Now if we assume that integrity

constraints might be classified then the conclusion of Rule 1 would be modified as follows:

  
∀x

1
K∀xn∀ l

1
K∀ln∀l, P

1
c

( x
1

, l
1

) ∧ K ∧ Pn
c

(x n, ln ) → ∃l,Q
c

( y, l) ∧ l ≤ lub( l
1

, l
2

,K, ln ,lc )

where lc is the classification level of the integrity constraint used in the premise of Rule 1. If we assume that lc=Low then we

obtain Rule 1.



9

• Rule 2

If 
  
∀x1K∀xn ,P1(x1) ∧K ∧ Pn (xn ) → ∃y,Q1(y1) ∧ K∧ Qp (yp ) is an integrity constraint of Type 2

(see section 2.2) in the non-protected database, then the following constraint must be enforced in

the multilevel database:

  

∀x1K∀xn
∀l1K∀ln, P1

c (x1,l1) ∧ K ∧ Pn

c (xn ,ln )

→ ∃y∃ ′ l 1K∃ ′ l p ,Q1
c (y1, ′ l 1) ∧ K∧ Qp

c(yp, ′ l p ) ∧ lub( ′ l 1, ′ l 2 ,K, ′ l p ) ≤ lub(l1, l2,K,ln )

If this rule is not satisfied, then a subject cleared at level lub(l1,l2, … ,ln) can access every Pi(xi)

and use the axiom2 (4) to derive the existence of the facts Q1(y1), … , Qp(yp) whereas some of these

Qi(yi) are higher classified than lub(l1,l2, … ,ln). Therefore, a signalling channel that enables the

existence of prohibited information to be disclosed is created.

Example :

By directly applying Rule 2 onto axiom (2) we can derive the following theorem:

∀x∀l, Employee
c
(x,l) → ∃y∃ ′ l , Salary

c
(x, y, ′ l ) ∧ l' ≤ l (14)

This theorem says that “if the fact that x is an employee is classified at level l then x must have a

salary y classified at a level l’ dominated by l.” Notice that in our particular example, by

combining theorem (13) and theorem (14) we obtain the following interesting theorem:

∀x∀l, Employee
c
(x,l) → ∃y,Salary

c
(x,y,l) (15)

This theorem says, “if the fact that x is an employee is classified at level l then there must exist a

salary y for x classified at level l.”

Proof:

Let us assume that ∃x∃l, Employee
c
(x, l).

From (14) we can derive that ∃y∃ ′ l ,Salary
c
(x, y, ′ l ) ∧ l' ≤ l

From (13) we can derive that ∃ ′ ′ l , Employee
c
(x, ′ ′ l ) ∧ ′ ′ l ≤ ′ l .

From (12) we can derive that l = ′ ′ l . Therefore since ′ ′ l ≤ ′ l ≤ l , we have l = ′ l 

Thus, we have ∀x∀l, Employee
c
(x,l) → ∃y∃l' , Salary

c
(x, y, ′ l ) ∧ l = ′ l which is equivalent to (15).

�

3.4. Cover Story

3.4.1. Definition of a Cover Story

Axiom (11) (cf. section 3.2) says that each fact of the non-protected database is associated with a

security level in the corresponding multilevel database. Note that we might also state that each

                                                            
2

If we assume that integrity constraints might be classified then the conclusion of Rule 2 would be modified as follows:

  
∀x1K ∀xn

∀l1K ∀ln , P1

c
( x1 , l1) ∧ K ∧ Pn

c
( xn , ln ) → ∃y∃ ′ l 1K ∃ ′ l p , Q1

c
( y1, ′ l 1) ∧ K ∧ Q p

c
(y p , ′ l p ) ∧ lub ( ′ l 1 , ′ l 2 ,K , ′ l p ) ≤ lub(l1, l2 ,K , ln , lc )

where lc is the classification level of the integrity constraint used in the premise of Rule 2. If we assume that lc=Low then we

obtain Rule 2.



10

classified fact of the multilevel database also belongs to the non-protected database. This is

captured by the following sentence:

  
∀t1K∀tn∀l, P

c
(t1,K,tn ,l) → level(l) ∧ P(t1,K,tn ) (16)

This formula says that the extension of the Pc predicates is obtained by classifying facts belonging

to the extension of the P predicates. However, it is sometimes necessary to introduce in the

multilevel database some facts that do not belong to the non-protected database. For instance, let

us consider our example of section 3.1:

Employee
c
(Dupont,U ) ∧ Salary

c
(Dupont,2000,S )

This means, the fact “Dupont is an employee” is unclassified and the fact “2000 is Dupont’s

salary” is secret. Theorem (15) says that a value for Dupont’s salary must also be provided at the

unclassified level. For example, we may have:

Salaryc(Dupont,1500,U)

Semantically, value 1500 can have two interpretations:

• Employee Dupont has two salaries, one that is secret and equal to 2000 and one that is

unclassified and is equal to 1500.

• 1500 is a cover story that is, a lie unclassified users are provided with. This lie is used to hide

the existence of the more sensitive data 2000.

 Note that, in this example, 1500 cannot be interpreted as a second salary if one have the following

integrity constraint:

 ∀x∀y,Salary(x, y) ∧ Salary(x, ′ y ) → y = ′ y (17)

 Indeed in that case, employee Dupont cannot have two distinct salaries. If (17) is stated as an

integrity constraint then 1500 is automatically interpreted as a cover story.

 We formally define a cover story as follows:

• P(c1,…,cn) is a cover story iff (16) is not satisfied that is, there exists a level l such as

Pc(c1,…,cn,l) belongs to the multilevel database and P(c1,…,cn) does not belong to the non-

protected database.

In our example given above, Employee(Dupont) and Salary(Dupont,2000) are not cover stories

since Employeec(Dupont,U) and Salaryc(Dupont,2000,S) belong to the multilevel database and

Employee(Dupont) and Salary(Dupont,2000) belong to the non-protected database (cf. section

2.1). On the contrary, Salary(Dupont,1500) is a cover story since Salaryc(Dupont,1500,U)

belongs to the multilevel database but Salary(Dupont,1500) does not belong to the non-protected

database.

3.4.2. Honest predicates versus Liar predicates

In the previous section 3.4.1, we have seen that the Salaryc predicate may contain some cover

stories. Every predicate PC may actually contain some cover stories. For instance, let us consider

the following multilevel database:



11

Employee
c
(Dupont,U ) ∧ Employee

c
(Durand,U ) ∧ Salary

c
(Dupont,2000,S )

Now let us assume that the corresponding non-protected database is the following:

Employee(Dupont) ∧ Salary(Dupont,2000)

Employee(Durand) does not belong to the non-protected database whereas EmployeeC(Durand,U)

belongs to the multilevel database. According to the definition, Employee(Durand) is a cover

story. The fact that Durand is an employee is a lie.

However, if there is no need to introduce a cover story in Employeec, then the Security

Administrator may decide that (16) is an axiom for Employeec.

Thus, we define an Honest predicate as follows:

• A predicate Pc that satisfies (16) is an Honest predicate.

 We define a Liar predicate as follows:

• A predicate Pc that does not satisfy (16) is a Liar predicate.

The Security Administrator is completely free of deciding whether a predicate Pc is an Honest or a

Liar predicate. However depending on the predicate, such decision may have some consequences

on security (see section 3.4.4 below).

3.4.3. Cover Story management

Let us consider a secret user seeing the following multilevel database:

Employee
c
(Dupont,U ) ∧ Salary

c
(Dupont,2000,S ) ∧ Salary

c
(Dupont,1500,U )

If we assume that (17) is not an integrity constraint then this secret user may find two possible

interpretations for Salaryc(Dupont,1500,U) (cf. section 3.4.1). He may think that 1500 is the value

of a second salary for Dupont or he may think that 1500 is a cover story used to hide from

unclassified users the actual secret value 2000. However, he has no means to know which of the

two interpretations is the correct one. Therefore, in order to make things clear for the secret user

there must be something in the multilevel database telling him whether 1500 is a cover story or a

second salary for Dupont. For this purpose, we propose to extend the theory Tc into a theory Tcs as

follows:

• The language Lcs is an extension of Lc (cf. section 3.1):

 For each Liar predicate Pc of arity n+1, there is a predicate Pcs of arity n+1. Predicates Pcs are

used to represent the cover stories.  Intuitively, if l is a classification level then Pcs(t1,…,tn,l) reads

“the fact that P(t1,…,tn) is a cover story is classified at level l”.

 Example:

 Salary
cs

(Dupont,1500, S) (that reads “the fact that Salary(Dupont,1500) is a cover story is

classified at level S”).

 

• The axiomatic Acs of the theory Tcs includes the following axioms:



12

1. All axioms Ac of theory Tc (cf. section 3.2 + Rule 1 + Rule 2)

2. Axiom (16) for all Honest predicates.

3. A set of atomic facts that represents the cover stories.

Example : Salary
cs

(Dupont,1500, S)

4. A set of axioms which are used to specify the links between the P, Pc and Pcs predicates:

For each n-place predicate Pcs, we have the following axiom:

  
∀t1K∀tn∀l, P

cs
(t1,K, tn, l) → ∃ ′ l , ′ l < l ∧ P

c
(t1,K, tn , ′ l ) (18)

Axiom (18) says that if the fact that P(t1,…,tn) is a cover story is classified at level l then there

exists a level l’ strictly dominated by l such that P(t1,…,tn) is classified at level l’.

Note that from the axioms (18) and (12) we can derive the following theorem:

  
∀t1K∀tn∀l, P

cs
(t1,K, tn, l) → ¬P

c
(t1,K, tn , l) (19)

Theorem (19) says that if the fact that P(t1,…,tn) is a cover story is classified at level l then

P(t1,…,tn) cannot be classified at level l.

