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Local and global estimates of solutions of Hamilton-Jacobi

parabolic equation with absorption

Marie Françoise BIDAUT-VERON

Abstract
We obtain new a priori estimates for the nonnegative solutions of the equation

ut −∆u+ |∇u|q = 0

in QΩ,T = Ω× (0, T ) , T ≦ ∞, where q > 0, and Ω = R
N , or Ω is a smooth bounded domain of

R
N and u = 0 on ∂Ω× (0, T ) .
In case Ω = R

N , we show that any solution u ∈ C2,1(QRN ,T ) of equation (1.1) in QRN ,T (in
particular any weak solution if q ≦ 2), without condition as |x| → ∞, satisfies the universal
estimate

|∇u(., t)|q ≦ 1

q − 1

u(., t)

t
, in QRN ,T .

Moreover we prove that the growth of u is limited by C(t+t−1/(q−1)(1+ |x|q
′

), where C depends
on u.

We also give existence properties of solutions in QΩ,T , for initial data locally integrable or
even unbounded Radon measures. We give a nonuniqueness result in case q > 2. Finally we
show that besides the local regularizing effect of the heat equation, u satisfies a second effect of
type LR

loc − L∞

loc, due to the gradient term.

Keywords Hamilton-Jacobi equation; Radon measures; initial trace; universal bounds.,
regularizing effects.
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1 Introduction

Here we consider the nonnegative solutions of the parabolic Hamilton-Jacobi equation

ut − ν∆u+ |∇u|q = 0, (1.1)

where q > 1, in QΩ,T = Ω× (0, T ) , where Ω is any domain of RN , ν ∈ (0, 1] .We study the problem
of a priori estimates of the nonnegative solutions, with possibly rough unbounded initial data

u(x, 0) = u0 ∈ M+(Ω), (1.2)

where we denote by M+(Ω) the set of nonnegative Radon measures in Ω, and M+
b (Ω) the subset

of bounded ones. We say that u is a solution of (1.1) if it satisfies (1.1) in QΩ,T in the weak sense
of distributions, see Section 2. We say that u has a trace u0 in M+(Ω) if u(., t) converges to u0 in
the weak∗ topology of measures:

lim
t→0

∫

Ω
u(., t)ψdx =

∫

Ω
ψdu0, ∀ψ ∈ Cc(Ω). (1.3)

Our purpose is to obtain a priori estimates valid for any solution in QΩ,T = Ω × (0, T ), without
assumption on the boundary of Ω, or for large |x| if Ω = R

N .

Fisrt recall some known results. The Cauchy problem in QRN ,T

(PRN ,T )

{

ut − ν∆u+ |∇u|q = 0, in QRN ,T ,

u(x, 0) = u0 in R
N ,

(1.4)

is the object of a rich literature, see among them [2],[9], [5], [11], [26],[12], [13], and references
therein. The first studies concern classical solutions, that means u ∈ C2,1(QRN ,T ), with smooth

bounded initial data u0 ∈ C2
b

(

R
N
)

: there a unique global solution such that

‖u(., t)‖L∞(RN ) ≦ ‖u0‖L∞(RN ) , and ‖∇u(., t)‖L∞(RN ) ≦ ‖∇u0‖L∞(RN ) , in QRN ,T ,

see [2]. Then universal a priori estimates of the gradient are obtained for this solution, by using
the Bersnstein technique, which consists in computing the equation satisfied by |∇u|2 : first from
[23],

‖∇u(., t)‖q
L∞(RN )

≦
‖u0‖L∞(RN )

t
,

in QRN ,T , , then from [9],

|∇u(., t)|q ≦ 1

q − 1

u(., t)

t
, (1.5)

‖∇(u
q−1
q )(., t)‖L∞(RN ) ≦ Ct−1/2‖u0‖

q−1
q

L∞(RN )
, C = C(N, q, ν). (1.6)

Existence and uniqueness was extended to any u0 ∈ Cb

(

R
N
)

in [20]; then the estimates (1.6) and
(1.5) are still valid, see [5]. In case of nonnegative rough initial data u0 ∈ LR

(

R
N
)

, R ≧ 1, or
u0 ∈ M+

b (R
N ), the problem was studied in a semi-group formulation [9], [11], [26], then in the
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larger class of weak solutions in [12], [13]. Recall that two critical values appear: q = 2, where the
equation can be reduced to the heat equation, and

q∗ =
N + 2

N + 1
.

Indeed the Cauchy problem with initial value u0 = κδ0, where δ0 is the Dirac mass at 0 and κ > 0,
has a weak solution uκ if and only if q < q∗, see [9], [12]. Moreover as κ→ ∞, (uκ) converges to a
unique very singular solution Y, see [25], [10], [8], [12]. And Y (x, t) = t−a/2F (|x| /

√
t), where

a =
2− q

q − 1
, (1.7)

and F is bounded and has an exponential decay at infinity.

In [13, Theorem 2.2] it is shown that for any R ≧ 1 global regularizing LR-L∞ properties of
two types hold for the Cauchy problem in QRN ,T : one due to the heat operator:

‖u(., t)‖L∞(RN ) ≦ Ct−
N
2R ‖u0‖LR(RN ), C = C(N,R, ν), (1.8)

and the other due to the gradient term, independent of ν (ν > 0):

‖u(., t)‖L∞(RN ) ≦ Ct
− N

qR+N(q−1) ‖u0‖
qR

qR+N(q−1)

LR(RN )
, C = C(N, q,R). (1.9)

A great part of the results has been extended to the Dirichlet problem in a bounded domain
Ω :

(PΩ,T )







ut −∆u+ |∇u|q = 0, in QΩ,T ,
u = 0, on ∂Ω× (0, T ),
u(x, 0) = u0,

(1.10)

where u0 ∈ M+
b (Ω), and u(., t) converges to u0 weakly in M+

b (Ω), see [6], [26], [12], [13]. Universal
estimates are given in [16], see also [12]. Note that (1.5) cannot hold, since it contradicts the Höpf
Lemma.

Finally local estimates in any domain Ω were proved in [26]: for any classical solution u in QΩ,T

and any ball B(x0, 2η) ⊂ Ω, there holds in QB(x0,η),T

|∇u| (., t) ≦ C(t
− 1

q + η−1 + η
− 1

q−1 )(1 + u(., t)), C = C(N, q, ν). (1.11)

1.1 Main results

In Section 3 we give local integral estimates of the solutions in terms of the initial data, and a first
regularizing effect, local version of (1.8), see Theorem 3.3.

Theorem 1.1 Let q > 1. Let u be any nonnegative weak solution of equation (1.1) in QΩ,T , and
let B(x0, 2η) ⊂⊂ Ω such that u has a trace u0 ∈ LR

loc(Ω), R ≧ 1 and u ∈ C([0, T ) ;LR
loc(Ω)). Then

for any 0 < t ≦ τ < T,

sup
x∈B(x0,η/2)

u(x, t) ≦ Ct−
N
2R (t+ ‖u0‖LR(B(x0,η)

), C = C(N, q, ν,R, η, τ).

If R = 1, the estimate remains true when u0 ∈ M+(Ω) (with ‖u0‖L1(B(x0,η)
replaced by

∫

B(x0,η)
du0).
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In Section 4, we give global estimates of the solutions of (1.1) in QRN ,T , and this is our main

result. We show that the universal estimate (1.5) in R
N holds without assuming that the solutions

are initially bounded :

Theorem 1.2 Let q > 1. Let u be any classical solution, in particular any weak solution if
q ≦ 2, of equation (1.1) in QRN ,T . Then

|∇u(., t)|q ≦ 1

q − 1

u(., t)

t
, in QRN ,T . (1.12)

And we prove that the growth of the solutions is limited, in |x|q′as |x| → ∞ and in t−1/(q−1)

as t→ 0:

Theorem 1.3 Let q > 1. Let u be any classical solution, in particular any weak solution if
q ≦ 2, of equation (1.1) in QRN ,T , such that there exists a ball B(x0, 2η) such that u has a trace
u0 ∈ M+((B(x0, 2η)). Then

u(x, t) ≦ C(q)t
− 1

q−1 |x− x0|q
′

+ C(t
− 1

q−1 + t+

∫

B(x0,η)
du0), C = C(N, q, η). (1.13)

In [14], we show that there exist solutions with precisely this type of behaviour of order

t−1/(q−1) |x|q′ as |x| → ∞ or t → 0. Moreover we prove that the condition on the trace is
always satisfied for q < q∗.

In Section 5 we complete the study by giving existence results with only local assumptions on
u0, extending some results of [5] where u0 is continuous:

Theorem 1.4 Let Ω = R
N (resp. Ω bounded).

(i) If 1 < q < q∗, then for any u0 ∈ M+
(

R
N
)

(resp. M+ (Ω)), there exists a weak solution u
of equation (1.1) (resp. of (DΩ,T )) with trace u0.

(ii) If q∗ ≦ q ≦ 2, then existence still holds for any nonnegative u0 ∈ L1
loc

(

R
N
)

(resp. L1
loc (Ω)).

(iii) If q > 2, existence holds for any nonnegative u0 ∈ L1
loc

(

R
N
)

(resp. L1
loc (Ω)) which is

limit of a nondecreasing sequence of continuous functions.

Our proof of (ii) (iii) is based on approximations by nonincreasing sequences, following the
methods of [11], [13]. Another proof can be obtained when u0 ∈ L1

loc

(

R
N
)

and q ≦ 2, by techniques
of equiintegrability, see [22] for a connected problem.

Moreover we give a result of nonuniqueness of weak solutions in case q > 2 :

Theorem 1.5 Assume that q > 2, N ≥ 2.Then the Cauchy problem (PRN ,∞) with initial data

Ũ(x) = C̃ |x||a| ∈ C
(

R
N
)

, C̃ =
q − 1

q − 2
(
(N − 1)q −N)

q − 1
)

1
q−1 ,

admits at least two weak solutions: the stationary solution Ũ , and a radial self-similar solution of
the form

UC̃(x, t) = t|a|/2f(|x| /
√
t), (1.14)

where f is increasing on [0,∞) , f(0) > 0, and limη→∞ η−|a|/2f(η) = C̃.
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Finally we give in Section 6a second type of regularizing effects giving a local version of (1.9).

