
HAL Id: hal-01020088
https://hal.science/hal-01020088v1

Preprint submitted on 7 Jul 2014 (v1), last revised 8 Jul 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Existence of One-Way Functions
Frank Vega

To cite this version:

Frank Vega. The Existence of One-Way Functions. 2014. �hal-01020088v1�

https://hal.science/hal-01020088v1
https://hal.archives-ouvertes.fr

THE EXISTENCE OF ONE-WAY FUNCTIONS

FRANK VEGA

Abstract. We assume there are one-way functions and obtain a contradiction
following a solid argumentation, and therefore, one-way functions do not exist

applying the reductio ad absurdum method. Indeed, for every language L that

is in EXP and not in P , we show that any configuration, which belongs to
the accepting computation of x ∈ L and is at most polynomially longer or

shorter than x, has always a non-polynomial time algorithm that find it from
the initial or the acceptance configuration on a deterministic Turing Machine

that decides L that has always a string in the acceptance computation that

is at most polynomially longer or shorter than the input x ∈ L. Next, we
prove the existence of one-way functions contradicts this fact, and thus, they

should not exist. Hence, function problems such as the integer factorization of

two large primes can be solved efficiently. In this way, this work proves that
is not safe many of the encryption and authentication methods such as the

public-key cryptography. It could be the case of P = NP or P 6= NP , even

though there are no one-way functions. However, we prove that P = UP .

1. Introduction

The P versus NP problem is the major unsolved problem in computer science.
It was introduced in 1971 by Stephen Cook [1]. Today is considered by many
scientists as the most important open problem in this field [3]. A solution to this
problem will have a great impact in other fields such as mathematics and biology.

During the first half of the twentieth century many investigations were focused
on formalizes the knowledge about the algorithms using the theoretical model de-
scribed by Turing Machines. On this time appeared the first computers and the
mathematicians were able to model the capabilities and limitations of such devices
appearing precisely what is now known as the science of computational complexity
theory.

Since the beginning of computation, many tasks that man could not do, were
done by computers, but sometimes some difficult and slow to resolve were not
feasible for even the fastest computers. The only way to avoid the delay was to find
a possible method that cannot do the exhaustive search that was accompanied by
“brute force”. Even today, there are problems which have not a known method to
solve easily yet.

This property has been used in the security methods inside of practical com-
putational applications using tools such as the suspected one-way functions. If
one-way functions do not exist, then this would imply that some algorithms used
in cryptography will be easy to break at some point. However, if some functions
are one-way, they would ensure that there are hundreds of problems that have not
a feasible solution. This is largely derived from this result that P 6= NP , so there

2000 Mathematics Subject Classification. Primary 68-XX, 68Qxx, 68Q15.

Key words and phrases. Complexity classes, one-way function, P, UP, NP, EXP.

1

2 FRANK VEGA

will be a huge amount of problems that can be checked easily but without some
practical solution [8]. It will remain the best option to use brute force or a heuristic
algorithm in many cases.

We use in this work a method known as reductio ad absurdum which is a common
form of argument which seeks to demonstrate that a statement is true by showing
that a false or absurd result follows from its denial. This rule has formed the basis
in formal fields like logic and mathematics. In this work, we assume there are
one-way functions and obtain a contradiction following a solid argumentation, and
therefore, one-way functions do not exist applying this method.

2. Theory

The argument made by Alan Turing in the twentieth century proves mathemat-
ically that for any computer program we can create an equivalent Turing Machine
[9]. A Turing Machine M has a finite set of states K and a finite set of symbols A
called the alphabet of M . The set of states has a special state s which is known as
the initial state. The alphabet contains special symbols such as the start symbol
B and the blank symbol $.

The operations of a Turing Machine are based on a transition function δ, which
takes the initial state with a string of symbols of the alphabet that is known as the
input. Then, it proceeds to reading the symbols on the cells contained in a tape,
through a head or cursor. At the same time, the symbols on each step are erased
and written by the transition function, and later moved to the left ←−, right −→
or remain in the same place − for each cell. Finally, this process is interrupted if it
halts in a final state: the state of acceptance “yes”, the rejection “no” or halting h
[7].

A Turing Machine halts if it reaches a final state. If a Turing Machine M accepts
or rejects a string x, then M(x) = “yes” or “no” is respectively written. If it reaches
the halting state h , we write M(x) = y, where the string y is considered as the
output string, i.e., the string remaining in M when this halts [7].

