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Abstract

Background: The domestic pig is known as an excellent model for human immunology and the two species share
many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the
structure and function of genes comprising the pig immunome are not well-characterized. The completion of the
pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human
immune systems.

Results: The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of
the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369
immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we
annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response
families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found
gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes
discovered in the annotation process. Manual annotation provided evidence for many new alternative splice
variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using
cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune
response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or
immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a
correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene
cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated
porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an
accelerated evolution as compared to 4.1% across the entire genome.
(Continued on next page)
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Conclusions: This extensive annotation dramatically extends the genome-based knowledge of the molecular
genetics and structure of a major portion of the porcine immunome. Our complementary functional approach
using co-expression during immune response has provided new putative immune response annotation for over
500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in
this set of genes, and that, as in other species, such genes are important components of the pig’s adaptation to
pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the
porcine genome sequence and provide important tools for global analyses and data-mining of the porcine
immune response.

Keywords: Immune response, Porcine, Genome annotation, Co-expression network, Phylogenetic analysis,
Accelerated evolution
Background
The co-evolution of host response and pathogen evasion
mechanisms [1] drives variation in the response to infec-
tious diseases at individual, population and species levels,
as well as at higher order taxonomic units. Immunity-
related genes are “tailored to the niche that a species oc-
cupies” and exhibit many features of positive selection,
including polygeny and clustering of loci, high rates of
non-synonymous substitutions (dN/dS), allele and gene
conversion, generation of repertoires, rapid evolution, co-
evolution, association with diseases and networking [2].
The host response to a pathogen requires concerted ac-

tion of a huge set of immunity-related genes recently re-
ferred to as the immunome [3]. The immunome was first
defined as the totality of rearranged antibody and antigen
receptor genes present in all living individuals of a species,
including variations in the somatic rearrangements [4].
That definition was further adapted to describe the whole
set of genes related to both innate and acquired immunity
as identified from whole genome sequencing and func-
tional genomics studies [3]. The progress in genome se-
quencing of human, model and non-model animal species,
including livestock species ([5-10]), now permits compara-
tive analysis across many species [11]. Such studies have
highlighted the divergence in innate immune responses be-
tween humans and mice, the most widely-studied experi-
mental animal model [12].
The domestic pig (Sus scrofa), in the Suidae family within

the Cetartiodactyl order of eutherian mammals, has been
used a model in medical research due to its similarity to
humans in size and physiology, including comparable di-
gestive, respiratory, and immune systems (reviewed by
[13,14]). The Cetartiodactyl order first appeared 60-65 mil-
lion years ago, while the divergence for rodents and pri-
mates (Euarchontoglires) dates from 74 and 77 million
years ago, respectively [15]. Primarily as a consequence of
the fast sequence evolutionary rate of mouse, the pig has
remained considerably more similar at the DNA sequence
level to humans [16]. However, some immunological fea-
tures are exceptional in the pig compared to humans and
mice. Pigs have an inverted lymph node structure and an
unusual route for lymphocyte circulation [17]. There are
relatively high numbers of extra-thymic CD4/CD8 double
positive T-cells [18] and resting T-cells expressing SLA
class II molecules [19]. Pigs can have high numbers of
natural killer cells [20] and γδ cells [21], harbor an un-
usual diversity of B-cell and antibody repertoire develop-
ment [22], and have highly heritable variation in immune
cell parameters [23-25].
In pigs as in many other species, the numerous in vivo

and in vitro studies on host-pathogen interactions [26-34]
and immunity stimulation [35,36], are now often based on
functional genomics approaches such as transcriptomic
approaches [37]. With such rapid accumulation of high-
dimensional data on immune response, network models
are becoming increasingly important in the interpretation
of such experimental data [38-43]. Correlation networks
based on immune response data not only permit the iden-
tification of common regulatory mechanisms through inte-
gration with promoter/flanking sequences, but also provide
evidence that un-annotated genes are involved in immune
response pathways [28,34,39]. Thus an important aspect of
gene annotation is the integration of structural analysis of
RNAs and genomes with functional data on transcriptional
response to pathogens and immune stimuli.
The purpose of the Immune Response Annotation

Group (IRAG) was to explore the porcine immunome by
exploiting the recently available genome sequence assem-
bly [44]. A gene list for detailed manual gene annotation
using Otterlace [45,46] was compiled using Gene Ontology
(GO) annotation [47] and literature sources. Analyses com-
bined structural, evolutionary and functional approaches.
We report a refined gene structure annotation on greater
than 1,000 genes involved in immunity; data on positive se-
lection pressure of a subset of the proteins predicted to be
encoded by these genes; and a correlation network analysis
of transcriptomic data from various disease and immuno-
logical models. These three levels of data contribute to a
better characterization of the pig immunome and provide
a comparative genomic appraisal across mammals.
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Results and discussion
Extensive manual annotation of the genomic complement
of porcine immune response genes
The Immune Response Annotation Group (IRAG) mem-
bers used Otterlace [45,46] to manually annotate over 1,400
loci in porcine build 9 selected based on their membership
in immune response processes or Gene Ontology immune
response annotation. The GO term used as an inclusion
criterion was “immune system process”; GO:0002376.
These structural annotations were transferred over to build
10.2 and discrepancies were addressed to determine the
final annotation results (Table 1). Members confirmed au-
tomated annotation of 988 known genes through manual
annotation of 3,472 transcripts and 1,369 gene models;
1,554 annotated transcripts contained the full-length pro-
tein coding sequence. Twenty-six pseudogenes were also
identified during the annotation.
Importantly, the cross-species alignment tools in

Otterlace allowed annotation of 1,172 transcripts in the pig
genome using only mRNA sequence from other species
(Table 1). Such transcripts without specific porcine se-
quence support were often made using human cDNAs
(and proteins), as there are many more human than pig se-
quences in the databases. The conservation between hu-
man and pig in terms of synteny is three times greater than
Table 1 Summary of genes annotated by Immune Response A

