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Abstract. We describe a new method to compare a query RNA with
a static set of target RNAs. Our method is based on (i) a static index-
ing of the sequence/structure seeds of the target RNAs, (ii) searching
the target RNAs by detecting seeds of the query present in the target,
chaining these seeds in promising candidate homologs, then (iii) com-
pleting the alignment using an anchor-based exact alignment algorithm.
We apply our method on the benchmark Bralibase2.1 and compare its
accuracy and efficiency with the exact method LocaRNA and its recent
seeds-based speed-up ExpLoc-P. Our pipeline RNA-unchained greatly
improves computation time of LocaRNA and is comparable to the one of
ExpLoc-P, while improving the overall accuracy of the final alignments.

1 Introduction

A major advance in molecular biology of the last decade has been the discovery
that RNA molecules, especially non-coding RNAs (ncRNAs), are involved in
many cellular processes such as the regulation of gene expression, splicing, sig-
naling, . . . [16]. This is well illustrated by the growth of the Rfam database [7],
whose content went from 15,255 RNAs, in 2002 (date of its creation) to 6,125,803
RNAs, in 2012 (last release). Moreover, several recent studies of the RNA struc-
turome at the whole genome level have lead to the discovery of new families of
ncRNAs and to a better understanding of the role of RNAs in the cell [20, 11,
18].

The general problem of annotating, classifying or clustering of RNA se-
quences is thus an important problem in computational biology, that relies on
solving efficiently and accurately the following computational question: given an
RNA query Q and a set of RNA sequence targets D, what are the members of
D whose similarity with Q is large enough to indicate a potential relationship,
either evolutionary and/or functional? For RNA genes, due to the importance of
the structure in terms of biological function, it is natural to consider both the se-
quence and secondary structure when comparing genes. Most RNA comparison
methods can be classified in two families: (i) tools requiring the knowledge of an
RNA secondary structure, such as RNAforester [9] or Gardenia [4] to cite only
two (see [3] for a thorough evaluation of such methods), and (ii) tools taking



only RNA sequences as input and using covariance models or base pairing prob-
abilities such as LocaRNA [20] or Infernal [13]. The first family of approaches
relies on the classical notions of edit distance and alignment. RNAs are modeled
using tree-like structures and algorithms look either for a set of edit operations
of optimal score that transforms the first RNA into the second one, or for an
alignment maximizing the similarity. A cubic time complexity is the current
reference for pairwise RNA structure comparison (see for example [21]), under-
lining the issue of using such approach directly when a large number of pairwise
comparison is required. The second family of RNA pairwise comparison meth-
ods works directly on RNA sequences. The current reference method LocaRNA
aligns RNA sequences based on the pairing probabilities for each sequence, com-
puted from the partition function of the ensemble of all possible foldings into
secondary structures, under the assumption of a free-energy based Boltzmann
distribution on this ensemble and has a quartic time complexity. Approaches
have been introduced to speed-up the alignment, at the expense of guaranteed
optimality, such as ExpaRNA-P/Exploc-P [14]; these methods rely on conserved
sequence/structure motifs, called Exact Pattern Matches (EPM), that can be de-
tected in quadratic time and are provided to LocaRNA as alignment constraints,
thus breaking the alignment computation into smaller independent problems and
reducing the overall computation time. Finally, a last set of tools aims at solving
the classification problem, that asks to assign a given query RNA sequence to
a set of predefined families, such as the Rfam. The Rfam classification engine
Infernal starts by computing covariance models for families based on RNA se-
quences that are known to belong to them. Again, despite recent improvements
this approach remains time consuming, which has motivated the development of
filters such as RNA sifter [10], based on the abstract shape approach (see [15]).

In the present work, we address the general problem of the one-against-all
RNA pairwise comparison, where a given query RNA Q is compared to unstruc-
tured set D of target RNAs. We introduce a new method, RNA-unchained, aimed
at computing efficiently high quality alignments between Q and the members of
D. Our method is based on a classical principle in sequence comparison following
four steps: seed indexing for the target set, seeds look-up in the index for the
given query, seeds chaining between the query and the targets sharing common
seeds, and finally exact anchor-based alignments. To evaluate RNA-unchained,
we followed the approach of [14] and used the benchmark BRAliBase2.1, which
is composed of set of reference pairwise alignments between ncRNA sequences.
We measured the accuracy of the alignments obtained by RNA-unchained, using
the Sum of Pair Scores statistics (SPS) [17]. We observe that we obtain align-
ments of quality comparable or better than LocaRNA, and consistently better
than ExpLoc-P, in a time comparable to the time taken by ExpLoc-P.