A transition function δ is also called the “program” of the Turing Machine and
is represented as the triple δ(q, σ) = (p, ρ,D). For each current state q and current
symbol σ of the alphabet, the Turing Machine will move to the next state p, over-
writing the symbol σ by ρ, and moving the cursor in the direction D ∈ {←−,−→,−}
[7]. When there is more than one tape, δ remains deciding the next state, but it
can overwrite different symbols and move in different directions over each tape.

Operations by a Turing Machine are defined using a configuration that contains
a complete description of the current state of the Machine. A configuration is a
triple (q, w, u) where q is the current state and w, u are strings over the alphabet
showing the string to the left of the cursor including the scanned symbol and the
string to the right of the cursor respectively, during any instant in which there is a
transition on δ [7]. The configuration definition can be extended to multiple tapes
using the corresponding cursors.

A deterministic Turing Machine is a Turing Machine that has only one next
action for each step defined in the transition function [6], [4]. However, a non-
deterministic Turing Machine can contain more than one action defined for each
step of the program, where this program was no longer a function but a relation
[6], [4].

THE EXISTENCE OF ONE-WAY FUNCTIONS 3

A complexity class is a set of problems, which are represented as a language,
grouped by measures such as the running time, memory, etc [2]. There are four
complexity classes that have a close relationship with the previous concepts and are
represented as P , UP , EXP and NP . In computational complexity theory, the
class P contains the languages that are decided by a deterministic Turing Machine
in polynomial time [6]. The class UP has all the languages that are decided in
polynomial time by a nondeterministic Turing machines with at most one accepting
computation for each input [10]. The complexity class EXP is the set of all decision
problems solvable by a deterministic Turing machine in O(2p(n)) time, where p(n) is
a polynomial function of n. The class NP contains the languages that are decided
by a non-deterministic Turing Machines in polynomial time [4]. Problems that are
EXP − complete might be thought of as the hardest problems in EXP . We do
know that EXP − complete problems are not in P : it has been proven that these
problems cannot be solved in polynomial time, by the time hierarchy theorem [7].

On the other hand, a language L ∈ NP if there is a polynomial-time decidable,
polynomially balanced relation RL such that for all strings x: there is a string y
with RL(x, y) if and only if x ∈ L [7]. The function problem associated with L is
the following computational problem: given x, find a string y such that RL(x, y)
if such a string exists; if no such string exists, return “no” [7]. The class of all
function problems associated as above with languages in NP is called FNP [7]. The
resulting class from FNP is the class FP which represents all function problems
that can be solved in polynomial time [7]. We also could define FEXP as the
complexity class of function problems associated with languages in EXP .

The P versus NP problem is to know whether P is equal to NP or not. This
would be equivalent to prove whether FP is equal to FNP or not. A one-way
function f is a function from strings to strings, one-to-one, for all input x we have
| x | 1k≤| f(x) |≤| x |k for some k > 0 and f is in FP but f−1 is not [7]. It holds
the following statement: P = UP if and only if there are no one-way functions [7].
If one-way functions exist, then P 6= NP [5]. The existence of one-way functions is
still an open conjecture.

3. Results

Lemma 3.1. Every language Lexp ∈ EXP is decided by a deterministic Tur-
ing Machine Mexp that has only one tape and always accepts in the configuration
(“yes”,B, x$z) when x ∈ Lexp and z is another remaining string of the accepting
computation that will be at most polynomially longer or shorter than the string x.

Every Turing Machine could be transformed into another Turing Machine of
one tape which has a polynomial time in relation with the running time of the
original [7]. Therefore, the deterministic Turing Machine that decides Lexp could
be of one tape. This one-tape deterministic Turing Machine can be transformed
into two-tapes deterministic Turing Machine that receives the input in the first
tape. This new Turing Machine will copy the input in the second tape and there, it
will simulate the original Turing Machine of one tape. When the simulation of the
original Turing Machine accepts, it will copy, concatenated with a blank symbol
at the end of the first tape, the content of the second tape until a length which is
at most polynomially longer or shorter with the size of x in a constant exponent
and if the content is very short or empty, then we fill it with 1 symbols. Next,
we remove the content in the second tape that was not copied on the first tape.

4 FRANK VEGA

Finally, it will set the cursors in the start symbols of each tape and halt in the state
of acceptance. In case of rejection, the two-tapes deterministic Turing Machine will
reject too. This new Turing Machine can be transformed into a one-tape Turing
Machine Mexp complying with the Lemma 3.1.