Chromosome Number of
genes*

Known genes
annotated

Number of
transcripts
annotated

Number of protein
coding transcripts

annotated

1 103 78 218 179

2 102 83 292 220

3 74 59 167 130

4 186 125 452 354

5 72 61 174 140

6 90 67 220 176

7 76 66 163 122

8 45 34 102 84

9 62 45 132 106

10 21 19 84 68

11 9 9 13 11

12 105 82 221 181

13 68 52 173 139

14 84 63 265 200

15 38 31 100 76

16 23 17 58 45

17 39 34 79 66

18 14 11 19 17

X 158 52 540 462

Total 1369 988 3472 2776

*Number of gene objects created in the Otterlace annotation system.
** Processed and non-processed pseudogenes are included.
# No porcine EST or cDNA sequence was available to create these transcript predic
between human and mouse [48], and the pig is more
closely-related at the DNA sequence level to humans than
either is to the mouse [16]. Specifically for immune gene
families, recent analysis at the cDNA sequence level of pig,
mouse and human has shown that the great majority of hu-
man genes that were lost through evolution in the mouse
were retained in the pig. Conversely, very few mouse genes
that were lost through evolution in the human were found
in the pig. Comparison of expansion or contraction of
orthologous gene families indicated far more similar rates
and classes of genes in humans and pigs than in mice. The
conservation of homology and structural motifs of 1,371
unambiguous orthologs from pigs, mice and humans re-
vealed that the overall mean similarity to human proteins
was significantly higher for pigs compared to mouse [49].
The following sections provide summaries of important

groups of genes for which the manual annotation revealed
new insight. One important region highly relevant to im-
mune response, the Swine Leukocyte Antigen Complex
(MHC), has been previously annotated in detail [50] and
will not be discussed here.

T cell receptor (TCR)
Genes in the TCR complex possess highly repetitive
sequences, so that it is difficult to generate correctly
nnotation Group (IRAG)

Number of complete
protein coding

transcripts annotated

Number of predicted
genes found to be
pseudogenes**

Number of non-
organism-supported#
transcripts annotated

120 9 65

122 1 86

60 0 38

222 5 119

85 0 47

97 2 81

92 1 37

39 0 23

53 1 38

32 0 20

8 0 3

95 4 68

69 0 67

100 2 103

38 1 39

17 0 23

39 0 18

8 0 3

258 0 294

1554 26 1172

tions.
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reconstructed loci from shotgun sequencing with low
redundancy or short-read next-generation sequencing.
Therefore, intensive sequencing efforts were applied to the
TRA/TRD (T cell receptor α/δ) and TRB (T cell receptor β)
loci. The pig TRD locus is embedded in TRA, and D (diver-
sity) (Dδ) and J (joining) segments (Jδ), and genes encoding
the C (constant) region of TCR δ (Cδ) are located between
the V (variable) segments of TCR α/δ (Vα/Vδ) and J genes
of TCR α (Jα), as observed in other mammals. All of the
human 61 Jα segments correspond to those of pig, and
most of mouse Jα can be allocated to orthologs in pig.
These indicate functional similarity of the TCR α molecule
between human, mouse and pig [51]. On the other hand,
the pig TCR δ gene (TRD) has a more complicated struc-
ture than those of human and mouse. Pig has at least 6 Dδ
genes, while human and mouse have 3 and 2, respectively.
The pig Dδ genes are frequently used in functional TCR δ
transcripts with up to 4 concatenated domains [52]. Thus,
the pig can generate a high diversity of TCR δ chain mole-
cules to cope with antigens, which may be related to the
fact that the percentage of γδ T cells in peripheral blood is
much higher in pig than in human and mouse [17]. As for
TRB, pig has 3 functional Dβ-Jβ-Cβ units, while human
and mouse each have 2 units [53].

Immunoglobulin (IGH and IGL)
IGHV gene diversity is highly restricted, as in cattle, but
all known porcine IGHV genes belong to a single family,
IGHV3, whereas all cattle IGHV belong to IGHV4
[54,55]. The lambda light chain (IGL) locus on SSC14
contains 22 IGLV gene segments, with 9 appearing func-
tional. The locus is organized into two distinct clusters,
a constant (C)-proximal cluster containing IGLV3 family
members, and a C-distal cluster containing IGLV8 and
IGLV5 family members [56]. The porcine IGLV8 sub-
group genes have recently expanded, suggesting a par-
ticularly effective role in immunity to porcine-specific
pathogens, especially since IGLV expression is nearly ex-
clusively restricted to the IGLV3 and IGLV8 [56,57]. The
C-distal IGLV cluster also contains three non-functional
IGLV1 family members that are orthologous to IGLV
that are exclusively expressed in cattle [58]. The IGL
locus contains three tandem IGLJ–IGLC cassettes, two
of which are functional, and a fourth IGLJ with no corre-
sponding IGLC.
The kappa light chain (IGK) locus on SSC3 is com-

prised of at least 14 IGKV genes, of which 9 are func-
tional and belong to either the IGKV1 or IGKV2 gene
families, five IGKJ genes that lie 27.9 kb downstream,
and a single IGKC gene [59]. Polymorphisms within the
individual Duroc sow that was genome sequenced revealed
alleles that differed by as much as 16 percent among IGKV
genes and as much as eight percent in amino acid se-
quence among IGLV genes.
The porcine immunoglobulin genes have evolved such
that specific gene families have expanded and contracted
with respect to other species, notably cattle. The high level
of allelic variation found within the antibody light chain
loci substantially expands the population diversity of the
porcine antibody repertoire [56,59]. In the kappa locus, in
particular, many IGKV2 family members share specific
parts of coding regions, such as complementary determin-
ing region 1, between genes but not between alleles. Thus,
germline gene conversion may provide a mechanistic basis
for the high level of IGKV allelic variation.

Killer immunoglobulin-like receptor (KIR)
Pigs appear to have a single KIR gene in contrast to cat-
tle, horses and primates in which there is an expanded
KIR gene family [60]. In rodents, the functionally equiva-
lent receptors are encoded by the expanded gene family
of killer cell lectin-like receptor (KLR) genes of which
Klra1 (Ly49) has 11 paralogues whilst pigs have a single
LY49 gene (KLRA1) with two putative orthologs. The
limited NK cell repertoire in pigs is not linked with any
deficiency in NK cell numbers [23] but there is evidence
for a connection between high variability between indi-
vidual animals and performance under low health status
conditions [61,62]. One would anticipate, given the func-
tion of NK cell receptors in recognition of MHC class 1
proteins, that there must be some unique feature to this
interaction in the pig to allow NK cells to function irre-
spective of unlinked polymorphism and the SLA loci.

