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Summary

• In plant pathology, the idea of designing variety management strategies at the

scale of cultivated landscapes is gaining more and more attention. This requires the

identification of effects that take place at large scales on host and pathogen popu-

lations. Here, we show how the landscape varietal composition influences the

resistance level (as measured in the field) of the most grown wheat varieties by

altering the structure of the pathogen populations.

• For this purpose, we jointly analysed three large datasets describing the wheat

leaf rust pathosystem (Puccinia triticina ⁄ Triticum aestivum) at the country scale of

France with a Bayesian hierarchical model.

• We showed that among all compatible pathotypes, some were preferentially

associated with a variety, that the pathotype frequencies on a variety were affec-

ted by the landscape varietal composition, and that the observed resistance level

of a variety was linked to the frequency of the most aggressive pathotypes among

all compatible pathotypes.

• This data exploration establishes a link between the observed resistance level of

a variety and landscape composition at the national scale. It illustrates that the

quantitative aspects of the host–pathogen relationship have to be considered in

addition to the major resistance ⁄ virulence factors in landscape epidemiology

approaches.

Introduction

In modern agriculture, structure simplification and genetic
uniformity of cultivated landscapes facilitate the spread of
epidemics and the genetic evolution of pathogens towards
higher virulence (Oerke & Dehne, 2004; Stukenbrock &
McDonald, 2008; Margosian et al., 2009). Nevertheless,
both experimental and theoretical approaches support the
idea that increasing functional diversity based on resistance
factors would make agricultural systems less susceptible to
diseases (Altieri, 1999; Zhu et al., 2000; Mundt, 2002;
Bianchi et al., 2006; Garrett et al., 2009). More generally, a
relationship between functional diversity and susceptibility
to diseases had been demonstrated in ecological systems
(Pautasso et al., 2005; Keesing et al., 2006) and this
relationship can be considered at different spatial scales, one
of them being the landscape (Gilligan, 2008). Studies in

animal and human epidemiology (Keeling, 1999; Tildesley
et al., 2010) have shown that landscape structure and con-
nectivity may greatly influence pathogen invasion rates: the
simplification of agricultural landscape structure and com-
position, along with the decline of noncrop habitat, has led
to a decrease in natural pest control (Bianchi et al., 2006).

In plant pathology, the idea of designing variety manage-
ment strategies at the scale of cultivated landscapes has been
around for a long time (Zadoks & Kampmeijer, 1977) and
was tested more than 20 yr ago by Mundt & Brophy (1988)
with a simulation model. More recently, several authors have
explored the potential of large-scale approaches to optimize
the deployment of host resistance. With an approach based
on the metapopulation theory (Hanski, 1998), Parnell et al.
(2006) suggest that the spread of pathogen strains that are
resistant to fungicides would be more effectively controlled
with a landscape-scale approach, Margosian et al. (2009)
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assessed the connectivity, with regard to pathogen transmis-
sion, of the four main crops in the USA and Skelsey et al.
(2009) developed a spatio-temporal model of the potato late
blight pathosystem that will make it possible to evaluate
spatial deployment of host resistance in large growing areas.
Nevertheless, the potential of landscape epidemiology for
exploring new strategies of host resistance management still
remains largely underexploited by plant pathologists
(Plantegenest et al., 2007). A likely reason for this is the
difficulty in obtaining and analysing experimental data at a
large geographic scale. A main objective of this study is
therefore to contribute to filling this gap.

The development of simulation models to design variety
deployment strategies in agricultural landscapes requires the
identification of the effects that take place at large scales on
host and pathogen populations. Most available datasets on
pathogen population structure and host resistance are based
on qualitative host–pathogen interactions, as described by
the gene-for-gene model (Flor, 1971). It is well known that
interactions between major resistance genes and avirulence
genes shape pathogen population structure at large scales in
cropping systems (Wolfe & Schwarzbach, 1978; Hovmøller
et al., 1993; Rouxel et al., 2003; Goyeau et al., 2006; Barrès
et al., 2008) and that, reciprocally, invasions of new virulent
strains render ineffective the corresponding resistance genes
in the crops. Nevertheless, although the qualitative host–
pathogen interactions are necessary to describe pathogen
populations and to explain the observed resistance level of
host varieties, they are not sufficient. Quantitative inter-
actions determined by pathogen aggressiveness (for a review
see Pariaud et al., 2009a) and host quantitative resistance
(Marcel et al., 2008; Brun et al., 2010) can also play a major
role in shaping pathogen populations (Miller et al., 1998;
Thrall & Burdon, 2003; Pariaud et al., 2009b). In such a
case, in addition to the binary response of the gene-for-gene
model, a continuous response has to be considered to
describe the host–pathogen interaction.

In this paper, we test the hypothesis that landscape compo-
sition (in terms of host variety frequencies) has an impact on
the changes in the observed resistance level of the main varie-
ties grown by the farmers, at the French national scale. For
this, we consider both qualitative and quantitative informa-
tion on the interactions between the pathogen and its host.
Data analysis focuses on a wheat (Triticum aestivum) foliar
disease, leaf rust, caused by Puccinia triticina, a basidiomycete
fungus (Bolton et al., 2008). This pathosystem has been stud-
ied in depth. As a result, we had access to three datasets to
carry out our analysis, related to the frequencies of the
most frequently grown varieties in France, a 10-yr popu-
lation survey of P. triticina on each of these varieties
and the assessment of the resistance level of these varie-
ties in multilocal trials during the same period of time.
In order to link and analyse these datasets, we developed
a hierarchical model within a Bayesian framework.

Description

Data description

Wheat varieties The French institute, FranceAgriMer,
publishes annual statistics on the most frequently sown
wheat (Triticum aestivum L.) varieties in France (ONIGC,
2008). This dataset records the frequency, with respect to
the total French wheat acreage, of the 10 most frequently
sown varieties each year. From 1999 to 2008, 30 varieties
were recorded, representing between 53.8% and 76% of the
wheat acreage each year.