Definition 3.2. For every language Lexp ∈ EXP , we could invert the deterministic
Turing Machine Mexp of Lemma 3.1 changing the state of acceptance with the initial
state and reversing the transition function of Mexp. In this way, we would create a
new non-deterministic Turing Machine Nexp. We are going to define the rejection
state in Nexp in the following way: for every q state in the set of states of Nexp

and every σ symbol of its alphabet, then δ(q, σ) = (“no”, σ,−), where δ will be the
program of Nexp. The non-deterministic Turing Machine Nexp will simulate the
behavior of Mexp moving backwards.

We start executing Nexp(x$z) from the initial configuration (s,B, x$z) which
corresponds to the configuration of acceptance (“yes”,B, x$z) on Mexp.

Definition 3.3. Let config(x) be a configuration that belongs to the accepting
computation of x ∈ Lexp for some language Lexp ∈ EXP on the deterministic
Turing Machine Mexp of Lemma 3.1 and is at most polynomially longer or shorter
than the string x.

We could obtain the configuration by the deterministic Turing Machine Mexp of
Lemma 3.1 in the execution of Mexp(x) or by the non-deterministic Turing Machine
Nexp of the Definition 3.2 in the execution of Nexp(x$z).

Theorem 3.4. For every language Lexp ∈ EXP and is not in P , we obtain the con-
figuration config(x) by a algorithm that runs forward from the initial configuration
in a polynomial time if and only if we cannot obtain the configuration config(x)
by algorithm that runs backward from the acceptance configuration in polynomial
time. The initial and acceptance configurations belong to the deterministic Turing
Machine Mexp of Lemma 3.1 with an input x ∈ Lexp.

If we obtain the configuration config(x) by the execution of Mexp(x) in a poly-
nomial time, then that means from the configuration config(x) until the state of
acceptance there is an exponential amount of steps, because Lexp ∈ EXP and is not
in P . Therefore, any algorithm that runs backward from the acceptance configura-
tion with the input x$z until the configuration config(x) will be exponential due
to z is at most polynomially longer or shorter than the strings x. If we obtain the
configuration config(x) by the execution of Nexp(x$z) in a polynomial time, then
that means from the configuration config(x) until the state of acceptance on Mexp

with x there will be a polynomial amount of steps, because config(x) is at most
polynomially longer or shorter than the strings x and z. Therefore, there will not
be any polynomial time algorithm that runs forward from the initial configuration
with x until config(x) due to Lexp ∈ EXP and is not in P .

Hypothesis 3.5. The one-way functions exist.

We are going to assume the Hypothesis 3.5 is true until the end of this work
where we prove that is false.

Lemma 3.6. There are at least two one-way functions.

THE EXISTENCE OF ONE-WAY FUNCTIONS 5

If we have at least one function f∗ that is one-way, then we could build for
every function f , that is from strings to strings, one-to-one, for all input x we have
| x | 1k≤| f(x) |≤| x |k for some k > 0 and f and f−1 are in FP , another function
f∗∗ that is one-way too. There are many functions such as the identity function
which comply with the characteristics of f . The one-way function f∗∗ will be
defined by the composition of functions f∗(f(x)) for any input x. We already know
that f∗(f(x)) is in FP , but to compute f−1

∗∗ is necessary to execute f−1
∗ , because

x = f−1(f−1
∗ (f∗(f(x)))). Therefore, f−1

∗∗ is not in FP , and then, f∗∗ complies with
all the characteristics in the definition of a one-way function.

Definition 3.7. For each two one-way functions f∗ and f∗∗, we could define a new
function problem F∗∗∗, such that for every input x the function problem will return
the result of f−1

∗∗ (f∗(x)). If x and f∗(x) are not defined in the domains of f∗ and
f−1
∗∗ respectively, then F∗∗∗ returns “no”.

Lemma 3.8. F∗∗∗ ∈ FEXP and is not in FP .

This is possible due to f−1
∗∗ is not in FP .

Lemma 3.9. The function problem F∗∗∗ has an associated language L∗∗∗ such that
L∗∗∗ ∈ EXP and is not in P .

This result is a consequence of the definition of function problem that we explain
in the Theory section.

Important 3.10. With the language L∗∗∗, we will put the remaining string z of
the accepting computation in the configuration (“yes”,B, x$z) when x ∈ Lexp on
the deterministic Turing Machine Mexp of Lemma 3.1 as the output of F∗∗∗ for x.

