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The species abundance distribution and the total number of species are fundamental descriptors of the
biodiversity of an ecological community. This paper focuses on situations where large numbers of rare
species are not observed in the data set due to insufficient sampling of the community, as is the case in
metagenomics for the study of microbial diversity. We use a truncated mixture model for the observations
to explicitly tackle the missing data and propose methods to estimate the total number of species and, in
particular, a Bayesian credibility interval for this number. We focus on computationally efficient procedures
with variational methods and importance sampling as opposed to Markov Chain Monte Carlo sampling,
and we use Bayesian model averaging as the number of components of the mixture model is unknown.

Keywords: mixture models; Bayesian model averaging; variational methods; truncation; metagenomics

1. Introduction

In this paper, we estimate the number of microbial species that are present in an environmental
sample, but not observed in the data set for lack of sufficient sampling. We view the problem in
the larger context of estimating the number of classes when some classes are not observed. The
statistical origins of the topic date back to the work of Fisher et al. [10] on estimating the number
of Malaysian butterfly species based on captured specimens. Since then, the statistical methods
have been applied to diverse areas, ranging from estimating the number of coins minted in the
Middle Ages [9] and the number of words in a language [8] to the number of drug addicts when
only a few are reported by their physician [3], see [5,7] for a review.

As in the original work of Fisher, estimating the number of classes has particular applications in
ecology. In microbial ecology, for instance, the use of culture-free methods such as Metagenomics
and Next Generation Sequencing has revealed large numbers of unknown bacterial species in sea
water and soil or in the human gut microbiota [13]. However, most bacterial species in these
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2 S. Li-Thiao-Té et al.

samples are not very abundant and are easily not observed, which motivates the use of statistical
methods for estimating the global biodiversity. Surely, the total number of species gives an estimate
of how much or how little we understand a given microbial community. In addition, there is
ongoing research on whether microbial communities are more efficient or more resilient when
more complex [25].

Three methods have been used in the literature for estimating species richness. These are (1) fit-
ting a statistical distribution to either rank-abundance or frequency-count data, (2) extrapolating
rarefaction curves and (3) using non-parametric methods. The main statistical distributions used
are lognormal and mixtures of exponentials. These have been reviewed and compared in [4].
Techniques based on rarefaction curves are discussed in [11,18]. Non-parametric methods do
not restrict the models to a family of distributions. They have led, in particular, to Chao-type
estimators [3,6].

When fitting a statistical distribution to frequency-count data, finite mixture models have been
shown to perform well for metagenomics data sets [4]. However, choosing the right number of
components is not straightforward. In this paper, we tackle two issues in the estimation problem.
First, we extend the finite mixture model approach described in [4] to address the uncertainty
about the choice of the number of components of the model. Instead of selecting the model order,
we use Bayesian model averaging (BMA) to add flexibility to the choice of the model without
going all the way to non-parametric methods. Second, we evaluate the level of confidence in
the estimated number of species in a Bayesian framework with credibility intervals obtained by
importance sampling. These methods are illustrated using a recent study on the microbial diversity
of the human gut in relation to eating habits [23].

This paper is organized as follows. In Section 2, we present the probabilistic model that
describes the characteristics of the ecological community and how observations for each species
are generated given the parameters of the environment. In Section 3, we describe three parameter
estimation methods based on the variational Bayesian EM algorithm given in [2] and BMA. In
particular, we compute approximate posterior distributions and deduce approximate credibility
intervals. In Section 4, we discuss the results of our methods in the context of simulated data and
a metagenomics data set.

2. Statistical model

The number of missing species must be extrapolated based on species observed at least once.
This cannot be done without a model and has led to questions on the model’s representativity of
the actual biological phenomenon. In particular, it is not possible to guard against large numbers
of species with no representative in the data set ([14] cited in [5]). Therefore, the choice of a
model reflects an assumption on the relative number of missing species and observed species.
In general, a model is chosen for the species abundance distribution (SAD) which reflects the
relative numbers of abundant species with many individuals and rare species.

2.1 Sampling model

In the context of metagenomics (large number of species, many rare and unobserved), the following
model is often considered (see [5] for a review). Let C denote the total number of species present in
the environmental sample and n the number of observed species. Each of these species contributes
a Poisson distributed number Xi of individuals to the data set with species-specific rate parameter
λi. We make the modelling assumption that λi are independent identically distributed samples
from a random variable �. The distribution of � is the SAD.

The SAD is not directly observable and is estimated based on the variables Xi. As the species’
rates λi are not observed, the data set contains samples of a random variable X which are
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Journal of Applied Statistics 3

independent conditionally on λi. The relationship between � and X is expressed by the following
formula (Poisson composition):

PX(x) :=
∫

e−λλx

x! f�(λ) dλ.