2 Methods

The pipeline we describe takes as input a set D of RNA sequences and an RNA
sequence query Q, and aims at computing quickly candidate sequences of D that



are similar to Q, together with alignments between Q and these candidates. Our
pipeline applies to the case where secondary structures are provided or not. It
is composed of two elements: a static preprocessing stage for D and, for a given
query Q, a dynamic search in D for RNA similar to Q.

Preprocessing D. This stage is static, i.e. is performed once for all. It consists
in folding the sequences of D, each into one or several candidate RNA sec-
ondary structures, followed by extracting and indexing a set of seeds, defined as
sequence/structure motifs of a given length.

Querying D. For a given query Q, its sequence is first folded into an RNA sec-
ondary structure and all the seeds it contains are generated. Then the index of
seeds from D is searched to identify candidate sequences in D sharing motifs
with Q. Next for each candidate from D, an optimal set of seeds that is com-
patible with the secondary structures of both Q and the candidate is extracted
using a fast seeds chaining algorithm, and these seeds are used as anchors for a
constrained alignment between the candidate and Q.

We now describe the details of our pipeline, starting with the modeling of
RNA secondary structures and of seeds. Next we detail how to index these
seeds and look-up for existing seeds. Finally we describe the seeds chaining and
anchor-based alignments stages.

2.1 Modeling RNA Secondary Structures and Seeds

RNA sequence and secondary structure. An RNA is a molecule composed of four
nucleic acids usually symbolized by the alphabet {A,C,G,U}. Pairs of bases in
an RNA molecule can form hydrogen links, thus generating a spatial folding of
the molecule forming its secondary structure. Here we consider pseudoknot-free
RNA secondary structures, i.e. we assume that each base is involved in at most
one base pair and that base pairs define a crossing-free planar structure. An RNA
secondary structure can be encoded by an arc-annotated sequence (aa-sequence
for short) [6], and we rely on this modeling to describe our method. An aa-
sequence A = (S, P ) representing a pseudoknot-free RNA structure is composed
of a sequence S of length |A| = n on the alphabet {A,C,G,U}, representing
the RNA primary structure (sequence) and of a well-parenthesized sequence P
of length n on the alphabet {., (, )}, representing the paired bases defining the

secondary structure. For a sequence S, we denote by S[i] the i + 1th symbol of
S and by S[i, j] = S[i]S[i + 1] . . . S[j] the factor of S of length j − i + 1 starting
at position i, for any i ≤ j in {0, . . . , n− 1}. Similar definitions hold for P .

Seeds. Seeds, defined as sequence/structure motifs, are used for two purposes in
our pipeline. They are first aimed at detecting quickly candidates RNAs from D
that share enough seeds with Q. In a second time, an optimal set of seeds that are
compatible with the secondary structures of Q and the candidate is computed,
and serves as anchors for the final alignment. So the definition of seeds should (1)
allow a fast look-up in the indexing structure and (2) satisfy some compactness
condition that makes them compatible with the chaining algorithm we use [2].



Definition ( (l, d)-centered-seed (short name (l, d)-cs) Let A = (S, P ) be an
aa-sequence of length n . Let d and l be two integers such that 2d ≤ l. For a
given i in {0, . . . , n − l}, the (l, d)-cs of A in position i, denoted by csi, is the
pair (s, p) defined by p = P [i, i + l − 1] and s = S[i + d, i + l − d− 1].

Note that s is a sequence of length l − 2d and p a sequence of length l,
so a (l, d)-cs is not an aa-sequence as both sequences do not have the same
length (see Fig. 1). It follows immediately that the maximal number of distinct
(l, d)-cs is 3l4l−2d. Furthermore, such seeds can be seen as spaced seeds [5] with
no structural mismatch and possible nucleotide mismatches in a prefix and a
suffix of length d of the seed. Next, we define the notion of seed common to two
aa-sequences, that we call a hit.

Definition ( hit) Let A1 = (S1, P1) and A2 = (S2, P2) be two aa-sequences. Let
d and l be two integers such that 2d ≤ l. A hit is an (l, d)-cs common to A1 and
A2, i.e. a pair (i, j) of integers such that:

– 0 ≤ i ≤ |A1| − l − 1 and 0 ≤ j ≤ |A2| − l − 1 ,
– P1[i, i + l − 1] = P2[j, j + l − 1],
– S1[i + d, i + l − d− 1] = S2[j + d, j + l − d− 1].