Proof:

Let us assume that 
  
∃t1K∃tn∃l, P

cs
(t1,K, tn , l) .

From (18) we can derive that 
  
∃ ′ l ,P

c
(t1,K, tn, ′ l ) ∧ ′ l < l

Axiom (12) can be rewritten as 
  
∀t1K∀tn∀l∀ ′ l , P

c
(t1,K,tn ,l) ∧ l < ′ l → ¬P

c
(t1,K, tn , ′ l )

Therefore, from (12) and from 
  
P

c
(t1,K,tn , ′ l ) ∧ ′ l < l  we can derive that 

  
¬P

c
(t1,K, tn , l).

�

For each n-place predicate Pcs, we have the following axiom:

  
∀t1K∀tn∀l, P

c
(t1,K,tn ,l) ∧ ¬P(t1,K, tn) → ∃ ′ l , l < ′ l ∧ P

cs
(t1,K, tn , ′ l ) (20)

Axiom (20) says that if Pc(t1,…,tn,l) belongs to the multilevel database and if P(t1,…,tn) does not

belong to the non-protected database then P(t1,…,tn) is classified as a cover story at a level l’

strictly dominating l. Note that this axiom can also be rewritten as follows:

  
∀t1K∀tn∀l, P

c
(t1,K,tn ,l) → (P(t1,K, tn)∨ ∃l' , l < l'∧P

cs
(t1,K,tn , l' )) (20bis)

Finally, Acs is also extended with the following rule:

• Rule 3

In the following a1,…,an are tuples of constants respectively compatible with the arity of predicates

P1,…,Pn:



13

If {P1(a1), P2(a2),..., Pn(an)}is a minimal inconsistent3 set and

if we have 
  
P1

c
(a1,l1 ) ∧K ∧ Pn

c
(an, ln ) ∧ l = lub( l1,K,ln ),

then we have:

  
P1

cs
(a1,l) ∨ K∨ Pn

cs
(an,l)

This means, at least one of the Pi(ai) is a cover story and the fact that it is a cover story is

classified at level l.

In the following, we give simple examples of multilevel databases containing cover stories:

Example 1:

This first example shows how Rule 3 can sometimes allow us to implicitly derive that an atomic

fact is actually a cover story:

Let us consider the following database and let us assume that Salarycs is a Liar predicate:

Employee
c
(Dupont,U ) ∧ Salary

c
(Dupont,2000,S ) ∧ Salary

c
(Dupont,1500,U )

and let us assume that a person’s salary must be unique, that is, (17) is an integrity constraint.

The set {Salary(Dupont,1500), Salary(Dupont,2000)}is then minimal inconsistent.

Moreover, since we have Salary
c
(Dupont ,2000,S) ∧ Salary

c
(Dupont ,1500,U ), using Rule 3 we

can derive Salary
cs

(Dupont,2000, S) ∨ Salary
cs

(Dupont,1500,S ).

Salarycs(Dupont,2000,S) is not possible since it contradicts the theorem (19). Thus,

Salarycs(Dupont,1500,S) can be derived.

On the contrary, if (17) is not an integrity constraint then {Salary(Dupont,1500),

Salary(Dupont,2000)} is consistent. Therefore, if Salary(Dupont,1500) is really a cover story

(and not a second salary for Dupont) then the Security Administrator must explicitly introduce in

the multilevel database the fact Salarycs(Dupont,1500,S).

Example 2:

In this example both predicates EmployeeC and Salaryc are Liar predicates

Let us consider the following multilevel database and let us assume that a person can have several

salaries, that is, (17) is not an integrity constraint:

Employeec (Dupont,U )

∧Salaryc(Dupont,2000, S) ∧ Salaryc(Dupont,1500,U) ∧ Salaryc(Dupont ,1000,U )

∧Employeec(Durand,U ) ∧ Salaryc(Durand ,1000,U)

∧Employeecs (Durand,S) ∧ Salarycs (Dupont,1500, S) ∧ Salarycs(Durand,1000, S)

                                                            
3
 A set I is minimal inconsistent iff I is inconsistent and every strict subset of I is not inconsistent. I is inconsistent iff I −¬IC  with

IC being the set of integrity constraints (see section 2.2) (If IC = {c1, c2,..., cn} with each ci being an integrity constraint then

  
¬IC = ¬(c

1 ∧ c
2 ∧K ∧ cn ) = ¬c

1 ∨ ¬c
2 ∨ K∨ ¬cn ).



14

This database satisfies axioms and theorems (12) to (15) plus (18) and (19)

In this example we have three cover stories:

1. Employee(Durand)

2. Salary(Durand,1000)

3. Salary(Dupont, 1500)

• Interpretation of data made by unclassified users is as follows:

 Unclassified users cannot see any cover story. Therefore, they think that EmployeeC and Salaryc are

Honest predicates. They learn that Dupont and Durand are employees. They learn that Dupont has

two salaries, 1000 and 1500. Finally they learn that Durand’s salary is 1000.

•  Interpretation of data made by secret users is as follows:

 Secret users can see all cover stories. They learn that the facts “Durand is an employee” and

“Durand’s salary is 1000” are lies. They learn that Dupont has two actual salaries, 1000 and 2000

and they learn that Dupont’s third salary, 1500, is a lie.

 Example 3:

 Let us assume we have the following set of security levels:

 {U, C1, C2, S}

 The following partial order is defined in this set:

 C1 > U, C2 > U, S > C1, S > C2 and C1 <> C2

 Let us also assume that a person’s salary is unique, that is, (17) is an integrity constraint.

 

Employeec (Dupont,C1) ∧ Employeec(Dupont,C2 )

∧Salary
c
(Dupont,2000,C1 ) ∧ Salary

c
(Dupont,1500,C2 )

∧Salarycs (Dupont,1500,S )

 This database satisfies axioms and theorems (12) to (15) plus (18) and (19)

 In this example we have one cover story:

 Salary(Dupont, 1500)

• Unclassified users see an empty database.

• Interpretation of data made by C1 users is as follows:

 C1 users cannot see the cover story. Therefore, they think that Salaryc is an Honest predicate. They

learn that Dupont is an employee and that his salary is 1500.

• Interpretation of data made by C2 users is as follows:

 C2 users cannot see the cover story. Therefore, they also think that Salaryc is an Honest predicate.

They learn that Dupont is an employee and that his salary is 2000.



15

• Interpretation of data made by secret users is as follows:

Secret users can see the cover story. They learn that Dupont is an employee. They can see both

salaries 1500 and 2000 but they know that 1500 is a lie.

3.4.4. Avoiding Cover Stories

Let us consider theorem (15) again. It says that a subject who is permitted to observe the existence

of an employee must be provided with a value for the salary of this employee.

Let us consider now the following database and let us assume that (17) is an integrity constraint.

Employee
c
(Dupont,U ) ∧ Salary

c
(Dupont,2000,S )

As seen in section 3.4.1, a value for the salary of Dupont must be provided at the unclassified

level in order to avoid a signalling channel, for instance:

Salaryc(Dupont,1500,U)

However, this corresponds to inserting a lie in the database. The security administrator may

consider that inserting a lie is not compatible with the database integrity. In this case, the security

administrator has three solutions:

1. Leave the situation as such, that is, accept the theorem (15) to be violated. This solution is not

very satisfactory, since a signalling channel is left open. A malicious user can use this channel

to build a bad covert channel, which provides unclassified users with high-classified

information they are not permitted to know. Therefore, we will not consider this solution in the

remainder of this paper.

2. A second solution to prevent the insertion of cover stories into Salaryc is to state that the

security level protecting the salary of an employee must be equal to the security level protecting

the existence of the employee himself:

∀x∀y∀l∀ ′ l ,Salary
c
(x, y, l) ∧ Employee

c
(x, ′ l ) → l = ′ l 

Thanks to this axiom, users who are permitted to observe an employee classified at level l are

prevented to insert a salary value for this employee, at a level strictly dominating l.

This solution reduces considerably the expressive power of the multilevel security policy.

However, it can be used for some particular predicates (cf. for example the predicate Typec in

section 6.4).

3. Another possible solution to prevent the insertion of a cover story was first suggested by

[SJ92]. It consists in using a special symbol denoted by Restricted. Intuitively, Restricted

means that the value exists but is higher classified. This is captured in the following sentence:

∀x∀l,Salary
c
(x, Restricted, l) → ∃y∃ ′ l ,Salary

c
(x,y, ′ l ) ∧ y ≠ Restricted∧ l < ′ l 

Notice that this logical sentence represents the first attempt ever made to formally define the

semantics of this special value Restricted.

However, we cannot satisfy theorem (15) by inserting Salaryc(Dupont,Restricted,U) in the

multilevel database. Indeed, inserting Salary
c
(Dupont ,Restricted,U)  in the database cannot be



16

done without inserting Salary
cs

(Dupont, Restricted,S )(otherwise (17) is violated) which

sounds contradictory since Restricted is the opposite of a cover story. Therefore, in this

particular case, Salary
c
(Dupont ,Restricted,U)  must not be seen as an atomic fact of the

multilevel database but as a notation for the following sentence:

∃y∃l,Salary
c
(Dupont ,y,l) ∧ y ≠ Restricted∧ U < l

which means “there exists a salary value for Dupont but you are not permitted to learn it”. Such

a sentence is classified at the level where the Restricted value should be inserted. In our

example, the above sentence is unclassified.