However, species with zero observed individuals are not present in the data set. We explicitly
account for these missing data by considering a truncated model, that is, we study the distribution
of the variable X+ which denotes the always positive number of individuals:

PX+(x) := PX(x|X > 0) = PX(x)

1 − PX(0)
.

Remark As indicated in [19], the truncated model is identifiable, that is, given an infinite num-
ber of observations and the associated distribution for X+, there exists only one corresponding
distribution f�.

This model corresponds to the case where individuals and species are sampled and distributed
independently. When individuals from the same species are frequently sampled together – for
example, in the presence of clusters of individuals – or species are sampled together because of
trophic relationships, other models such as the negative binomial can be used [12,20].

2.2 Truncated mixture model for observed species abundances

The sampling model described in Section 2.1 indicates how observations are related to the SAD.
We now present a parametric model for the SAD, and in Section 2.4, we deduce the total number
of species from the model.

Finite mixture models are flexible parametric tools that can adapt to the complexity of each
data set. In [4], a systematic comparison to select good statistical models for SADs among the
many models available was performed [20]. The truncated mixture of geometric distributions used
in this paper was found to be the best choice among the models considered (Poisson, Poisson
mixture, inverse Gaussian, etc.).

As in [4], we model the SAD with a finite mixture of exponential distributions f�(λ) =∑
q βqE(λ, μq), where μq denotes the model parameters and βq are the mixing proportions.

Contrary to that done in Bunge et al., the number of components is not chosen between two and
three; we deal with this issue in Section 3.4.

When the SAD follows a mixture model, the observations Xi also follow a mixture model. Due to
linearity, composition with the Poisson distribution can be applied to individual components, that
is, PX(x) = ∑

q βq
∫
(e−λλx/x!)f (λ, μq) dλ. When the components are exponential distributions

(f (λ, μq) = μq e−λμq ), straightforward computations show that the model further simplifies into
a mixture of geometric distributions:

PX(x) =
∑

q

βq(1 − πq)(πq)
x,

where πq = 1/(1 + μq).

2.3 The mixture of truncated geometric distributions

To explicitly take into account missing species in the model, we consider the truncated mixture

PX+(x) =
∑

q βq(1 − πq)(πq)
x

1 − PX(0)
=

∑
q βq(1 − πq)(πq)

x∑
q βqπq

.
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4 S. Li-Thiao-Té et al.

Truncated mixtures are cumbersome because the model parameters appear in the denominator.
For example, the EM algorithm for truncated geometric mixtures requires root-finding, whereas
closed formulae for the updates are available in the un-truncated case.

The results given in [3] allow us to consider a mixture of truncated distributions instead of a
truncated mixture model. In the case of the geometric mixture model,

PX+(x) =
∑

q βq(1 − πq)(πq)
x∑

q βqπq
=

∑
q

αq(1 − πq)(πq)
x−1, (1)

where

αq = βq/πq∑
q βq/πq

. (2)

In particular, we can perform maximum-likelihood inference on the mixture of truncated geometric
distributions and deduce the maximum-likelihood solution for the truncated mixture model by a
simple application of the change of parameters given above.

2.4 Computation of the total number of species

A simple formula for the total number of species computes the expected number of observed
species as n = C × PX(x > 0) from which we deduce the estimator Ĉ = n/(1 − P̂X(0)), where
n is the number of observed species and P̂X(0) is estimated from the SAD. Ĉ is a maximum-
likelihood estimator obtained conditionally on the estimates of the model parameters (see [4]
for a complete derivation). It is asymptotically equivalent to complete the maximum-likelihood
estimation where the total number of species C and the model parameters are optimized at the
same time [21].

Based on the previous derivation, we compute Ĉ by estimating the SAD with a mixture of
truncated geometric distributions. We then change the parameters to obtain a truncated mixture and
compute Ĉ = n/(1 − ∑

q β̂q(1 − π̂q)).A simpler formula directly computes the number of species

from the parameters of the mixture of truncated geometric distributions as Ĉ = n
∑

q(α̂q/π̂q)

(simple derivation, also in [3]).
The proposed estimation formula for Ĉ relies on the estimation of the mixture parameters α̂q

and π̂q. Consequently, large numbers of observed species are more important than large numbers
of individuals for each species. In cases where the sampling method puts a limit on the species
counts, several data sets can be pooled to alleviate the problem provided that Poisson sampling is
still in effect.

3. Parameter inference

Most of the approaches to date have been performed in the frequentist framework [4]. As a
consequence, variance estimates and confidence intervals are asymptotic. In this paper, we operate
in the Bayesian framework to obtain non-asymptotic approximate credibility intervals.