The INRA Grignon laboratory routinely identifies the
major resistance genes present in the cultivated varieties.
Based on this information (Goyeau et al., 2006), the
recorded varieties were classified into five main groups. The
first group contained the varieties bearing the resistance gene
Lr13, and the second group the varieties with Lr14a. Groups
3, 4 and 5 contained varieties with the following combina-
tions of resistance genes: Lr10 + Lr13, Lr13 + Lr37 and
Lr10 + Lr13 + Lr37, respectively. As the frequency of the
first group was low and declining over the period considered,
we limited our study to the last four groups.

Among these groups, we focused on the most representa-
tive varieties (in terms of frequency). Seven of them were
chosen from groups 2, 3, 4 and 5: Isengrain and Soissons
(group 2), Charger and Trémie (group 3), Apache (group
4) and Caphorn and Orvantis (group 5). These varieties
represented between 32.2% and 60% of the French wheat acre-
age, depending on the year (see Supporting Information,
Table S1). The other varieties, present at low frequencies,
are considered together in the model as a background host
population. Because only the first 10 varieties are recorded
each year in the wheat survey, the frequency of those varie-
ties in the cultivated landscape was not always known over
the whole period. Apache was recorded from 2001 to 2008,
Caphorn from 2003 to 2008, Charger from 1999 to 2006,
Isengrain from 1999 to 2008, Orvantis from 2002 to 2008,
Soissons from 1999 to 2008, and Trémie from 1999 to 2004.

Puccinia triticina population Isolates of P. triticina are
collected each year from a network of unsprayed nurseries
in 64 different locations throughout the country. A pustule
is sampled at each site for each variety and the isolate is
increased for pathotype determination. A detailed descrip-
tion of the French leaf rust survey is given in Goyeau et al.
(2006). A pathotype, or phenotype for qualitative virulence
(Gilmour, 1973), is attributed to each isolate collected. The
pathotype indicates whether or not the isolate is able to
overcome the major resistance genes.

A total of 2521 isolates were sampled on 124 varieties
over the period considered (1999–2008). The varieties
Soissons, Isengrain, Charger and Apache were sampled
from 1999 to 2008, Trémie from 1999 to 2007, Orvantis
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from 2001 to 2008, and Caphorn from 2003 to 2008
(Table S2). Over the whole period, 196 different patho-
types were identified, among which only a few had a high
frequency (Fig. 1, Table S3). We focused on the most fre-
quent pathotypes, referred to as 006xxx, 016206, 073100,
077317 and 106314 (see Goyeau et al., 2006). The first
pathotype (006xxx) aggregates three individual pathotypes
(006106, 006504 and 006506) with very close phenotypic
expressions and identical microsatellite profiles. The low-
frequency pathotypes are not ignored by the model but are
grouped together and considered as a background pathogen
population.

Disease scoring The French technical institute, Arvalis
Institut du Végétal (Guyancourt, France), carries out
annual trials to evaluate the resistance level of the main
wheat varieties under field conditions, in order to produce
technical advice for farmers. Trials are distributed over 40
different locations throughout the wheat-growing areas in
France. They consist of complete blocks containing 2 ·
12 m2 plots (10 rows) sown with several varieties. The sow-
ing date is chosen as an average of the optimal sowing dates
of all the varieties. Sowing density and nitrogen fertilization
are determined according to local practices, based on soil
type, expected yield, etc. The plots are not sprayed with pes-
ticides. The variety resistance level is directly evaluated from
the disease scoring as observed resistance level = 1 – disease
score, where the disease score is the proportion of diseased
leaf surface. In this paper, ‘observed resistance’ is defined as

the resistance level of a variety as it is scored in the field (the
term ‘field resistance’ is sometimes used in the literature)
and represents the variety resistance as it is perceived by
farmers and advisors. This ‘observed resistance’ is the result
of environmental conditions, the genetic resistance factors
of the varieties and the genetic composition of the pathogen
population.

Scoring of the leaf rust symptoms is performed once a
year in May or June. The Apache variety was scored from
1999 to 2008, Caphorn from 2001 to 2008, Charger from
1999 to 2007, Isengrain from 1999 to 2005, Orvantis from
2000 to 2008, Soissons from 1999 to 2008, and Trémie
from 1999 to 2004 (Fig. 2).

Disease scoring yields both qualitative information (pres-
ence ⁄ absence of disease, usually referred to as ‘incidence’ in

Fig. 1 Ordered frequencies and corresponding number of isolates of
the pathotypes identified in the Puccinia triticina survey over the
period considered (1999–2008). The pathotypes that were
specifically considered in this work are indicated.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 2 Evolution across all observation sites of the Arvalis survey of
leaf rust incidence (open circles) and disease scores (closed circles),
along with the frequency of pathotypes (open squares) that are
virulent for wheat (Triticum aestivum L.) varieties Apache (a), Caphorn
(b), Charger (c), Isengrain (d), Orvantis (e), Soissons (f), and Trémie
(g). The relationship between disease scores and time was tested by
a GLM with beta distributed errors. The slope was significantly > 0
for Orvantis and < 0 for Soissons, with a 0.001 threshold.
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the phytopathological literature) and quantitative informa-
tion (level of observed disease, usually referred to as
‘severity’ – Fig. 2). Absence of disease results either from
the absence of the pathogen itself or, more likely in the case
of leaf rust, from incompatibility of the pathotypes that
were present at the scoring time with the variety considered.
As classically observed, disease incidence on a variety was
significantly linked to the proportion of virulent pathotypes
in the pathogen population (Fig. 2). In order to account for
such effects, qualitative virulence is introduced in the statis-
tical model but, as stated before, we focus on the
quantitative aspects of the host–pathogen relationship when
exploring the datasets.