Theorem 1.6 Let q > 1, and let u be any nonnegative classical solution (resp. any weak solution
if q ≦ 2) of equation (1.1) in QΩ,T , and let B(x0, 2η) ⊂ Ω. Assume that u0 ∈ LR

loc(Ω) for some
R ≧ 1, R > q − 1, and u ∈ C([0, T ) ;LR

loc(Ω)). Then for any ε > 0, and for any τ ∈ (0, T ) , then
there exists C = C(N, q,R, η, ε, τ) such that

supBη/2
u(., t) ≦ Ct

− N
qR+N(q−1) (t+ ‖u0‖LR(Bη)

)
Rq

qR+N(q−1) + Ct
1−ε

R+1−q ‖u0‖
R

R+1−q

LR(Bη)
. (1.15)

If q < 2, the estimates for R = 1 are also valid when u has a trace u0 ∈ M+(Ω), with ‖u0‖L1(Bη)

replaced by
∫

Bη
du0.

In conclusion, note that a part of our results could be extended to more general quasilinear
operators, for example to the case of equation involving the p-Laplace operator

ut − ν∆pu+ |∇u|q = 0

with p > 1, following the results of [13], [4], [21], [19].

2 Classical and weak solutions

We set QΩ,s,τ = Ω× (s, τ) , for any 0 ≦ s < τ ≦ ∞, thus QΩ,T = QΩ,0,T .

Definition 2.1 Let q > 1 and Ω be any domain of R
N . We say that a nonnegative function u

is a classical solution of (1.1) in QΩ,T if u ∈ C2,1(QΩ,T ). We say that u is a weak solution

(resp. weak subsolution) of (1.1) in QΩ,T , if u ∈ C((0, T );L1
loc(QΩ,T )) ∩ L1

loc((0, T );W
1,1
loc (Ω)),

|∇u|q ∈ L1
loc(QΩ,T ) and u satisfies (1.1) in the distribution sense:

∫ T

0

∫

Ω
(−uϕt − νu∆ϕ+ |∇u|qϕ) = 0, ∀ϕ ∈ D(QΩ,T ), (2.1)

(resp.
∫ T

0

∫

Ω
(−uϕt − νu∆ϕ+ |∇u|qϕ) ≦ 0, ∀ϕ ∈ D+(QΩ,T ).) (2.2)

And then for any 0 < s < t < T, and any ϕ ∈ C1((0, T ), C1
c (Ω)),

∫

Ω
(uϕ)(., t) −

∫

Ω
(uϕ)(., s) +

∫ t

s

∫

Ω
(−uϕt + ν∇u.∇ϕ+ |∇u|qϕ) = 0 (resp. ≦ 0). (2.3)

Remark 2.2 Any weak subsolution u is locally bounded in QΩ,T . Indeed, since u is ν-subcaloric,
there holds for any ball B(x0, ρ) ⊂⊂ Ω and any ρ2 ≦ t < T,

sup
B(x0,

ρ
2
)×

[

t− ρ2

4
,t
]

u ≦ C(N, ν)ρ−(N+2)

∫ t

t− ρ2

2

∫

B(x0,ρ)
u. (2.4)

Any nonnegative function u ∈ L1
loc(QΩ,T ), such that |∇u|q ∈ L1

loc(QΩ,T ), and u satisfies (2.1), is a
weak solution and |∇u| ∈ L2

loc(QΩ,T )), u ∈ C((0, T );Ls
loc(QΩ,T )),∀s ≧ 1, see [12, Lemma 2.4].
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Next we recall the regularity of the weak solutions of (1.1) for q ≦ 2, see [12, Theorem 2.9], [13,
Corollary 5.14]:

Theorem 2.3 Let 1 < q ≦ 2. Let Ω be any domain in R
N . Let u be any weak nonnegative solution

of (1.1) in QΩ,T . Then u ∈ C
2+γ,1+γ/2
loc (QΩ,T ) for some γ ∈ (0, 1) , and for any smooth domains

ω ⊂⊂ ω′ ⊂⊂ Ω, and 0 < s < τ < T, ‖u‖C2+γ,1+γ/2(Qω,s,τ )
is bounded in terms of ‖u‖L∞(Qω′,s/2,τ )

.

Thus for any sequence (un) of nonnegative weak solutions of equation (1.1) in QΩ,T , uniformly

locally bounded, one can extract a subsequence converging in C2,1
loc (QΩ,T ) to a weak solution u of

(1.1) in QΩ,T .

Remark 2.4 Let q > 1. From the estimates (1.11), for any sequence of classical nonnegative
solutions (un) of (1.1) in QΩ,T , uniformly bounded in L∞

loc(QΩ,T ), one can extract a subsequence

converging in C2,1
loc (QRN ,T ) to a classical solution u of (1.1).

Remark 2.5 Let us mention some results of concerning the trace, valid for any q > 1, see [12,
Lemma 2.14]. Let u be any nonnegative weak solution u of (1.1) in QΩ,T . Then u has a trace u0
in M+(Ω) if and only if u ∈ L∞

loc( [0, T ) ;L
1
loc(Ω)), and if and only if |∇u|q ∈ L1

loc(Ω× [0, T )). And
then for any t ∈ (0, T ), and any ϕ ∈ C1

c (Ω× [0, T )), and any ζ ∈ C1
c (Ω),

∫

Ω
u(., t)ϕdx +

∫ t

0

∫

Ω
(−uϕt + ν∇u.∇ϕ+ |∇u|q ϕ) =

∫

Ω
ϕ(., 0)du0, (2.5)

∫

Ω
u(., t)ζ +

∫ t

0

∫

Ω
(ν∇u.∇ζ + |∇u|q ζ) =

∫

Ω
ζdu0. (2.6)

If u0 ∈ L1
loc(Ω), then u ∈ C( [0, T ) ;L1

loc(Ω)).

Finally we consider the Dirichlet problem in a smooth bounded domain Ω:

(DΩ,T )

{

ut −∆u+ |∇u|q = 0, in QΩ,T ,
u = 0, on ∂Ω× (0, T ).

(2.7)

Definition 2.6 We say that a function u is a weak solution of (DΩ,T ) if it is a weak so-

lution of equation (1.1) such that u ∈ C((0, T );L1 (Ω)) ∩ L1
loc((0, T );W

1,1
0 (Ω)), and |∇u|q ∈

L1
loc((0, T );L

1 (Ω)).We say that u is a classical solution of (DΩ,T ) if u ∈ C2,1(QΩ,T )∩C1,0
(

Ω× (0, T )
)

.

3 Local integral properties and first regularizing effect

3.1 Local integral properties

Lemma 3.1 Let Ω be any domain in R
N , q > 1, R ≧ 1. Let u be any nonnegative weak subsolution

of equation (1.1) in QΩ,T , such that u ∈ C((0, T );LR
loc(Ω)). Let ξ ∈ C1((0, T );C1

c (Ω)), with values
in [0, 1] . Let λ > 1. Then there exists C = C(q,R, λ), such that, for any 0 < s < t ≦ τ < T,

∫

Ωu
R(., t)ξλ +

1

2

∫ τ

s

∫

Ω
uR−1|∇u|qξλ + ν

R− 1

2

∫ τ

s

∫

Ω
uR−2|∇u|2ξλ

≦
∫

Ωu
R(., s)ξλ + λR

∫ t

s

∫

Ω
uRξλ−1 |ξt|+ C

∫ t

s

∫

Ω
uR−1ξλ−q′ |∇ξ|q′ . (3.1)
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Proof. (i) Let R = 1. Taking ϕ = ξλ in (2.3), we obtain, since ν ≦ 1,

∫

Ω
u(., t)ξλ +

∫ t

s

∫

Ω
|∇u|qξλ ≦

∫

Ω
u(s, .)ξλ + λ

∫ t

s

∫

Ω
ξλ−1uξt + λν

∫ t

s

∫

Ω
ξλ−1∇u.∇ξ

≦

∫

Ω
u(., s)ξλ + λ

∫ t

s

∫

Ω
ξλ−1u |ξt|+

1

2

∫ t

s

∫

Ω
|∇u|qξq′ + C(q, λ)

∫ t

s

∫

Ω
ξλ−q′ |∇ξ|q′ ,

hence (3.1) follows.
(ii) Next assume R > 1. Consider uδ,n = ((u + δ) ∗ ϕn), where (ϕn) is a sequence of mollifiers,

and δ > 0. Then by convexity, uδ,n is also a subsolution of (1.1):

(uδ,n)t − ν∆uδ,n + |∇uδ,n|q ≦ 0.

Multiplying by uR−1
δ,n ξλ and integrating between s and t, and going to the limit as δ → 0 and

n→ ∞, see [13], we get with different constants C = (N, q,R, λ), independent of ν,

1

R

∫

Ω
uR(., t)ξλ + ν(R− 1)

∫ t

s

∫

Ω
uR−2|∇u|2ξλ +

∫ t

s

∫

Ω
uR−1|∇u|qξλ

≦
1

R

∫

Ω
uR(., s)ξλ + λ

∫ t

s

∫

Bρ

ξλ−1uR |ξt|+ λν

∫ t

θ

∫

Ω
uR−1|∇u| |∇ξ| ξλ−1

≦
1

R

∫

Ω
uR(., s)ξλ + λ

∫ t

s

∫

Bρ

ξλ−1uR |ξt|

+
1

2

∫ τ

s

∫

Ω
uR−1|∇u|qξλ +C(λ,R)

∫ t

s

∫

Ω
uR−1ξλ−q′ |∇ξ|q′ ,

and (3.1) follows again.