In the context of metagenomics, the data sets are too large for straightforward Markov Chain
Monte Carlo (MCMC) procedures such as using a Gibbs sampler. We propose to approximate the
posterior distribution with variational methods. As discussed in Section 3.6, variational methods
are not precise enough, so importance sampling is introduced to improve the estimate of the
posterior distribution.
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Journal of Applied Statistics 5

3.1 Bayesian framework

In the proposed model, the observations Xi are samples from a mixture of truncated geometric
distributions and we introduce the hidden variable Zi that represents the class membership of
species i among the M components.1 We propose the following Bayesian priors for the parameters
(αq, πq) of the mixture of truncated geometric distributions:

α ∼ Dirichlet(a)

πq ∼ Beta(bq, cq)

Zi ∼ M(1; α)

Xi|Ziq = 1 ∼ gq+(x, πq),

where gq+(x, πq) = (1 − πq)(πq)
x−1 is the truncated geometric distribution. Note that a is a vector

in R
M .A Dirichlet prior on α is a standard choice because it is the conjugate prior for the parameters

of multinomial distributions. We use Beta priors for the parameters πq for the same reason.
Bayesian parameter inference provides distributions over (αq, πq) rather than on the parameters

of the truncated mixture. When studying the SAD, the parameters of the truncated mixture (and
hence their distribution) can be obtained from Equation (2).We are rather interested in the posterior
distribution of the total number of species, which we obtain directly from the parameters of the
mixture of truncated geometrics using the formula C = n

∑
q(αq/πq) (see Section 2.4). In the

remainder of this section, we deal with the approximation of this posterior distribution.

3.2 Variational Bayes-EM approach

We provide a brief description of the VB-EM algorithm for approximate Bayesian inference.
For more information, the reader can refer to [2]. Variational methods decompose the complete
likelihood into

log P(X) =
∫

Q(Z , ϑ) log
P(X , Z , ϑ)

Q(Z , ϑ)
dZ dϑ + KL(Q(ϑ , Z), P(ϑ , Z|X)),

where Q is an arbitrary distribution, Z are hidden variables and ϑ are model parameters. Varia-
tional methods maximize the first term, which is equivalent to minimizing the Kullback–Leibler
divergence KL(Q(ϑ , Z), P(ϑ , Z|X)).

To perform the maximization, the distribution Q(ϑ , Z) is approximated by Q(ϑ , Z) ∼
Qϑ(ϑ)QZ(Z). The maximization in Qϑ(ϑ) and QZ(Z) successively leads to the following update
formulae that are iterated until convergence:

QZ(Z) ∝ exp

[∫
P(X|Z , ϑ)P(Z|ϑ)Qϑ(ϑ) dϑ

]
,

Qϑ(ϑ) ∝ P(ϑ) exp

[∫
P(X|Z , ϑ)P(Z|ϑ)QZ(Z) dZ

]
.

For the sake of readability, we write Q(ϑ) and Q(Z) where applicable.

3.3 Application of the VB-EM method to a mixture of truncated geometric distributions

We apply the VB-EM method to compute an approximate posterior distribution Q(α, π) ∼
P(α, π |X). In the case of conjugate exponential models, the updates can be performed by simply
updating the hyperparameters. The mixture of truncated geometric models falls into this category
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6 S. Li-Thiao-Té et al.

because truncated geometric distributions are still geometric distributions. Therefore, it suffices
to update the parameters a of the Dirichlet prior distribution on the mixing proportions and the
parameters (bq, cq) of the Beta prior distributions on the parameters for each geometric component.

For the mixture of truncated geometric distributions, the VB-EM algorithm corresponds to the
following update formulae:

a(n+1)
q = a0

q +
∑

i

τ
(n)
iq ,

b(n+1)
q = b0

q +
∑

i

τ
(n)
iq (Xi − 1),

c(n+1)
q = c0

q +
∑

i

τ
(n)
iq ,

where (a0, b0, c0) are the prior parameters and τ
(n)
iq = QZi(q). We denote âq, b̂q and ĉq as the

hyperparameters of the approximate posterior distribution Q(α, π).
As we have used conjugate priors, the approximate posterior distributions belong to the same

family to which the priors belong:

α|X ∼ Dirichlet (â),

πq|X ∼ Beta (b̂q, ĉq).

3.4 Bayesian model averaging

The selection of the number of components of the mixture model can be done based on a penalized
likelihood with penalization terms such as AIC [1] and BIC [22]. However, we have decided to
not choose a single model and rather combine the estimates of several models with BMA. Data
collected in real-world applications are unlikely to belong to the family of truncated mixtures
of geometric distributions, so there is no true value for the number of components. Moreover,
averaging over several models is always potentially better than choosing a single model, because
the single model solution is contained in the set of possible averages.