Statistical modelling

We constructed a statistical model in order to jointly ana-
lyse the three large-scale datasets describing the wheat leaf
rust pathosystem. The model aims to look for the existing
correlations between the wheat variety frequencies and the
P. triticina population composition, and between the
P. triticina population composition and the observed dis-
ease severity on the main wheat varieties. The need for a

convenient and flexible framework to combine information
from several parallel data sources led us to develop a state–
space model (SSM). In a SSM, the datasets are first
described by observation variables that constitute the obser-
vation process layer (Fig. 3). The observation variables are
then linked to each other via unobserved hidden variables,
classically referred to as ‘latent variables’ that constitute the
system process layer. The model thus consisted of two sets
of equations. The state equations described the statistical
links between the latent variables. The observation equa-
tions linked the latent variables and the observation
variables. Parameters appear both in the system and obser-
vation process layers.

With regard to the biological system, the model was bro-
ken down into two submodels (Fig. 3). The population
composition submodel was centred on the P. triticina popu-
lation composition and on its dependence on wheat variety
frequencies. The disease severity submodel was dedicated to
the influence of P. triticina population composition on the
observed leaf rust severity for each wheat variety.

We first present the main characteristics and assumptions
of the model. We then describe the population composition
submodel and the disease severity submodel, how they are

Fig. 3 Graphical representation of the state–space model (p, pathotype; v, variety; t, year; r, climatic region; e, trial in Arvalis survey). The
system process is composed of the latent variables (solid circles), Zv,t,p and Sv,t,r, depending on unknown parameters (dashed circles) and
covariables (solid squares) via stochastic links (solid arrows). From these latent variables, the unobserved variables of interest (solid circles), Pv,t

(the vector of pathotype proportions on variety v, year t) and lv,t,r (the mean proportion of diseased leaf area of variety v, year t in region r),
are deduced via a deterministic link (dashed arrows). The observed data (solid square) are the visible part of the system process. In the
population composition submodel, Yv,t classifies the leaf rust pustules sampled on variety v, year t, for the P pathotypes. In the disease severity
submodel, Xv,t,r,e denote the disease score attributed to variety v on trial e, year t and region r in the Arvalis survey. The parameter re (dashed
circle) represents the within-trial variability. The other parameters are: /v,t (variety frequencies), dv,p (variety–pathotype compatibility), av,p

(basic affinity), bv,p (sensitivity to changes in variety frequencies), a0
v (variety effect), a1

t (year effect), a2
r (region effect) and bv,p (sensitivity to

changes in pathotype frequencies).
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connected and how the parameters can be interpreted in
biological terms. Finally, we define the criteria that were
used to interpret the results. Additional technical informa-
tion is given in Notes S1 and Table 1 provides a summary
of terms and parameters definitions.

Model characteristics and assumptions The host land-
scape was considered as a set of V = 7 varieties with year-
dependent frequencies and a background landscape with
low but unknown variety frequencies. The pathogen popu-
lation was composed of P = 5 + 1 pathotypes: the five
individual pathotypes presented in the Data Description
section, plus a generic pathotype that included all the other
pathotypes (see Fig. 1). The pathotype distribution was
assumed to be homogeneous at the scale of the country
(Goyeau et al., 2006). No explicit dependence from one
year to the next one was included (i.e. there is no time
dependence in the model). As data were collected at the end
of the epidemic season, the effect of the current year on the
pathogen population structure was assumed to be predomi-
nant over the potential effect of previous years. Although
the analysis was done at the French national scale, we con-
sidered r = 7 climatic regions (southeast, southwest, centre-
south, centre, northeast, north and northwest of France) in
order to account for the influence of climatic conditions on
disease development in the disease severity submodel.

Population composition submodel In the leaf rust survey,
year t, Nv,t pustules were sampled on variety v and each one
was classified as one of the P pathotypes defined above. Let
Yv;t = ðyv;t ;1; � � � ; yv;t ;P Þ be the categorical random variable
whose elements yv,t,p denote the number of leaf rust pustules
sampled on variety v, year t, and assigned to pathotype

p. Let pv,t,p denote the proportions of pathotype p on variety
v, year t. Assuming that the probability for pathotype
p to be sampled only depends on its proportion, Yv,t has a
multinomial distribution with parameters Nv,t and
Pv;t = ðpv;t ;1; � � � ; pv;t ;P Þ. This led to the observation equa-
tion that describes the P. triticina population composition:

Yv;t jN;Pv;t � Multinomial Nv;t ;Pv;t

� �
:

In the state part of this submodel (Fig. 3), the propor-
tions pv,t,p were associated with a latent variable Zv,t,p that
represents the relative population size of pathotype p on
variety v year t. Note that Zv,t,p is not the actual size of the
pathotype population but a scale variable instead. pv,t,p and
Zv,t,p were linked through the state equations (see Notes S1
for more details):

E Zv;t ;p

� �
¼ Z v;t ;p

¼ av;p þ
PV
i¼1

di;p � bi;p � /i;t ; av;p; bv;p

� �
� 0; (a)

Zv;t ;p j �Zv;t ;p � Gamma �Zv;t ;p; 1
� �

; (b)

pv;t ;p ¼ Zv;t ;p

Zv;t ;1þ...þZv;t ;P
: (c)

8>>>>><
>>>>>:

Eqn 1

In Eqn 1(a), av,p represents a basic affinity between path-
otype p and variety v, and the second term accounts for the
effect of the landscape composition, variable /v,t denoting
the frequency of variety v during year t, and parameter bv,p,
denoting the sensitivity of pathotype p to the frequency of
variety v. Previous information on the gene-for-gene rela-
tionship was integrated through the binary parameter dv,p

defined by:

