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Abstract – In this work we propose an original fault signature based on the Hilbert-Park 
Lissajou’s curve analysis. The performances of the proposed signature were compared to those of 
the Park Lissajou’s curve which is the signature most recently used. The proposed fault signature 
does not require a long temporal recording, and their processing is simple. This analysis offers an 
easy interpretation to conclude on the induction motor condition and its voltage supply state. The 
proposed signature shows its efficiency especially in the case of unloaded machine. The 
geometrical characteristic of all Hilbert-Park Lissajou’s curves are calculated  in order to 
develop the input vector necessary for the pattern recognition tools based on neural network 
approach with an aim of classifying automatically the various states of the induction motor. This 
approach was applied to a 1.1 kw induction motor under normal operation and with the following 
faults: unbalanced voltage, air-gap eccentricity and outer raceway bearing defect. 
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Nomenclature 
A(t) The amplitude modulation 
ψ(t) The instantaneous phase 
Ф(t) The phase modulation 
ω(t) The instantaneous pulsation 
x(t) The modulated signal 
H(x(t)) The Hilbert transform 
Lp The edge length of Hilbert-Park Lissajou’s 

curve 
μp The triangle mass center 
Δμ The distance between the two mass centers 
MSE The mean square error 
MLP The multi-layer perceptron 
MCSA Motor current signature analysis 

I. Introduction 
Induction motors are nowadays extensively used in all 

types of industry applications due to their simple 
construction, reliability, and the availability of power 
converters using efficient control strategies. In this way, 
early fault detection and diagnosis allow preventative and 
condition-based maintenance to be arranged for the 
electrical machines during scheduled downtimes and 
prevent an extended period of breakdown due to 
extensive system failures. 

For the fault detection problem, it is interesting to 
know if a fault exists in the system via online 
measurements [1]. 

Although induction machines are failures subjected 
which are inherent to the machine itself or due to external 
environment. 

The origins of inherent failures are due to the 
mechanical or electrical forces acting in the machine 
enclosure. Researchers have studied a variety of machine 
faults, such as winding faults [2], broken rotor bars [3], 
eccentricity [4], and bearing faults [5]. 

Various methods for induction motor fault detection 
have been reported in the literature. In [6], an online 
induction motor diagnosis system using motor current 
signature analysis (MCSA) with advanced signal 
processing algorithms is proposed. In [7], authors 
propose a method based on monitoring certain statistical 
parameters estimated from the analysis of the steady state 
stator current. The approach is based on the extraction of 
the signal envelop by Hilbert transformation, pre-
multiplied by a Tukey window to avoid transient 
distortion. In [8], authors use a sliding window 
constructed by Hilbert transform of one current phase 
and the fault severity is diagnosed by motor current 
signature analysis (MCSA) of the stored Hilbert 
transform of several periods. 

The majority of signatures proposed in the literature 
are based on the signal processing tools and more 
particularly the fast Fourier transform (FFT), the wavelet 
transform [9] and the time-frequency approach 
(spectrogram, Wigner-Ville distribution) [10]. These 
signatures may cause a delay in fault detection which can 
cause considerable damage or even catastrophic. Indeed, 
the FFT requires a long recording time of the in order to 
guarantee a precision to detect the frequencies sensitive 
to defects. 

In addition, the programs compilations of advanced 
signal processing tools (time-frequency approach, 
wavelet…) are slow and consume additional time. 



 
 

 

 

The time lost during the recording and processing is 
very valuable in detecting and diagnosing faults. 

The fault signatures based on the pattern analysis, 
especially the Lissajou’s curves, are much less time 
consuming than those mentioned above. The Park vector 
pattern is the Lissajous curves the most exploited in 
induction motor fault diagnosis. This signature was used 
for detecting the following faults: unbalanced voltage 
[11], broken rotor bars, air-gap eccentricity [4] and the 
bearing failure [12]. 

The reference Park Lissajou’s curve corresponding on 
the supposed healthy motor differs slightly from the 
expected circular one, because the supply voltage is not 
exactly sinusoidal. The occurrence of a voltage 
unbalance or an open phase manifests itself in the 
deformation of the Park Lissajou’s curve corresponding 
on a healthy condition. This deformation leads to an 
elliptic pattern whose major axis orientation is associated 
to the faulty phase; this ellipse given by the Park 
Lissajou’s curve does not evaluate the fault severity. 