Let us briefly recall the basics of the BMA approach. More details can be found in [15].
We consider the set S of all mixture models and partition it according to the number of
components S = ∪m{models with m components}. The BMA model is a linear combination
dBMA = ∑

m wmdm such that dm is the posterior density of the observations given a model with
m components. To compute the weights wm, let us define the hidden random variable M that
indicates the number of components. Then, conditionally on M, the model for the data set is dM

with weight wM = P(M|X).
The weights are computed by wM ∝ P(X|M)P(M) according to the Bayes formula. P(M)

is the a priori distribution on M. In our context, we assume that M is bounded by M0 and
that it has a uniform distribution over the interval (1, M0). The integrated likelihood P(X|M) =∫∫

P(X|ϑ , Z , M)P(Z|ϑ , M)P(ϑ |M) dZ dϑ is the likelihood of the observations X in the mixture
model with M components and can be approximated using the variational approach by neglecting
the Kullback–Leibler term:

log P(X|M) �
∫∫

Q(Z , ϑ) log
P(X, Z , ϑ |M)

Q(Z , ϑ)
dZ dϑ .

In the case of conjugate exponential models, we provide a closed-form formula to compute
log P(X|M) in Theorem 3.1 and the practical computation in Corollary 3.2 for mixture models.
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Journal of Applied Statistics 7

Theorem 3.1 Suppose that P(Z , ϑ , X) belongs to the family of conjugate exponential models:

log P(ϑ) = log h(η, ν) + η log g(ϑ) + �(ϑ)′ν

log P(X , Z|ϑ) = log f (X , Z) + log g(ϑ) + �(ϑ)′u(X, Z).

We note Q(Z) and Q(ϑ) as the fixed-point solutions of the variational problem �̄ = EQ[�(ϑ)]
and ū(X) = EQ[u(X , Z)]. Then,

log P(X|M) � −�̄′ū(X) − log
h(η + 1, ν + ū(X))

h(η, ν)
+ log

∫
f (X, Z) exp�̄′u(X ,Z) dZ .

Proof We compute log P(X|M) � ∫∫
Q(Z , ϑ) log(P(X, Z , ϑ |M)/Q(Z , ϑ)) dZ dϑ when

P(Z , ϑ , X) belongs to the family of conjugate exponential models and Q is obtained by the
VB-EM algorithm.

According to Section 3.2, after convergence, we obtain Q(Z , ϑ |M) = Q(ϑ)Q(Z) such that

log Q(ϑ) = log h(η + 1, ν + ū(X)) + (η + 1) log g(ϑ) + �(ϑ)′(ν + ū(X))

log Q(Z) = log f (X , Z) + �̄′u(X , Z) + log g�̄,

where ū(X) = ∫
u(X , Z)Q(Z) dZ and �̄ = ∫

�(ϑ)Q(ϑ) dϑ and g�̄ = 1/
∫

f (X, Z) e�̄′u(X ,Z) dZ .
Note that η, f and g are scalar, but ν, u(X), �, ū(X) and �̄ are vectors.

We now compute the KL distance with M fixed:

log P(X|M) �
∫∫

Q(Z , ϑ) log
Q(Z , ϑ)

P(Z , ϑ , X)
dZ dϑ

=
∫∫

Q(ϑ , Z)[log Q(ϑ , Z) − log P(X, Z|ϑ) − log P(ϑ)] dZ dϑ

=
∫∫

Q(ϑ , Z) log Q(ϑ , Z) dZ dϑ

+
∫∫

Q(ϑ , Z)[− log h(η, ν) − (η + 1) log g(ϑ)

− log f (X , Z) − �(ϑ)′ν − �(ϑ)′u(X, Z)] dZ dϑ

=
∫

Q(ϑ) log Q(ϑ) dϑ +
∫

Q(Z) log Q(Z) dZ − log h(η, ν)

− (η + 1)

∫
Q(ϑ) log g(ϑ) dϑ −

∫
log f (X, Z)Q(Z) dZ − �̄′ν − �̄′ū(X)

= log
h(η + 1, ν + ū(X))

h(η, ν)
+ (η + 1)

∫
Q(ϑ) log g(ϑ) dϑ + �̄′ν + �̄′ū(X)

+
∫

log f (X , Z)Q(Z) dZ + �̄′ū(X) + log g�̄

− log h(η, ν) − (η + 1)

∫
Q(ϑ) log g(ϑ) dϑ

−
∫

log f (X , Z)Q(Z) dZ − �̄′ν − �̄′ū(X)

= �̄′ū(X) + log
h(η + 1, ν + ū(X))

h(η, ν)
− log

∫
f (X, Z) exp�̄′u(X ,Z) dZ . �
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8 S. Li-Thiao-Té et al.