Immune gene family expansion
A preliminary analysis of immune gene families has previ-
ously compared humans, mice and pigs [49]. In the current
analysis, artiodactyl-associated families were also included
based upon expansions noted in the bovine genome [9].
Our porcine genome analyses show that some of these ex-
pansions are also present in the porcine genome, indicating
an artiodactyl-specific expansion. Other expansions are not
present in the pig genome, providing additional support
for a ruminant-specific expansion [9]. Results are summa-
rized in Table 2 and full details shown in Additional file 1:
Table S1.
The cathelicidin gene family was expanded, with 10

genes compared to only one in human and mouse. The
expansion appears to be artiodactyl-specific since cattle
also have 10 genes [9].
Thirty-four beta defensin genes were detected in the

swine genome assembly, similar to the human genome
(39 genes), but substantially less than the >100 beta-
defensin genes reported from cattle. A recent report an-
notated 29 porcine defensins in the high-throughput
genome sequences (HTGS) pre-assembly (Choi, 2012),
which indicates that our annotation of 34 for the current
genome assembly adds to the previous annotation of this



Table 2 Greater pig-human similarity revealed by gene family analysis

Family description (SF: superfamily) Number of genes found for each family per species*

Human Mouse Cow Pig

ADP-ribosyltransferase/VIP2 SF 4 5 (1) 9 4

Beta Defensin SF 39 (9) 51 (1) ~106 (7) 34 (2)

BPI SF 12 (2) 16 18 14 (2)

C-type Lysozyme/LYZ1 SF 9 9 16 7

Cathelicidin SF 1 1 10 10

CCL Chemokine 28 (1) 39 (5) 22 21

CD1 SF 5 2 15 (2) 4 (1)

CD163/WC1 SF 3 4 15 4

CLECT SF (inclusive) 85 (3) 126 (6) 89 76

CLECT SF, AGP and DCR Subfamily 16 24 (1) 14 13

CLECT SF, Collectin Subfamily 7 (2) 7 10 7

CLECT SF, NK Cell Receptor Subfamily 24 (1) 57 (5) 31 23

CLECT SF, Reg Subfamily 5 7 3 3

Cytidine Deaminase-like SF 11 (0) 5 (0) 6 (0) 5 (0)

GH18 Chitinase Like SF 6 (1) 9 (1) 8 7

Granzyme/ MC Tryptase/SP SF 17 (1) 26 (0) 22 (0) 18 (0)

Immunity Related GTP-ase SF 3 (2) 19 (4) 4 (0) 4 (0)

NLR and Pyrin SF 31 (4) 43 (8) 23 25

Resistin SF 2 4 1 2

RNase A Family 14 22 (6) 16 (1) 13 (1)

S100 SF 21 17 (1) 19 20

SAA SF 4 (1) 5 6 6

SLAM SF 9 (1) 9 (0) 12 (0) 11 (0)

Toll Like Receptor 10 (3) 12 (1) 10 10 (2)

TRIM E3 Up Ligase SF, TRIM5 Subfamily 4 10 (1) 5 3

Type I Interferon (inclusive) 17 (12) 25 (2) 51 (13) 39 (16)

Type I Interferon, Alpha Subfamily 13 (4) 13 (1) 19 (3) 18 (9)

Type I Interferon, Beta Subfamily 1 1 8 (1) 1

Type I Interferon, Delta Subfamily 0 0 0 11 (2)

Type I Interferon, Epsilon Subfamily 1 1 0 1

Type I Interferon, Kappa Subfamily 1 1 1 1

Type I Interferon, Omega Subfamily 1 (8) 0 19 (7) 7 (5)

Type I Interferon, Tau Subfamily 0 0 4 (2) 0

Type I Interferon, Zeta Subfamily 0 9 (1) 0 0

ULBP SF 6 2 12 7

* Numbers of confirmed pseudogenes are shown in parentheses. AGP and DCR: Asialo- glycoprotein and DC Receptor; MC: Mast Cell; SP: Serine Protease;
Up: Ubiquitin-protein.
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family. For this work, we tested the procedure based on
hidden-Markov model (HMM) that was used in the bo-
vine genome project [9], but primarily used our cur-
ation protocol established for genome-wide annotation
of beta-defensin families in the human, chimpanzee,
mouse, rat, and dog [63]. As a more sensitive procedure,
HMM could overestimate the functional gene numbers
without manual curation. Thus far, we suggest that the
composition of the porcine beta-defensin family is more
similar to human (39 genes) than bovine (106 genes). A
similar result is observed for the C-type lysozyme fam-
ily in pigs, which has 7 genes, while 16, 9 and 9 are
found in the bovine, human and mouse genomes, re-
spectively. Thus, our analysis of the second artiodactyl
genome indicates that beta-defensin and C-type lyso-
zyme family expansions observed in cattle may be
ruminant-specific adaptations [9]. Because pigs are omni-
vores and cows are herbivores, it is tempting to speculate



Figure 1 Greater pig-human similarity revealed by orthology
preservation analysis. As shown in the graph, pigs have 11-, 6- and
2- fold less unique genes than do the mouse, cow or human.
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that these differences may be due to different exposure
to gut microbiota.
Pigs have 39 type I interferon (IFN) genes, twice the

number in human, as well as 16 pseudogenes. Cattle
have 51 type I IFN genes (13 pseudogenes). This expan-
sion is focused on interferon subtypes IFNW and IFND;
pigs (p) and cattle (c) share novel subtypes of IFND (p),
IFNT (c), IFNAW (p & c) and many more isoforms
of IFNW. Thus, expansion of interferon genes is not
ruminant-specific as previously proposed [9], although
duplication within some specific sub-families appears to
be either bovine- or pig-specific.
Data presented in Table 2 represents an expanded ana-

lysis of the gene families that were presented in the recent
porcine genome paper [44]. Four additional gene families,
SLAM Superfamily, Granzyme/Mast Cell Tryptase/Serine
Protease Superfamily, Cytidine Deaminase-like Superfamily
and Immunity Related Guanosine Triphosphatase Super-
family are included. These new analyses reveal a slight ex-
pansion in the SLAM superfamily in cow and pig relative
to human, a relatively large expansion in the Granzyme/
Mast Cell Tryptase/Serine Protease Superfamily in mouse
and cow relative to humans and pigs, and an extremely
large expansion in the Immunity Related Guanosine
Triphosphatase Superfamily in mouse relative to the other
3 species. In contrast, the number of Cytidine Deaminase-
like Superfamily members is human is twice that found in
pigs, mice and cows.
The total number of pig, mouse and cow gene families

that have undergone expansion of >25% of family mem-
bers relative to human are 8, 17 and 14, respectively
(Table 2, Additional file 1: Table S1). Thus familial gene
expansion in pigs relative to humans has occurred at half
the rate of mice and cows. Conversely, the total number
of gene families in pig, mouse and cow that have under-
gone contraction of >25% of family members relative to
human are 6, 4 and 4, respectively. Familial gene con-
traction in pigs relative to humans has occurred at
roughly the same rate of mice and cows.
An additional analysis of orthology preservation of fa-