Notice that this solution does not prevent theorem (15) to be violated. Its main advantage over

solution 1 is that the special Restricted value (that is, the sentence

∃y∃l,Salary
c
(Dupont ,y,l) ∧ y ≠ Restricted∧ U < l ) explicitly tells the unclassified users that

“there exists a salary value for Dupont but you are not permitted to learn it”. Therefore the

situation is no longer ambiguous and is consistent with the security administrator policy. In

particular, it is no longer possible for a malicious user to build a covert channel.

3.4.5. Comparison with Polyinstantiation

In the literature, the technique of polyinstantiation is generally used to manage cover stories.

However, we claim that this technique is unclear and leads to some ambiguities in the

interpretation of data. Let us describe some problems that are related to the technique of

polyinstantiation:

1. Ambiguous interpretation of data

Consider the following two examples:

Example a:

Let us assume that we have the following set of security levels:

{U, S}

Consider the following database:

Employee
c
(Dupont,U ) ∧ Salary

c
(Dupont,2000,S )

As shown in section 3.4.1, a value for Dupont’s salary must also be provided at the unclassified

level in order to avoid a signalling channel, for instance:

Salaryc(Dupont,1500,U)

The value of Dupont’s salary becomes then a polyinstantiated set of two classified values

{(2000,S),(1500,U)}. In the literature, the interpretation that is generally made about these values

is that 2000 is Dupont’s correct salary and 1500 is a cover story that unclassified users are

provided with. However, as shown in section 3.4.1, this interpretation implicitly assumes that (17)

is an integrity constraint. Indeed if (17) is not an integrity constraint then there is another possible

interpretation (cf. section 3.4.1): Dupont has two salaries, one secret 2000 and one unclassified

1500. If (17) is not an integrity constraint, then the technique of polyinstantiation does not provide

us with any means to know without any ambiguities which of the two possible interpretations is the



17

correct one. On the contrary, with the technique presented in section 3.4.3 we know that if

Salarycs(Dupont,1500,S) belongs to the database then 1500 is a cover story otherwise it is

Dupont’s second salary.

Example b:

In this example, we assume we have the following set of security levels:

{U, C1, C2, S}

The following partial order is defined in this set:

C1 > U, C2 > U, S > C1, S > C2 and C1 <> C2

Let us also assume that (17) is an integrity constraint.

Consider the following database:

Employee
c
(Dupont,C1) ∧ Employee

c
(Dupont,C2 )

∧Salaryc(Dupont,2000,C1 ) ∧ Salaryc (Dupont,1500,C2 )

Dupont’s salary is a polyinstantiated set of two classified values {(2000, C1),(1500, C2)}.

With the polyinstantiation technique;

• if (17) is not an integrity constraint then a secret user cannot interpret these two values. He has

no means to determine whether 2000 and 1500 are two distinct salaries for Dupont or whether

one of these two values is a cover story.

• if (17) is an integrity constraint then the only thing a secret user can learn is that one of these

two values is a cover story, but this secret user is unable to say which one.

On the contrary, with the technique presented in section 3.4.3 we know that if

Salarycs(Dupont,1500,S) belongs to the database then 1500 is a cover story otherwise it is

Dupont’s second salary.

2. Poor expressive power

The technique of polyinstantiation allows us to introduce a lie in a predicate that describes an

entity attribute, but it does not provide us with any solution to introduce a cover story in a

predicate that describes an entity itself. For example, with the polyinstantiation technique, it is

possible to introduce a cover story in Salaryc (this predicate describes the salary attribute of the

employee entity) but it is not possible to introduce a lie in Employeec (this predicate describes the

employee entity). As a matter of fact, introducing a lie saying that Durand is an employee is

impossible with the polyinstantiation technique. With the new technique we propose, we show in

section 3.4.3 how we can easily do this.

3. Entity polyinstantiation

[Lun91] describes this type of polyinstantiation in the context of relational databases. In this

context, entity polyinstantiation occurs when a relation contains multiple tuples with the same

apparent primary key values, but having different classifications for this apparent primary key.



18

In this paper, If we adapt this definition to our logical representation of a multilevel database then

we might obtain the following:

There is entity polyinstantiation when an atomic fact is associated with at least two comparable

security levels, that is, each time axiom (12) is violated.

Example

Let us assume we have the following database

Employee
c
(Dupont,U ) ∧ Employee

c
(Dupont, S)

Lunt [Lun91] suggests the following interpretation: there exist two distinct “Dupont” in the external

world, one whose existence is secret and one whose existence is unclassified. We reject this

interpretation since it makes the interpretation of other data more difficult. For instance, let us

assume that Salaryc(Dupont,2000,S) belongs to the multilevel database. Shall we consider that this

is the salary of “Dupont unclassified” or the salary of “Dupont secret” ?

We claim that if there exist two distinct “Dupont” in the external world, then they must be

distinguished by their name. For instance we may give the name Dupont_U to “Dupont

unclassified” and the name Dupont_S to “Dupont secret”4. Our database becomes then as follows:

Employee
c
(Dupont _U,U ) ∧ Employee

c
(Dupont _ S,S )

which is compatible with axiom (12).

Nevertheless, recall that axiom (12) implicitly states that it is possible to have a same atomic fact

associated with more than one security level, provided these security levels cannot be compared

between each other.

Example:

In this example, let us assume we have the following set of security levels.

{U, C1, C2, S} with the following partial order defined in it:

C1 > U, C2 > U, S > C1, S > C2 and C1 <> C2

Let us assume we have the following database:

Employee
c
(Dupont,C

1
) ∧ Employee

c
(Dupont ,C

2
)

We claim that this situation has nothing to do with “entity polyinstantiation”. Our interpretation of

this is that the fact “Dupont is an employee” is classified at two incomparable security levels C1

and C2.

                                                            
4
 In [SJ93], Sandhu and Jajodia suggest to cope with this problem of “entity polyinstantiation” by inserting in the database expressions

like Salary(Dupont,S,2500,S) and Salary(Dupont,U,2000,S). Salary(Dupont,S,2500,S) represents the (secret) salary of  “Dupont

secret” whereas Salary(Dupont,U,2000,S) represents the (secret) salary of  “Dupont unclassified”. However this technique

creates an ambiguity: security levels are sometimes used to identify the sensitivity of data (eg. S in Salary(Dupont,U,2000,S)) and

sometimes used to identify entities (eg. U in Salary(Dupont,U,2000,S)).



19

4. MultiView database

The logical representation of a multilevel database given in section 3 is a complete one. This

logical representation provides us with a multilevel policy offering a great expressive power. It

allows us to manage fine classification grains and cover stories. This logical approach can be used

to model any kind of multilevel databases, such as multilevel relational databases and, as we will

see in section 6 and 7, multilevel object-oriented databases. This logical approach defines

precisely the concept of “classified data” by providing a clear semantics for each association

between a grain of classification and a security level. This logical approach also precisely defines

the concept of cover story without using the confusing technique of polyinstantiation.

However, this formalization of a multilevel database does not clearly indicate what part of the

multilevel database a user cleared at level l can see. The purpose of this section is to refine this

logical representation in order to clearly and formally define what is the part of the multilevel

database that each user is supposed to observe5.

Intuitively, we decompose a n-level logical database into n views. The whole multilevel database

is then seen as a collection of views. We call this set of views MultiView Database.

Schematically, each view is associated with a given level of classification and contains a

consistent and complete set of data whose classifications are lower than or equal to the level of the

view. A user cleared at level l can then observe every view whose security level is dominated by

l.

In section 8, we shall describe the implementation of a MultiView database for the particular case

of an object-oriented database.

4.1. Language

 The language Lv which is used to represent a MultiView Database is an extension of the language

Lcs developed in section 3.4.3. For each n+1-place predicate Pc, there is a n+1-place predicate Pv.

Predicates Pv are used to represent the MultiView database content. Intuitively, if l is a

classification level, then Pv(t1, …, tn,l) reads “the piece of information P(t1,…, tn) belongs to the

view classified at level l”6.

Example:

Employeev(Dupont,U)

(that reads “the fact that Dupont is an employee belongs to the unclassified view”)

Employeev(Dupont,S)

(that reads “the fact that Dupont is an employee belongs to the secret view”)

4.2. Axiomatic

The axiomatic Av of the theory Tv includes the following axioms:

                                                            
5
 The approach presented in this section matches with the “Trusted approach” suggested in [Cup96].

6
 Notice the difference of interpretation between P

c
(t1, …, tn, l) and P

v
(t1, …, tn, l). P

c
(t1, …, tn, l) means “the piece of information

P(t1,…, tn) is classified at level l whereas P
v
(t1, …, tn, l) reads “the piece of information P(t1,…, tn) belongs to the view classified

at level l”.



20

1. All axioms Acs of theory Tcs (cf. section 3.4.3) + Rule 1 + Rule 2 + Rule 3.

2. A set of atomic facts that represents the MultiView database content:

Example:

Employeev(Dupont,U), Employeev(Dupont,S) …

3. A set of axioms which is used to specify the links between the multilevel database and the

MultiView database:

For each Honest predicate Pc, we have the following axiom:

  
∀t1K∀tn∀l∀ ′ l , P

c
(t1,K,tn , l) ∧ l ≤ ′ l → P

v
(t1,K, tn , ′ l ) (21)

This axiom says that a fact classified at level l belongs to every view whose associated security

level dominates l.