Table 1 Definitions of the main terms and parameters used in this study

Terms Symbols Description ⁄ biological interpretation

Pathotype p Phenotype for qualitative virulence
Disease score – Proportion of diseased leaf surface
Observed resistance level – 1 – disease score (results from genetic resistance factors of the varieties,

genetic composition of the pathogen population and environmental conditions)
Incidence – Presence ⁄ absence of disease (qualitative information resulting from the disease scores)
Severity – Level of observed disease (quantitative information resulting from the disease scores)
Aggressiveness – Quantitative component of pathogenicity
Virulence d Capacity of a pathotype to overcome a major resistance gene
Basic affinity a Indication of a pathotype aggressiveness on a variety at the landscape scale
– b Response of the pathogen to changes in the landscape composition
– a0 Susceptibility of a variety confronted to the global leaf rust population
– a1 Year effect
– a2 Climatic region effect
– b Effect of the proportion of a pathotype on the observed disease on a variety
– C1 For a given variety, minimal value of the posterior probability that a particular parameter

for a pathotype is greater than the same parameter for another pathotype
– C2 For a given pathotype, minimal value of the posterior probability that a particular parameter

for a variety is greater than the same parameter for another variety
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dv;p =
1 if p and v are compatible,
0 otherwise.

n

Note that in Eqn 1(a), there can be a nonzero basic affin-
ity even if the variety and the pathotype are incompatible
(dv,p = 0). This is to take the situation in which an incom-
patible pathotype is nonetheless able to produce a few
pustules on a resistant variety into account, as sometimes
occurs in field epidemics (Samborski, 1985).

In this statistical model, the links that were established
between each component are descriptive and the associated
coefficients should not be directly assimilated to biological
parameters of the plant–pathogen relationship. Eqn 1(a)
can, however, be interpreted as follows. The basic affinity
av,p of pathotype p for variety v is the part of E ½Z � that is
not accounted for by the frequencies in the landscape of the
seven varieties considered in the analysis. A high av,p value
means that pathotype p was always well represented on vari-
ety v during the period studied, regardless of the landscape
composition. Therefore, for a compatible pathotype, this
parameter provides an indication of pathotype aggressive-
ness on a variety, based on the size of its population on that
variety and relative to the other pathotypes. Parameter b
quantifies the response of the pathogen to changes in the
landscape composition. A simple analogy can be made here
with a linear regression, with a being analogous to the inter-
cept and b to the slope.

Disease severity submodel Let Xv,t,r,e denote the disease
score attributed in the Arvalis survey to variety v for trial e,
year t and in region r. Its expectation lv,t,r was assumed to
reflect the mean rust severity on variety v that year in that
region. The score Xv,t,r,e varied in the ½0; 1� interval but the
actual range of notation differed between trials.
Consequently, the scores were assumed to follow a beta dis-
tribution with mean value, lv,t,r, and scale parameter re

depending on the trial. This led to the observation equation
that describes the disease scoring dataset:

Xv;t ;r ;e j lv;t ;r ; re � Beta lv;t ;r ; re

� �
:

The expected disease scores lv,t,r were associated with
two latent variables Sv,t,r and S¢v,t,r through the state equa-
tions (see Notes S1 for more details):

E Sv;t ;r

� �
¼�Sv;t ;r¼

a0
vþa1

t þa2
r þ
PP�1

j¼1

dv;j �bv;j �pv;t ;j ; a0
v ;a

1
t ;a

2
r ;bv;p

� �
�0; (a)

Sv;t ;r j�Sv;t ;r�Gamma �Sv;t ;r ;1
� �

; (b)

lv;t ;r¼
Sv;t ;r

Sv;t ;rþS 0v;t ;r
: (c)

8>>>>><
>>>>>:

Eqn 2

As disease scores are defined in the scoring procedure as
the observed proportion of diseased leaf area,
lv;t ;r = E½Xv;t ;r ;e � can be identified as the mean proportion of
leaf area that was diseased for variety v during year t in region
r. In Eqn 2, Sv,t,r represents the diseased leaf area of a variety
v, year t, in region r, and S¢v,t,r denotes the healthy leaf area.
As for Z, S and S¢ should not be considered as actual areas
but as scale variables instead. In Eqn 2(a), parameters a0, a1

and a2 represent the variety, year and region main effects,
respectively, and define a basal disease pressure. In particular,
a0 can be seen as the basic susceptibility of a variety con-
fronted with the global leaf rust population over the entire
period considered. The last term of the equation accounts
for the effect of the pathogen population composition, where
d still denotes 0 – 1 qualitative virulence. Here again, b
would be analogous to a slope, quantifying the link between
the proportion of a particular pathotype and the observed
disease on a variety, whereas a0 + a1 + a2 could be assimi-
lated to an intercept. The summation in Eqn 2(a) is
performed over the ðP � 1Þ individual pathotypes consid-
ered earlier. The index P identifies the generic pathotype
that groups all the other pathotypes that were present during
the period. By construction, their joint effect is included in
the basal disease pressure.

Index and criterion definitions In the model defined
earlier, the interactions between pathotypes and varieties are
quantified through the parameters hv,p, with h in fa; b; bg.
In order to synthesize the resulting information, two sets of
criteria varying in ½0; 1� were defined:

C1 h; v; pð Þ = min
p0

Prob hv;p>hv;p0
� �� 	

;

C2 h; v; pð Þ = min
v 0

Prob hv;p>hv 0;p

� �� 	
;

where Probð�Þ denotes posterior probabilities. In the first
case (C1ðh; v; pÞ), the variety v is fixed and hv,p values are
compared among pathotypes. In the second case
(C2ðh; v; pÞ), the pathotype p is fixed and hv,p values are
compared among varieties. With these definitions, large
C1ðh; v; pÞ values identify the pathotypes that are most
strongly linked to variety v with respect to parameter h,
whereas, in a symmetrical way, large C2ðh; v; pÞ values iden-
tify the varieties to which pathotype p is the most strongly
linked with respect to parameter h.