Then we give local integral estimates of u(., t) in terms of the initial data:

Lemma 3.2 Let q > 1. Let η > 0. Let u be any nonnegative weak solution of equation (1.1) in
QΩ,T , with trace u0 ∈ M+(Ω), and let B(x0, 2η) ⊂⊂ Ω. Then for any t ∈ (0, T ),

∫

B(x0,η)
u(x, t) ≦ C(N, q)ηN−q′t+

∫

B(x0,2η)
du0. (3.2)

Moreover if u0 ∈ LR
loc(Ω) (R > 1), and u ∈ C([0, T ) ;LR

loc(Ω)), then

‖u(., t)‖LR(B(x0,η))
≦ C(N, q,R)η

N
R
−q′t+ ‖u0‖LR(B(x0,2η))

. (3.3)

If u ∈ C(B(x0, 2η) × [0, T )), then

‖u(., t)‖L∞(B(x0,η))
≦ C(N, q)η−q′t+ ‖u0‖L∞(B(x0,2η))

. (3.4)

Proof. We can assume that 0 ∈ Ω and x0 = 0. We take ξ ∈ C1
c (Ω), independent of t, with

values in [0, 1] , and R = 1 in (3.1), λ = q′. Then for any 0 < s < t < T,

∫

Ω
u(., t)ξq

′

+
1

2

∫ t

s

∫

Ω
|∇u|qξq′ ≦

∫

Ω
u(., s)ξq

′

+ C(q)

∫ t

s

∫

Ω
|∇ξ|q′ ≦

∫

Ω
u(., s)ξq

′

+ C(q)t

∫

Ω
|∇ξ|q′ .
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Hence as s→ 0, we get

∫

Ω
u(., t)ξq

′

+
1

2

∫ t

0

∫

Ω
|∇u|qξq′ ≦ C(q)t

∫

Ω
|∇ξ|q′ +

∫

Ω
ξq

′

du0. (3.5)

Then taking ξ = 1 in Bη with support in B2η and |∇ξ| ≦ C0(N)/η,

∫

Bη

u(x, t) ≦ C(N, q)ηN−q′t+

∫

B2η

ξq
′

du0, (3.6)

hence we get (3.2). Next assume u0 ∈ LR
loc(Ω) (R > 1), and u ∈ C([0, T ) ;LR

loc(Ω)). Then from
(3.1), for any 0 < s < t ≦ τ < T, we find,

∫

Ωu
R(., t)ξλ +

1

2

∫ τ

s

∫

Ω
uR−1|∇u|qξλ ≦

∫

Ωu
R(., s)ξλ +

∫ t

s

∫

Ω
uR−1ξλ−q′ |∇ξ|q′

≦
∫

Ωu
R(., s)ξλ + ε

∫ t

s

∫

B2η

uRξλ + ε1−R

∫ t

s

∫

B2η

ξλ−Rq′ |∇ξ|Rq′ .

Taking λ = Rq′, and ξ as above, we find

∫

B2η

uR(., t)ξRq′ ≦

∫

B2η

uR(., s)ξRq′ + ε

∫ t

s

∫

B2η

uRξRq′ + ε1−RC(N)CRq′

0 (N)ηN−Rq′t.

Next we set ̟(t) = supσ∈[s,t]
∫

B2η
uR(., σ)ξRq′ . Then

̟(t) ≦

∫

B2η

uR(., s)ξRq′ + ε(t− s)̟(t) + ε1−RC(N)CRq′

0 (N)ηN−Rq′t.

Taking ε = 1/2t, we get

1

2

∫

B2η

uR(., t)ξRq′ ≦

∫

B2η

uR(., s)ξrq
′

+ C(N)CRq′

0 (N)ηN−Rq′tR.

Then going to the limit as s→ 0,

∫

Bη

uR(x, t) ≦ C(N)CRq′

0 (N)ηN−Rq′tR +

∫

B2η

uR0 ξ
Rq′ , (3.7)

thus (3.3) follows.
If u ∈ C(B2ρ × [0, T )), then (3.7) holds for any R ≧ 1, implying

‖u(., t)‖LR(Bη)
≦ C

1
R (N)Cq′

0 (N)η
N
R
−q′t+ ‖u0‖LR(B2η)

,

and (3.3) follows as R→ ∞.
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3.2 Regularizing effect of the heat operator

We first give a first regularizing effect due to the Laplace operator in QΩ,T , for any domain Ω, for
classical or weak solutions in terms of the initial data.

Theorem 3.3 Let q > 1. Let u be any nonnegative weak subsolution of equation (1.1) in QΩ,T ,
and let B(x0, 2η) ⊂ Ω such that u has a trace u0 ∈ M+(B(x0, 2η)). Then for any τ < T, and any
t ∈ (0, τ ] ,

sup
x∈B(x0,η/2)

u(x, t) ≦ Ct−
N
2 (t+

∫

B(x0,η)
du0), C = C(N, q, ν, η, τ). (3.8)

Moreover if u0 ∈ LR
loc(Ω) (R > 1), and u ∈ C([0, T ) ;LR

loc(Ω)), then

sup
x∈B(x0,η/2)

u(x, t) ≦ Ct−
N
2R (t+ ‖u0‖LR(B(x0,η))

), C = C(N, q, ν,R, η, τ). (3.9)

Proof. We still assume that x0 = 0 ∈ Ω. Let ξ ∈ C1
c (B2η) be nonnegative, radial, with values in

[0, 1] , with ξ = 1 on Bη and |∇ξ| ≦ C0(N)/η. Since u is ν-subcaloric, from (2.4), for any ρ ∈ (0, η)
such that ρ2 ≦ t < τ,

sup
Bη/2

u(., t) ≦ C(N, ν)ρ−(N+2)

∫ t

t−ρ2/4

∫

Bη

u, (3.10)

hence from Lemma 3.2,

sup
Bη/2

u(., t) ≦ C(N, q, ν)ρ−N (ηN−q′t+

∫

B2η

du0).

Let k0 ∈ N such that k0η
2/2 ≧ τ. For any t ∈ (0, τ ] , there exists k ∈ N with k ≦ k0 such that

t ∈
(

kη2/2, (k + 1)η2/2
]

. Taking ρ2 = t/(k + 1), we find

supBη/2
u(., t) ≦ C(N, q, ν)(k0 + 1)

N
2 t−

N
2 (ηN−q′t+

∫

B2η

du0)

≦ C(N, q, ν)(η−N τ
N
2 + 1)t−

N
2 (ηN−q′t+

∫

B2η

du0). (3.11)

Thus we obtain (3.8). Next assume that u ∈ C([0, T ) ;LR
loc(B2η)), with R > 1. We still approximate

u by uδ,n = (u+ δ) ∗ ϕn, where (ϕn) is a sequence of mollifiers, and δ > 0. Since u is ν-subcaloric,
then uRδ,n is also ν-subcaloric. Then for any ρ ∈ (0, η) such that ρ2 ≦ t < τ, we have

supBη/2
uRδ,n(., t) ≦ C(N, ν)ρ−(N+2)

∫ t

t−ρ2/4

∫

Bρ/2
uRδ,n,

hence as δ → 0 and n→ ∞, from Lemma (3.2),

supBη/2
uR(., t) ≦ C(N, ν)ρ−(N+2)

∫ t

t−ρ2/4

∫

Bρ/2
uR ≦ C(N, q, ν,R)(η−N τ

N
2 +1)(ηN−Rq′tR+

∫

B2η

uR0 ).

(3.12)
We deduce (3.9) as above.
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4 Global estimates in R
N

We first show that the universal estimate of the gradient (1.12) implies the estimate (1.13) of the
function:

Theorem 4.1 Let q > 1. Let u be a classical solution of equation (1.1) in QRN ,T . Assume that
there exists a ball B(x0, 2η) such that u has a trace u0 ∈ M+((B(x0, 2η)). If u satisfies (1.12), then
for any t ∈ (0, T ) ,

u(x, t) ≦ C(q)t
− 1

q−1 |x− x0|q
′

+ C(t
− 1

q−1 + t+

∫

B(x0,η)
du0), C = C(N, q, η), (4.1)

If u0 ∈ LR
loc(Ω), R ≧ 1 and u ∈ C([0, T ) ;LR

loc(Ω)), then

u(x, t) ≦ C(q)t−
1

q−1 |x− x0|q
′

+ Ct−
N
2R (t+ ‖u0‖LR(B(x0,η))

), C = C(N, q,R, ν, η). (4.2)

u(x, t) ≦ C(q)t
− 1

q−1 |x− x0|q
′

+ C(t
− 1

q−1 + t+ ‖u0‖LR(B(x0,η))
), C = C(N, q,R, η). (4.3)

Proof. Estimate (1.12) is equivalent to

∣

∣

∣
∇(u

1
q′ )

∣

∣

∣
(., t) ≦

(q − 1)
1
q′

q
t
− 1

q , in QRN ,T . (4.4)

Then with constants C(q) only depending of q,

u
1
q′ (x, t) ≦ u

1
q′ (x0, t) + C(q)t−

1
q |x− x0| , (4.5)

then
u(x, t) ≦ C(q)(u(x0, t) + t−

1
q−1 |x− x0|q

′

), (4.6)

and, from Theorem 3.3,

u(x0, t) ≦ C(N, q,R, ν, η)t−
N
2R (t+ ‖u0‖LR(B(x0,η))

).

Therefore (4.2) follows. Also, interverting x and x0, for any R ≧ 1,

uR(x0, t) ≦ C(q,R)(uR(x, t) + t
− R

q−1 |x− x0|Rq′).

Integrating on B(x0, η/2), we get

ηNuR(x0, t) ≦ C(q,R)(

∫

B(x0,η/2)
uR(., t) + t

− R
q−1 ηN−Rq′);

using Lemma 3.2, we deduce

u(x0, t) ≦ C(N, q,R, η)(t
− 1

q−1 + t+

∫

B(x0,η)
du0),

and if u0 ∈ LR
loc(Ω),

u(x0, t) ≦ C(N, q,R, η)(t−
1

q−1 + t+ ‖u0‖LR(B(x0,η))
),

and the conclusions follow from (4.6).
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Remark 4.2 In particular, the estimates (4.1)-(4.3) hold for solutions with u0 ∈ Cb(R
N ), and

more generally for limits a.e. of such solutions, that we can call reachable solutions. Inegality
(4.5) was used in [5, Theorem 3.3] for obtaining local estimates of classical of bounded solutions.in
QRN ,T .

In order to prove Theorem 1.2, we first give an estimate of the type of (1.13) on a time interval
(0, τ ], with constants depending on τ and ν, which is not obtained from any estimate of the gradient.
Our result is based on the construction of suitable supersolutions in annulus of type QB3ρ\Bρ,∞

,

ρ > 0. For the construction we consider the function t ∈ (0,∞) 7−→ ψh(t) ∈ (1,∞), where h > 0 is
a parameter, solution of the problem

(ψh)t + h(ψq
h − ψh) = 0 in (0,∞) , ψh(0) = ∞, ψh(∞) = 1, (4.7)

given explicitely by ψh(t) = (1− e−h(q−1)t)−
1

q−1 ; hence ψq
h − ψh ≧ 0, and for any t > 0,

((q − 1)ht)
− 1

q−1 ≦ ψh(t) ≦ 2
1

q−1 (1 + ((q − 1)ht)
− 1

q−1 ). (4.8)

since, for x > 0, x(1− x/2) ≦ 1− e−x ≦ x, hence x/2 ≦ 1− e−x ≦ x, for x ≦ 1.