For each Liar predicate Pc, we have the following two axioms:

  
∀t1K∀tn∀l, P

c
(t1,K, tn , l) → P

v
(t1,K, tn , l) (22)

This axiom says that a fact classified at level l belongs to the view of level l. However, since

this fact belongs to a Liar predicate it might be a cover story, therefore we cannot be sure that it

also belongs to the views of level strictly dominating l. This is captured by axiom (23):

  
∀t1K∀tn∀l∀ ′ l , P

v
(t1,K,tn ,l) ∧ Justbelow(l, l' ) ∧ ¬P

cs
(t1,K,tn, ′ l ) → P

v
(t1,K,tn, ′ l ) (23)

where Justbelow is defined as follows:

∀l∀ ′ l , Justbelow(l, ′ l ) ↔ l < ′ l ∧ ¬(∃ ′ ′ l ,l < ′ ′ l ∧ ′ ′ l < ′ l )

Axiom (23) says that if a fact belongs to a view of level l and if this fact is not referred as a

cover story in a level l’ such as l is just below l’, then this fact also belongs to the view of level

l’. Notice that axiom (23) can be rewritten as follows:

  
∀t1K∀tn∀l∀ ′ l , P

v
(t1,K,tn ,l) ∧ Justbelow(l, l' ) ∧ ¬P

v
(t1,K, tn , ′ l ) → P

cs
(t1,K,tn, ′ l ) (23bis)

It says that if a fact belongs to a view at level l and if there is a level l’ such as l is just below l’

and this fact does not belong to the view at level l’, then this fact is a cover story of level l’.

Finally, the following axiom applies to both Liar and Honest predicates:

  
∀t1K∀tn∀l, P

v
(t1,K,tn ,l) ∧ (∀ ′ l ,Justbelow(l' , l) → ¬P

v
( t1,K,tn, ′ l )) → P

c
(t1,K, tn , l) (24)

This axiom says that if a fact belongs to the view at level l and if this fact does not belong to

any view classified with a level just below the level l, then this fact is classified at level l in

the multilevel database. Note that this axiom is still valid if l = Low.

Note also that axioms (21) to (24) establish a one to one correspondence between a MultiView

database and a multilevel database:



21

• If we make the Closed World Assumption (CWA)  [Rei78,Rei83] on the extensions of the Pv

predicates7, then from the facts belonging to the Pv predicates we can derive the facts belonging

to the Pc and Pcs predicates, using axioms (23b) and (24).

• If we make the CWA on the extensions of the Pcs predicates8, then from the facts belonging to the

Pc and Pcs predicates we can derive the facts belonging to the Pv predicates, using axioms (21),

(22) and (23).

 Example:

 In this example, we assume that we have the following set of security levels:

 {U, C1, C2, S}

 The following partial order is defined in it:

 C1 > U, C2 > U, S > C1, S > C2 and C1 <> C2

 Consider the following multilevel database content:

 

Employeec (Dupont,C1) ∧ Employeec(Dupont,C2 )

∧Salary
c
(Dupont,2000,C1 ) ∧ Salary

c
(Dupont,1500,C2 )

∧Salarycs (Dupont,1500,S )

 Consider the following MultiView database content:

 

Employee
v
(Dupont,C1) ∧ Employee

v
(Dupont,C2 ) ∧ Employee

v
(Dupont,S)

∧Salaryv(Dupont,2000,C1 ) ∧ Salaryv(Dupont,1500,C2 ) ∧ Salaryv (Dupont,2000,S)

 Let us show that the MultiView database can be derived from the multilevel database:

• From Employeec(Dupont,C1) and (21) we can derive Employeev(Dupont,C1) and

Employeev(Dupont, S)

• From Employeec(Dupont,C2) and (21) we can derive Employeev(Dupont,C2)

• From Salaryc(Dupont,1500,C1) and (22) we can derive Salaryv(Dupont,1500,C1)

• From Salaryc(Dupont,2000,C2) and (22) we can derive Salaryv(Dupont,2000,C2)

• From Salaryc(Dupont,2000,C2), ¬Salarycs(Dupont,2000,S) (derived from the CWA made on the

Pcs predicates) and (23) then we can derive Salaryv(Dupont,2000,S)

 Let us now show that the multilevel database can be derived from the MultiView database:

• From Employeev(Dupont,C1) and (24) we can derive Employeec(Dupont,C1)

• From Employeev(Dupont,C2) and (24) we can derive Employeec(Dupont,C2)

                                                            
7
 For each predicate P

v
 of arity n+1, if P

v
(t1,t2 , …,tn,l) is not derivable from the theory T

v
, then we shall assume that

¬P
v
(t1,t2,…,tn,l) is  derivable from T

v
.

 
8
 For each predicate P

cs
 of arity n+1, if P

cs
(t1,t2 , …,tn,l) is not derivable from the theory T

v
, then we shall assume that

¬P
cs

(t1,t2,…,tn,l) is  derivable from T
v
.

 



22

• From Salaryv(Dupont,1500,C1) and (24) we can derive Salaryc(Dupont,1500,C1)

• From Salaryv(Dupont,2000,C2) and (24) we can derive Salaryc(Dupont,2000,C2)

• From Salaryv(Dupont,1500,C1), ¬Salaryv(Dupont,1500,S) (derived from the CWA made on the

Pv predicates) and (23b) then we can derive Salarycs(Dupont,1500,S)

5. Non-protected object-oriented database

First-order logic has been largely used to formalize relational databases. In the context of object-

oriented databases, it is less obvious to use first-order logic as a formal language. It seems that

several concepts such as methods require higher order logics or modal logics (dynamic logic for

instance) to be properly formalized [Wie91]. However, our goal is not to develop such a complete

formalism. We simply need to formally represent the main object-oriented concepts in order to

apply the classification process (see section 6 below).

Using the approach presented in section 2, we propose a list of nine predicates allowing us to

represent the content of any object-oriented database. Then, we introduce a list of integrity

constraints inherent to the object paradigm. These integrity constraints must be respected in any

object-oriented database.

5.1. Language

The language L of the theory T contains nine predicates that allow us to represent the content of any

object-oriented database:

• Two one place predicates Object and Class.

• Five two place predicates CA, OA, Method, Instance and Isa.

• Two three place predicates Val and Type.

 Intuitively, these predicates must be interpreted as follows:

• Object(o): “o is an object”.

• Class(c): “c is a class”.

• CA(c,a): “a is an attribute of class c”.

• OA(o,a): “a is an attribute of object o”.

• Method(c,m): “m is a method of class c”.

• Instance(o,c): “o is an instance of class c”.

• Isa(c,c’): “c is a subclass of c’ ”.

• Val(o,a,v): “v is the value of attribute a in object o”.

• Type(c,a,t): “t is the type of attribute a in class c”.

5.2. Axiomatic

As defined in section 2.2, the axiomatic A of the theory T contains the following axioms:

1. A set DB of atomic facts that represents the object-oriented database content.

Example:

Class(Supersonic_Aircraft)



23

(that reads “Supersonic_Aircraft is a class”)

Object(FireFox)

(that reads “FireFox is an object”)

CA(Supersonic_Aircraft,Speed)

(that reads “Speed is an attribute of Supersonic_Aircraft”)

Instance(FireFox,Supersonic_Aircraft)

(that reads “FireFox is an instance of Supersonic_Aircraft”)

Val(FireFox,Speed,mach 6)

(that reads “mach 6 is the value of the Speed of FireFox”)

2. A set IC of basic integrity constraints (cf. Frame 1) that are inherent to the object paradigm

and that must be consistent with the database content. From a theoretical point of view, this set

∀a∀c,CA(c, a) → Class(c) (25) ∀a∀o, OA(o,a ) → Object(o ) (26)

∀m∀c, Method(c, m) → Class(c) (27) ∀a∀o, OA(o,a ) ↔ ∃v ,Val(o, a, v) (28)

∀a∀c,CA(c, a) ↔ ∃t, Type( c,a , t) (29) ∀o∀c, Instance( o, c) → Object( o) ∧ Class(c) (30)

∀c∀ ′ c , Isa(c, ′ c ) → Class( c) ∧ Class( ′ c ) (31) ∀c∀ ′ c ∀ ′ ′ c , Isa(c, ′ c ) ∧ Isa( ′ c , ′ ′ c ) → Isa(c, ′ ′ c ) (32)

∀c∀ ′ c ∀a, Isa(c , ′ c ) ∧ CA( ′ c ,a) → CA( c,a ) (33) ∀c∀ ′ c ∀m, Isa( c, ′ c ) ∧ Method( ′ c ,m) → Method(c, m) (34)

∀o∀a, OA(o,a ) ↔ ∃c,CA(c, a ) ∧ Instance( o, c) (35) ∀c∀ ′ c ∀o, Instance(o, c) ∧ Isa(c, ′ c ) → Instance( o, ′ c ) (36)

∀o, Object(o) → ∃c, Instance(o,c) (37)

∀c∀o∀a∀v∀t, Val(o,a,v ) ∧ Instance( o, c) ∧ Type(c,a, t) ∧ Class( t) → Instance(v, t) (38)

(25) says that if a is an attribute of c then c is a class.

(26) says that if a is an attribute of o then o is an object.

(27) says that if m is a method of c then c is a class.

(28) says that if a is an attribute of object o, then there exists a value v for this attribute. Conversely it says that if

v is the value of a in (object) o then a is an attribute of o.

(29) says that if a is an attribute of class c, then there exists a type t for this attribute. Conversely it says that if t

is the type of a in c then a is an attribute of c.

(30) says that if o is an instance of c then o is an object and c is a class.

(31) says that if c is a subclass of c’ then c and c’ are classes.

(32) says that if c is a subclass of c’ and c’ is a subclass of c’’ then c is a subclass of c’’ (transitivity of Isa).

(33) says that if a is an attribute of c’ and c is a subclass of c’ then a is also an attribute of c (inheritance property

1).

(34) says that if m is a method of c’ and c is a subclass of c’ then m is also a method of c (inheritance property 2).