In order to understand how the pathogen population
responds to host frequencies in the cultivated landscape, it
is worthwhile comparing the effect of the basic affinity
and the effect of the landscape composition, as defined in
Eqn 1(a). The relative weights of both types of effects were
defined by:
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W a; v; t ; pð Þ =
av;p

av;p þ
PV
i = 1

di;p � bi;p � /i;t

and

W b; i; v; t ; pð Þ =
di;p � bi;p � /i;t

av;p þ
PV
i = 1

di;p � bi;p � /i;t

:

Bayesian implementation

Inference on the parameters was performed by Bayesian
statistical methods, resulting in a joint posterior distribution
(Gelman et al., 2004). This posterior distribution was com-
puted via a Markov Chain Monte Carlo (MCMC) method
using JAGS software (Plummer, 2010).

Prior densities Only the d parameters were considered to
be known a priori. For all the other parameters, no a priori
information was assumed to be available and noninforma-
tive prior densities were used: a, b, a0, a1, a2 and b were
defined as being uniformly distributed on ½0; 10000� and
the trial variances r were defined as being uniformly distrib-
uted on ½0; 1�. It was systematically verified that the upper
bound of the uniform prior density was large enough to
have no influence on the posterior densities.

For identification reasons, we fixed Z v;t ;P = 1, 8ðv; t Þ
and S¢v,t,r = 5, 8ðv; t ; rÞ. This choice was made after
checking the data-fitting and performing sensitivity analy-
ses. In particular, it was verified that variation around the
chosen values had little impact on the criteria defined
above.

MCMC convergence and mixing Three MCMC-chains
of 125 000 iterations were computed. Convergence was
assessed using the Gelman and Rubin statistic (R̂) which
compares the within to the between variability of chains
started at different and dispersed initial values (Gelman
et al., 2004). Burn-in was set to 25 000, and thinning every
100 iterations resulted in acceptable mixing and conver-
gence (R̂ < 1:1 for all the parameters).

Data fitting To assess the fit of the model to the data, we
used an approach known as posterior predictive checking,
which is a Bayesian counterpart of the classical tests for
goodness-of-fit (Gelman et al., 2004). The idea is to gener-
ate replicated data from the posterior distribution of the
parameters. If the model fits the data well, then the repli-
cated data should be similar to the observed data. For both
pathotype proportion and disease score, the posterior distri-
butions of the replicated data showed an adequate fit of the
model (Fig. 4).

Results

Overview

In a first step, the model is used to explore the relationship
between the host and the pathogen populations. Two aspects
are considered: the basic affinity between pathotypes and vari-
eties, described by parameter a, and the response of the
pathogen to changes in the landscape composition, described
by parameter b. Posterior densities of parameters a and b are
given in Figs S1, S2 but more synthetic information is pro-
vided by criterion C1ðh; v; pÞ and C2ðh; v; pÞ, with h = a or
b, which will be used to discuss how the pathogen population
responds to changes in the host population (Tables 2, 3).

In a second step, we attempt to link the observed resist-
ance in the field to the composition of the pathogen
population. Criterion C1ðb; v; pÞ (Table 2) is used to

(a)

(b)

Fig. 4 Posterior densities of replicated data (tinted bars), generated
from the posterior distribution of the parameters, and observed data
(open circles). Example of the mean disease score on wheat
(Triticum aestivum L.) variety Apache (a) and the proportion of
pathotype 016206 (b). Tinted bars are median-centred quantile
intervals, from the darkest to the lightest: (0.45,0.55), (0.35,0.65),
(0.15,0.85) and (0,1). The model does not incorporate time-
dependency between years.
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describe how the disease level observed on a variety can be
linked to the pathogen population composition. Posterior
densities of the parameters are given in Fig. S3.

Variety frequencies and pathogen population
composition

Basic affinity (a) The C1 criterion (Table 2) indicates
the dominance of a pathotype on a variety. Pathotypes
106314 and 006xxx were dominant on the two most
recent varieties, Caphorn and Orvantis (released in
2000), respectively (C1ða; Caphorn,106314Þ ¼ 0:81 and
C1ða; Orvantis,006xxx) = 0.78). These two pathotypes are
also the most recent ones in the French P. triticina popula-
tion (no isolates of these pathotypes were found before
2003 and 2002, respectively). Pathotype 073100 was clearly
dominant on varieties Isengrain and Soissons. Two patho-
types, 016206 and 073100, were dominant on Trémie.
Pathotype 016206 was moderately dominant on Charger.
No pathotype was found to be specifically dominant on

Apache. Note that the Trémie–073100 association was
unexpected here as, according to its qualitative virulence
pattern, this interaction should be incompatible (Goyeau
et al., 2006). Nevertheless, infection of Trémie with that
pathotype often produces a few viable pustules. As the freq-
uency of 073100 in the pathogen population was high and
the disease levels (total number of pustules) on Trémie were
low, it was logical to detect a link between Trémie and
073100.