Proposition 4.3 Let q > 1. Then there exists a nonnegative function V defined in QB3×(0,∞),
such that V is a supersolution of equation (1.1) on QB3\B1,∞

,, and V converges to ∞ as t → 0,

uniformly on B3 and converges to ∞ as x→ ∂B3, uniformly on (0, τ) for any τ < ∞. And V has
the form

V (x, t) = etΦ(|x|)ψh(t) in QB3,∞ (4.9)

for some h = h(N, q, ν) > 0, where ψh is given by (4.7), and Φ is a suitable radial function
depending on N, q, ν, such that

−ν∆Φ+Φ+ |∇Φ|q ≧ 0 in B3. (4.10)

Proof. We first construct Φ. Let σ > 0, such that σ ≧ a = (2− q)/(q − 1). Let ϕ1 be the first
eigenfunction of the Laplacian in B3 such that ϕ1(0) = 1, associated to the first eigenvalue λ1, hence
ϕ1 is radial ; let m1 = minB1

ϕ1 > 0 and M1 = minB3\B1
|∇ϕ1| . Let us take Φ = ΦK = Φ0 +K,

where Φ0 = γϕ−σ
1 , K > 0 and γ > 0 are parameters Then

−ν∆Φ+Φ+ |∇Φ|q = F (Φ0) +K, with

F (Φ0) = γϕ
−(σ+2)
1 (γq−1σqϕ

(q−1)(a−σ)
1

∣

∣ϕ′
1

∣

∣

q
+ (1− νσλ1)ϕ

2
1 − νσ(σ + 1)ϕ′2

1 ).

There holds limr→3 |ϕ′
1| = c1 > 0 from the Höpf Lemma. Taking σ > a we fix γ = 1, and then

limr→3 F (Φ0) = ∞. If q < 2 we can also take σ = a, we get

F (Φ0) = γϕ−q′
1 (γq−1aq

∣

∣ϕ′
1

∣

∣

q
+ (1 − νaλ1)ϕ

2
1 − aq′ϕ′2

1 ),

hence fixing γ > γ(N, q, ν) large enough, we still get limr→3 F (Φ0) = ∞. Thus F has a minimum
µ in B3. Taking K = K(N, q, ν) > |µ| we deduce that Φ satisfies (4.10), and limr→3Φ = ∞.
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Observe that Φ′q/Φ = γqσq/(γϕ
q+σ(q−1)
1 +Kϕ

q(σ+1)
1 ) is increasing, then mK = mK(N, q, ν) =

min[1,3] |Φ′|q /Φ = |Φ′(1)|q /Φ(1) > 0. We define V by (4.9) and compute

Vt − ν∆V + |∇V |q = et(Φψh +Φ(ψh)t − ν∆Φ) + eqt |∇Φ|q ψq
h

≧ et(Φψh +Φψt − ν∆Φ+ |∇Φ|q ψq) = et(ψq − ψh)(|∇Φ|q − hΦ).

We take h = h(N, q, ν) < mK . Then on B3\B1 we have |∇Φ|q − hΦ > 0, and ψq ≧ ψh, then V is a
supersolution on B3\B1. Moreover V is radial and increasing with respect to |x| , then

sup
B2

V (x, t) = sup
∂B2

V (x, t) = etΦ(2)ψh(t) ≦ 2
1

q−1 etΦ(2)(1 + ((q − 1)ht)−
1

q−1 )

≦ C(N, q, ν)etΦ(2)(1 + t
− 1

q−1 ). (4.11)

Theorem 4.4 Let u be a classical solution, (in particular any weak solution if q ≦ 2) of equa-
tion (1.1) in QRN ,T . Assume that there exists a ball B(x0, 2η) such that u admits a trace
u0 ∈ M+(B(x0, 2η)).

(i) Then for any τ ∈ (0, T ) , and t ≦ τ,

u(x, t) ≦ C(t
− 1

q−1 |x− x0|q
′

+ t−
N
2 (t+

∫

B(x0,η)
du0)), C = C(N, q, ν, η, τ), (4.12)

(ii) Also if u ∈ C([0, T ) ;LR
loc(B(x0, 2η))),

u(x, t) ≦ C(t−
1

q−1 |x− x0|q
′

+ t−
N
2R (t+ ‖u0‖LR(B(x0,η))

)), C = C(N, q, ν,R, η, τ), (4.13)

if u ∈ C([0, T )×B(x0, 2η)), then

u(x, t) ≦ C(t
− 1

q−1 |x− x0|q
′

+ t+ sup
B(x0,η)

u0), C = C(N, q, ν, η, τ). (4.14)

Proof. We use the function V constructed above. We can assume x0 = 0. For any ρ > 0, we
consider the function Vρ defined in B3ρ × (0,∞) by

Vρ(x, t) = ρ−aV (ρ−1x, ρ−2t).

It is a supersolution of the equation (1.1) on B3ρ\Bρ × (0,∞), infinite on ∂B3ρ × (0,∞) and on
B3ρ × {0} , and from (4.11)

sup
B2ρ

Vρ(x, t) = sup
∂B2ρ

Vρ(x, t) ≦ C1(N, q, ν)ρ
−ae

t
ρ2Φ(2)(1 + ρ

2
q−1 t

− 1
q−1 )

≦ C2(N, q, ν)ρ
q′e

t
ρ2 (ρ

− 2
q−1 + t

− 1
q−1 ). (4.15)

(i) First suppose that u ∈ C([0, T ) × R
N )). Let τ ∈ (0, T ) , and C(τ) = supQBρ,τ

u. Then

w = C(τ) + Vρ is a supersolution in Q = (B3ρ\Bρ)× (0, τ ] , and from the comparison principle we
obtain u ≦ C(τ) + Vρ in that set. Indeed let ǫ > 0 small enough. Then there exists τǫ < ǫ and
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rǫ ∈ (3ρ− ǫ, 3ρ), such that w(., s) ≧ maxB3ρ
u(., ǫ) for any s ∈ (0, τǫ], and w(x, t) ≧ maxB3ρ×[0,τ ] u

for any t ∈ (0, τ ] and rǫ ≦ |x| < 3ρ. We compare u(x, t+ ǫ) with w(x, t+ s) on [0, τ − ǫ]×Brǫ\Bρ.
And for |x| = ρ, we have u(x, t + ǫ) ≦ C(τ) ≦ w(x, t + s). Then u(., t + ǫ) ≦ w(., t + s) in
Brǫ\Bρ × (0, τ − ǫ]. As s, ǫ → 0, we deduce that u ≦ w in Q.

Hence in B2ρ × (0, τ), we find from (4.15)

u ≦ C(τ) + sup
B2ρ

Vρ(x, t) ≦ C(τ) + C2ρ
q′e

t
ρ2 (ρ

− 2
q−1 + t

− 1
q−1 ). (4.16)

Making t tend to τ, this proves that

sup
QB2ρ,τ

u ≦ sup
QBρ,τ

u+ C2ρ
q′e

τ
ρ2 (ρ

− 2
q−1 + τ

− 1
q−1 )

By induction, we get

sup
QB

2n+1ρ
,τ
u ≦ sup

QB2nρ
,τ
u+C22

nq′ρq
′

e
τ

4nρ2 ((2nρ)
− 2

q−1 + τ
− 1

q−1 )

≦ sup
QB2nρ

,τ
u+C22

nq′ρq
′

e
τ
ρ2 (ρ−

2
q−1 + τ−

1
q−1 );

sup
QB

2n+1ρ
,τ
u ≦ sup

QBρ

u+ C2(1 + 2q
′

+ ..+ 2nq
′

)ρq
′

e
τ
ρ2 (ρ

− 2
q−1 + τ

− 1
q−1 )

≦ sup
QBρ,τ

u+C22
q′(2nρ)q

′

e
τ
ρ2 (ρ

− 2
q−1 + τ

− 1
q−1 ).

For any x ∈ R
N such that |x| ≧ ρ, there exists n ∈ N

∗ such that x ∈ B2n+1ρ\B2nρ, then

u(x, τ) ≦ sup
QBρ ,τ

u+ C22
q′ |x|q′ e

τ
ρ2 (ρ−

2
q−1 + τ−

1
q−1 ) (4.17)

thus
sup

Q
RN

,τ
u ≦ sup

QBρ ,τ
u+ C22

q′ |x|q′ e
τ
ρ2 (ρ−

2
q−1 + τ−

1
q−1 ). (4.18)

(ii) Next we consider any classical solution u in QRN ,T with trace u0 in B(x0, 2η). We still
assume x0 = 0. Then for 0 < ǫ ≦ t ≦ τ, from (3.4) in Lemma 3.2, there holds

sup
Bη/2

u(x, t) ≦ C(N, q)η−q′t+ sup
Bη

u(x, ǫ).

Then from (4.18) with ρ = η/2, we deduce that for any (x, t) ∈ QRN ,ǫ,τ ,

u(x, t) ≦ C(N, q)η−q′t+ sup
Bη/2

u(., ǫ) + C(1 + (t− ǫ)−
1

q−1 ) |x|q′ ,
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with C = C(N, q, ν, η, τ). Next we take ǫ = t/2. Then for any t ∈ (0, τ ] , from (3.8) in Theorem 3.3,

u(x, t) ≦ C(N, q, η)t +Ct−1(q−1) |x|q′ + Ct−
N
2 (t+

∫

Bη

du0).

with C = C(N, q, ν, η, τ) and we obtain (4.12). And (4.13), (4.14) follow from (3.9) and (3.4).

Next we show our main Theorem 1.2. We use a local Bernstein technique, as in [26]. The idea is
to compute the equation satisfied by the function v = u(q−1)/q , introduced in [9], and the equation
satisfied by w = |∇v|2 , to obtain estimates of w in a cylinder QBM ,T , M > 0. The difficulty is that
this equation involves an elliptic operator w 7→ wt −∆w + b.∇w, where b depends on v, and may
be unbounded. However it can be controlled by the estimates of v obtained at Theorem 4.4. Then
as M → ∞, we can prove nonuniversal L∞ estimates of w. Finally we obtain universal estimates
of w by application of the maximum principle in QRN ,T , valid because w is bounded. First we give

a slight improvement of a comparison principle shown in [26, Proposition 2.2].