In the case of air-gap eccentricity, the bearing fault 
and the broken rotor bars, the thickness of the Park 
Lissajou’s curve was increased. These faults have the 
same influence on the Park Lissajou’s curve, this may 
cause a false fault location, where wrong diagnosis. 

In this case the Park Lissajou’s curve can only detect a 
fault occurring, but it did not identify. 

In this work, our aim is to develop a fault signature 
based on Lissajous curve, which requires a short 
recording time and a simple processing; this allows us to 
gain valuable time. In addition the signature must detect 
and identify the fault and estimate its severity. 

In this way, we suggest an original fault signature 
based on the pattern analysis using an improved 
combination of Hilbert and Park transforms. The 
geometrical characteristic of all patterns are calculated  in 
order to develop the input vector necessary for the 
pattern recognition tool based on neural network 
approach with an aim of classifying automatically the 
various states of the induction motor. This approach was 
applied to a 1.1 kW induction motor under normal 
operation and with the following faults: unbalanced 
voltage, air-gap eccentricity and outer raceway bearing 
defect. 

II. Basic Theory of the Proposed               
Fault Signature 

The basic idea is instead of using directly the three 
lines currents to calculate the park vector, we only 
employ useful information immersed in these currents.  

For this reason we apply the Hilbert transform to the 
three line currents. Indeed Hilbert transform is used to 
acquire the instantaneous frequency and instantaneous 
amplitude. It reveals modulation in signals caused by 
faulty components. In addition, it removes carrier signals 
and this will reduce the influence of irrelevant 
information for the purpose of fault detection. Fig. 1 
illustrates the block diagram of the proposed induction 

motor fault diagnosis methodology. The development of 
our fault signature requires initially the calculation of the 
modulus and the phase of the Hilbert transform of each 
three currents. 

Thereafter we apply the Park transform to the three 
phases and three modulus. After the Park transform, we 
can draw the two Lissajous curves relating to the 
modulus and the phase. In the continuation, we will 
present the principal concepts of the Hilbert and Park 
transforms. 

II.1. Demodulations by Hilbert Transform 

The demodulation consists in extracting from the 
signal, the functions of phase and amplitude modulation. 

The frequency and amplitude modulation can be 
expressed as: 
      x t A t sin t  (1) 
 
where A(t) expresses the amplitude modulation and ψ(t) 
expresses the instantaneous phase. 

The instantaneous phase ψ(t) is expressed as: 
 
    t t t    (2) 
 
where Ф(t) expresses the phase modulation. 

The instantaneous pulsation of the signal ωinst is equal 
to derived from the instantaneous phase: 

 

      d dt tinst dt dt
       (3) 

 
The equation x(t) of a modulated signal is expressed 

as: 
 

       x t A t sin t t   (4) 
 

We can form an analytical signal while adding to the 
modulated signal x(t), the Hilbert transform H(x(t)) in his 
imaginary part: 

 
       x t x t iH x t   (5) 
 

The Hilbert transform is expressed as: 
 

     1 1
1

H x t x d 
 






  (6) 

 
In other way, the Hilbert transform corresponds to the 

Convolution of x(t) by 1/πτ: 
 

 
     1H x t x t * 

 (7) 
 
where * is the convolution indicate. 



 
 

 

 

 
Fig. 1. The proposed methodology for induction motor fault diagnosis 

 

The function of amplitude modulation A(t) (amplitude 
of the envelop) is expressed as: 

 

       2 2A t x t H x t   (8) 

 
The function of phase modulation Ф(t) (instantaneous 

phase) is expressed as: 
 

  
  
 

1 H x t
t tan

x t

 

    
 

 (9) 

 
The instantaneous pulsation ω(t) becomes (in rad/s): 
 

     dt t
dt

     (10) 

 
The Hilbert function of the H(x(t) signal) thus makes 

it possible to calculate the functions of phase and 
amplitude modulation as well as the instantaneous 
frequency by using the equations of A(t), Ф(t) and ω(t). 

The demodulation is a very powerful tool to detect any 
defect which causes the modulation of the signal. 

II.2. Park Transform 

The Park transform consists in passing from a three-
phase system to a two-phase system. 

A two-dimensional representation can then be used for 
describing three-phase induction motor phenomena; a 
suitable one is being based on the Park’s vector. 