The score of a hit S between two aa-sequences S1 and S2, composed of a
conserved (l, d)-cs located at positions i in S1 and j in S2 is defined by:

score(S) =

l−1∑
k=0

f(S1[i + k], S2[j + k])

wheref(a, a) = 1 and f(a, b) = 0 if a 6= b

It follows that the score s of S satisfies l − 2d ≤ s ≤ l. For example on Fig. 2
the score of {”AA”; ”((..))”} is 3.

Fig. 1. Example of hits between two RNAs Q and T . We can notice that hq8 / hq9

and ht8 / ht9 are overlapping hits and hq8 / hq23 and ht8 / ht22 are crossing hits. So
there is 6 hits {(hq0;ht0),(hq8;ht8),(hq8;ht23),(hq22;ht8),(hq9;ht9),(hq22;ht23)}.

2.2 Seed indexing and hits lookup

The first key element in the method we present consists in indexing in a hash
table all (l, d)-cs present in the RNA target set D of interest, for given parameters



l and d. We denote by Idl this index. Comparing Q with the RNAs from D starts
by searching in Idl the RNAs of D having seeds present in Q.

Indexing seeds. Given an aa-sequence A = (S, P ) of size n and cs parameters l
and d, all k = n − l + 1 seeds of A are indexed in Idl . To do this all computed
(l, d)cs are converted in integers as follows: the cs encoding for a (l, d)cs on A

at ith position is defined by

SV alue(A, i, l, d) = 4l−2d ×
i+l−1∑
j=i

(encode(Pj)× 3i+l−1−j)

+

i+l−d−1∑
j=i+d

(encode(Sj)× 4i+l−d−1−j)

with encode : A = 0; C = 1; G = 2; U = 3; . = 0; (= 1; ) = 2

Given an integer x, Idl [x] will contain all occurrences of the cs which SV alue is
x, that is :

Idl [x] = {(A, i) | SV alue(A, i, l, d) = x}

For example, with the aa-sequences of Fig. 1, the integer associated to the (l, d)-
cs {”AA”, ”((..))”} is 5312, and I26 [5312] = {{(Q, 8), (Q, 22)}, {(T, 8), (T, 23)}}.

Inserting all cs of an RNA is done in linear time using a sliding window of
length l. From a practical point of view, this index can easily be modified by
adding the seeds of a new RNA sequence and it can compute and use simulta-
neously indexes for different values of l and d.

Index look-up. Given a query Q, the search for aligning it with the target RNAs
from D starts by computing all the seeds of Q, for a given pair (l, d) of param-
eters, then searching Idl for all RNAs from D that have seeds present in Q. For

a given RNA T from D, let LUd
l be the set of all (l, d)− cs common to both Q

and T , i.e hits:

LUd
l (Q,T ) = {(i, j) | SV alue(Q, i, l, d) = SV alue(T, j, l, d)}

For example, using the same aa-sequences as in Fig. 1, LU2
6(Q,T ) = {(0, 0),

(8, 8), (8, 23), (22, 8), (9, 9), (22, 23)}. This phase is done using a standard hash-
table look-up using the integer associated to each seed as key. The time required
to compute the LUd

l is linear in the size of the query and the overall number of
hits. RNA-unchained offers the option to reduce the set of candidates based on
the number of hits.

Hits/seeds optimization. Preliminary experiments showed that hits that do not
contain both structural signal were more likely to be false positive. So in order
to obtain more stringent seeds, the hits in LUd

l (Q,T ) can be filtered to keep
only the ones with two types of RNA structural symbols structure (right base



of base pair and left base of base pair) which correspond to seeds that comprise
the hairpin-loops: ( ) and stems junction: ) ( motifs, that are known to be
well preserved and important structural patterns to detect secondary structure
similarity [1].

Fig. 2. Compared to Fig. 1 3 hits are lost because of structural composition, crossing
and overlapping. So this example show the final hits between Q and T .

2.3 Chaining Algorithm and Anchors

The core of our approach to align Q with the target set D is to first compare
Q and a member T of D using solely their hits. To do so, we use a recent
efficient algorithm for chaining seeds developed in [2], followed by a stage where
gaps between seeds are completed using the LocaRNA algorithm. The first steps
consists in extending seeds defining hits to account for base-pairing given by the
considered RNA secondary structures.