Corollary 3.2 The evidence in Theorem 3.1 can easily be computed in the case of mixture
models:

• �̄ is given directly by the VB-EM algorithm.
• ū(X) is given by the equations of the VB-EM algorithm (e.g. replacing Ziq by τiq in the expression

of u(X, Z)). Easier still, the VB-EM algorithm provides ν + ū(X) where ν is the given prior.
• As log P(ϑ |η, ν) = log h(η, ν) + η log g(ϑ) + �(ϑ)′ν, for any value of ϑ ,

log
h(η + 1, ν + ū(X))

h(η, ν)
= log P(ϑ |η + 1, ν + ū(X)) − log P(ϑ |η, ν)

− log g(ϑ) − �(ϑ)′ū(X).

• The last item is just a sum because Z is a multinomial.

For a mixture of truncated geometric distributions,

f (X , Z) = 1

g(X , Z) = 1

h(η, ν) = h(a, b, c) = �(
∑

q aq)∏
q �(aq)

1∏
q B(bq, cq)

,

where B is the Beta function.

3.5 Posterior distribution averaging

TheVB-EM method described in Section 3.3 computes the posterior distribution of the parameters
of the mixture model when the number of components is provided. In this study, we are rather
interested in the posterior distribution of the total number of species C|X. To our knowledge, this
does not correspond to a well-studied distribution. As a consequence, we generate samples from
the posterior distribution of the parameters and obtain samples from the posterior distribution of
the number of species with the formula C = ∑

q αq/πq.
When the number of components M is unknown, BMA uses a mixture of posterior distributions

for several values of M. The weights (ŵM) of this mixture are computed according to Section 3.4.
We call the BMA posterior the approximate posterior distribution obtained by aggregating n
samples generated from the posterior distribution C|X, M for each value of M. More precisely,
we first draw the multinomial sample (nM) according to the weights (ŵM) and successively
generate nM samples of C|X , M. From the total n samples, we compute summary statistics such
as the posterior mean estimate of the total number of species and a credibility interval based on
the quantiles of the distribution.

3.6 Posterior distribution from importance sampling

As reported previously by Keribin [16] and Titterington and Wang [24] the posterior distribution
obtained from the VB-EM algorithm usually underestimates the true variance of the parameters
and hence the variance of the total number of species C|X. Consequently, credibility intervals
computed from the BMA posterior are too narrow, and their real level is lower than anticipated
(see the simulations described in Section 4.1).

To improve the approximation of the posterior distribution and credibility intervals, we propose
to replace the samples obtained from the VB-EM hyperparameters with samples drawn from
importance sampling. We then aggregate the importance samples to obtain a BMA IS posterior.
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For a given number of components, we generate the importance samples (αj, πj)
n
j=1 from any

proposal distribution Q, (absolutely continuous with respect to P). According to the Law of Large
Numbers, for any function h,

1

n

∑
j

h(αj, πj)
P(αj, πj|X)

Q(αj, πj)
−→

∫
h(α, π)

P(α, π |X)

Q(α, π)
dQ(α, π) = E[h(α, π)|X].

This means that the sum of Dirac masses (1/n)
∑

j(P(αj, πj|X)/Q(αj, πj))δ(αj ,πj) converges in
distribution towards P(α, π |X). Hence, samples C(αj, πj) with weights P(αj, πj|X)/Q(αj, πj) are
samples from an approximation of the posterior distribution of the total number of species.

Importance sampling provides good results when the importance weights P(αj, πj|X)/Q(αj, πj)

are close to one, that is, when the proposal distribution Q is a good approximation of the posterior
P. Consequently, we use the approximate posterior obtained from theVB-EM algorithm described
in Section 3.3 as a proposal distribution.

We compute the weights, and in particular the quantity P(ϑ |X), with the Bayes formula:

P(ϑ |X) = P(ϑ , X)

P(X)
= P(X|ϑ)P(ϑ)

P(X)
.

P(ϑ) is the prior distribution. P(X) is a multiplicative constant. P(X|ϑ) can be obtained by
integrating in the missing variable Z :

P(X|ϑ) =
∫

P(X, Z|ϑ) dZ .

In the case of mixture models, the missing variables Zi are independent, and the computation of
the integral is efficient.

3.7 Improvements to the VB-EM posterior for importance sampling

The fact that the VB-EM posterior does not have enough variance is reflected in the BMA IS
posterior: the tails of the distribution of the parameters are not adequately sampled, and this is the
same for the tails of the distribution of the number of species. We propose a method to increase
the variance of the proposal distribution that consists in multiplying the hyperparameters by a
factor v.

Recall that the proposal distribution Q obtained from the VB-EM algorithm is the product of a
Dirichlet distribution over the mixture parameters α and Beta distributions over the parameters πq.
It is characterized by the hyperparameters â for the Dirichlet distribution and the hyperparameters
(b̂q, ĉq) for the Beta distributions.