milial gene expansion for the four species deriving from
the family member expansion analysis revealed that 1:1
orthology conservation was found for 184 of the 597
genes (31%) (Figure 1). Mice had the largest number of
unique genes (174), more than twice the number found
in cattle (87), and more than all of the others combined.
In contrast, pigs have 11-, 5- and 2-fold fewer unique
genes compared to the mouse, cow and human, respect-
ively. Pair-wise analysis indicates that pigs and cows
share 18 genes that are not found in humans or mice
(Figure 1). These genes are members of the BPI Super-
family, BPIFB5 and BPIFB9; Cathelicidin Superfamily
CATHL1 (PR39), CATHL2 (NPG1), CATHL4 (NPG3),
CATHL5 (NPG4), CATHL6 (NPG5), CATHL7 (PF1);
CCL Chemokine Superfamily, CCL3L2; CD163/WC1
Superfamily, LOC100337197; CLECT Superfamily, KLRJ1
and PRG3L1; Granzyme/Mast Cell Tryptase/Serine Pro-
tease Superfamily, GZMAL (LOC100233183), MCPT3;
Immunity Related Guanosine Triphosphatase Superfam-
ily, IRGCL1; NLR and Pyrin Superfamily, NLRP12L;
and RNase A Family, BRB and LOC782739 (RNASE15,
RNASE4L).
Furthermore, analysis of three species at a time indi-

cates that humans and pigs share 42 genes that are not
found in mice; mice and humans share 14 genes that are
not found in pigs; and mice and pigs share 7 genes that
are not found in humans (Figure 1). These conclusions
must be tempered with the observation that the porcine
genome is still incomplete and additional family mem-
bers may be discovered. Indeed, in the course of looking
for known genes in the current porcine genome build,
we identified genes that do not appear in the build 10.2
assembly; please see Additional file 2: Table S2. However,
these similarities, especially for pig and human, further
reinforce the use of the pig as a large animal model of
the immune response of humans.

Gene duplication
In the course of annotating the immune response gene
families shown in Table 2, we found indication of gene
duplication and pseudogenes in the build 10.2 assembly.
A summary of putative true gene duplications is shown
in Additional file 3: Table S3. Using extreme sequence
similarity (approximately 99% identity) as a metric, many
duplications (298) appear to be due to assembly artifacts
(Additional file 4: Table S4). These artifactually dupli-
cated genes fall into 3 different categories: on the same
chromosome and mapped to the same assembly scaffold,
on the same chromosome and mapped to a different as-
sembly scaffold, and on different chromosomes. The 18
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duplications that appear on different chromosomes are
especially problematic because of the need to assure
BAC specificity. One gene, TNFRSF10A, which is listed
provisionally here as artifactually duplicated, proved es-
pecially problematic since there is equal evidence for
both artifactual and true duplication; directed studies will
be necessary to determine the nature of this duplication.
Evidence for the true duplication of 13 immune-related

genes: ATF4, CD36, CD68, CD163, CRP, DDX3X, GSTP1,
GZMA, IFIT1, IL1B, IRGC, ITLN2, and OAS1, and 5 non-
immune genes, appears unequivocal (Additional file 3:
Table S3). Interestingly, the IL1B gene duplication, in
which evidence for a partial duplication had been reported
[64], is unique in mammals. Predicted proteins expressed
from the IL1B gene and its duplicate (IL1BL) are both 267
aa in length, but only 86% identical. Further, their mRNAs
have different expression patterns in adult and embryonic
tissues, and different responses to endotoxin in macro-
phages (Gong, Tuggle et al., manuscript in preparation).
Unigene expression profiling of other true duplicated genes
indicates that they are differentially expressed. For example
the macrophage scavenger receptor CD68 is expressed pri-
marily in adipose tissue, blood, lung, mammary gland, and
ovary, whereas the porcine-restricted duplicated gene with
an unknown function, CD68L, has a wider tissue distribu-
tion with expression in adipose tissue, adrenal gland, blood,
cartilage, heart, intestine, lung, lymph node, muscle, ovary,
placenta, skin, spleen, thymus and trachea. The pattern
recognition receptor CD36 is highly expressed primarily in
adipose tissue, heart, mammary gland and muscle. The
truncated protein CD36L, with an unknown function, is
also duplicated in the cow and is expressed at lower levels
in blood, bone marrow liver, lung and mammary gland.
The differential expression patterns of these genes support
their phylogenetic and functional divergence.

Functional annotation of immune genes: finding genes
with immune response patterns similar to known immune
system genes
Co-expression of genes can be used to provide evidence
for membership in specific processes, such as immune
response, when a substantial proportion of the members
of an expression cluster have similar functions. We col-
lected all data reported for the 24K Affymetrix Genechip
for experiments with an immune component such as in-
fection of tissues or cells with bacteria, viruses, or stimu-
lation with lipopolysaccharide. Using this targeted set of
188 chips (Additional file 5: Table S5), which included
public data as well as several un-published datasets from
our groups, we calculated a within-group correlation for
each experimental dataset. This approach emphasizes
the response to pathogen/stimulus (see Methods). These
correlations were then used in the co-expression net-
work tool BioLayout Express3D ([38,65]) to generate and
visualize a transcriptome network for porcine generic
immune response (Figure 2).
Using this correlation network, we then identified

clusters with GO term annotation enrichment related to
immune response. Significance of enrichment was deter-
mined as described in Methods. In Additional file 5:
Table S5 (all possible GO term annotations) and Additional
file 6: Table S6 (specific annotations, see below), we
document these results. Cluster 4, with 619 probesets
representing at least 511 transcripts, was significantly
enriched for many GO terms relevant to immune re-
sponse pathways, including type I interferon-mediated
signaling pathway and cytokine-mediated signaling path-
way, as well as response to virus, and proteasome core
complex. Cluster 4 is highlighted in Figure 2, and in-
cludes many immune-related genes such as IL15, JAK2,
IRF2, IRF7, IRF9, IFIT 1, IFIT2, IFIT3, CD40, CD47,
CD86, many STAT, PSMB and CASP gene family mem-
bers, MX1, MX2, CXCL16, CCRL2, WARS, SLC11A1, and
complement genes C1R, C1S, and C2. Of these 619
probesets, 96 are annotated with the GO term originally
used as a major criterion for the IRAG gene list (GO:
0002376; immune system process), which is a 2.3-fold en-
richment (Fisher’s exact two-tailed P value < 0.0001). This
cluster is also three-fold enriched (Fisher’s exact two-
tailed P value < 0.0001) for porcine orthologs of common
immune response genes identified by Jenner and Young
based on a meta-analysis of microarray data from a num-
ber of pathogens/ immune stimulations of several human
cell types [66]. Thus cluster 4 clearly is enriched for a
large number of genes likely to be involved in the im-
mune response of swine. Importantly, most of these
probesets are not already annotated as immune response
genes, as only 16% have the GO: 0002376 term annota-
tion. Further, the average RNA level for these 619
probesets across the immune response datasets is shown
in Figure 3. The pattern is clearly one of activation upon
infection or treatment, as global increases in expression
levels are seen in many datasets upon immune stimula-
tion. Thus this correlation analysis provides evidence for
the involvement of many new genes in the porcine im-
mune response.
A second cluster with enrichment of GO:0002376 is