(35) says that if a is an attribute of o then there exists a class c such as o is an instance of c. Conversely, if a is an

attribute of c and o is an instance of c then a is an attribute of o (inheritance property 3).

(36) says that if o is an instance of c and c is a subclass of c’ then o is an instance of c’.

(37) says that if o is an object then there exists a class c such as o is an instance of c.

(38) says that if o is an instance of c and a is an attribute of c and the type of a is class t then the value of a in o

must be an instance of t.

Frame 1. Integrity constraints of an object-oriented database



24

of integrity constraints must be derivable from the set of atomic facts that make up the database

content ( DB − IC).

Integrity constraints (25) to (38) are all integrity constraints of Type 1 or Type 2 (see

section 2.2). Note however that integrity constraint (28) stands for two integrity constraints:

∀a∀o,OA(o,a) → ∃v,Val(o,a,v) which is of Type 2

∀a∀o∀v,Val(o,a,v) → OA(o, a) which is of Type 1

Same particularity appears with integrity constraints (29) and (35).

Notice also that integrity constraint (30) stands for two integrity constraints of Type 1:

∀o∀c, Instance(o,c) → Object(o)

∀o∀c, Instance(o,c) → Class(c)

Same particularity happens with integrity constraint (31).

Finally notice that we present the concept of method using a very simple syntactical definition.

This definition will allow us to include in our model the possibility to classify the existence of

methods. In [CG97], we also include the possibility to protect the program associated with a

method. For the sake of simplicity, we prefer to omit this possibility here.

5.3. Example of a non-protected object-oriented database

Instead of giving a long list of atomic facts, we represent our example of a non-protected object-

oriented database using a figure (cf. figure 2). One can check that this non-protected object-

oriented database respects integrity constraints (25) to (38).

In this example class Hypersonic_Aircraft is a subclass of class Supersonic_Aircraft. Object

Mirage is an instance of class Supersonic_Aircraft whereas object FireFox is an instance of class

Hypersonic _Aircraft and consequently (cf. axiom (36)) of class Supersonic_Aircraft.

   SUPERSONIC_AIRCRAFT

Attributes  

Speed : integer

Range : integer

Weapons : set of string

Nuclear_Bomb : boolean

Methods  

Automatic_Pilot

Drop_Nuclear_Bomb

Isa

   HYPERSONIC_AIRCRAFT

Attributes  

Speed : integer

Range : integer

Weapons : set of string

Nuclear_Bomb : boolean

Boosters : integer

Methods  

Automatic_Pilot



25

Figure 2: Example of an object-oriented database

6. Multilevel object-oriented database

In this section, we define a model for a multilevel object-oriented database. We previously called

this model, the Single-View model  [CG96a]. In this model, all the information related to a real-

world entity is encapsulated in a single multilevel object.

6.1. Language

As defined in section 3.1 and section 3.4.3, the language L is extended to the language Lcs as

follows:

• For each predicate P of arity n, there is a predicate Pc of arity (n+1). Therefore, we obtain nine

multilevel predicates Objectc, Classc, CAc, OAc, Isac, Instancec, Methodc, Valc and Typec.

• For each Liar predicate Pc of arity n+1, there is a predicate Pcs of arity n+1. For the sake of

simplicity, we assume in this paper that only Valc is a Liar predicate (having other Liar

predicates would not create any problem). Therefore, Valcs is included in Lcs.

6.2. Axiomatic

As defined in section 3.2 and 3.4.3, the axiomatic Acs of the theory Tcs includes the following

axioms:

1. Axioms from A (cf. section 5.2)

2. Axioms (5) to (12) + Rule 1 + Rule 2

3. Axiom (16) for all Honest predicates (that is, all of them except Valc).

4. Axiom (18) to (20) for all Liar predicates (that is, only Valc).

5. Rule 3



26

6. A set of atomic facts that represents the multilevel object-oriented database content.

Example:

Classc(Hypersonic_Aircraft,C)

(that reads “the fact that Hypersonic_Aircraft is a class is confidential”)

Objectc(FireFox,U)

(that reads “the fact that FireFox is an object is unclassified”)

Instancec(FireFox, Hypersonic_Aircraft,S)

(that reads “the fact that FireFox is an instance of Hypersonic_Aircraft is secret”)

Valc(FireFox,Speed,mach 6,S)

(that reads “the fact that mach 6 is the value of the Speed of FireFox is secret”)

Valc(FireFox,Speed,mach 2,U)

(that reads “the fact that mach 2 is the value of the Speed of FireFox is unclassified”)

7. A set of atomic facts that represents the cover stories.

Example:

Valcs(FireFox,Speed,mach 2,S)

(that reads “the fact that Val(FireFox,Speed,mach 2) is a cover story is secret”)

6.3. Inference channels control theorems

Our objective in this section is to derive general constraints that must be enforced when classifying

the object-oriented database content. As explained in section 3.3, we must apply deductive

channels control Rule 1 or signalling channels control Rule 2 to each of the integrity constraints

from (25) through (38). If the integrity constraint is of Type 1 then we must apply Rule 1, if it is of

Type 2 then we must apply Rule 2. We then obtain a list of deductive channels control theorems

and a list of signalling channels control theorems. Notice that Olivier and Solms [OS94] have

already proposed a less complete list of such theorems.

6.3.1. Deductive channels control theorems

Deductive channels control theorems (cf. Frame 2) are derived by applying Rule 1 on integrity

constraints (25) to (38) that are of Type 1. Recall that each of the integrity constraints (28), (29)

and (35) actually stands for two integrity constraints, one of Type 1 and one of Type 2. Recall also

that each of the integrity constraints (30) and (31) stands for two integrity constraints of Type 1

(see section 6.2).

Some of these theorems contradict some rules enounced in other security models. For example,

theorem (44) says that if the fact “o is an instance of class c” is classified at level l then there must

exist a level l’ and a level l’’, both dominated by l, which respectively protect the facts “o is an

object” and “c is a class”. Some authors [Lun90,JK90,ML92] pretend that the security level

protecting an objet o must dominate the security level protecting the class c which o is an instance

of. This theorem (44), formally derived and proved, shows that this does have to be the case (see

section 6.4 for a practical counter-example).



27

Notice that theorem (51) precisely enounces the constraint that must be enforced when assigning a

security level to an attribute value that is itself an object.



28

Frame 2. Deductive channels control theorems for a multilevel object-oriented database

                                                            
9
 As already mentioned, (28) stands for two integrity constraints, one of type 1 and one of type 2 (cf section 5.2). (42) is actually

obtained by applying Rule 1 on the integrity constraint of type 1. Similar comment can be made for (43) and (49).

10
 As already mentioned, (30) stands for two integrity constraints of type 1 (cf section 5.2). (44) is actually obtained by successively

applying Rule 1 on these two integrity constraints and then by combining the two resulting theorems. Similar comment can be made

for (45).

∀a∀c∀l,CA
c

(c, a, l) → ∃ ′ l , Class
c

(c, ′ l ) ∧ ′ l ≤ l (39) ∀a∀o∀l, OA
c

(o ,a,l) ∧ → ∃ ′ l ,Object
c
(o, ′ l ) ∧ ′ l ≤ l (40)

∀m∀c∀l, Method
c

(c, m, l) → ∃ ′ l , Class
c

(c, ′ l ) ∧ ′ l ≤ l (41) ∀a∀o∀v∀ l,Val
c

(o,a, v,l ) → ∃ ′ l ,OA
c

(o ,a, ′ l ) ∧ ′ l ≤ l (42)

∀a∀c∀t∀l,Type
c

(c, a, t,l) → ∃ ′ l ,CA
c
( c, a, ′ l ) ∧ ′ l ≤ l (43)

∀o∀c∀l, Instance
c
( o, c,l) → ∃ ′ l ∃ ′ ′ l ,Object

c
( o, ′ l ) ∧ Class

c
(c, ′ ′ l ) ∧ lub( ′ l , ′ ′ l ) ≤ l (44)

∀c∀ ′ c ∀l, Isa
c
(c , ′ c ,l ) → ∃ ′ l ∃ ′ ′ l ,Class

c
( c, ′ l ) ∧ Class

c
( ′ c , ′ ′ l ) ∧ lub( ′ l , ′ ′ l ) ≤ l (45)

∀c∀ ′ c ∀ ′ ′ c ∀l∀ ′ l , Isa
c

(c, ′ c ,l) ∧ Isa
c
( ′ c , ′ ′ c , ′ l ) → ∃ ′ ′ l , Isa

c
(c, ′ ′ c , ′ ′ l ) ∧ ′ ′ l ≤ lub( l, ′ l ) (46)

∀c∀ ′ c ∀a∀l∀ ′ l , Isa
c

(c, ′ c ,l) ∧ CA
c

( ′ c , a, ′ l ) → ∃ ′ ′ l ,CA
c

(c, a, ′ ′ l ) ∧ ′ ′ l ≤ lub( l, ′ l ) (47)

∀c∀ ′ c ∀m∀l∀ ′ l , Isa
c

(c, ′ c ,l) ∧ Method
c

( ′ c , m , ′ l ) → ∃ ′ ′ l , Method
c

(c, m , ′ ′ l ) ∧ ′ ′ l ≤ lub( l, ′ l ) (48)

∀o∀a∀c∀ l∀ ′ l , CA
c
( c,a, l) ∧ Instance

c
(o ,c, ′ l ) → ∃ ′ ′ l ,OA

c
(o, a, ′ ′ l ) ∧ ′ ′ l ≤ lub( l, ′ l ) (49)

∀c∀ ′ c ∀o∀l∀ ′ l , Isa
c

(c, ′ c ,l) ∧ Instance
c
( o, c, ′ l ) → ∃ ′ ′ l , Instance

c
(o , ′ c , ′ ′ l ) ∧ ′ ′ l ≤ lub( l, ′ l ) (50)

∀c∀o∀a∀v∀t∀l1∀l2 ∀l3∀ l4 ,Val
c

(o , a, v,l1 ) ∧ Instance
c
(o,c ,l2 ) ∧ Type

c
( c,a , t, l3 ) ∧ Class

c
( t,l4 )

→ ∃l5, Instance
c

(v, t,l5) ∧ l5 ≤ lub(l1, l2 , l3, l4 )

(51)

(39) says that if the fact “a is an attribute of class c” is classified at level l then there must exist a level l’ dominated by l that protects the fact “c is a class”.