Lemma 4.5 Let Ω be any domain of RN , and τ, κ ∈ (0,∞), A,B ∈ R. Let U ∈ C([0, τ) ;L2
loc(Ω))

such that Ut,∇u,D2u ∈ L2
loc(Ω × (0, τ)), ess supQΩ,τ

U < ∞, U ≦ B on the parabolic boundary of
QΩ,τ , and

Ut −∆U ≦ κ(1 + |x|) |∇U |+ f in QΩ,τ

where f = f(x, t) such that f(., t) ∈ L2
loc(Ω) for a.e. t ∈ (0, τ) and f ≦ 0 on {(x, t) ∈ QΩ,τ : U(x, t) ≧ A} .

Then esssupQΩ,τ
U ≦ max(A,B).

Proof. We set ϕ(x, t) = Λt + ln(1 + |x|2), Λ > 0. Then ∇ϕ = 2x/(1 + |x|2), 0 ≦ ∆ϕ ≦

2N/(1 + |x|2) ≦ 2N. Let ε > 0 and Y = U −max(A,B)− εϕ. Taking Λ = 2
√
2κ+ 2N, we obtain

Yt −∆Y − f − κ(1 + |x|) |∇Y | ≦ ε(K(1 + |x|) |∇ϕ| − ϕt +∆ϕ) ≦ ε(2
√
2κ+ 2N − Λ) = 0.

Since esssupQΩ,τ
U < ∞, for R large enough, and any t ∈ (0, τ), we have Y (., t) ≦ 0 a.e. in Ω ∩

{|x| > R} . And Y + ∈ C([0, τ) ;L2(Ω))∩W 1,2((0, τ);L2(Ω)), Y +(0) = 0 and Y +(., t) ∈W 1,2(Ω∩BR)
for a.e. t ∈ (0, τ), and fY +(., t) ≦ 0. Then

1

2

d

dt
(

∫

Ω
Y +2(., t) ≦ −

∫

Ω

∣

∣∇Y +(., t)
∣

∣

2
+ κ(1 +R)

∫

Ω
|∇Y (., t)|Y +(., t) ≦

κ2(1 +R)2

4

∫

Ω
Y +2(., t),

hence by integration Y ≦ 0 a.e. in QΩ,τ . We conclude as ε→ 0.

Proof of Theorem 1.2. We can assume x0 = 0. By setting u(x, t) = νq
′/2U(x/

√
ν, t), for

proving (4.4) we can suppose that u is a classical solution of (1.1) with ν = 1. We set

δ + u = v
q

q−1 , δ ∈ (0, 1) .

(i) Local problem relative to |∇v|2 . Here u is any classical solution u of equation (1.1) in
a cylinder QBM ,T with M > 0. Then v satisfies the equation

vt −∆v =
1

q − 1

|∇v|2
v

− cv |∇v|q , c = (q′)q−1. (4.19)

14



Setting w = |∇v|2 , we define

Lw = wt −∆w + b.∇w, b = (qcvw
q−2
2 − 2

q − 1

1

v
)∇v.

Differentiating (4.19) and using the identity ∆w = 2∇(∆w).∇w+2
∣

∣D2v
∣

∣

2
, we obtain the equation

Lw + 2cw
q+2
2 + 2

∣

∣D2v
∣

∣

2
+

2

q − 1

w2

v2
= 0. (4.20)

As in [26], for s ∈ (0, 1) , we consider a test function ζ ∈ C2(B3M/4) with values in [0, 1] , ζ = 0

for |x| ≥ 3M/4 and |∇ζ| ≦ C(N, s)ζs/M and |∆ζ| + |∇ζ|2 /ζ ≦ C(N, s)ζs/M2 in B3M/4. We set
z = wζ. We have

Lz = ζLw + wLζ − 2∇w.∇ζ ≦ ζLw + wLζ +
∣

∣D2v
∣

∣

2
ζ + 4w

|∇ζ|2
ζ

.

It follows that in QBM ,T ,

Lz + 2cw
q+2
2 ζ +

2

q − 1

w2

v2
ζ ≦

Cζsw

M2
+
Cζsw

3
2

M

∣

∣

∣

∣

cqvw
q−2
2 − 2

q − 1

1

v

∣

∣

∣

∣

≦ Cζs(
w

M2
+
vw

q+1
2

M
+
w

3
2

Mv
),

with constants C = C(N, q, s). Since ζ ≦ 1, from the Young inequality, taking s ≧ max(q +
1), 3)/(q + 2), for any ε > 0,

C

M
ζsvw

q+1
2 =

C

M
ζ

q+1
q+2 ζs−

q+1
q+2 vw

q+1
2 ≦ εζw

q+2
2 + C(N, q, ε)

vq+2

M q+2
,

and
C

M2
ζsw ≦ εζw

q+2
2 + C(N, q, ε)

1

M
2(q+2)

q

,

C

M
ζs
w

3
2

v
≦

1

δM
ζsw

3
2 =

1

δM
ζ
s− 3

q+2 ζ
3

q+2w
3
2 ≦ εζw

q+2
2 + C(N, q, ε)

1

(δM)
q+2
q−1

.

Then with a new C = C(N, q, δ)

Lz + cz
q+2
2 ≦ C(

vq+2

M q+2
+

1

M
2(q+2)

q

+
1

M
q+2
q−1

). (4.21)

(ii) Nonuniversal estimates of w. Here we assume that u is a classical solution of (1.1) in whole
QRN ,T , such that u ∈ C(RN × [0, T )). From Theorem 4.4, for any τ ∈ (0, T ), there holds in QRN ,τ

v(x, t) = (δ + u(x, t))
q−1
q ≦ C(t

− 1
q |x|+ (t+ sup

B2η

u0)
q−1
q ), C = C(N, q, η, τ). (4.22)

hence for M ≧M(q, supB2η
u0, τ) ≧ 1, we deduce

v(x, t) ≦ 2Ct
− 1

qM, in QBM ,τ .
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Then with a new constant C = C(N, q, η, τ, δ), there holds in QB3M/4,τ

Lz + cz
q+2
2 ≦ Ct

− q+2
q . (4.23)

Next we consider Ψ(t) = Kt−2/q. It satisfies

Ψt + cΨ
q+2
2 = (cK

q+2
2 − 2q−1K)t

− q+2
q ≧ Ct

− q+2
q

if K ≧ K = K(N, q, η, τ, δ). Fixing ǫ ∈ (0, T ) such that τ + ǫ < T, there exists τǫ ∈ (0, ǫ) such that
Ψ(θ) ≧ supBM

z(., ǫ) for any θ ∈ (0, τǫ). We have

zt(., t+ ǫ)−∆z(., t+ ǫ) + b(., t+ ǫ).∇(z, t+ ǫ) + cz
q+2
2 (t+ ǫ)

≦ C(t+ ǫ)
− q+2

q ≦ C(t+ θ)
− q+2

q ≦ Ψt(t+ θ) + cΨ
q+2
2 (t+ θ).

Therefore, setting z̃(., t) = z(., t+ ǫ)−Ψ(t+ θ),on the set V =
{

(x, t) ∈ QB3M/4,τ+ǫ : z̃(x, t) ≧ 0
}

,

z̃(., t)−∆z̃(., t) + b(., t+ ǫ).∇z̃(., t) ≦ 0;

and z̃(., t) ≦ 0 for sufficiently small t > 0, and z̃ ≦ 0 on ∂B3M/4 × [0, τ ] . Then from Lemma

4.5, we get z(., t + ǫ) ≦ Ψ(t + θ) in QB3M/4,τ , since |b| ≦ (qcvw
q−1
2 + 2

q−1
1
δw

1/2), hence bounded

on QB3M/4,τ+ǫ. Going to the limit as θ, ǫ → 0, we deduce that z(., t) ≦ Kt
− 2

q in QB3M/4,τ , thus

w(., t) ≦ Kt
− 2

q in QBM/2,τ . Next we go to the limit as M → ∞ and deduce that w(., t) ≦ Kt
− 2

q in
QRN ,τ , namely

(q′)q |∇v(., t)|q = |∇u|q
δ + u

(., t) ≦ Ct−1, C = C(N, q, η, δ, τ).

In turn for any ǫ as above, there holds w ∈ L∞(QRN ,ǫ,T ), that means |∇v| ∈ L∞(QRN ,ǫ,τ ).

(iii) Universal estimate (4.4) for u ∈ C(RN × [0, T )) : we prove the universal estimate (4.4).
Taking again Ψ(t) = Kt−2/q, with now K = K(N, q) = q−2(q − 1)2/q

′

, we have

Ψt + 2cΨ
q+2
2 ≧ (2cK

q+2
2 − 2q−1K)t−

q+2
q ≧ 0.

And Lw+2cw
q+2
2 ≦ 0 from (4.20). Moreover there exists τǫ ∈ (0, τ) such that Ψ(θ) ≧ supRN w(., ǫ)

for any θ ∈ (0, τǫ). Setting y(., t) = w(., t+ǫ)−Ψ(., t+θ), hence on the set U =
{

(x, t) ∈ QRN ,τ : y(x, t) ≧ 0
}

,
there holds in the same way

y(., t)−∆y(., t) + b(., t+ ǫ).∇y(., t) ≦ 0.

Here we only have from (4.22)

|b| ≦ (qcvw
q−1
2 +

2

q − 1

1

δ
w1/2) ≦ κǫ(1 + |x|)
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on QRN ,ǫ,τ , for some κǫ = κǫ(N, q, η, supB2η
u0, τ, ǫ). It is sufficient to apply Lemma 4.5. We deduce

that w(., t+ ǫ) ≦ Ψ(t+ θ) on (0, τ). As θ, ǫ→ 0 we obtain that w(., t) ≦ Ψ(t) = q−2(q− 1)2/q
′

t−2/q,
which shows now that in (0, T )

|∇v(., t)|q = (q′)−q |∇u|q
δ + u

(., t) ≦ q−q(q − 1)(q−1)t−1.

As δ → 0, we obtain (4.4).

(iv) General universal estimate. Here we relax the assumption u ∈ C(RN × [0, T )) : For
any ǫ ∈ (0, T ) such that τ + ǫ < T, we have u ∈ C(RN × [ǫ, τ + ǫ)), then from above,

|∇v(., t+ ǫ)|q ≦ 1

q − 1

1

t
,

and we obtain (4.4) as ǫ→ 0, on (0, τ) for any τ < T, hence on (0, T ).

Proof of Theorem 1.3. It is a direct consequence of Theorems 1.2 and 4.1.

5 Existence and nonuniqueness results

Next we mention some known uniqueness and comparison results, for the Cauchy problem, see [11,
Theorems 2.1,4.1,4.2 and Remark 2.1 ],[13, Theorem 2.3, 4.2, 4.25, Proposition 4.26 ], and for the
Dirichlet problem, see [1, Theorems 3.1, 4.2], [6], [13, Proposition 5.17], [24].