cluster 17 (p < 0.0001). As with cluster 4, cluster 17 is
also enriched for Jenner-Young (J-Y) IR genes as well
as genes manually annotated as “innate immune” genes
in InnateDB (www.innatedb.com; Additional file 7:
Table S7). For the global GO annotation, only anti-
apoptosis was found significantly enriched (annotated
for the genes BIRC3, FAS, MCL1, NFKBIA, TNF, PIM2).
Genes in this smaller cluster of 81 members include
several negative regulators of innate/inflammatory path-
ways (ATF3, IL1RN, NFKBIA, NFKBIZ, SOCS1, SOCS3)
(Additional file 6: Table S6). The pattern of expression

http://www.innatedb.com


Figure 2 Biolayout Express3D co-expression network of immune response expression patterns. On the left is shown the network. Nodes
assigned to each MCL cluster are shown in a different color. MCL is a Markov Clustering (MCL) algorithm for graph clustering (micans.org/mcl);
see also www.biolayout.org. At right, the immune-response gene enriched cluster 4 is highlighted by increasing the size of nodes for Cluster 4
and reduction of node size in all other clusters.
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of these genes is similar to that of cluster 4, with cluster 17
genes clearly activated in LPS-stimulated macrophages and
in lymph nodes or blood from pigs infected with Salmon-
ella (Additional file 8: Figure S1). Interestingly, in contrast
to cluster 4, several datasets did not show activation of
Figure 3 Expression pattern of MCL cluster 4 shows gene activation afte
light blue is shown the average expression of the 619 probesets in cluster 4 fro
example patterns are highlighted in red; specific dataset patterns are boxed to
reproductive syndrome virus; PCV2: porcine circovirus type 2; Mac: alveolar ma
inoculation; Dpi: days post infection or inoculation. LPS: lipopolysaccharide.
genes represented by the probesets in cluster 17 genes on
average, including lymph nodes infected with PCV2 or
PRRSV. A third cluster contains 48 probesets (cluster 26),
containing probesets representing several T-cell related
genes (CD2, CD3D, CD3E, CD8A, CD8B, LCK) as well as
r immune stimulation/infection in multiple experimental datasets. In
m Figure 2. Details on each dataset are shown below the graph; some
show contrasts of interest. LN: lymph node; PRRSV: porcine respiratory and
crophage; Ctrl: Control (uninfected) sample. Hpi: hours post infection or

http://www.biolayout.org
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other immunity genes such as IL7R, GZMB and STAT4.
This cluster appears to document gene expression specific
to T cells and neutrophils, as expression is detected in
lymph node and whole blood datasets, and absent in mac-
rophages (Additional file 9: Figure S2). The global annota-
tion identified regulation of immune response as well as
several T cell receptor terms as enriched in this cluster
(Additional file 6: Table S6). The pattern of expression is
not clearly correlated with response to immune stimula-
tion, which is consistent with the observation that these
genes are not enriched for J-Y IR or InnateDB genes, but
are enriched for genes with GO:0002376 annotation
(Additional file 7: Table S7). Finally, cluster 48 is enriched
only for probesets annotated with the GO:0002376 term,
and shows early and robust induction in macrophages
infected with PRRSV and in lymph nodes in animals
infected with Salmonella enterica serovar Typhimurium,
but variable low to modest induction in macrophages
by LPS (Additional file 10: Figure S3) and other chal-
lenges. This cluster of 24 probesets includes a number
representing MHC genes (DRA, DRB and DMA families)
as well as CFP, CYBA, Ly86 and IRF8. Comprehensive GO
annotation shows this cluster is enriched for interferon
gamma-mediated signaling pathway, T cell receptor signal-
ing pathway, cytokine-mediated signaling pathway, and im-
mune response genes (Additional file 6: Table S6).
The established gene lists for generic immune responses

at the level of the transcriptome can be used to improve
the annotation of a large number of genes/transcripts in
the porcine genome related to immune response. Espe-
cially for cluster 4, which is significantly enriched for
probesets annotated as human immune response genes,
these data provide foundational information that can be
used for human-pig comparisons at several levels. For ex-
ample, global comparisons of promoter sequence elements
between pig and other species can be performed using
draft genome assembly information, as shown recently for
an analysis of the CYP27B1 gene promoter [36]. Previously,
substitution of human orthologous promoters was useful
in prediction of sets of NFκB target genes in the pig [28].
Given the recent expansion of transcriptomic datasets on
immune response, especially for those analyzing response
to infection of specific tissues or cell types, the pig genome
will now be invaluable in bioinformatic approaches to
recognize known and novel regulatory motifs in immune
response genes. Prior annotation as immune response
genes, as demonstrated herein, will provide further confi-
dence for genes clustered by their transcriptomic response
to an immune stimulation.

An accelerated rate of evolution for immunity-related genes
As recently reported [44], an analysis of predicted rates
of evolutionary change was carried out on a randomly
selected subset of 158 immunity-related pig proteins
from the IRAG annotated gene set. This analysis showed
rates of positive selection between 12.7 and 17.1%, de-
pending on the analysis method (PRANK or MUSCLE,
see Methods). To confirm and extend this significant in-
crease in the rate of positive selection for immunity-
related genes in swine, we analyzed the proteins present
in the cluster 4, found in the above analysis to be signifi-
cantly enriched for probesets annotated as immunity-
related genes. A set of 251 proteins was analyzed with
the PhyleasProg web server [67], and a subset of 242
proteins having at least 10 orthologs and being compat-
ible with threshold of statistical significance was in-
cluded in final analyses.
Among these 242 proteins, 37 proteins are under posi-

tive selection with q <0.05, and 42 with q <0.10; i.e. 15%
and 17% respectively. Thus, Cluster 4 is as rich in posi-
tively selected proteins, as was the subset of 158
immunity-related pig proteins recently published in the
swine genome sequence paper [44]. At the whole gen-
ome level, it has been reported that the rate of positive
selection, computed on different types of data and differ-
ent methods, is 1.1% in human, 1.7% in chimpanzee
[68], close to 5% in cattle, dog and horse (David Enard,
personal communication), and 4.1% in pig (348 genes
under positive selection out of 8,418 1:1 orthologs be-
tween human, mouse, dog, horse, cow and pig) [44].
Our results show a significant increase in the rate of
positive selection for immunity-related genes in swine.
These results confirm that positively selected genes in