(Combine Rule 1 with axiom (25))

(40) says that if the fact “a is an attribute of object o” is classified at level l then there must exist a level l’ dominated by l that protects the fact “o is an

object”. (Combine Rule 1 with axiom (26))

(41) says that if the fact “m is a method of class c” is classified at level l then there must exist a level l’ dominated by l that protects the fact “c is a class”.

(Combine Rule 1 with axiom (27))

(42) says that if the fact “v is the value of the attribute a in object o” is classified at level l then there must exist a level l’ dominated by l that protects the

fact “a is an attribute of object o”. (Combine
9
 Rule 1 with axiom (28))

(43) says that if the fact “t is the type of the attribute a in class c” is classified at level l then there must exist a level l’ dominated by l that protects the fact

“a is an attribute of class c”. (Combine Rule 1 with axiom (29))

(44) says that if the fact “o is an instance of class c” is classified at level l then there must exist a level l’ and a level l’’ both dominated by l and

respectively protecting the facts “o is an object” and “c is a class”. (Combine
10

 Rule 1 with axiom (30)).

(45) says that if the fact “c is a subclass of class c’ ” is classified at level l then there must exist a level l’ and a level l’’ both dominated by l and

respectively protecting the facts “c is a class” and “c’ is a class”. (Combine Rule 1 with axiom (31))

(46) says that if the fact “c is a subclass of class c’ ” is classified at level l and if the fact “c’ is a subclass of c’’ ” is classified at level l’ then there must

exist a level l’’ dominated by the least upper bound of l and l’ that protects the fact “c is a subclass of class c’’ ” (Combine Rule 1 with axiom (32))

(47) says that if the fact “c is a subclass of class c’ ” is classified at level l and if the fact “a is an attribute of c’ ” is classified at level l’ then there must exist

a level l’’ dominated by the least upper bound of l and l’ that protects the fact “a is an attribute of class c” (Combine Rule 1 with axiom (33))

(48) says that if the fact “c is a subclass of class c’ ” is classified at level l and if the fact “m is a method of c’ ” is classified at level l’ then there must exist a

level l’’ dominated by the least upper bound of l and l’ that protects the fact “m is a method of class c” (Combine Rule 1 with axiom (34))

(49) says that if the fact “a is an attribute of c” is classified at level l and if the fact “o is an instance of class c” is classified at level l’ then there must exist a

level l’’ dominated by the least upper bound of l and l’ that protects the fact “a is an attribute of object o” (Combine Rule 1 with axiom (35))

(50) says that if the fact “c is a subclass of c’ ” is classified at level l and if the fact “o is an instance of c” is classified at level l’ then there must exist a level

l’’ dominated by the least upper bound of l and l’ that protects the fact “o is an instance of class c’ ” (Combine Rule 1 with axiom (36))

(51) says that if the fact “t is a class” is classified at level l4, if the fact “t is the type of attribute a in class c” is classified at level l3, if the fact “o is an

instance of class c” is classified at level l2 and if the fact “v is the value of attribute a in object o” is classified at level l1 then there must exist a level l5
dominated by the least upper bound of l1, l2, l3 and l4 that protects the fact “v is an instance of t” (Combine Rule 1 with axiom (38))



29

6.3.2. Signalling channels control theorems

Signalling channels control theorems (cf. Frame 3) are derived by applying Rule 2 on integrity

constraints from (25) through (38) which are of Type 2. Recall that each of the integrity constraints

(28), (29) and (35) actually stands for two integrity constraints, one of Type 1 and one of Type 2

(see section 6.2).

6.4. Example of a multilevel object-oriented database

Figure 3 presents a multilevel database derived from the non-protected object-oriented database

represented in figure 2. This multilevel database is consistent with theorems (39)-(56). We appeal

the reader’s attention to the following points:

• There are three security levels U = Low (Unclassified), C (Confidential) and S = High (Secret)

with U < C < S.

• Unclassified information is in regular font, confidential information is in italic and secret

information is in bold.

• The existence of class Hypersonic_Aircraft is confidential.

• The existence of attribute Nuclear_Bomb is secret in every class.

• The existence of both objects Mirage and FireFox is unclassified.

∀a∀o∀l, OA
c

(o ,a,l) → ∃v∃ ′ l , Val
c

(o,a ,v , ′ l ) ∧ ( ′ l ≤ l) (52) ∀a∀o∀l, OA
c

(o ,a,l) → ∃v,Val
c
(o, a, v, l) (53)

∀a∀c∀l,CA
c

(c, a, l) → ∃t, Type
c
( c, a, t,l) (54) ∀o∀ l, Object

c
(o, l) → ∃c, Instance

c
(o,c, l) (55)

∀o∀a∀l, OA
c

(o ,a,l) → ∃c∃ ′ l ∃ ′ ′ l ,CA
c
(c, a, ′ l ) ∧ Instance

c
(o ,c, ′ ′ l ) ∧ l = lub( ′ l , ′ ′ l ) (56)

(52) says that if the classification of the fact “a is attribute of object o” is classified at level l then there must

exist a value v for this object attribute whose classification level l’ is dominated by l. (Combine Rule 2 with

axiom (28))

(53) says that if the classification of the fact “a is attribute of object o” is classified at level l then there must

exist a value v for this object attribute whose classification level is l. This theorem is obtained by combining

the theorem (52) with theorem (42). The proof is similar to the proof made for (15)

 (54) says that if the classification of the fact “a is attribute of class c” is classified at level l then there must exist

a type t for this class attribute whose classification level is l. Applying Rule 2 onto axiom (29) and then

combining the result with theorem (43) gives this theorem. The proof is similar to the proof made for (15).

(55) says that if the classification of the fact “o is an object” is classified at level l then there must exist a class c

which o is an instance of and such as the instance link between o and c is equal to l. Applying Rule 2 onto

axiom (37) and then combining the result with theorem (44) gives this theorem. The proof is similar to the

proof made for (15).

(56) says that if the classification of the fact “a is attribute of object o” is classified at level l then there must

exist a class c such that “o is an instance of c” and “a is attribute of c” are two existing facts respectively

classified at level l’ and l’’ such as l=lub(l’,l’’). Applying Rule 2 onto axiom (35) and then combining the

result with theorem (49) gives this theorem. The proof is similar to the proof made for (15).

Frame 3. Signalling channels control theorems for a multilevel object-oriented database



30

• The fact that FireFox is an instance of class Hypersonic_Aircraft is secret, but the fact it is an

instance of Supersonic_Aircraft is unclassified. This is an illustration of theorem (44) and a

counter-example to a rule enounced by [Lun90,JK90,ML92]. This rule states that an object must

always be classified at a level dominating the security level assigned to the class, which this

object is an instance of.

 

  SUPERSONIC_AIRCRAFT(U)

Attributes  

Speed (U) : integer (U)

Range (U) : integer (U)

Weapons (U) : set of string (U)

Nuclear_Bomb (S) : boolean (S)

Methods  

Automatic_Pilot (U)

Drop_Nuclear_Bomb (S)

Isa (C)

   HYPERSONIC_AIRCRAFT (C)

Attributes  

Speed (C): integer (C)

Range (C) : integer (C)

Weapons (C) : set of string (C)

Nuclear_Bomb (S) : boolean (S)

Boosters (C) : integer (C)

Methods  

Automatic_Pilot (C)

Drop_Nuclear_Bomb (S)

   Mirage (U)

Speed (U) : mach 2.5 (U)

Range (U) : 1000 km (U)

Weapons (U): {{Gun, Bomb} (U)

{Gun, Bomb, Rocket} (S)}

Nuclear_ Bomb (S) : FALSE (S)

Instance (U)

   FireFox (U)

Speed (U) : {mach 2 (U), mach 6 (S)}

Range : {Restricted (U), 3000 km (C)}

Weapons (U): {Gun, Rocket, Bomb} (U)

Nuclear_ Bomb (S) : TRUE (S)

Boosters (S) : 2 (S)

Instance (U)
Instance (S)

 Figure 3: Example of a multilevel object-oriented database

• The secret value mach 6 is the actual Speed value of Firefox, whereas the unclassified value

mach 2 stands for a cover story. This means that Valcs(FireFox,Speed,mach 2,S) belongs to the

multilevel database.

• Attribute Weapons of Mirage is associated with a set of values: Gun and Bomb that are both

unclassified and Rocket that is secret. This means that Valc(Mirage,Weapon,Gun,U),

Valc(Mirage,Weapon,Bomb,U) and Valc(Mirage,Weapon,Rocket,S) belong to the multilevel

database.

• Attribute Range of FireFox is associated with the Restricted special value at the unclassified

level. This means that unclassified users are permitted to know that a higher classified value

exists for the Range attribute. Recall that from a theoretical point of view (cf. section 3.4.4) it

does not mean that Valc(FireFox,Range,Restricted,U) belongs to the database. This Restricted

value in figure 3 stands for the following unclassified sentence:

∃v∃l,Val
c
(Firefox, Range,v ,l) ∧ v ≠ Restricted∧ U < l .