Theorem 5.1 Let Ω = R
N (resp. Ω bounded). (i) Let 1 < q < q∗, and u0 ∈ Mb(R

N )(resp.
u0 ∈ Mb(Ω)). Then there exists a unique weak solution u of (1.1) with trace u0 (resp. a weak
solution of (DΩ,T ), such that limt→0 u(.t) = u0 weakly in Mb(Ω))). If v0 ∈ Mb(Ω) and u0 ≦ v0,
and v is the solution associated to v0, then u ≦ v.

(ii) Let u0 ∈ LR (Ω) , 1 ≦ R ≦ ∞. If 1 < q < (N+2R)/(N+R), or if q = 2, R <∞, there exists
a unique weak solution u of (1.1) (resp. (DΩ,T )) such that u ∈ C([0, T ) ;LR (Ω) and u(0) = u0. If
v0 ∈ LR

(

R
N
)

and u0 ≦ v0, then u ≦ v. If u0 is nonnegative, then for any 1 < q ≦ 2, there still
exists at least a weak nonnegative solution u satisfying the same conditions.

Next we prove Theorem 1.4. We begin by the subcritical case:

Remark 5.2 From [3, Lemma 3.3], for any reals s < τ, the Dirichlet problem







ut −∆u = g, in D′(QΩ,τ ),
u = 0, on ∂Ω× (0, τ),
u(., s) = us, in Ω,

in a bounded domain Ω, with data g ∈ L1(QΩ,τ ) and us ∈ L1 (Ω) , has a unique solution u ∈
C([0, τ ] , L1(Ω)) ∩ L1((0, τ);W 1,1

0 (Ω)). And u ∈ Lk((s, τ);W 1,k
0 (Ω)), for any k ∈ [1, q∗) , and

‖u‖
Lk((s,τ);W 1,k

0 (Ω))
≦ C(k,Ω)(‖u(., s)‖L1(Ω) + ‖g‖L1(QΩ,s,τ )

). (5.1)
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This implies local estimates in any domain Ω of R
N : for any g ∈ L1

loc((0, T ), L
1(Ω)), and u

∈ C((0, T ), L1(Ω)) ∩ L1
loc((0, T );W

1,1
loc (Ω)), such that

ut −∆u = g, in D′(QΩ,T ),

there holds u ∈ L1
loc((0, T );W

1,k
loc (Ω). And for any domain ω ⊂⊂ Ω, and any 0 < s < τ < T

‖u‖Lk((s,τ);W 1,k(ω)) ≦ C(k, ω)(‖u(s, .)‖L1(ω) + ‖g + |∇u|+ |u|‖L1(Qω,s,τ )
). (5.2)

Proposition 5.3 Let 1 < q < q∗, and Ω = R
N (resp. Ω bounded). Then for any u0 ∈ M+

(

R
N
)

(resp. M+ (Ω)), there exists a weak solution u of equation (1.1) (resp. of (DΩ,T )) with trace u0.

Proof. Assume Ω = R
N (resp. Ω bounded). Let u0,n = u0xBn (resp. u0,n = u0xΩ

′
1/n,

where Ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n}, for n large enough). From Theorem 5.1, there exists a
unique weak solution un of (1.1) (resp. of (DΩ,T )) with trace u0,n, and (un) is nondecreasing; and
un ∈ C2,1(QRN ,T ) since q ≦ 2. From (3.1), (3.5), for any ξ ∈ C1+

c (Ω),

∫

Ω
un(., t)ξ

q′ +
1

2

∫ t

0

∫

Ω
|∇un|qξq

′

≦ Ct

∫

Ω
|∇ξ|q′ +

∫

Ω
ξq

′

du0. (5.3)

Hence (un) is bounded in L∞
loc

(

[0, T ) ;L1
loc(Ω)

)

, and (|∇un|q) is bounded in L1
loc

(

[0, T ) ;L1
loc(Ω)

)

. In
turn (un) is bounded in L∞

loc ((0, T );L
∞
loc(Ω)) , from Theorem 3.3. From Remark 2.4, (un) converges

in C2,1
loc (QRN ,T ) (resp. C

2,1
loc (QΩ,T )∩C1,0

(

Ω× (0, T )
)

) to a weak solution u of (1.1) in QRN ,T (resp.

of (DΩ,T )). Also (un) is bounded in Lk
loc([0, T ) ;W

1,k
loc (R

N )) (resp. Lk
loc([0, T ) ;W

1,k
0 (Ω))) for any

k ∈ [1, q∗) from Remark 5.2. Since q < q∗, (|∇un|q) is equiintegrable in QBR,τ for any R > 0 (resp.
in QΩ,τ ) and τ ∈ (0, T ) , then (|∇u|q) ∈ L1

loc

(

[0, T ) ;L1
loc(Ω)

)

. From (2.6),

∫

Ω
un(t, .)ξ +

∫ t

0

∫

Ω
|∇un|qξ = −

∫ t

0

∫

Ω
∇un.∇ξ +

∫

Ω
ξdu0. (5.4)

As n→ ∞ we obtain

∫

Ω
u(t, .)ξ +

∫ t

0

∫

Ω
|∇u|qξ = −

∫ t

0

∫

Ω
∇u.∇ξ +

∫

Ω
ξdu0.

Thus limt→0

∫

Ω u(., t)ξ =
∫

Ω ξdu0, for any ξ ∈ C1+
c (Ω), hence for any ξ ∈ C+

c (Ω); hence u admits
the trace u0.

Next we consider the supercritical case q ≧ q∗. From [1], if the Dirichlet problem (PΩ,T ) has a

solution with u0 ∈ Mb(Ω), then u0 does not charge the sets of W
2−q
q

,q′(Ω) capacity 0 if q < 2. And
u0 ∈ L1(Ω) if q ≧ 2, see another proof in [12]. In the same way, if the Cauchy problem (PRN ,T )

has a solution with trace u0 ∈ M(RN ), then u0 does not charge the sets of W
2−q
q

,q′(RN )-capacity
0 if q < 2, and u0 ∈ L1

loc(R
N ) if q ≧ 2. The converse question is to know what are the ”admissible”

measures for which the problem has a solution. It is widely open, and we give here a few results in
that direction, extending some results of [11].
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Theorem 5.4 (i) Let 1 < q ≦ 2, and Ω = R
N (resp. Ω bounded). For any nonnegative u0 ∈

L1
loc

(

R
N
)

(resp. u0 ∈ L1
loc (Ω)), there exists a weak nonnegative solution of equation (1.1) in QΩ,T

with trace u0. And then u ∈ C([0, T ) ;L1
loc

(

R
N
)

(resp. u ∈ C([0, T ) ;L1
loc (Ω)).

(ii) Let q > 2. The existence is valid for any nonnegative u0 ∈ L1
loc

(

R
N
)

(resp. L1
loc (Ω)) which

is a limit of an nondecreasing sequence of nonnegative functions in Cb

(

R
N
)

(resp. in C0 (Ω)).

Proof. (i) Let Ω = R
N (resp. Ω bounded). As in Proposition 5.3, we set u0,n = min(u0, n)χBn

(resp. u0,n = min(u0, n)χΩ′

1/n
for n large enough). Then u0,n ∈ Lr(Ω) for any r ≧ 1. From

Theorem 5.1, the problem admits a solution un , and it is unique in C([0, T ) ;Lr (Ω)) for any
r > (2 − q)/N(q − 1) and then (un) is nondecreasing. As in Proposition 5.3, (un) is bounded in
L∞
loc

(

[0, T ) ;L1
loc(Ω)

)

, and (|∇un|q) is bounded in L1
loc

(

[0, T ) ;L1
loc(Ω)

)

. Moreover, (un) is bounded

in L∞
loc ((0, T );L

∞
loc(Ω)) from Lemma 3.3. From Theorem 2.3, (un) converges in C

2,1
loc (QΩ,T ) to a weak

solution u of (1.1) in QΩ,T , such that u ∈ L∞
loc

(

[0, T ) ;L1
loc(Ω)

)

and |∇u|q ∈ L1
loc

(

[0, T ) ;L1
loc(Ω)

)

.
Then from Remark 2.5, u admits a trace µ0 ∈ M+(Ω) as t → 0. Applying (5.4) to un, since

un ≦ u, we get

lim
t→0

∫

Ω
u(., t)ξ =

∫

Ω
ξdµ0 ≧ lim

t→0

∫

Ω
un(., t)ξ =

∫

Ω
ξdu0,

for any ξ ∈ C+
c (Ω); thus u0 ≦ µ0. Moreover

∫

Ω
un(t, .)ξ +

∫ t

0

∫

Ω
|∇un|qξ =

∫ t

0

∫

Ω
un∆ξdx+

∫

Ω
ξdu0.

And (un) is bounded in Lk(Qω,τ ) for any k ∈ (1, q∗) ; then for any domain ω ⊂⊂ Ω, (un) converges
strongly in L1(Qω,τ ) ; then from the convergence a.e. of the gradients, and the Fatou Lemma,

∫

RN

u(t, .)ξ +

∫ t

0

∫

RN

|∇u|qξ ≦
∫ t

0

∫

RN

u∆ξdx+

∫

RN

ξdu0.

But from Remark 2.5,

∫

RN

u(t, .)ξ +

∫ t

0

∫

RN

|∇u|qξ =
∫ t

0

∫

RN

u∆ξdx+

∫

RN

ξdµ0,

then µ0 ≦ u0, hence µ0 = u0. Finally we prove the continuity: Let ξ ∈ D+(Ω) and ω ⊂⊂ Ω
containing the support of ξ. Then z = uξ is solution of the Dirichlet problem







zt −∆z = g, in Qω,T ,
z = 0, on ∂ω × (0, T ),
limt→0 z(., t) = ξu0, weakly in Mb(ω),

with g = − |∇u|q ξ + v(−∆ψ) − 2∇v.∇ψ ∈ L1(Qω,T ). The solution is unique, see [6, Proposition
2.2]. Since u0 ∈ L1

loc (Ω) , there also exists a unique solution such that z ∈ C([0, T ) , L1(ω)) from
[3, Lemma 3.3], hence u ∈ C([0, T ) , L1

loc(Ω)).

(ii) As above, by taking for (u0,n) a nondecreasing sequence in Cb

(

R
N
)

(resp. in C0 (Ω)),
converging to u0, and using Remark 2.4 for classical solutions.