For example on Fig. 3, the last parenthesis of hq9 leads to the extension with
the opening parenthesis of Q at position 6.

Note that the corresponding seeds might not be contiguous along the se-
quences (as illustrated in Fig. 3). It follows that they do not satisfy the definition
of EPM; however they satisfy the definition of seeds introduced in [2]. Given a
set of k extended hits for two RNAs Q and T , an anchor is a subset of hits
such that, first the corresponding seeds are non-overlapping in both Q and T ,
second the seeds in both RNAs are compatible in terms of secondary structure
(see chain definition in [2]). The score of an anchor C is the sum of the scores of
the seeds defining the hits it contains, and the chaining score between Q and T
is the maximum score of an anchor, taken among all anchors between Q and T
(called an optimal anchor). The algorithm we use computes an optimal anchor
in time O(k2 log k), where k is the number of hits. In our running example, an
anchor is composed of the hits {{(Q, 9), (T, 9)}, {(Q, 22), (T, 23)}} (see Fig. 2).
At the end of the chaining stage, we thus have, for each RNA T from D a set of
hits between Q and T that forms an optimal anchor A(Q,T ). We call gaps the
segments of the RNAs Q and T that are not involved in the anchor.

2.4 Anchor extension

Prior to aligning the gaps of Q and T with an exact but more costly algorithm,
we perform a phase of seeds extension aimed at reducing the gap size and com-
pensating the fact that initial seeds are of bounded length. First, each hit of the



anchor between the two RNAs Q and T is extended on both sides based on exact
sequence similarity. As an example, on Fig. 3 the hit (hq22, ht23) is extended to
the left by two nucleotides.

Next, still prior to the gaps alignment, we fill the remaining gaps using an
adapted Longest Common Subsequence (LCS) considering triplet of letters (see
Fig. 3 for an example) to avoid irrelevant constraints. This improvement has
meaning only if the cover of the anchor is large enough. So we fix a threshold of
4l bases matches.

Fig. 3. The matches between Q and T are left extended only for hq22 and ht23 and
gaps are filled thanks to LCS computation.

2.5 Anchor-constrained alignment

Finally, for each candidate homolog T , the gaps defined by the anchor between
Q and T are aligned using the exact algorithm LocaRNA where the anchor is
provided as a set of constraints (see Fig. 4).

Fig. 4. The anchor of our example, seen as sequence constraints.

3 Results

In order to assess the ability of RNA-unchained to provide accurate alignments,
we applied on the set of reference RNA alignment provided by the benchmark
Bralibase2.1 [19], composed of 8,976 pairwise alignments, classified into 36 fam-
ilies.

We analyzed this benchmark with RNA-unchained using several sets of op-
tions, LocaRNA used as a reference exact alignment tool and ExpLoc-P, a seed-
based speed-up of LocaRNA. In order to reproduce the results on Bralibase2.1



shown in [14], we obtained from the authors of ExpLoc-P the corresponding code
and parameters, and we ran ExpLoc-P with these optimized parameters.

In addition to these existing methods, we ran RNA-unchained with the follow-
ing default parameters: (1) for each RNA sequence, its MFE secondary structure
was obtained using RNAfold [12, 22], (2) the parameters l and d for seeds were
chosen to be l = 9 and d = 1, after exploring a wide range of possible values for
these parameters (see discussion below). We denote this default RNA-unchained
version 91MFE. In order to assess the impact of adding stringency criterion
to the seed selection process, as well as the impact of the anchor extensions
methods described in the 2 section, we ran RNA-unchained with additional op-
tions. (1) 91r2: only (9, 1)cs containing two-types parenthesis are conserved. (2)
91r2fb91epcLCS36 : 91r2 with seeds optimization, i.e. if there is no 91r2 seed
consider 91MFE seeds, and anchor optimization. So all together, we show the
results of two reference programs (LocaRNA, ExpLocPOpt) and three versions
of RNA-unchained (91MFE, 91r2 and 91r2fb91epcLCS36).