As a consequence, theorem (53) is violated for this particular attribute value.



31

• Solution 2 of section 3.4.4 is applied in order to avoid the insertion of cover stories concerning

the type of the attributes. In other words, we assume the following sentence to be an axiom:

 ∀a∀c∀t∀l∀ ′ l ,CA
c
(c,a,l) ∧ Type

c
(c,a, t, ′ l ) → l = ′ l 

 It also means that, in our particular example, we estimate that it is not necessary to classify a

class attribute and the type of this attribute independently from each other. However, in some

applications, being able to classify the type of an attribute and the attribute itself separately

could be a useful possibility.

 We also provide the following comments on figure 3:

• Every attribute and method of the confidential class Hypersonic_Aircraft is classified at the

confidential level or higher (theorems (39) and (41)).

• Inheritance link between class Hypersonic_Aircraft and Supersonic_Aircraft must be at least

confidential (theorem (45))

• Since the inheritance link between the classes Hypersonic_Aircraft and Supersonic_Aircraft is

confidential, the attributes Speed, Range and Weapons of class Hypersonic_Aircraft are

confidential (they cannot be secret) (theorem (47)).

• The existence of attribute Boosters is confidential in class Hypersonic_Aircraft but is secret in

object FireFox. This is due to theorem (56).

• For every attribute value different from Restricted, theorem (53) is satisfied.

• The instance links between Mirage and Supersonic_Aircraft and between FireFox and

Supersonic_Aircraft are unclassified. This is due to theorem (55).

7. MultiView object-oriented database

The Single-View model presented in the previous section is a complete model. However, as

suggested in section 4, we think that it is necessary to precisely define what part of the multilevel

database each user may observe. In this section, we shall apply the principle described in section

4 that is, we shall decompose a n-level object oriented database into n views. Recall that each

view is associated with its own security level and contains a complete and consistent set of data

whose classifications are lower than or equal to the level of the view. In section 8, we shall

investigate how to implement a MultiView object-oriented database. The technique we suggest

will allow us to avoid unnecessary replications.

7.1. Language

As defined in section 4.1, the language Lcs is extended into the language Lv as follows: for each

predicate Pc of arity n+1, there is a predicate Pv of arity (n+1). Therefore, we obtain nine

MultiView predicates Objectv, Classv, CAv, OAv, Isav, Instancev, Methodv, Valv and Typev.

7.2. Axiomatic

According to section 4.2, the axiomatic Av of the theory Tv includes the following axioms:



32

1. Axioms from Acs (cf. section 6.2).

2. Axiom (21) for all Honest predicates

3. Axioms (22) and (23) for all Liar predicates (that is, only Valc)

4. Axiom (24)

5. A set of atomic facts that represents the MultiView object-oriented database

Example:

Classv(Supersonic_Aircraft,U)

(that reads “the fact that Supersonic_Aircraft is a class belongs to the unclassified view”)

Classv(Supersonic_Aircraft,C)

(that reads “the fact that Supersonic_Aircraft is a class belongs to the confidential view”)

Classv(Supersonic_Aircraft,S)

(that reads “the fact that Supersonic_Aircraft is a class belongs to the secret view”)

Valv(FireFox,Speed,mach 6,S)

(that reads “the fact that mach 6 is the value of the Speed of FireFox belongs to the secret

view”)

7.3. Example of a MultiView object-oriented database

Figure 4 presents a MultiView database derived from the multilevel object-oriented database

represented in figure 3. For a better reading of the figure, inherited attributes and methods of each

class view are not shown. We appeal the reader’s attention to the following points:

• Every information classified at level l that is not a cover story or the special Restricted value is

replicated at all levels dominating the level l (axiom (21)).

• Attribute values are derived from axiom (22) (for example value mach 2 in the unclassified

view or value mach 6 in the secret view) or from axiom (23) (for example value mach 2 in the

confidential view).



33

  Supersonic_Aircraft
    Attributes   

Speed  : integer

Range : integer

Weapons : set of string

Nuclear_Bomb: boolean
     Methods   

Automatic_Pilot

Drop_Nuclear_Bomb

Isa

   Hypersonic_Aircraft
    Attributes   

Boosters : integer
     Methods   

   Mirage

Speed : mach 2.5

Range : 1000 km

Weapons : {Gun, Bomb,

Rocket}

Nuclear_ Bomb: FALSE

Instance

 FireFox

Speed : mach 6

Range : 3000 km

Weapons : {Gun, Rocket,

Bomb}

Nuclear_ Bomb: TRUE

Boosters : 2

Instance

Instance

  Supersonic_Aircraft
    Attributes   

Speed  : integer

Range : integer

Weapons : set of string

     Methods   

Automatic_Pilot

Isa

   Hypersonic_Aircraft
    Attributes   

Boosters : integer
     Methods   

   Mirage

Speed : mach 2.5

Range : 1000 km

Weapons : {Gun, Bomb}

Instance

 FireFox

Speed : mach 2

Range : 3000 km

Weapons : {Gun, Rocket,

Bomb}

Instance

  Supersonic_Aircraft
    Attributes   

Speed  : integer

Range : integer

Weapons : set of string

     Methods   

Automatic_Pilot

   Mirage

Speed : mach 2.5

Range : 1000 km

Weapons : {Gun, Bomb}

Instance

 FireFox

Speed : mach 2

Range : Restricted

Weapons : {Gun, Rocket,

Bomb}

Instance

Secret View Confidential View Unclassified View

Figure 4: Example of a MultiView object-oriented database

8. Implementing a MultiView object-oriented database

We can choose to implement either the layer 2 or the layer 3 of our 3-layer model. Indeed, in

section 4, we showed that there exists a one-to-one correspondence between these two layers.



34

If we choose to implement the layer 2 then we must build a mechanism, which provides a user with

a consistent view of the multilevel database. This view must be complete and compatible with the

user’s clearance level. In [BCGY94b], we propose a model (the Virtual View model)

implementing such a mechanism. Its principle is the following: a user of level l is provided with a

virtual view of level l derived from the multilevel database. This virtual view is consistent,

complete and compatible with the user’s clearance level. The main disadvantage of this approach

is that the mechanism that builds the virtual view must be trusted.

We claim that implementing the layer 3 is easier. Indeed, in the MultiView model, a user of level l

may directly observe all the views of level dominated by l (see [CG96b] for more details).

Therefore, access controls are easy to define and there is no need of a special intermediate trusted

mechanism between the user and the database. Thus, in this section, we propose some basic

principles to implement the layer 3 for the particular case of an object-oriented database.

8.1. Principles

In this section we propose a short sketch of implementation for a MultiView object-oriented

database. More precisely, we suggest some principles for implementing a MultiView object-

oriented database. However, we do not claim that these principles are complete. In particular, we

do not investigate the problem of updating a MultiView database. The reader can refer to [CG96a]

or [Gab95] for more explanations.

The principles we suggest for implementing a MultiView object-oriented database are the

following:

• Each view of level l is implemented as a single-level database of level l.

• In the MultiView model, a multilevel entity (object or class) is represented by several views of

this entity. Since a major principle of the object-oriented paradigm is the unicity of the object

identifier, each object or class must be uniquely identified. We propose to implement this

principle as follows: each view at level l of a multilevel object o (respectively a multilevel

class c) is uniquely identified by the pair (o,l) (respectively (c,l)).

• All single-level class and object views sharing the same security level are stored into a single-

level object-oriented database. Each single-level database can be managed as a non-protected

object-oriented database. However, in order to avoid unnecessary replications, we propose

implementing some dynamic links between the different single-level databases.

• Axiom (23) says that an attribute value Valv(o,a,v,l) must be propagated in all11 the levels l’ that

are just above the level l, where Val(o,a,v) is not referred as a cover story. We propose to

implement this axiom as follows: For all these level l’, Valv(o,a,v,l’) is evaluated using a

pointer to the view at level l. This pointer value is a syntactical expression which enables the

system to automatically retrieve the value v from the database of level l (see [BCGY94a] for

more details).

• By induction on axioms (21) and (24), we can easily prove that for all Honest predicates Pc the

following theorem can be derived:

                                                            
11

 Recall that we may have a partial order defined on the set of security levels



35

  
∀t1K∀tn∀l∀ ′ l , P

v
(t1,K,tn , l) ∧ l ≤ ′ l → P

v
(t1,K, tn , ′ l )

It means in particular that every class attribute and every method belonging to a low level

database must be replicated in all higher classified databases. In order to implement a dynamic

replication mechanism, we introduce an inheritance link between any class view (c,l) and class

view (c,l’) with l being just below l’. Low-level attributes and low-level methods are then

automatically replicated to the higher level databases by inheritance.

8.2. Example of an implemented MultiView object-oriented database

Figure 5 corresponds to the example of a MultiView object-oriented database presented in

figure 4. For a better reading of the figure, inherited attributes and methods of each class view are

not shown. We appeal the reader’s attention to the following points:

• The views represented in figure 4 are now implemented as single-level databases.

• Any view at level l of a multilevel object o (respectively class c) is now uniquely identified by

a pair (o,l) (respectively (c,l)).

• Attribute values are automatically replicated by using pointers. For example, the value of the

Speed attribute of (FireFox,C) is evaluated using a pointer to the value mach 2 of the Speed

attribute of (FireFox,U). An arrow represents this pointer. This pointer is actually a syntactical

expression of the form “(FireFox,U).Speed”. More can be found about these pointers in

[BCGY94a]. Notice that thanks to these pointers, an update to an attribute value at a low level

would be automatically propagated to the higher levels.

• Attributes and methods are automatically replicated via inheritance links Isa1, Isa2, Isa3.