In particular this ends the proof of Theorem 1.4.
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Next we show the nonuniqueness of the weak solutions when q > 2 : here the coefficient a
defined at (1.7) is negative, and |a| = (q − 2)/(q − 1) < 1.

Proof of Theorem 1.5. Since q > 2 and N ≥ 2, the function Ũ is a solution in D′
(

R
N
)

of
the stationary equation

−∆u+ |∇u|q = 0

Indeed Ũ ∈W 1,q
loc

(

R
N
)

∩W 2,1
loc

(

R
N
)

because N > q′, and Ũ is a classical solution in R
N\ {0} . Then

it is a weak solution of (PRN ,∞), and Ũ 6∈ C1(QRN ,∞). Since Ũ ∈ C
(

R
N
)

, from Theorem 5.4, or
from [5], there exists also a classical solution UC̃ ∈ C2,1(QRN ,∞) of the problem, thus UC̃ 6= U0.

More generally, for any C > 0, there exists a classical solution UC with trace C |x||a| . And
UC is obtained as the limit of the nondecreasing sequence of the unique solutions Un,C with

trace min(C |x||a| , n), then it is radial. Moreover for any λ > 0, the function Un,C,λ(x, t) =

λ−aUn,C(λx, λ
2t) admits the trace min(C |x||a| , nλ−a). Therefore, denoting by kλ,n the integer part

of nλ−a, there holds Ukλ,n,C ≤ Un,C,λ ≤ Ukλ,n+1 from the comparison principle. And Un,C,λ(x, t)
converges everywhere to λ−aUC(λx, λ

2t), thus UC(x, t) = λ−aUC(λx, λ
2t), that means UC is self-

similar. Then UC has the form (1.14), where f ∈ C2([0,∞)), f(0) ≧ 0, f ′(0) = 0, and limη→∞ η−|a|/2f(η) =
C, and for any η > 0,

f ′′(η) + (
N − 1

η
+
η

2
)f ′(η)− |a|

2
f(η)−

∣

∣f ′(η)
∣

∣

q
= 0. (5.5)

From the Cauchy-Lipschitz Theorem, we find f(0) > 0, since f 6≡ 0, hence f ′′(0) > 0. The function
f is increasing: indeed if there exists a first point η0 > 0 such that f ′(η0) = 0, then f ′′(η0) > 0,
which is contradictory.

6 Second local regularizing effect

Here we show the second regularizing effect. We prove an estimate, playing the role of the sub-
caloricity estimate (2.4). Our proof follows the general scheme of Stampacchia’s method, developped
by many authors, see [17] and references there in, and [19].

First we write estimate (3.1) in another form, and from Gagliardo estimate, we obtain the
following:

Lemma 6.1 Let q > 1. Let η > 0, r ≧ 1. Let u be any nonnegative weak subsolution of equation
(1.1) in QΩ,T . Let B2η ⊂⊂ Ω, 0 < θ < τ < T, and ξ ∈ C1((0, T ), C1

c (Ω)), with values in [0, 1] , such
that ξ(., t) = 0 for t ≦ θ. Let λ ≧ max(2, q′).

Then for any ν ∈ (0, 1] ,

sup
[θ,τ ]

∫

Ω
ur(., t)ξλ +

∫ τ
θ

∫

Ω u
(q+r−1)(1+ µ

N
)ξλ(1+

µ
N
)

(supt∈[θ,τ ]
∫

Ω u
rξ

λr
q+r−1 )

q
N

≦ C

∫ τ

θ

∫

Ω
(ur |ξt|+ ur−1 |∇ξ|q′ + uq+r−1 |∇ξ|q),

(6.1)
where µ = rq/(q + r − 1), C = C(N, q, r, λ).
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Proof. From Remark 2.2, u ∈ L∞
loc(QΩ,T )), and hence u

q+r−1
q ξ

λ
q ∈W 1,q(QΩ,θ,t) and

∫ t

θ

∫

Ω
|∇(u

q+r−1
q ξ

λ
q )|q =

∫ t

θ

∫

Ω

∣

∣

∣

∣

q + r − 1

q
u

r−1
q ξ

λ
q ∇u+

λ

q
u

q+r−1
q ξ

λ−q
q ∇ξ

∣

∣

∣

∣

q

≦ C(

∫ t

θ

∫

Ω
ur−1|∇u|qξλ +

∫ t

θ

∫

Ω
uq+r−1|∇ξ|qξλ−q),

with C = C(q, r, λ). From (3.1), since ν ≦ 1, we get

sup
[θ,τ ]

∫

Ω
ur(., t)ξλ +

∫ τ

θ

∫

Ω
|∇(u

q+r−1
q ξ

λ
q )|q ≦ C

∫ τ

θ

∫

Ω
(ur |ξt|+ ur−1 |∇ξ|q′ + uq+r−1 |∇ξ|q), (6.2)

where C = C(q, r, λ). Next we use a Galliardo type estimate, see [17, Proposition 3.1]: for any
µ ≧ 1, and any w ∈ L∞

loc((0, T ), L
µ(Ω)) ∩ Lq

loc((0, T ),W
1,q(Ω)),

∫ τ

θ

∫

Ω
wq(1+ µ

N
)) ≦ C(

∫ τ

θ

∫

Ω
|∇w|q)( sup

t∈[θ,τ ]

∫

Ω
|w|µ) q

N , C = C(N, q, µ).

Taking w = u
q+r−1

q ξ
λ
q and µ = qr/(q + r − 1) ≧ r ≧ 1, setting s = 1 + µ/N, it comes

∫ τ

θ

∫

Ω
u(q+r−1)sξλs ≦ C(

∫ τ

θ

∫

Ω
|∇w|q)( sup

t∈[θ,τ ]

∫

Ω
urξ

λr
q+r−1 )

q
N ,

hence (6.1) follows.

Theorem 6.2 Let q > 1. Let u be any nonnegative weak solution of equation (1.1) in QΩ,T . Let
B(x0, ρ) ⊂⊂ Ω. Let R > q− 1 (in particular any R ≧ 1 if q < 2). Then there exists C = C(N, q,R)
such that, for any t, θ such that 0 < t− 2θ < t < T,

sup
B(x0,

ρ
2
)×[t−θ,t]

u ≦ Cθ
− N+q

qR+N(q−1) (

∫ t

t−2θ

∫

B(x0,ρ)
uR)

q
qR+N(q−1)

+ Cρ
− N+q

(q−1)(R+N+1) (

∫ t

t−2θ

∫

B(x0,ρ)
uR)

1
R+N+1 + Cρ−

N+q
R+1−q (

∫ t

t−2θ

∫

B(x0,ρ)
uR)

1
R+1−q .

(6.3)

Proof. Since u ∈ C((0, T );LR
loc(QΩ,T )), by regularization we can assume that u is a classical

solution in QΩ,T . Let t, θ such that 0 < t− 2θ < t < T. We can assume x0 = 0 ∈ Ω. By translation
of t− θ, we are lead to prove that for any solution in QΩ,−τ/2,τ/2 (τ < T ),

sup
QBρ/2

,0,θ
u ≦ Cθ

− N+q
qR+N(q−1) (

∫ θ

−θ

∫

Bρ

uR)
q

qR+N(q−1)

+ Cρ
− N+q

(q−1)(R+N+1) (

∫ θ

−θ

∫

Bρ

uR)
1

R+N+1 + Cρ−
N+q

R+1−q (

∫ θ

−θ

∫

Bρ

uR)
1

R+1−q . (6.4)
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For given k > 0 we set uk = (u−k)+ . Then uk ∈ C(0, T );LR
loc(QΩ,T )), and uk is a weak subsolution

of equation (1.1), from the Kato inequality. We set

ρn = (1 + 2−n)ρ/2, tn = −(1 + 2−n)θ/2,

Qn = Bρn × (tn, θ), Q0 = Bρ × (−θ, θ), Q∞ = Bρ/2 × (−θ/2, θ),
kn = (1− 2−(n+1))k, k̃ = (kn + kn+1)/2.

and set Mσ = supQ∞
u, M = supQ0

u. Let ξ(x, t) = ξ1(x)ξ2(t) where ξ1 ∈ C1
c (Ω), ξ2 ∈ C1(R), with

values in [0, 1], such that

ξ1 = 1 on Bρn+1 , ξ1 = 0 on R
N\Bρn , |∇ξ1| ≦ C(N)2n+1/ρ;

ξ2 = 1 on [θn+1,∞) , ξ2 = 0 on (−∞, θn] , |ξ2,t| ≦ C(N)2n+1/θ.

From Lemma 6.1 we get, with µ = qr/(q + r − 1),

sup
t∈[tn+1,θ]

∫

Bρn+1
urkn+1

(., t) +

∫ θ
tn+1

∫

Bρn+1
u
(q+r−1)(1+ µ

N
)

kn+1

(supt∈[tn,θ]
∫

Bρn
urkn)

q
N

≦ CXn, where

Xn =

∫ θ

tn

∫

Bρn

(urkn+1
|ζt|+ ur−1

kn+1
|∇ξ|q′ + uq+r−1

kn+1
|∇ξ|q)).

Let us define

Yn =

∫ θ

tn

∫

Bρn

uq+r−1
kn

, Zn = sup
t∈[tn,θ]

∫

Bρn

urkn , Wn =

∫ θ

tn

∫

Bρn

χ{u≧kn}.

Thus, from the Hölder inequality,

Zn+1 + Z
− q

N
n W

− µ
N

n+1Y
1+ µ

N
n+1 ≦ CXn. (6.5)

Morever, for any γ, β > 0,

∫ θ

tn

∫

Bρn

uγ+β
kn

≧

∫ θ

tn

∫

Bρn

(kn − kn+1)
γ+βχ{u≧kn+1}

≧ (k2−(n+2))γ+β

∫ θ

tn

∫

Bρn

χ{u≧kn+1} ≧ (k2−(n+2))γ+β

∫ θ

tn+1

∫

Bρn+1

χ{u≧kn+1},

and from the Hölder inequality,

∫ θ

tn

∫

Bρn

uγkn+1
≦ (

∫ θ

tn

∫

Bρn

uγ+β
kn+1

)
γ

γ+β (

∫ θ

tn

∫

Bρn

χ{u≧kn+1})
β

γ+β

≦ (

∫ θ

tn

∫

Bρn

uγ+β
kn

)(k−12(n+2))β(

∫ θ

tn

∫

Bρn

uγ+β
kn

)
β

γ+β

≤ (k−12(n+2))β
∫ θ

tn

∫

Bρn

uγ+β
kn

.
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Thus in particular

Wn+1 ≦ C(
2n+1

k
)q+r−1Yn,

∫ θ

tn

∫

Bρn

urkn+1
≦ C(

2n+1

k
)q−1Yn,

∫ θ

tn

∫

Bρn

ur−1
kn+1

≦ C(
2n+1

k
)qYn.