swine are enriched for roles in defense and immunity in
mammals, as already shown in human [1], cow [9], five
other mammals [69], as well as birds like the Zebra finch
[70]. Other functions are also reported as privileged tar-
gets for an accelerated evolutionary rate of related genes
in mammals, such as reproduction, taste perception,
chemosensory reception [69], and olfaction, as recently
shown in pig [44].
By branch-site analysis, we detected an accelerated

evolution of several amino acids specific to pig (posi-
tive selection on pig branch only) in 17 proteins (7%
of subset of proteins, cluster 4), including SPPL2A,
JAK2, PPP2R5C, CHD-1, TSPAN13, NMT1, GBP1, HEXB,
FAM26F, LMAN2L, ANKMY2, PHF20L1, DDX60, PDE8A,
LCP2, USP25, SLC24A6 (Additional file 11: Table S8). The
projections of amino acids under positive selection onto 3D
structure of the four proteins CASP8, HEXB, GBP1 and
PPP2R5C are shown via PhyleasProg web server (Figure 4).
The PPP25RC protein is known as the protein phosphatase
2, regulatory subunit B’, gamma and is 496 amino acids long
(Ensembl ID ENSSSCP00000002749). Within a segment of
50 amino acids from position 255 to 312, a total of 25
amino acids were found under positive selection. Con-
versely, amino acids were found under purifying selection
from position 1 to 254. (Additional file 12: Figure S4A).



PPP2R5C HEXB 

CASP8 GBP1 

Figure 4 Results of positive selection calculation are visualized
onto 3D structure of PPP2R5C, HEXB, GBP1 and CASP8 pig
proteins. The color scale from light to dark green represents purifying
selection, while orange and red represent positive selection with
posterior probabilities greater than 95% or 99%, respectively. The orange
arrow points to the serine at position 427 of GBP1 protein that is under
positive selection.
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The InterProScan revealed matches with the protein phos-
phatase 2A, regulatory B subunit, B56 (from position 1 to
453, 1 to 476 or 1 to 410, by PIR, PANTHER or PFAM
methods, respectively), and an Armadillo-type fold from
position 6 to 397 by the superfamily method. These strik-
ing results suggest two potentially distinct subdomains for
the protein PPP25RC in swine. The HEXB protein, hexos-
aminidase B (beta polypeptide), is 538 amino acids long
in swine (Ensembl ID ENSSSCP00000014965). Hexosa-
minidase B is the beta subunit of the lysosomal enzyme
beta-hexosaminidase that, together with the cofactor GM2
activator protein, catalyzes the degradation of the gan-
glioside GM2, and other molecules containing terminal
N-acetylhexosamines. Two amino acids were found under
positive selection at positions 191 and 370. Both amino
acids map to the glycoside hydrolase catalytic domain
(Additional file 12: Figure S4B). At position 191, the amino
acid maps also to a beta-hexosaminidase subunit related to
beta-N-acetylhexosaminidase activity (GO:0004563). The
CASP8 protein, known as the caspase 8, apoptosis-related
cysteine peptidase comprises 252 amino acids in swine
(Ensembl ID ENSSSCP00000026484) and has also been
found under accelerated evolution rate in human (see
Additional file 11: Table S8, [1]). Two amino acids were
found under positive selection at positions 122 and 226.
The amino acid at position 122 specifically maps to a pre-
dicted domain referred to as Domain Peptidase C14,
caspase precursor p45, core-IL1BCENZYME (Additional
file 12: Figure S4C). The GBP1 protein is known as the
guanylate binding protein 1, interferon-inducible and is 590
amino acids long (Ensembl ID ENSSSCP00000007381). A
unique amino acid has been found under positive se-
lection at position 427, in the guanylate binding protein,
C-terminal domain (Additional file 12: Figure S4D).
The availability of whole genome sequences has

paved the way for renewed approaches to study the
molecular signatures of natural selection at unprece-
dented scales [71]. In addition, amino acids found
under positive selection are highly interesting candi-
dates to target for further biological analyses and
understanding of the link between structures and func-
tions. In genetic studies aimed at identifying nucleotide
polymorphisms involved in the variation of target traits,
the analysis of evolutionary constraints at candidate
mutations should provide a fundamental, additional
layer of information.
Conclusions
Our computationally-facilitated, manual annotation of
immune response genes provided expert-level curation
of 1,369 gene models and 3,472 transcripts, of which
1,172 annotated using sequence available only from
other organisms. This extensive annotation provided evi-
dence for gene expansions in several immune response
families, and identified artiodactyl-specific expansions in
the cathelicidin and type 1 Interferon families. We found
gene duplications for 18 genes, including 13 immune re-
sponse genes and five non-immune response genes dis-
covered in the annotation process. We used a functional
approach to discover and accurately annotate porcine
immune response genes. Using co-expression analysis of
transcriptional profiling data from studies on blood,
macrophages, as well as lymph nodes, we identified a
large cluster (n = 619 probesets) that exhibited a corre-
lated positive response upon infection across a number
of pathogens or due to different immune stimuli. Inter-
estingly, this gene cluster (Cluster 4) is enriched for
known general human immune response genes [66], yet
only 16% of these genes have been annotated as immune
response in the Gene Ontology project. Overall this ap-
proach has provided new putative immune response an-
notation for over 500 porcine genes. A phylogenetic
analysis of the encoded proteins of Cluster 4 genes
showed high rates of evolutionary change at the amino
acid level, confirming the hypothesis that such genes are
important components of the pig’s adaptation to patho-
gen challenge over evolutionary time. These comprehen-
sive and integrated analyses increase the value of the
porcine genome sequence and provide important tools
for global analyses and data-mining of the porcine im-
mune response.
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Methods
Selection of genes and corresponding BACs to annotate
To enable identification of BAC sequences for annota-
tion, we constructed a priority pig gene list to facilitate
the connection of gene name to genome/BAC locations.
These genes were selected to represent as many genes in
the immunome as possible, based primarily on immune
response GO annotation (“immune system process”;
GO:0002376), but also included genes identified as re-
sponse to immune stimulations or infections in human
cells [66] or fast-evolving human immune genes [1].
Briefly, BAC names were extracted from ftp download
pig.embl files and matched with their clone names. Their
coordinate locations on the pig assembly were obtained
through an interactive query from the Sanger web portal.
Mapping information obtained included finished BAC
clones, in-process FPC clones and un-finished clones.
Among 4,245 initially proposed immune genes to anno-
tate, only 2,990 were found on the Ensembl predicted
gene list. The remaining genes were mapped using
cDNA sequences to the pig assembly. With several up-
dates from various sources, the final list contained 4,347
immune genes. A GBrowse portal displayed the align-
ments of the genes and BAC clones. With a coordinate-
based query mechanism, an interactive web portal
(http://www.animalgenome.org/cgi-bin/host/ssc/gene2bacs)
was set up on a MySQL database-enabled system for cura-
tors to locate the clones of interest. The portal also pro-
vided ortholog genes and Refseq match information to
assist annotation.