As a function of mains phase variables (xa; xb; xc) the 
Park’s vector components (xd; xq) are: 

 

        2 1 1
3 6 6d b cx t x t x t x t    (11) 

      1 1
2 2q b cx t x t x t   (12) 

III. Experimental Results 
III.1. Test Bench Description 

The test motor used in the experimental investigation 
has been a three-phase 50-Hz, 28 rotor bars, four-pole, 
1.1-kW induction machine (Fig. 2(a)). The induction 
machine shaft is mounted with a powder brake in order to 
simulate different level of load torque during the tests 
(0%, 20%, 40%, 60%, 80% and 100% of full loaded 
torque). The studied faults are: unbalanced voltage, air-
gap eccentricity and the outer raceway bearing defect. 

The first one, stator voltages have been unbalanced by 
adding a resistance to one phase. The created unbalanced 
voltage ratios are: 15%, 10%, 5% and 3%. 

In order to create an air-gap eccentricity fault in the 
induction motor, a simple mechanism has been used. 
Each of the two bearing housings of the rotor has been 
changed to a pair of eccentric rings placed one into the 
other (Fig. 2(b)). The defective bearings have been 
installed on the load side of the induction motor. The 
diagnosis of bearing failures on the load side of the 
mechanics succeeds as well. The generated artificial 
faults that have been installed for the following results 
are shown in Fig. 2(c) for the outer raceway bearing 
fault. Eroding the ring of the bearing has resulted in a slot 
with a width of 5 mm at the outer raceway. The 
investigated bearing contains 9 balls. Three phase current 
sensors are used to monitor the induction machine while 
working at steady state. Low-pass anti-aliasing filters are 
implemented in order to set the frequency bandwidth of 
the analysed signals to a correct range. Then, the outputs 
of the low-pass filters are directly connected to a data 
acquisition board (dSpace DS1104 processor board) 
which contains a Motorola Power PC 603e model and a 
DSP (TMS320F240 – 20 MHz). 
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Fig. 6(b) shows Park Lissajou’s curve of the healthy 
unloaded motor. In this case the Lissajous curve is under 
great strain from the reference circle. 

Afterward, three kinds of experiments have been 
carried out. In the first one, stator voltages have been 
unbalanced by adding a variable resistor to one phase in 
order to create several faults severity level (3%, 5%, 10% 
and 15% of nominal voltage). The unbalanced supply 
voltages are illustrated in Fig. 7. 

The occurrence of a voltage unbalance manifests itself 
in the deformation of the Hilbert modulus-Park and the 
Hilbert phase-Park Lissajou’s curves corresponding to a 
healthy condition. In Figs. 8 we can notice that the mass 
center corresponding to the Hilbert modulus-Park 
Lissajou’s curve is relocated towards the negative part of 
the x-axis. 

 

 
 

Figs. 6. Park Lissajou’s curve in normal condition for : 
(a) fully loaded motor , (b) unloaded motor 

 

 
 

Fig. 7. Unbalanced supply voltages 

 
 

Figs. 8. Effect of stator voltage unbalance level in Hilbert modulus-
Park Lissajou’s curve for fully loaded motor: (a) 15%, (b) 5% 

 

 
 

Figs. 9. Effect of stator voltage unbalance level in Hilbert phase-Park 
Lissajou’s curve pattern for fully loaded motor: (a) 15%, (b) 5% 
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part of the x-axis, and one of the triangle edges length 
has increased (its length becomes Lp instead of Lp ref.), 
that correspond to the unbalanced phase, these 
deformations are illustrated in Figs. 9. Starting from the 
Hilbert phase-Park Lissajou’s curve we can detect, locate 
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the unbalanced phase and estimate his severity degree, 
and the last one is quantified by the following 
relationship: 
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with Lp ref is the reference edge length (in normal 
condition). This behaviour is checked for several fault 
severity degrees (Figs. 8 and Figs. 9). The gravity center 
displacement towards the x-axis negative part of the 
Hilbert modulus-Park Lissajou’s pattern, and the edge 
length of the Hilbert phase-Park Lissajou's pattern, vary 
according to the fault severity. Even under operation in 
the low load levels, we get the same performances of 
detection, localization and the fault severity estimate 
(Figs. 10). Figs. 11 show the deformation of the Park 
Lissajou’s curve in the occurrence of a voltage 
unbalance. This deformation leads to an elliptic pattern 
whose major axis orientation is associated to the faulty 
phase; this ellipse given by the Park Lissajou’s curve 
cannot evaluate the fault severity. In the case of unloaded 
machine, (Fig. 11(b)) the shape is very different from the 
elliptical; the diagnosis is difficult and imprecise. 