(6.6)
Otherwise

Xn ≦

∫ θ

tn

∫

Bρn

(2n+1θ−1urkn+1
+ 2q

′(n+1)ρ−q′ur−1
kn+1

+ 2q(n+1)ρ−quq+r−1
kn+1

),

then from (6.6),

Xn ≦ Cbn0f(θ, ρ, k)Yn, where f(θ, ρ, k) = (θ−1 1

kq−1
+

1

kq
ρ−q′ + ρ−q). (6.7)

for some b0 depending on q, r. Then from (6.5), (6.6) and (6.7),

Zn+1 ≦ Cbn0f(θ, ρ, k)Yn, Y
1+ µ

N
n+1 ≦ CZ

q
N
n (

2n+1

k
)(q+r−1) µ

N bn0f(θ, ρ, k)Y
1+ µ

N
n .

Since Yn+1 ≦ Yn,setting α = q/(N + µ) and denoting by b1, b some new constants depending on
N, q, r,

Yn+2 ≦ CZ
q

N+µ

n+1 b
n+1
1 k−(q+r−1) µ

N+µ f
N

N+µ (θ, ρ, k)Yn+1

≦ C(bn0f(θ, ρ, k)Yn)
q

N+µ bn+1
1 k−(q+r−1) µ

N+µ f
N

N+µ (θ, ρ, k)Yn

≦ Cbnf
N+q
N+µ k

−(q+r−1) µ
N+µY

1+ q
N+µ

n := DbnY 1+α
n .

From [17, Lemma 4.1], Yn → 0 if

Y α
0 δ

1/α ≦ D−1 = C−1k(q+r−1) µ
N+µ f−

N+q
N+µ ,

that means

kqr ≧ cY q
0 ((θ

−1 1

kq−1
+

1

kq
ρ−q′ + ρ−q))N+q. (6.8)

For getting (6.8) it is sufficient that

kqr+(q−1)(N+q) ≧
c

2
Y q
0 θ

−(N+q), k(r+N+q) ≧ (
c

2
)1/qY0ρ

−N+q
q−1 , and kr ≧

c

2
Y0ρ

−(N+q).

Thus we deduce that

sup
Q∞

u ≦ Cθ
− N+q

qr+(N+q)(q−1) (

∫ θ

−θ

∫

Bρ

uq+r−1)
q

qr+(N+q)(q−1)

+ Cρ
− N+q

(q−1)(r+N+q) (

∫ θ

−θ

∫

Bρ

uq+r−1)
1

r+N+q + Cρ−
N+q
r (

∫ θ

−θ

∫

Bρ

uq+r−1)
1
r . (6.9)

If we set q + r − 1 = R, we obtain (6.4) for any R ≧ q.
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Next we consider the case R < q. From (6.9) we get

sup
Bσρ×(−θ/2,θ)

u ≦ Cθ
− N+q

q+(q−1)(N+q) (

∫ θ

0

∫

Bρ

uq)
q

q+(q−1)(N+q)

+ Cρ
− N+q

(q−1)(1+N+q) (

∫ θ

−θ

∫

Bρ

uq)
1

1+N+q +Cρ−(N+q)

∫ θ

−θ

∫

Bρ

uq

≦ Cθ
− N+q

q+(q−1)(N+q) ( sup
Bρ×0,θ)

u)
q(q−R)

q+(q−1)(N+q) (

∫ θ

−θ

∫

Bρ

uR)
q

q+(q−1)(N+q)

+ Cρ
− N+q

(q−1)(1+N+q) ( sup
Bρ×0,θ)

u)
q(q−R)
1+N+q) (

∫ θ

−θ

∫

Bρ

uR)
1

1+N+q

+ Cρ−(N+q)( sup
Bρ×0,θ)

u)(q−R)

∫ θ

−θ

∫

Bρ

uR.

We define

ρ̃n = (1 + 2−(n+1))ρ, θn = −(1 + 2−(n+1))θ, Q̃n = Bρ̃n × (θn, θ), Mn = sup
Q̃n

u,

hence M0 = supBρ/2×(−θ/2,θ) u. We find

Mn ≦ Cθ
− N+q

q+(q−1)(N+q)M
q(q−R)

q+(q−1)(N+q)

n+1 (

∫ θ

−θ

∫

Bρ

uR)
q

q+(q−1)(N+q)

+ Cρ
− N+q

(q−1)(1+N+q)M
q(q−R)
1+N+q

n+1 (

∫ θ

−θ

∫

Bρ

uR)
1

1+N+q + Cρ−(N+q)M q−R
n+1

∫ θ

−θ

∫

Bρ

uR.

We set

I = Cθ
− N+q

q+(q−1)(N+q) (

∫ θ

−θ

∫

Bρ

uR)
q

q+(q−1)(N+q) ,

J = Cρ−(N+q)

∫ θ

0

∫

Bρ

uR, L = Cρ
− N+q

(q−1)(1+N+q) (

∫ θ

−θ

∫

Bρ

uR)
1

1+N+q .

Note that R > q − 1, that means q −R < 1. Then from Hölder inequality,

Mn ≦
1

2
Mn+1 + C(Iσ + Lδ + J

1
R+1−q ), σ =

q + (q − 1)(N + q)

N(q − 1) + qR
, δ =

1 +N + q

R+N + 1
.

Thus M0 ≦ 2−nMn + 2C(Iσ + Lδ + J
1

R+1−q ), and finally

M0 = sup
Q0

u ≦ C(Iσ + Lδ + J
1

R+1−q ) = Cθ
− N+q

N(q−1)+qR (

∫ θ

−θ

∫

Bρ

uR)
q

N(q−1)+qR

+ Cρ
− N+q

(q−1)(R+N+1) (

∫ θ

−θ

∫

Bρ

uR)
1

R+N+1 + Cρ−
N+q

R+1−q (

∫ θ

−θ

∫

Bρ

uR)
1

R+1−q ,

which shows again (6.4). Then (6.4) holds for any R > q− 1, in particular for any R ≧ 1 if q < 2.
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Now we prove our second regularing effect due to the effect of the gradient:
Proof of Theorem 1.6. We assume x0 = 0. Let κ > 0 be a parameter. From (6.3), for any

ρ ∈ (0, η) such that ρκ ≦ t < τ,

sup
B ρ

2
×[t−ρκ,t]

u ≦ Cρ
−

κ(N+q)
qR+N(q−1) (

∫ t

t−ρκ

∫

Bρ

uR)
q

qR+N(q−1)

+ Cρ
− N+q

(q−1)(R+N+1) (

∫ t

t−ρκ

∫

Bρ

uR)
1

R+N+1 + Cρ
− N+q

R+1−q (

∫ t

t−ρκ

∫

Bρ

uR)
1

R+1−q ,

where C = C(N, q,R). Now from estimate (3.3) of Lemma 3.2,

supBη/2
u(., t) ≦ Cρ

− κN
qR+N(q−1) (η

N
R
−q′t+ ‖u0‖LR(Bη)

)
Rq

qR+N(q−1)

+ Cρ
− N+q

(q−1)(R+N+1)
+ κ

R+N+1 (η
N
R
−q′t+ ‖u0‖LR(Bη)

)
R

R+N+1

+ Cρ
−(N+q)+κ

R+1−q (η
N
R
−q′t+ ‖u0‖LR(Bη)

)
R

R+1−q .

Let τ < T, and k0 ∈ N such that k0η
κ/2 ≧ τ. For any t ∈ (0, τ ] , there exists k ∈ N with k ≦ k0 such

that t ∈ (kηκ/2, (k + 1)ηκ/2] . taking ρκ = t/(k+1), we find for any 0 < t < τ, and C = C(N, q,R),

supBη/2
u(., t) ≦ C(

1 + η−κτ

t
)

N
qR+N(q−1) (η

N
R
−q′t+ ‖u0‖LR(Bη)

)
Rq

qR+N(q−1)

+C(
1 + η−κτ

t
)

N+q
κ(q−1)

−1

R+N+1 (η
N
R
−q′t+ ‖u0‖LR(Bη)

)
R

R+N+1

+C(
1 + η−κτ

t
)

N+q
κ −1

R+1−q (η
N
R
−q′t+ ‖u0‖LR(Bη)

)
R

R+1−q . (6.10)

If we choose κ such that κε(N + q)q′ ≧ 1, we obtain, with C = C(N, q,R, η, ε, τ),

supBη/2
u(., t) ≦ Ct

− N
qR+N(q−1) (t+ ‖u0‖LR(Bη)

)
Rq

qR+N(q−1)

+ Ct
1−ε

R+N+1 (t+ ‖u0‖LR(Bη)
)

R
R+N+1 + Ct

1−ε
R+1−q (t+ ‖u0‖LR(Bη)

)
R

R+1−q (6.11)

And in fact the second term can be absorbed by the first one, with a new constant depending on
τ, and we finally obtain (1.15).

Remark 6.3 These estimate in t−N/(qR+N(q−1)) improves the estimate in t−N/2Rof the first reg-
ularizing effect when q > q∗. And it appears to be sharp. Indeed consider for example the partic-
ular solutions given in [25] of the form uC(x, t) = Ct−a/2f(|x| /

√
t), where η 7→ f(η) is bounded,

f ′(0) = 0 and limη→∞ ηaf (η) = C. Then uC is solution of (1.1) in QRN\{0},∞, with initial data

C |x|−a . When a < N, that means q > q∗, then |x|−a ∈ LR
loc(R

N ) for any R ∈ [1, N/a), and uC is
solution in QRN ,∞. We have supB1

u(., t) = Cf(0)t−a/2. Taking N/R = a(1 + δ), for small δ > 0

our estimate near t = 0 gives supB1
u(., t) ≦ Cδt

− a
2
(1+δ).
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[10] S. Benachour and P. Laurençot, Very singular solutions to a nonlinear parabolic equation with
absorption, I- Existence, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 27-44.

[11] M. Ben Artzi, P. Souplet and F. Weissler, The local theory for Viscous Hamilton-Jacobi equa-
tions in Lebesgue spaces, J. Math. Pures Appl., 81 (2002), 343-378.
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