Annotation methods using new Otterlace software
The Otterlace/Zmap [45,46] manual annotation software
was used by authorized external users via the Wellcome
Trust Sanger Institute (WTSI) SingleSignOn system using
their Institute email addresses. The manual annotation ap-
proach used was that of the “Gatekeeper” [45] where the
external annotation is subjected to integrated QC within
the software followed by extensive QC from professional
annotation staff in the human and vertebrate analysis and
annotation (HAVANA) team.
When a clone of interest was identified, it was linked

to the assembly sequence chooser in Otterlace. This re-
gion of the chromosome was opened by the annotator
and large-scale data analysis from our annotation pipe-
line [45], such as searching mRNA, EST and Protein se-
quence libraries, was performed on WTSI systems.
These analyses, together with Ensembl predictions were
then used to aid the annotation. The annotated gene ob-
jects were classified into a condensed version of biotypes
developed within the HAVANA team, and detailed in
full in our annotation guidelines (http://www.sanger.ac.
uk/research/projects/vertebrategenome/havana). This is
due to the relative scarcity of pig mRNA and SwissProt
entries that are required to make a coding locus biotype
Known_CDS, so many more Novel_CDSs were made from
cross-species mRNA evidence. The HUGO Gene Nomen-
clature Committee (HGNC, http://www.genenames.org/)
[72] naming convention was used whenever possible for
those pig genes. Where there were potential duplica-
tions, the HAVANA naming conventions were followed
(see guidelines). Annotation results are summarized by
chromosome in Table 1.
Gene family selection and description of ortholog checks
Across four mammalian genomes (human, mouse, bo-
vine and porcine), we identified a number of expansions
in gene families important in the immune system. We
targeted several gene families for a detailed analysis of
expansions across species; families were chosen from a
preliminary analysis done in humans, mice and pigs
[49]. Artiodactyl-associated families were included
based upon expansions noted in the bovine genome [9].
Unambiguous 1:1 orthologs for each species were ini-
tially determined from the corresponding human or
mouse gene in Ensembl. For each gene, additional fam-
ily members were determined by including genes that
were listed as ambiguous orthologs (1:many) or by a
separate Ensembl within species search for paralogs.
Each Ensembl predicted gene transcript was aligned
against the NCBI reference sequence database using
BLAST [73] to determine the corresponding NCBI loci
and reference sequence or other family members that
may have been missed due to areas of the genome that
were not sequenced. Results are summarized in Table 2
and detailed in Additional file 1: Table S1. These data
were used to extract a gene list of 597 unambiguous
orthologs across the four species that were used for
Venn analysis using Venny (http://bioinfogp.cnb.csic.es/
tools/venny/index.html) (Figure 1). Defensins or inter-
ferons were not included in this analysis because 1:1
orthologies could not be assigned for the great majority
of genes, due to the extremely high similarity of these
gene family members within and across species. Genes
for which there is evidence for transcription but that
are missing from genome build 10.2 are summarized in
Additional file 2: Table S2.
Duplication analysis
Genes that yielded a one:many relationship during the
orthology search were subjected to an additional round
of BLAST analysis. Artifactual duplication status was
designated when genes possessed approximately 99%
identity at the nucleotide level and were in a cluster of
proximal genes tandemly duplicated at the same level
of identity. Artifactual duplications are reported in
Additional file 4: Table S4.

http://www.animalgenome.org/cgi-bin/host/ssc/gene2bacs
http://www.sanger.ac.uk/research/projects/vertebrategenome/havana
http://www.sanger.ac.uk/research/projects/vertebrategenome/havana
http://www.genenames.org/
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://bioinfogp.cnb.csic.es/tools/venny/index.html
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Co-expression analysis of immune response gene
expression profiling datasets
Gene expression profiling datasets for the Affymetrix por-
cine genome array (platform GPL3533) were collected from
GEO (http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/) databases. Datasets
were filtered based on the following criteria: 1) availabil-
ity of raw data (.cel files) and 2) a pathogen/pathogen
component treatment challenge was part of the experi-
mental design. All raw data (.cel files) were downloaded
and the probe set expression levels were estimated using
the robust multi-array average (RMA) method [74]. The
quality of the raw data from each dataset was analyzed
using the arrayQualityMetrics package in Bioconductor
(http://www.bioconductor.org/) and scored on the basis
of 5 metrics, namely maplot, spatial, boxplot, heatmap
and rle. Any array failing on more than one metric was re-
moved from the dataset. The collected data included four
unpublished datasets from the pig research community
(one from CKT and three from DAH/TAA; three datasets
are now published: E-MTAB-505 [75]; GSE30956 [36]; and
GSE27000 [34]). In total, 188 chips across 8 experiments
fit this criterion, and were used as input for the cluster ana-
lysis (Additional file 5: Table S5). To find genes that
responded similarly to an infection or stimulus across all
groups, we used Robinson’s within-group correlation
(Equation 1, [76]) to calculate pair-wise correlations for
each probeset. These correlations emphasized similar re-
sponses to the known stimulus present in each dataset. A
tgf matrix was created using a minimum correlation of
0.52, which empirically maximized cluster size while
retaining functional annotation enrichment. The tgf file
was then imported into BioLayout Express3D [38] and these
correlations were used to create a co-expression graph.
Equation 1. Robinson’s within-groups correlation. The

within-group correlation (rw) is a weighted average of
the j within-group individual correlations between X and
Y. Each within-group correlation was weighted by the
size of the group for which it was calculated [76].

rw ¼
Xk
j¼1

rjwj ¼
Xk
j¼1

Xnj
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Further analysis of the correlation graphs was then
performed within BioLayout Express3D. In this context,
nodes represented individual probesets (genes/transcripts)
and the edges represented Pearson correlation coefficients
between them. The network was clustered into groups of
genes sharing similar profiles using the MCL algorithm
with an empirical MCL inflation value (1.8) and a global
graph for each network was created showing the MCL
clusters. Several functions within BioLayout Express3D

were then used to explore and characterize the clusters
created. In addition, cluster gene lists were exported and
annotated using R scripts and GO-SLIM tools (at www.ebi.
ac.uk) to find over-representation of GO terms and other
functional annotations. Significance of enrichment of an-
notations was calculated using a modified Fisher’s exact
test [77]. False discovery rate for this enrichment was also
calculated and presented [78].