The second one has concerned air-gap eccentricity 
fault. If the Hilbert modulus-Park Lissajou’s curve for a 
4-pole motor is drawn over one cycle, two distinct curves 
are obtained under air-gap eccentricity as it is shown in 
Fig. 12.  

 

 
 

Figs. 10. 15% stator voltage unbalance in the case of 20% for fully 
loaded motor: (a) Hilbert modulus-Park Lissajou’s curve, (b) Hilbert 

phase-Park Lissajou’s curve 

This figure presents two shifted equilateral triangles. 
The distance between the mass centers of the two shifted 
triangles can be used as an index for the estimation of the 
air-gap eccentricity degree. Also, the noise occurrence, 
the rotor bar number and the motor rated power have no 
considerable effects on the performance of this index and 
it has the advantage to the simplicity of measurement and 
computation. 

The third one is the outer raceway bearing fault. Fig. 
13 illustrates two shifted triangles similar to the case of 
the eccentricity fault, it is completely normal because the 
bearing defect causes an air-gap eccentricity. The only 
difference is that the triangles are not equilateral but 
isosceles. The Hilbert phase-Park Lissajou’s curve has 
not been modified compared to its reference.  

In Figs. 14, the Park Lissajou’s curves related to the 
air-gap eccentricity and the outer raceway bearing fault 
are shown. It is observed that the thicknesses of these 
curves are clearly increased compared to Fig. 6(a). These 
faults have the same influence on the Park Lissajou’s 
curve, this may cause a false fault identification, where 
wrong diagnosis. In this case the Park Lissajou’s curve 
can only detect a fault occurring, but it did not identify. 

Starting from the patterns mentioned above, we can 
calculate the geometrical characteristics of the Hilbert 
modulus-Park Lissajou’s curve and the Hilbert phase-
Park Lissajou’s curve in order to develop the input vector 
necessary for the pattern recognition tools based on 
neural network approach with an aim of classifying 
automatically the various states of the induction motor. 

 

 
 

Figs. 11. Effect of stator voltage unbalance on the Park Lissajou’s 
curve for: (a) fully loaded motor, (b) unloaded motor 
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III.3. Calculation of the Pattern Geometrical 
Characteristics and the Development of the 

Training Input Vector 

The index presented above must be described in a 
numerical form. In the following, we calculate the 
geometrical characteristics of the Hilbert phase-Park and 
the Hilbert modulus-Park Lissajou’s curves. Finally we 
get developed the input vector necessary for the neural 
network training. 
 
Computation of the geometrical characteristics of the 
Hilbert phase-Park Lissajou’s curve 

200 points are quite sufficient to describe a closed 
Hilbert phase-Park Lissajou’s curve (Fig. 15(a)). The 
first step consists in computing the co-ordinates of the 
triangle mass center μp(μpx, μpy). The second step consists 
in computing the length of the three triangle edges (Lp1, 
Lp2, Lp3). 
 
Computation of the geometrical characteristics of the 
Hilbert modulus-Park Lissajous pattern 

The calculation of these characteristics requires 200 
points (Fig. 15(b)). Initially we use only 100 points (from 
1 to 100) which are necessary for the description of the 
first triangle. We determine the co-ordinates of the 
triangle mass center μm1(μm1x, μm1y) and the three triangle 
edges lengths (Lm1, Lm2, Lm3). 

 

 
 

Fig. 12. Hilbert modulus-Park Lissajou’s curve for fully loaded motor 
in the case of air-gap eccentricity fault 

 

 
 

Fig. 13. Hilbert modulus-Park Lissajou’s curve for fully loaded motor 
in the case of outer raceway bearing defect 

In the second time we use the following 100 points 
(from 101 to 200) to draw the second triangle. 