For any positive number v, we obtain a proposal distribution Q/v by considering the hyper-
parameters â/v for the Dirichlet distribution, and the hyperparameters (b̂q/v, ĉq/v) for the Beta
distributions. More precisely,

• Dirichlet distributions with hyperparameters â and â/v have the same mean value.
• Beta distributions with hyperparameters (b̂q, ĉq) and (b̂q/v, ĉq/v) have the same mean value.
• A Beta distribution with hyperparameters (b̂q, ĉq) has variance V = b̂qĉq/(b̂q + ĉq)

2

(b̂q + ĉq + 1). After dividing by v, the variance becomes v((b̂q + ĉq + 1)/(b̂q + ĉq + v))V .
• The marginals of a Dirichlet distribution are Beta distributed, so the same kind of expansion

factor is applied to the marginals of the Dirichlet distribution.

In particular, we consider the factor v to be greater than 1 so that the variances are increased.
According to the update formulae given in Section 3.3, the hyperparameters â and (b̂q, ĉq) are
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10 S. Li-Thiao-Té et al.

proportional to the number of samples and much larger than the dividing factor v. Consequently,
the term ((b̂q + ĉq + 1)/(b̂q + ĉq + v)) is approximately 1 and dividing by v roughly corresponds
to multiplying the variance by v.

In the following, we denote the BMA IS/v posterior as the approximate posterior distribution
obtained in the same way as the BMA IS posterior with the proposal distribution Q/v.

4. Results and simulations

In this section, we consider the following approximate posterior distributions:

• MCMC samples,
• BMA posterior,
• BMA IS posterior, and
• BMA IS/v posterior.

We evaluate these in terms of their estimated value of the total number of species and a credibility
interval for that number. MCMC provides an asymptotically correct reference.

We illustrate the performance on simulated data and a real metagenomics data set. We imple-
mented the variational algorithms using GNU R. For MCMC computations, we used the Gibbs
sampler implemented in the jags package in R.

4.1 Simulations

We first present an example to illustrate how BMA operates and mixes several potential models.We
generated a data set with 2000 species according to the truncated mixture of geometric distribution
models with three components (parameters (0.4, 0.8, 0.95) for the geometric distributions and
mixing weights (0.6, 0.3, 0.1)). In Figure 1, we plot the density of the observed number of species
and the true model on a log scale. To this, we add the log-densities of the mixtures of geometric
distributions obtained with the VB-EM method and the BMA model.

When drawn on a log scale, the density of a mixture of k geometric distributions behaves
like a piecewise linear function with k pieces. For instance, a single component appears as a
line, whereas higher complexity models add linear sections. The model with three components
provides a better fit to the true model (known) than the models of orders 1 and 2. The order 4

0 20 40 60 80 100

−8
−6

−4
−2

0

number of species

lo
g

(d
en

si
ty

)

Data
True model
1 component(s)
2 component(s)
3 component(s)
4 component(s)
BMA model

Figure 1. A simulated data set with 2000 species generated under a truncated three-component mixture
model. Models of increasing complexity are compared with the true model and the empirical distribution.
We use the posterior mean as model parameters to draw the model densities.
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Figure 2. The MCMC, BMA, BMA IS and BMA IS/20 posterior distributions.

model is superimposed on the order 3 model; this is not surprising, as the models are nested. In
this case, ŵ3 � 0.997, so the BMA model is also superimposed on the order 3 model.

In Figure 2, we show the posterior distributions and the corresponding estimated total number
of species (mean a posteriori). This shows the level of precision that can be expected from BMA,
with respect to the inherent uncertainty of the data set, as represented by MCMC. The estimated
number of species coincides in general; this suggests that most of the variance in the posterior
mean estimate from BMA is related to the random sample. The importance sampling posterior
distributions shown on this example coincide with the MCMC posterior as expected, but the BMA
IS/v posterior is a better approximation.

As shown in Figure 2, the posterior distribution obtained from the VB-EM method and hence
the BMA method does not have enough variance. As a consequence, the credibility intervals
obtained from BMA will be too small. However, the scaled importance sampling method BMA
IS/v allows us to retrieve the correct posterior distribution.

To evaluate the bias, precision and the actual level of the credibility intervals obtained from
the posterior distributions, we generated 1000 data sets with the same parameters and computed
the posterior distribution for each method. Due to timing constraints, the MCMC posterior was
only computed up to 2000 total species, as this already required 5 min per data set. In Table 1, we
present the median of the estimated number of species. This shows that the estimated total number
of species is unbiased. In Table 2, we present the median average deviation relative to the true
value to evaluate the precision of the estimated total number of species. The results show that the
precision is comparable for all posterior distributions, which suggests that most of the variation
is in fact due to the random sample and not due to the estimation method. However, precision
decreases with the BMA IS/v posterior and large values of v because the proposal distribution
has too much variance and many samples have negligible importance weight.