To compare the obtained alignments with the reference alignments from Bral-
ibase2.1, we use the SPS statistics (Fig. 5). Given a reference alignment r of
length lr and a computed alignment e of length le, the SPS is defined by the
ratio SP e/lr where SP e is the number of pairs (i, j) where position i and j of
the aligned sequences form a match in both r and e. In addition, we also consider
the coverage in percent of the input RNA by the anchors, defined as the ratio
between the number of bases belonging to anchors by the length of the RNAs
(Fig. 6). This statistic is important to evaluate the impact of anchors, both in
terms of computation time and of accuracy, as a high coverage by wrong hits
will mechanically result in a low SPS, while a very low coverage by high con-
fidence hits might not result in a significant gain of computation time. Finally,
we display our result according to the similarity between the pairs of compared
RNAs, where the similarity value Sim(Q,T ) between a query Q and a target T
is defined, from the reference alignments, as follows:

Sim(Q,T ) =

∑l−1
i=0 f(Q′[i], T ′[i])

|Q′|

where Q′, T ′ are the aligned sequence derived from Q, T and f(a, a) = 1 and
f(a, b) = 0 if a 6= b. Both Fig. 5 and 6 present the number of alignments per
similarity level (right scale).

We also show the computation time of the different methods that we con-
sidered. Note that the difference between the running time of LocaRNA and
ExpLocPOpt is not as important as shown in [14], but the computation time of
ExpLocPOpt is comparable between our experiments and [14]. A first point we
can notice is that all methods perform well and with relatively similar behaviour,
but for reference alignment between pairs of RNAs that exhibit a similarity in the
range [0.6,0.8] (i.e. 60%-80%), where RNA-unchained used with stringent grains
composed of at least two kinds of structural elements, performs better, and even
obtains better results than LocaRNA, although LocaRNA is guaranteed to ob-
tain alignment with better alignment scores. This shows that adding high quality



Fig. 5. SPS value for all 5 methods applied to the Bralibase2.1 benchmark.

Fig. 6. Coverage of RNA sequences by anchors in percent for all 4 seeds-based methods
(LocaRNA alone does not use seeds) applied to the Bralibase2.1 benchmark.

anchors, even if they cover a smaller part of the considered RNA sequences (see
Fig. 6, 91r2), can improve significantly the alignment quality. However, being
too stringent in defining hits results in a coverage that is relatively low, which



Computation time Hits/chaining Gaps alignment Total

LocaRNA 0 9,022 9,022

ExpLocPOpt 1,492 6,070 7,562

91MFE 3,386 4,563 7,949

91r2 3,157 6,242 9,399

91r2fb91epcLCS36 3,283 4,510 7,793

Table 1. Computation times (in seconds). The time required to build the index is not
included but takes less than 1 minute. Experiments were performed on a server with
double Intel Xeon 3.3GHz processor. The seeds indexing, hits look-up and chaining are
implemented in Java.

has for consequence that many alignments are constraint-free and rely purely on
LocaRNA. Note however, that the low covering hits selected with this method
still results in a significant accuracy improvement over LocaRNA in the range
[0.6,0.8]. On the opposite, 91MFE has a good coverage meaning that LocaRNA
takes great advantage on alignment computation as its computation time is di-
vided by two. However, the accuracy of the alignments can be significantly lower
than with the other methods, as some hits with low structural information are
false positive that can be selected by the chaining, thus misleading LocaRNA in
the final anchor-based exact alignment phase. Finally, the two optimizations we
propose, the seed optimization (see paragraph 2.2) and the LCS-based anchor
extension (see section 2.4 improves significantly the coverage by the anchor (see
method 91r2fb91LCS36) without impacting too much the alignments accuracy.
This is reflected by the SPS values for 91r2fb91LCS36 that are accuracy results
while the coverage is the best one achieved by our versions. As a result, the gain
in terms of alignment time compared to LocaRNA is maximal (divided by two).

Regarding seeds parameters, various values of l and d from (5, 1) to (10, 2)
were tested before settling for the combination l = 9 and d = 1. The experiments
we carried to explore these parameters (results not shown) indicated clearly
that seeds with a small conserved sequence lead to many false positive seeds,
while large conserved structures, especially with the additional requirement of
two types of structural elements, lead to a very low coverage, and so a higher
computational time in the gap alignment phase. In general, these experiments
show a relatively consistent pattern of correlated increasing coverage / decreased
SPS.