Positive selection analysis
We focused on one cluster (number 4), built during the
co-expression analyses above and shown to be enriched
in immune response genes, to estimate the rate of evo-
lutionary change for porcine immune genes. Within
cluster 4 probesets, we were able to identify 295 unique
genes with Ensembl IDs. From this set of 295 genes,
277 proteins annotated in Ensembl release 67 [79] were
extracted. Some of these proteins result from alternative
splicing; to maximize comparisons, we retained only
the longest protein. Thus, a subset of 251 proteins was
studied for evidence of positive selection, using the
PhyleasProg phylogenetic analysis web server (http://
phyleasprog.inra.fr/; [67]). Based on Ensembl release 67,
PhyleasProg enables users to reconstruct phylogenetic
trees, calculate positive selection with a visualization of
these results on the protein sequence and on a 3D
structure where possible, and explore genomic environ-
ment of query genes. Evolutionary analyses were carried
out using 19 species (Chicken, Chimpanzee, Cow, Dog,
Frog, Fugu, Horse, Human, Macaque, Medaka, Mouse,
Opossum, Platypus, Pig, Rat, Stickleback, Tetraodon,
Zebra finch and Zebrafish). Two runs of computations
were done on the 251 proteins from Cluster 4, and evo-
lution analyses were done through the same 19 species.
We are fully aware that identification of actual positive
selection events is a significant issue. Thus, to avoid over-
estimating the number of genes with an accelerated rate
of evolution, we retained only the results from methods
used with high stringency criteria. First, we used parame-
ters “orthologs only” and “Fine computation” and second
used parameters “orthologs only” and “Fast computa-
tion”. The Fine and Fast options correspond to two mul-
tiple sequence alignments methods, Prank (http://www.
ebi.ac.uk/goldman-srv/prank/) and MUSCLE [80], re-
spectively. Positive selection results were computed with
site models (Model 1a vs. 2a, Model 7 vs. 8 and Model 8a
vs. 8) and branch-site models of PAML [81]. Branch-site
models were designed to detect signals of local episodic
positive selection in order to determine whether different
species underwent selective pressure. Bayes Empirical
Bayes (BEB) method implemented in PAML was used
to estimate posterior probabilities of selection on
each codon, and probabilities > 0.95 were considered

http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress/
http://www.bioconductor.org/
http://www.ebi.ac.uk
http://www.ebi.ac.uk
http://phyleasprog.inra.fr/
http://phyleasprog.inra.fr/
http://www.ebi.ac.uk/goldman-srv/prank/
http://www.ebi.ac.uk/goldman-srv/prank/
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significant. After the Prank alignment, multiple sequence
alignments were refined by GBLOCKS [82], improved by
a home-made Perl program. All positive selection results
found specific to pig were checked manually. In the con-
text of multiple testing, we calculated q value measures
as an extension of the false discovery rate, using the q
value package of R. The q value attached to each individ-
ual branch described the expected proportion of false
positives among all branches equal to or more extreme
than the observed one. Therefore, the thresholding of the
estimated q values at alpha level =5% produced a list of
significant branches so that the expected proportion of
false positives was alpha. For the modeling of the 3D
structure, a BLAST [83] was performed to find an ap-
proaching structure in PDB database [84] in order to use
it as a template to calculate a model with MODELLER
[85]. If a PDB sequence matched correctly with submit-
ted protein, evolutionary results were directly visualized
onto its modeled structure. The amino acids found
under positive selection were mapped on potentially
functional domains for the proteins CASP8, GBP1,
HEXB and PPP2R5C. The sequence of each protein
was submitted to InterProScan (http://www.ebi.ac.uk/
Tools/pfa/iprscan/). This InterPro (http://www.ebi.ac.uk/
interpro/) resource provided functional analysis of pro-
tein sequences by classifying them into families and
predicting the presence of domains and important sites.

Availability of supporting data
The data sets supporting the results of this article are
available in the GEO or ArrayExpress databases under
the dataset identifiers provided in the text. Gene struc-
tural annotations and sequences are available in Ensembl
porcine build 10.2.

Additional files

Additional file 1: Table S1. Pig-human-mouse-bovine gene family
comparisons.

Additional file 2: Table S2. Known gene sequences that are missing
from Build 10.2.

Additional file 3: Table S3. True duplicated genes in Build 10.2.

Additional file 4: Table S4. Artifactually duplicated genes in Build 10.2.

Additional file 5: Table S5. List of datasets used in immune response
clustering analysis.

Additional file 6: Table S6. Gene Ontology annotation of Biolayout
Express3D clusters from immune response network shown in Figure 2.

Additional file 7: Table S7. Summary of annotations of selected
clusters from immune response clustering analysis.

Additional file 8: Figure S1. Expression pattern of MCL cluster 17 shows
gene activation after immune stimulation/infection in specific experimental
datasets. In blue is shown the average expression of the 81 probesets in
cluster 17. Details on each dataset are shown below the graph; some example
patterns are highlighted in red. See abbreviations in legend to Figure 3.

Additional file 9: Figure S2. Expression pattern of MCL cluster 26 shows
gene expression common to Lymph Node and blood datasets without a
strong pattern related to immune stimulation. In brown is shown the
average expression of the 48 probesets in cluster 26. Details on each dataset
are shown below the graph. See abbreviations in legend to Figure 3.

Additional file 10: Figure S3. Expression pattern of MCL cluster 48 shows
gene activation after immune stimulation/infection in many experimental
datasets. In orange is shown the average expression of the 24 probesets in
cluster 26. Details on each dataset are shown below the graph; some example
patterns are highlighted in red. See abbreviations in legend to Figure 3.

Additional file 11: Table S8. Results of positive selection computation
on the 242 pig proteins from MCL cluster 4.

Additional file 12: Figure S4. Results of positive selection calculation
are visualized on primary sequence of (A) PPP2R5C, (B) GBP1, (C) HEXB
and (D) CASP8 pig proteins. Amino acids in green font are under purifying
selection. Amino acids in orange and red font are under positive selection
with posterior probabilities greater than 95% or 99%, respectively. Amino
acids in white font target those for which no information is available (no
calculation was performed by PAML due to at least one gap in the multiple
sequence alignment at this position). Amino acids are in grey font where
results are not significant enough to infer either purifying or positive
selection. Protein domains, as predicted by InterPro resources (see Methods)
are represented by colored bars under amino acid sequences.
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