Notice that thanks to these inheritance links, an insertion of a new class attribute (or method) at

a low level would be automatically propagated to the higher levels.



36

  (Supersonic_Aircraft,S)
    Attributes   

Nuclear_Bomb: boolean

     Methods   

Drop_Nuclear_Bomb

Isa

   ( Hypersonic_Aircraft,S)
    Attributes   

     Methods   

   ( Mirage,S)

Speed :

Range :

Weapons : {Gun, Bomb,

Rocket}

Nuclear_ Bomb: FALSE

Instance

   ( FireFox,S)

Speed : mach 6

Range :

Weapons :

Nuclear_ Bomb: TRUE

Boosters : 2

Instance

Instance

  (Supersonic_Aircraft,C)
    Attributes   

     Methods   

Isa

   ( Hypersonic_Aircraft,C)
    Attributes   

Boosters : integer

     Methods   

   ( Mirage,C)

Speed :

Range :

Weapons :

Instance

   ( FireFox,C)

Speed :

Range : 3000 km

Weapons :

Instance

  (Supersonic_Aircraft,U)
    Attributes   

Speed  : integer

Range : integer

Weapons : set of string

     Methods   

Automatic_Pilot

  (Mirage,U)

Speed : mach 2.5

Range : 1000 km

Weapons : {Gun, Bomb}

Instance

  (FireFox,U)

Speed : mach 2

Range : Restricted

Weapons : {Gun, Rocket,

Bomb}

Instance

Secret DB Confidential DB Unclassified DB

Isa1
Isa2

Isa3

Figure 5: Example of implementation of a MultiView object-oriented database

9. Conclusion

In this paper, our objective was to propose a complete and formal model for any type of multilevel

database. Definition of this model was done in three phases:



37

• Non-protected database model: We defined a language based on first order logic. This language

allowed us to represent a database content including integrity constraints.

• Multilevel database model: We extended our language in order to protect each piece of

information represented by an atomic formula. We also derived some general theorems that

must be enforced when classifying the database content. Finally we provided a means to

introduce cover stories in the multilevel database.

• MultiView database model: We extended again our language in order to decompose the

multilevel database into a collection of single-level Views.

 Many multilevel security models for database (relational or object-oriented) have already been

presented by different authors [DLSSH88,Wil89,HOST90,SW92,CS95,QL96,JK90,Lun90,

ML92,KTT89]. However, each of these models is specific to a particular type of database,

relational [DLSSH88,Wil89,HOST90,SW92,CS95,QL96] or object-oriented

[JK90,Lun90,ML92,KTT89]. None of them proposes a methodology to formalize a multilevel

database in general. Moreover the use of polyinstantiation generates several ambiguities in most of

these models.

 Our model is complete, consistent and free of ambiguities:

• It is complete in the sense that given a set of integrity constraints of Type 1 or 2, we derive

from Rules 1 and 2 all and every possible inference control theorems.

• It is consistent since it is possible to build a model of our logical theory. For example, Figure

2 is a model of the logical theory representing a non protected object-oriented database, Figure

3 is a model of the logical theory representing a multilevel object-oriented database and Figure

4 is a model of the logical theory representing a MultiView object-oriented database.

• It is free of ambiguities since each concept used in this paper is formally defined using

mathematical logic. In particular, giving a formal definition for the concept of cover stories

certainly contributed to the clarification of this notion.

 In the last sections of this paper, we applied our general 3-layer approach to represent a

MultiView object-oriented database. This particular MultiView model for an object-oriented

database has already been presented in several papers [BCGY93a,BCGY93b,BCGY94a,CG96a]

and some of its results have been reused in other security models [SMKL95]. Compared to the

previous versions of this model, the new version presented in this paper shows two main

improvements:

• It includes explicit management of cover stories.

• It includes the possibility to have a partial order in the set of security levels.

The main use of our model is to build a multilevel database. However, we can also apply this

model to evaluate an existing multilevel database. For instance, we can check whether an existing

multilevel database respects the inference control rules Rule 1 and Rule 2. A useful extension to

this model could be then to define some guidelines that could be used to conform the existing

database to these inference control rules.

Our work is purely theoretical. In this  paper, we did not address the problem of implementation of

our model. However, we gave some basic implementation principles in the last section of this



38

paper for the particular case of a MultiView object-oriented database. More can be found about

this topic in [BCGY93a,Gab95]. Another issue we did not consider here, is the problem of

updating a MultiView database. This issue remains to be investigated although some results are

presented in [Gab95].

References:

[BCGY93a] N. and F. Cuppens, A. Gabillon, K. Yazdanian. “MultiView Model for Multilevel Object-Oriented

DataBases”. Proc. of the Ninth Annual Computer Security Applications Conference (ACSAC).

Orlando, USA 1993.

[BCGY93b] N. and F. Cuppens, A. Gabillon, K. Yazdanian. “Techniques to Handle MultiLevel Objects in Secure

Object-Oriented DataBases”. Proc. of the OOPSLA-93 Workshop on "Security for Object-

Oriented Systems".  Washington, USA 1993.

 [BCGY94a] N. Boulahia-Cuppens, F. Cuppens, A. Gabillon and K. Yazdanian. Decomposition of Multilevel

Objects in an Object-Oriented Database. In European Symposium on Research in Computer

Security. UK 1994. Springer Verlag.

[BCGY94b] N. and F. Cuppens, A. Gabillon, K. Yazdanian. “Virtual View Model to Design A Secure Object-

Oriented DataBase”. Proc. of the 17th National Computer Security Conference (NCSC).

Baltimore, USA 1994.

[CG96a] F. Cuppens and A. Gabillon. A Logical Approach to Model a Multilevel Object-Oriented Database.

Proc. of  the 10th Annual IFIP WG 11.3 Working Conference on Database Security. Como

Italy.1996.

[CG96b] F. Cuppens, A. Gabillon. “A Query Language For a Multilevel Object-Oriented Database”. Proc.

of the XI International Symposium on Computer and Information Sciences (ISCIS). Antalya, Turkey.

November 1996.

[CG97] F. Cuppens and A. Gabillon. Design of multilevel object-oriented databases. Proc. of the twelfth

International Symposium on Computer and Information Science (ISCIS). Turkey.

[CS95] F. Chen and R. S. Sandhu. The Semantics and Expressive Power of the MLR Data Model. IEEE

Symposium on Security and Privacy. Oakland 1995.

[Cup96] F. Cuppens. Querying a Multilevel Database: A Logical Analysis. Proceedings of the 22nd

International Conference on Very Large Databases. Bombay, India 1996.

[DLSSH88] D. Denning, T. Lunt, R Schell, W Shockley and  M. Heckman. The Sea View Security Model. Proc.

of the 1988 IEEE Symposium on Research in Security and Privacy.

[Gab95] A. Gabillon. Sécurite multi-niveaux dans les bases de données a objets. Ph.D. dissertation.

ENSAE 1995.

[HOST90] J. Haig, R, O’Brien, P Stachour and D. Toups. The LDV approach to database security. In Database

Security III, Status and Prospect. North Holland.

[JK90] S. Jajodia and B. Kogan. Integrating an Object-Oriented Data Model with Multilevel Security. In

IEEE Symposium on Security and Privacy. Oakland 1990.

[KTT89] T. Keefe, W. Tsai and B Thuraisingham. SODA: A Secure Object-Oriented Database System.

Computer and Security, 8(6), 1989.

[Lun90] T.F. Lunt. Multilevel Security for Object-Oriented Database Systems. In D.L. Spooner and C.

Landwehr editors. Database Security III: Status and Prospects. North-Holland 1990. Result of the

IFIP WG 11.3 Workshop on Database Security.

[ML92] J.K. Millen and T.F. Lunt. Security for Object-Oriented Database Systems. Proc. of the 1992 IEEE

Symposium on Research in Security and Privacy.

[QL96] X. Qian and T. F. Lunt. A Mac Policy Framework for Multilevel Databases. IEEE Transactions on

Knowledge and Data Engineering. Vol 8, Number 1, February 1996.

[OS94] M. S. Olivier and S. H. Von Solms. A Taxonomy for Secure Object-Oriented Databases. ACM

Transactions on Database Systems. Vol 19, Number 1. March 1994.



39

[Rei78] R. Reiter. On Closed World Databases. Logic and Database. H.Gallaire and J. Mincker. New-York:

Plenum. 1978.

[Rei83] R. Reiter. Toward a logical reconstruction of relational database theory. In On Conceptual

Modelling: Perspectives from Artificial Intelligence, Databases and Programming Languages.

Springer Verlag, 1983.

[SJ92] R. Sandhu and S. Jajodia. Polyinstantiation for cover stories. In European Symposium on Research

in Computer Security. Toulouse, France.1992. Springer Verlag.

[SJ93] R. S. Sandhu and S. Jajodia. Referential Integrity in Multilevel Secure Databases. Proceedings of

the 16th National Computer Security Conference. 1993.

[SMLK95] M. Schaefer, P Martel, T. Kanawan and V. Lyons. Multilevel data model for the trusted ONTOS

prototype. In Ninth Annual IFIP WG 11.3 Working Conference on Database Security,

Rensselaerville, USA, 1995.

[SW92] K. Smith and M. Winslett. Entity Modeling in the MLS Relational Model. Proceedings of the 18th

International Conference on Very Large Data Bases. Vancouver, Canada 1992.

[Wie91] R. Wieringa. A formalisation of objects using equational dynamic logic. Second international

DOOD’91 conference. Germany 1991.

[Wil89] J. Wilson. A Security Policy for an A1 DBMS (A Trusted Subject}. IEEE Symposium on Security

and Privacy. Oakland 1989.