This second triangle will be shifted comparing to the 
first one in case of the mechanical defects (air-gap 
eccentricity and outer raceway bearing fault), if not, the 
two triangles will be confused. We determine the triangle 
mass center co-ordinates μm2(μm2x, μm2y). We can calculate 
the distance Δμ (14) between the two mass centers of 
both triangles; it can be a good index for the mechanical 
fault diagnosis. With: 
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For Hilbert phase-Park and the Hilbert modulus-Park 
Lissajou’s curves, the determination of geometric 
characteristics needs only 200 points (Fig. 15). Whereas 
for the extraction of data (average thickness) from the 
Park Lissajou’s curve, we used 400 points (0.04 Second 
= two complete cycle of line current) (Fig. 16). Our 
proposed signature uses only half of the points allocated 
for tracing the Park Lissajou’s curve, which saves time 
during the online diagnostic. 
 
Development of the input vector 

This vector must characterize the fault signature and 
consequently the state of the machine. It must contain the 
maximum of information with a reduced size in order to 
have the minimum of neurons in the input layer of neural 
network. This vector (15) is created by the geometrical 
characteristics of the Hilbert modulus-Park Lissajou’s 
curve and Hilbert phase-Park Lissajou’s curve. 

 

 
 

Figs. 14. Park Lissajou’s curve for fully loaded motor in the case of: 
(a) air-gap eccentricity, (b) outer raceway bearing defect 
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Fig. 17. The training iteration process 
 
It can be seen that the error is very small, with means 

that the neural network classifies and estimate correctly 
the example of training set. In order to see if the network 
has learnt after training, the test set is again fed to the 
network in order to verify if it classifies and estimate 
correctly. 

Table I shows the results by representing the false 
alarm and the non-detection rate of various machine 
states. In Table II, we can show the mean square error 
(MSE) of voltage unbalance evaluation. A classification 
rate of the fault diagnosis is 97.68%. 

 
TABLE I 

THE MLP CLASSIFICATION PERFORMANCE  
 False alarm rate 

(%) 
Non-detection rate 

(%) 
Unbalance voltage 0 (0/345) 0.869 (3 /345) 

Air-gap eccentricity fault 0.289 (1/345) 0.289 (1/345) 
Outer race ball bearing 

fault 
0.579 (2/345) 0.289 (1/345) 

 
TABLE II 

THE PERFORMANCE OF MLP SEVERITY DEGREE EVALUATION 
Unbalance 

voltage 
0% 3% 5% 10% 15% 

Evaluation MSE 1.7 
10-5 

3.88 
10-5 

4.58 
10-4 

4.22 
10-4 

1.62 
10-4 

IV. Conclusion 
In this study we compared the performance of the 

proposed signature to those of the Park Lissajou’s curve 
which is the signature most recently used. Concerning 
the eccentricity and the bearing faults, the Park 
Lissajou’s curve only detect the occurrence of fault, but 
the identification and differentiation is not possible 
because the two faults have the same influence on the 
Lissajou’s curve (thickness of circle). 

In addition to calculate this thickness requires that the 
Lissajous curve course at least two cycles (0.04 seconds). 
Regarding the electrical faults, especially the unbalanced 
voltage, the extraction of parameters of the elliptical 
shape is difficult. This signature does not allow the 
estimation of the unbalanced voltage severity. In the case 
of unloaded machine, fault detection will be difficult 

because the shape of the Lissajou’s curve loses its 
circular or elliptical. About our signature, it allows the 
diagnosis of unbalanced voltages and its severity in every 
load level. This signature also ensures the detection and 
identification of mechanical faults (eccentricity and 
bearing).  The time needed to obtain the Lissajou’s curve 
is only 0.02 Second. The proposed method has been 
proved to be efficient in steady state for sinusoidal power 
supply. 

With a simple visual inspection of our fault signature, 
an agent of maintenance can supervise the supply voltage 
state and the machine condition. 

In order to obtain a more robust diagnosis, it is 
proposed a neural network suitable to online 
identification of induction machine faults: unbalanced 
voltage, air-gap eccentricity fault and outer raceway 
bearing defect. The input patterns to train neural network 
are obtained using experimental data related to healthy 
and faulty machines under several load rates. The inputs 
of the neural network are very important for successful 
fault detection. In this work, we extract only the 
geometrical characteristics of the Hilbert modulus-Park 
and Hilbert modulus-Park Lissajou’s patterns. 

The calculation of the geometrical characteristics of 
the Hilbert modulus-Park and Hilbert modulus-Park 
Lissajou’s patterns is easy and doesn’t depend on the 
load rate. Moreover, this technique is easy to implement 
and uses only low-cost instruments such as three simple 
current sensors and a commercial data acquisition board 
with low resolution. 
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