This will be the key in our proof.

Lemma 3.11. Each one-way function f∗ and f∗∗ has a different deterministic
Turing Machine M∗ and M∗∗ that has only one-tape and halts with polynomial
time in the state of halting for the input x with the configuration (h,B, y) when
f∗(x) = y and f∗∗(x) = y respectively.

The functions f∗ and f∗∗ are in FP , and thus, following the arguments of Lemma
3.1, we could build any of these deterministic Turing Machines M∗ or M∗∗ for each
function in a similar way, that is creating a new input tape, removing the content
of the other tapes at the end and changing the new Turing Machine into a one-tape
deterministic Turing Machine.

Lemma 3.12. In the language L∗∗∗, we could have a configuration which belongs to
the accepting computation of x ∈ L∗∗∗ on the deterministic Turing Machine Mexp

of Lemma 3.1 that is equal to the configuration in the halting state on M∗ in the
execution of f∗(x), but with a different state. We will denoted this configuration as
config∗(x).

This is an implication of the function problem F∗∗∗ associated with L∗∗∗, because
F∗∗∗ executes f∗(x) = y and then f−1

∗∗ (y). Hence, we could first simulate the
execution of the one-tape deterministic Turing Machine M∗ with x for f∗ on Mexp

and later f−1
∗∗ (y).

Theorem 3.13. The Hypothesis 3.5 is false, and therefore, there are no one-way
functions.

6 FRANK VEGA

We show we could obtain config∗(x) on the deterministic Turing Machine M∗
with x for f∗, but with a different state. Besides, we could obtain config∗(x) on
the deterministic Turing Machine M∗∗ with f−1

∗∗ (f∗(x)) for f∗∗, but with a different
state. Indeed, the string f−1

∗∗ (f∗(x)) will be the output of F∗∗∗ for the input x that
will be equal to the string z on the configuration of acceptance on Mexp. However,
the state of the configuration config∗(x) could be always the same, because we
could delimit on Mexp when we finish through f∗(x) = y and start with f−1

∗∗ (y)
and then we could assign a single state for this step. For that reason, we could
affirm that we can always obtain the configuration config∗(x) by a polynomial time
algorithm in a forward and backward running way from the initial and acceptance
configurations which belong to the deterministic Turing Machine Mexp of Lemma
3.1 with an input x ∈ L∗∗∗. Nevertheless, this is a contradiction with Theorem
3.4. In conclusion, if we apply the reductio ad absurdum method, we have the
Hypothesis 3.5 is false, and therefore, there are no one-way functions.

Lemma 3.14. P = UP .

This is a direct consequence of Theorem above.

4. Conclusions

This result shows in a formal way that many currently mathematically problems
can be solved efficiently such as the integer factorization of two large primes. In this
way, it proves that is not safe many of the encryption and authentication methods
such as the public-key cryptography. It could be the case of P = NP or P 6= NP ,
even though there are no one-way functions. However, we prove that P = UP .

Acknowledgement

I thank my mother Iris Delgado for her support and confidence.

References

1. Stephen A. Cook, The complexity of theorem proving procedures, Proceedings of the 3rd

Annual ACM Symposium on the Theory of Computing (STOC’71), ACM Press, 1971, pp. 151–
158.

2. Thomas H. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction

to algorithms, second edition, MIT Press, 2001.
3. Lance Fortnow, The status of the P versus NP problem, Communications of the ACM 52

(2009), no. 9, 78–86.

4. M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of np-
completeness (series of books in the mathematical sciences), first edition ed., W. H. Freeman,

1979.

5. O. Goldreich, The foundations of cryptography - volume 1, basic techniques, Cambridge Uni-
versity Press, 2001.

6. Harry R. Lewis and Christos H. Papadimitriou, Elements of the theory of computation (2.
ed.), Prentice Hall, 1998.

7. Christos H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.
8. M. Sipser, Introduction to the theory of computation, International Thomson Publishing, 1996.
9. Alan M. Turing, On computable numbers, with an application to the entscheidungsproblem,

Proceedings of the London Mathematical Society 42 (1936), 230–265.

10. Leslie G. Valiant, Relative complexity of checking and evaluating., Inf. Process. Lett. 5 (1976),
no. 1, 20–23.

Datys, Playa, Havana, Cuba

E-mail address: vega.frank@gmail.com