Table 1. Median of the estimated total number of species in 1000 data sets.

C BMA BMA IS BMA IS/10 BMA IS/20 BMA IS/30 MCMC

200 187.8 188.2 191.8 195.6 201.8 213.5
2000 2011.3 2010.5 2011.8 2037.4 2053 2059.7
20,000 20,030.6 20,032.7 20,028.9 20,041 20,050.2 0
200,000 200,106.5 200,111.5 200,059.9 200,077.5 200,016.2 0

Notes: For all methods, the values are close to the theoretical number of species, which shows that the bias is
low. The bias decreases with the total number of species because the data set is larger.
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12 S. Li-Thiao-Té et al.

Table 2. Median average deviation of the total number of species relative to the true number.

C BMA BMA IS BMA IS/10 BMA IS/20 BMA IS/30 MCMC

200 0.133 0.126 0.132 0.164 0.22 0.171
2000 0.084 0.083 0.083 0.092 0.109 0.071
20,000 0.02 0.02 0.021 0.021 0.02 0
200,000 0.007 0.007 0.007 0.007 0.007 0

Notes: The precision of MCMC, BMA and BMA IS is the same because the estimate is nearly identical.
BMA IS/v can be less precise when too many samples have negligible importance weight.

Table 3. Empirical level of the computed credibility intervals for a target level of 95%.

C BMA BMA IS BMA IS/10 BMA IS/20 BMA IS/30 MCMC

200 0.656 0.731 0.82 0.816 0.809 0.971
2000 0.637 0.73 0.86 0.874 0.875 0.955
20,000 0.617 0.75 0.876 0.902 0.916 0
200,000 0.606 0.734 0.888 0.902 0.915 0

Notes: The MCMC posterior is exact. The BMA posterior distribution computes credibility intervals that
are too narrow. The BMA IS methods retrieve most of the true variance.

We evaluated the actual level of the confidence interval by counting how many times the
true value belongs to the computed interval. Table 3 shows the results when computing a 95%
credibility interval. The reference method MCMC provides accurate confidence intervals, as the
empirical level matches the desired level (0.95). However, this method is run with the correct
number of components in the mixture model and is not applicable for large data sets.

As shown in Figure 2, the BMA posterior does not have enough variance, and this is reflected
in the empirical level of the confidence (around 0.63). The empirical level appears to be constant
across varying numbers of species, which suggests that the problem is related to the variational
approximation described in Section 3.2 rather than to the insufficient number of samples.

The use of theVB-EM posterior as a proposal distribution for importance sampling improves the
quality of the credibility intervals to around 0.74 (expected 0.95). This is a definite improvement,
but coverage can be further improved by increasing the variance of the proposal distribution.
The obtained BMA IS/v posterior reaches more than 90% coverage. With too much increased
variance, however, the estimated total number of species is less precise because many importance
samples have negligible weights (see Table 2). In our experience, the value v = 20 provides good
results in practice.

4.2 Influence of the prior choice

The posterior distribution is dependent on the choice of the prior distribution, and we checked
that the results are mostly the same with Figures 3 and 4. For the sake of simplicity, the prior is
described in our implementation by a single value t such that aq = bq = cq = t for all components
q and the same value is used for all the models considered by the BMA algorithm. When t is
close to 1, the Dirichlet and Beta priors are approximately uniform on [0, 1]. Higher values of t
put more weight a priori on 0.5. As shown by the example in Figure 3, different choices of t have
little influence on the total number of species in the simulations.

In Figure 4, we plot the lower and upper bounds of the credibility intervals as well as the
posterior mean estimate for the BMA IS/20 method and several values of t. The box plots are
computed from 1000 random data sets. The plots show no significant difference for the confidence
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Figure 3. BMA IS/20 approximate posterior distribution for several choices of the prior distribution parameter
t. The MCMC posterior distribution is provided for reference. The posterior distribution is not affected by
prior choice.

1.01 1.5 2

n
u

m
b

er
 o

f 
sp

ec
ie

s

1.01 1.5 2 1.01 1.5 2

15
00

20
00

25
00

30
00

35
00

Lower bound Number of species Upper bound

Figure 4. Influence of prior choice on the lower bound of the confidence interval, the estimated number
of species and the upper bound of the confidence interval. The interval is robust to prior choice, but high
numbers of species are more likely with prior choice t = 1.01.

intervals; most of the variation is in fact due to the random data set. When the prior parameter t
is close to 1, the parameters πq close to 0 are more probable and so are high numbers of species.

4.3 Real data set

In this section, we apply the BMA method to estimate the total number of microbial strains in
the human gut microbiome from the data set published in [23]. Faecal samples from 17 healthy
subjects with a vegetarian diet or an omnivorous diet were studied. Using bacterial primers, 16S
rDNA genes were extracted and then amplified before sequencing. In total, 10,456 unambiguous
sequences were pooled into 3180 OTUs with RapidOTU [17]. In the following, we pool the 17
individuals and use the number of sequences as a measure of the abundance of an OTU.