Criterion C2 (Table 3) makes it possible to determine the
preference of a pathotype for one or several of the seven
varieties considered. Pathotype 006xxx was found preferen-
tially on Orvantis but was also present on Apache and
Caphorn. These three varieties are those that share the Lr37
resistance gene. By contrast, pathotype 106314 was only
related to Caphorn (C2ða; Caphorn,106314Þ ¼ 0:94).
Pathotype 073100 was highly abundant on Soissons and
Isengrain and was never related to the other varieties
(C2 = 0). Pathotype 016206 was related to Trémie and was
infrequently found on Isengrain and Soissons. Finally, path-

Table 2 Values of the C1 criterion for each parameter and each pathotype–variety pair

Apache Caphorn Charger Isengrain Orvantis Soissons Trémie

a b b a b b a b b a b b a b b a b b a b b

006xxx 0.40 0.21 0.36 0.19 0.29 0.32 0.23 0.16 0.53 0.00 0.11 – 0.78 0.26 0.20 0.00 0.14 0.04 0.03 0.18 –
016206 0.45 0.38 0.55 0.15 0.00 0.28 0.64 0.57 0.47 0.00 – – 0.22 0.40 0.07 0.00 – – 0.51 0.59 –
073100 0.55 – – 0.09 – – 0.24 – – 1.00 0.73 – 0.10 – – 1.00 0.70 0.95 0.49 – –
077317 0.37 0.62 0.45 0.06 0.00 0.68 0.36 0.43 0.45 0.00 0.27 – 0.15 0.60 0.16 0.00 0.30 0.05 0.08 0.41 –
106314 0.25 0.13 0.31 0.81 0.71 0.10 0.28 0.12 0.38 0.00 0.09 – 0.08 0.16 0.80 0.00 0.11 0.00 0.03 0.16 –

This criterion compares the parameter values among pathotypes for a given variety. Large C1ðh; v; pÞ (with h in fa; b;bg) values identify the
pathotypes that are most strongly linked to variety v according to parameter h.
a, basic affinity of a pathotype for a variety.
b, sensitivity of pathotypes to changes in variety frequencies.
b, sensitivity of disease severity on a variety to the pathotype proportions.

Table 3 Values of the C2 criterion for parameters a and b for each pathotype–variety pair

006xxx 016206 073100 077317 106314

a b a b a b a b a b

Apache 0.17 0.00 0.19 0.19 0.00 – 0.44 0.20 0.06 0.00
Caphorn 0.35 0.95 0.29 0.14 0.00 – 0.37 0.15 0.94 1.00
Charger 0.09 0.00 0.25 0.35 0.00 – 0.40 0.20 0.06 0.00
Isengrain 0.05 0.00 0.11 – 0.62 0.52 0.56 0.11 0.03 0.00
Orvantis 0.65 0.05 0.23 0.64 0.00 – 0.44 0.21 0.03 0.00
Soissons 0.04 0.00 0.01 – 0.38 0.48 0.44 0.13 0.02 0.00
Trémie 0.05 0.00 0.71 0.36 0.00 – 0.33 0.21 0.02 0.00

This criterion compares the parameter values among varieties for a given pathotype. Large values of C2ðh; v;pÞ (with h in fa;bg) identify the
varieties to which pathotype p is the most strongly linked according to parameter h.
a, basic affinity of a pathotype for a variety.
b, sensitivity of pathotypes to changes in variety frequencies.
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otype 077317 was identified as a generalist, with no prefer-
ence for any of the varieties.

Response of pathogen to changes in landscape composi-
tion (b) Changes in the frequencies of Isengrain and
Soissons in the cultivated landscape strongly affected the
proportion of pathotype 073100 in the pathogen popula-
tion (Table 2). Changes in the frequencies of Apache,
Charger, Orvantis and Trémie mainly affected 016206 and
077317 (Table 2, Fig. S2), but 016206 was more especially
affected by Orvantis (Table 3). As for a, pathotype 077317
was not specifically sensitive to any of these varieties
(Table 3). Changes in the frequency of Caphorn mainly
affected pathotypes 006xxx and 106314 (Table 2, Fig. S2)
and, among the varieties considered, Caphorn was the
most influential variety on both pathotypes (Table 3).
Data analysis also suggested that changes in Orvantis influ-
enced pathotype 006xxx (Fig. S2). Note that although
pathotype 006xxx presented a strong affinity a for
Orvantis, it did not appear very sensitive to changes in the
proportion of Orvantis in the host population (Table 3,
parameter b). A simple reason for that is that Orvantis’s
frequency did not vary much between 2002 and 2008
(Table S1).

Relative effect of basic affinity and changes in variety fre-
quencies (W) Fig. 5 shows the respective weights of the
basic affinity W ða; v; t ; pÞ and of the changes in the variety
frequencies W ðb; i; v; t ; pÞ on the population size of a
pathotype on a variety, as estimated by Z (Eqn 1). Overall,
Fig. 5 suggests that the frequency of a pathotype on a vari-
ety is the highest when the landscape composition is the
most favourable, that is, when W ða; v; t ; pÞ is minimal.

The presence of 073100 on Soissons was mainly
explained by its very high affinity for this variety (Fig. 5a).
Conversely, the frequency of 106314 on the same variety
was mainly related to the frequency of Caphorn in the land-
scape (Fig. 5c). The case of 077317 is more complex.
Changes in the landscape composition influenced this path-
otype through a combination of varieties that varied over
time: mainly Trémie and Soissons in the beginning of the
period, then Charger and finally Apache and Orvantis
(Fig. 5b).

In the right column of Fig. 5, we examine the situation
of pathotype 106314. The frequency of this pathotype on
Caphorn was explained by both its affinity (a) and the
increasing frequency of Caphorn in the landscape, with
weights of comparable magnitude (Fig. 5e). This suggests
an amplification effect, with the increase in Caphorn in the
landscape (Table S1) resulting in a higher frequency of
106314 on this variety. On Soissons and Apache
(Figs 5c,d), 106314 increased from 0% in 2003 to 35%
and 39%, respectively, in 2008, and this increase was
accounted for by the frequency of Caphorn in the land-

scape. On Orvantis, pathotype 106314 also increased in
frequency, probably for the same reasons, but it only
reached 13% of the pathogen population sampled on this
variety at the end of the period (Fig. 5f). This might be
because of competition with 006xxx, which had a high
affinity for Orvantis with respect to the other pathotypes
(Table 2).