4 Discussion

Summary. The main contribution we presented in this paper is a complete
pipeline for the one-against-all RNA pairwise comparison, based on the notions
of seeds, seeds index and seeds chaining. The key points are: a seed model de-
scribing both primary and secondary structure elements and a fast (sub-cubic)



seeds chaining algorithm. The ability to index quickly and retrieve efficiently
common seeds between a query and a set of targets is an important point of our
method, that scales well as the main memory consumption of the index is deter-
mined by the number of keys in the hash table, which depends only on the seeds
parameters (l, d), as the data itself grows linearly with the cumulated size of the
target RNAs. Our experiments using the benchmark Bralibase2.1 show clearly
that RNA-unchained obtains results that are more accurate than current state-
of-the art methods, with comparable computation times (and probably better
computation times in the C++ next release).

Seeds model and parameters. The seed model we introduce differ significantly
from the ExpaRNA model while EPMs are designed as connected subgraphs of
the RNA secondary structure. It is interesting to notice that our seeds model
(with the seeds and anchors extensions) provide a coverage of the RNA sequences
that is comparable to the one obtained with EPMs (Supplementary Fig. ??).
This shows that both models probably are able to capture important conserved
structural features. However, we can notice that in the similarity range 60%-80%,
where RNA-unchained outperforms ExpLoc-P and LocaRNA in terms of SPS,
we observe a significant difference. More generally, our work and the line of work
centered on EPM suggest that the general seeds chaining approach deserves to be
explored, both in terms of seed models and chaining algorithms. In particular,
unlike sequence seeds, that have been deeply studied, formal studies of RNA
seeds, including statistical aspects, are lacking.

Secondary structure. A major difference between our approach and the Lo-
caRNA/ ExpLoc-P lies in the way the secondary structure of RNA is accounted
for. We explored several intermediate approaches, based on sampling RNA sec-
ondary structures using RNAsubopt and RNAshapes or based on keeping align-
ment with best score when using several suboptimal structures, but found that
the MFE still provided the best accuracy results while minimizing the compu-
tation time (results not shown). This apparent concordance between two very
different approaches suggests again that the notion of RNA structural seeds still
deserves to be further studied.

Gap filling and chaining. An important aspect of RNA-unchained concerns the
use of LocaRNA for the anchor-based gaps alignment. As gaps are segments
where conserved structural motifs are absent, this allows to reduce the impact
of the choice of the MFE, that is used only to detect seeds and compute the
anchor, and is likely to be one of the reasons that explains the concordance
between both approaches. However, this part of our pipeline is still the most
costly in terms of computation time. As suggested by the results obtained with
our LCS anchor-extension, a hierarchical/iterative approach, that would consider
less conserved sequence and/or structure motifs detected within a given gap, and
thus help again to reduce the segments on which an exact alignment algorithm is
used, could be an efficient approach. Taking a somewhat extreme point of view,
one could even ask if, in applications where exact alignments are not needed,



the approach described above, limited to the computation of extended anchors,
possibly completed by a quick way to evaluate the similarity between short gaps
in RNA sequences, would not be sufficient.
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14. C Schmiedl, M Möhl, S Heyne, M Amit, G M Landau, S Will and al. (2012) Exact
pattern matching for RNA structure ensembles, RCMB, Springer, 245-260.

15. P Steffen, B Vo, M Rehmsmeier, J Reeder and al. (2006) RNAshapes: an integrated
RNA analysis package based on abstract shapes, Bioinformatics, 22, 500-503.

16. C R Thomas, D Bennett, B Jasny, K Kelner, L Miller, P Szuromi, D Voss, P
Kiberstis, S Parks and al. (1992) The molecule of the year, Science, 258, 1861.

17. J D Thompson, F Plewniak, O Poch (1999) A comprehensive comparison of mul-
tiple sequence alignment programs, Nucl Acid Res, 27, 2682-2690.

18. Y Wan, M Kertesz, RC Spitale, E Segal and HY Chang (2011) Understanding the
transcriptome through RNA structure, Nat Rev Genet, 12, 641-655.

19. A Wilm, I Mainz and G Steger (2006) An enhanced RNA alignment benchmark
for sequence alignment programs, Algorithms Mol Biol, 1, 19.

20. S Will, K Reiche and al. (2007) Inferring non-coding RNA families and classes by
means of genome-scale structure-based clustering, PLOS Comput Biol, 3, e65.

21. C Zhong and S Zhang (2013) Efficient alignment of RNA secondary structures
using sparse dynamic programming, BMC Bioinformatics, 14, 269 .

22. M Zuker, P Stiegler (1981) Optimal computer folding of large RNA sequences using
thermodynamic and auxiliary information, Nucl Acid Res, 9, 133-148.