Figure 5 shows that the mixture model is adequate for this data set. In [4], it was indicated that
models with two and three components are usually enough in practice. In this case, the best fit
appears to be the four-component model with weight ŵ4 � 0.971, but the three-component model
also has non-negligible weight ŵ3 � 0.026.

Figure 6 shows the BMA posterior distribution and the BMA IS/20 posterior distribution.
The MCMC posterior distribution with four components is provided for reference. The posterior
mean estimates coincide at around 25,700 species. The 95% confidence interval is [19421, 36355].
In [23], the Chao1 estimate which provides a lower bound of 9940 OTUs was used.

D
ow

nl
oa

de
d 

by
 [

U
ni

v 
Pa

ri
s-

N
or

d-
B

 U
 S

ci
en

ce
s]

, [
Sé

ba
st

ie
n 

L
i-

T
hi

ao
-T

é]
 a

t 0
4:

58
 2

0 
M

ar
ch

 2
01

2 



14 S. Li-Thiao-Té et al.

0 10 20 30 40 50 60

−8
−6

−4
−2

0

number of species

lo
g

(d
en

si
ty

)

Data
1 component(s)
2 component(s)
3 component(s)
4 component(s)
5 component(s)
BMA

Figure 5. Mixture models with up to five components fit to the metagenomics data set. The BMA method
indicates that four components are appropriate for this data set.
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Figure 6. The MCMC, BMA and BMA IS/20 approximate posterior distributions of the number of species.
The MCMC posterior is computed with four components.

In Figure 7, we check that the BMA IS/20 posterior distribution is not sensitive to the prior
choice. In this data set, BMA averages between the three-component and the four-component
model, so the BMA IS/20 posterior distribution does not exactly correspond to the MCMC pos-
terior. As the three-component model infers less species, the BMA IS/20 posterior also estimates
a lower number of species than MCMC.
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Figure 7. Sensitivity of the BMA IS/20 posterior distribution to prior choice. The MCMC posterior with
four components is provided for comparison.
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Table 4. Computational time in seconds required for generating posterior samples for a data
set with C species.

C BMA BMA IS BMA IS/10 BMA IS/20 BMA IS/30 MCMC

200 2.42 5.12 5.13 5.14 5.13 31.57
2000 5.47 5.72 5.72 5.73 5.74 307.44
20,000 16.58 5.91 5.91 5.91 5.93 0
200,000 76.18 7.08 7.08 7.08 7.08 0

4.4 Computational time

The computations were run on a workstation with a Core 2 Duo E7300 processor with 3 GB of
RAM. Table 4 presents the cpu time used for generating the benchmark given in Section 4.1.
The computation of the MCMC posterior requires roughly linear time and takes 5 min per data
set at C = 2000. Samples for larger values of C were not generated due to the large amounts of
computational time required.

The reported cpu time for the BMA method includes running the VB-EM algorithm for every
number of components, as well as generating the samples and computing the confidence intervals.
Most of the time is consumed in the VB-EM loop. For the BMA IS methods, the number cor-
responds to the time required for generating the samples and computing the confidence interval,
but the estimation of the BMA model is left out. Importance sampling is implemented efficiently
and only depends on the number of generated samples. Most of the time is in fact spent on
sampling Dirichlet and Beta variables. There is a small additional amount of time required for
pre-processing large data sets.

For the metagenomics data set, the BMA method is about 60 times faster than the MCMC
sampling. Fitting all the five models in the BMA algorithm took around 7 s and an additional
16 s for generating the BMA IS/20 samples. In comparison, the MCMC simulation for the four-
component model took around 1357 s (23 min). Speed improvement is variable between data sets,
as it depends on the convergence of the VB-EM algorithm, which is slower for complex models.
In any case, the MCMC posterior requires a significant number of iterations for burn-in and large
steps between samples to obtain uncorrelated samples.

5. Conclusion

The truncated mixture model is an appropriate tool for estimating the SAD in ecological studies.
In this paper, we have shown how to perform Bayesian estimation of the parameters and obtain
non-asymptotic credibility intervals when estimating the number of species that are missing from
the data set due to limited sampling. The model as well as the variational methods can be applied
in larger contexts.

BMA is a useful tool that bridges parametric and non-parametric statistical approaches. In
particular, it removes potential biases in model selection and is more flexible. A future perspective
would be to average over several classes of models of different forms. For instance, we would
like to compare mixtures of geometric distributions with lognormal models.
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Note

1. The number of components M of the mixture model is fixed in this section. It becomes a random variable, associated
with index m given in Section 3.4 when considering model averaging.
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