Disease dynamics

Effect of pathogen population composition on observed
resistance (b) For Isengrain and Trémie, very large credi-
bility intervals were obtained for parameter b (Fig. S3),
probably because pathotypes 006xxx and 106314 were
observed for only 1 or 2 yr on these varieties, which made
the data difficult to exploit. On the other varieties, three

(a) (d)

(b) (e)

(c) (f)

Fig. 5 Observed proportion of pathotype p on variety v (closed
circles) along with associated model-based indices (bars), for
selected ðp; vÞ pairs. Pathotypes 073100 (a), 077317 (b) and
106314 (c) on wheat (Triticum aestivum L.) variety Soissons;
pathotype 106314 on varieties Apache (d), Caphorn (e) and
Orvantis (f). Weights of basic affinity, Wða; v; t;pÞ: closed bars and
changes in landscape composition, Wðb; i; v; t; pÞ: tinted bars, on the
considered pathotype frequency. Tinted bars indicate varieties
Apache, Caphorn, Charger, Isengrain, Orvantis, Soissons and
Trémie from the darkest to the lightest.
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different kinds of responses were obtained. For Apache,
Caphorn and Charger, the disease scorings yielded constant
values (Fig. 2) and it seems difficult to link the observed
resistance levels to a specific pathotype. Nevertheless, the
disease scores on Apache could be related to the proportions
of pathotypes 077317 and 016206, and the disease scores
on Caphorn could be related to 077317 (Table 2, Fig. S3).
It is interesting to note that the b value for the pair
Caphorn–106314 was very low, even though the frequency
of 106314 was strongly linked to Caphorn (Tables 2, 3).
This suggests that Caphorn, when grown extensively, influ-
enced the pathotype frequencies in the pathogen population
without being affected by severe epidemics itself. The
second kind of response is that of Orvantis, for which
the observed resistance level was decreasing (so that the
disease scores kept increasing – Fig. 2). This was correlated
to the increase in 106314 in the pathogen population
(C1ðb; Orvantis,106314Þ ¼ 0:80). The last response type
is that of Soissons, on which the observed resistance
increased (and disease scores decreased – Fig. 2). This could
be linked to the decrease in the frequency of 073100 in the
pathogen population (C1ðb; Soissons,073100Þ ¼ 0:95).

Variety, year and region effects The variety effect, a0, can
be used as a criterion to rank the varieties according to their
susceptibility to leaf rust, taking both qualitative and quanti-
tative pathogenicity into account. As expected, Isengrain
and Soissons had the highest a0 values and Caphorn the
lowest (Fig. S4a). The year effect, a1 (Fig. S4b), accounted
for the P. triticina population breakdown in 2003 and sub-
sequent changes in the following years (Goyeau et al.,
2006). The region effect, a2 (Fig. S4c), was consistent with
the known behaviour of the pathogen, notably that north-
ern and south-eastern France are not favourable to wheat
leaf rust.

Discussion

In this article, we developed a statistical model in order to
jointly analyse three large-scale datasets describing the
wheat leaf rust pathosystem. Many published papers estab-
lish a relationship between the frequency of resistance genes
in the host population and the evolution of the pathogen
population structure in terms of pathotypes, based on quali-
tative virulence factors (Hovmøller et al., 1993; Kolmer,
2002; Goyeau et al., 2006). The originality of the present
approach was to account for the quantitative aspects of the
host–pathogen relationship and to relate host and pathogen
genotype frequencies to observed disease severity values.
The analysis demonstrated that the landscape varietal com-
position influences the observed resistance level of the most
frequently grown wheat varieties by altering the structure of
the pathogen population. Another conclusion of the study
is that quantitative effects (linked either to host quantitative

resistance or pathogen aggressiveness) played a major role in
shaping the leaf rust population structure in France over the
past 10 yr.

The analysis of the link between the pathogen population
composition (in terms of pathotypes) and the landscape vari-
etal composition revealed preferential associations between
varieties and pathotypes that were not accounted for by the
known compatibility relationships based on avirulence–
resistance interactions. The strength of these associations is
quantified in the model by parameter av,p (see Eqn 1a),
which can be interpreted as an indication of the aggressive-
ness level of a pathotype on a variety. Two compatible
(virulent) pathotypes may have very different a values on a
variety, as in the case of 073100 (aSoissons,073100 = 2.2,
IC95% = ½1:2; 3:5�) and 106314 (aSoissons,106314 = 0.057,
IC95% = ½0:0023; 0:30�) on Soissons. This means that
although 106314 is fully compatible with Soissons accord-
ing to the gene-for-gene relationship, it exhibits a low
aggressiveness on Soissons in the field, whereas 073100
appears as a very aggressive pathotype on that variety. More
generally, criterion C1 indicates that 073100 was largely
dominant over all other compatible pathotypes on Soissons
and on Isengrain and, reciprocally, criterion C2 indicates
that 073100 was mainly found on these two varieties. This
pathotype thus appears as an aggressive specialist. By con-
trast, according to the same criteria, pathotype 077317 was
characterized as a generalist, with no preference for any of
the varieties considered.

It then appears that quantitative effects that can be linked
to the host quantitative resistance and the pathogen aggres-
siveness level had a major effect on the leaf rust population
structure in France between 1999 and 2008. Such interac-
tions should be taken into account for designing varietal
allocation strategies but they are generally not documented.
In a recent study, Skelsey et al. (2009) measured aggressive-
ness traits (Pariaud et al., 2009b) of two Phytophthora
infestans isolates on five potato varieties in order to para-
meterize a spatiotemporal model of potato late blight
epidemics. This approach made it possible to obtain specific
values for different quantitative parameters underlying the
host–pathogen relationship but was restricted, for practical
reasons, to a set of isolates and varieties that was not neces-
sarily representative of the field populations. Our approach
can be seen as complementary as it did not provide specific
values of aggressiveness traits but globally identified the
associations between pathotypes and varieties at the land-
scape scale. Note however that P. triticina has a clonal
population structure (Goyeau et al., 2007), which makes
the establishment of associations between pathotypes and
host genotypes easier.

Even though the basic affinity (in terms of our model)
between a pathotype and a variety strongly influenced the
pathogen population structure, its effect was modulated by
that of the other varieties present in the landscape. Indeed,
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the analysis of the link between the pathogen population
composition and the varietal frequencies in the cultivated
landscape showed that a variety, by increasing the popula-
tion size of a pathotype, may significantly influence the
composition of the pathogen population on other varieties.
This effect is quantified in the model by parameter b (see
Eqn 1a). For example, the variety Caphorn is expected to
have a strong influence on the presence of pathotype
106314 on the other varieties. This can be seen in Fig. 5,
where the presence of 106314 on Soissons, Apache and
Orvantis is mainly accounted for by the frequency of
Caphorn in the landscape. The population size of a patho-
type on a variety thus resulted from its aggressiveness level
on that variety as well as from inoculum produced by other
varieties, and the model was able to characterize both effects.

Another major conclusion of our analysis is that the
observed resistance level of a variety could be linked to the
composition of the pathogen population, which itself
depended on the landscape composition (as seen above).
The link between the expected disease severity on a variety
and the pathotype frequencies is quantified in the model by
parameter b (see Eqn 2a). It is usual to observe a resistance
breakdown when a major resistance gene is overcome by a
new pathotype. In the case of quantitative resistance, a grad-
ual decline is expected when the frequency of aggressive
individuals increases in the pathogen population. A compar-
ison of both situations can be found in Mundt et al. (2002).

Some varieties maintained a fairly constant observed level
of resistance over the period considered (Fig. 2). For exam-
ple, the fact that no pathotype presented a marked affinity
for Apache or was linked to its observed resistance level is
consistent with a high level of quantitative resistance in this
variety. The situation was different for Orvantis. This vari-
ety was released in 2000 and it exhibited a decreasing level
of observed resistance until the end of the period studied
(Fig. 2). This decrease could be attributed to pathotype
106314 and, to a lesser extent, 006xxx and 077317. Both
106314 and 006xxx were sensitive to changes in Caphorn’s
frequency and it seems that the influence of Caphorn on
the pathogen population (see Fig. 5c,d,f) contributed to the
decline in Orvantis’ resistance.

Resistance breakdowns are frequent in crops, but it is less
common to observe an increase in the observed resistance
level of a variety. This is, however, what happened here for
Soissons. The disease scores obtained on Soissons were
strongly linked to the frequency of 073100 in the pathogen
population (see parameter b in Table 2) and, therefore, the
relative decline in 073100 accounts for the increase in
Soissons’ observed resistance level. After 2002, 073100 was
partly replaced by 077317 and 106314, both of which pro-
duce susceptible-type lesions on Soissons (Goyeau et al.,
2006) but appear to be much less aggressive than 073100 in
the field (Table 2) and, as a result, probably do not cause
severe epidemics on that variety. The increase in the freq-

uency of 077317 and 106314 on Soissons can be attributed
to the influence of other varieties (Figs 5b,c). The decrease
in 073100 on Soissons followed the decline in Soissons’
frequency after the mid-1990s and resulted from the fact
that this pathotype was not compatible with other varieties,
except Isengrain. In recent years, Soissons has been gradu-
ally rated as more and more resistant by extension services.
We were able to establish here that this increased resistance
did not result from a global decrease of the virulent popula-
tion but was linked to the frequency of a single highly
aggressive pathotype.

In order to build and estimate the model, it was assumed
that the pathotype frequencies were independent between
years and that the geographical distribution of the patho-
types was homogeneous at the scale of the country. Given
that we worked at the country scale and with data collected
at the end of the epidemic season, it is reasonable to assume
that the effect of the current year on the pathogen popula-
tion structure was predominant over the potential effect of
previous years. A preliminary exploration of the datasets
supported this hypothesis. The assumption of a homoge-
neous pathotype distribution at the scale of the country was
consistent with the population structures described for leaf
rust (Goyeau et al., 2006, 2007), and the fact that rust
spores are dispersed over large distances (Park et al., 2000).
We also assumed that the five main pathotypes considered
in the study were pre-existing and homogeneously distrib-
uted at the country scale. Theoretical models predict that
local structures in the host population could be crucial in
the invasion dynamics of pathogens (Keeling, 1999; Park
et al., 2001; Débarre et al., 2009). A possible improvement
of the analysis would be to test whether weakening the
assumption of complete mixing of the population at the
national level would alter the results.

Another limit of the study resulted from boundary effects
in the datasets. We worked on a sequence of 10 consecutive
years, which was long enough to capture major changes in
the host and pathogen populations. Nevertheless, the begin-
ning of the period may have been influenced by what
happened before 1999. Moreover, the model cannot esti-
mate the parameters for varieties that were introduced too
late towards the end of the period as this estimation requires
a certain amount of information. In particular, a decrease in
the landscape representativeness occurred in 2007 and 2008
because of the rise of a new variety, Sankara, which repre-
sented 8–9% of the wheat landscape those last 2 yr. This
variety bears the same resistance genes as Caphorn and
Orvantis. It is susceptible to pathotype 106314 and high
disease score values were recorded on Sankara in the field
severity assessments. It is therefore likely that this variety
played a role in the multiplication of pathotype 106314,
and it is possible that the large influence on 106314 attrib-
uted to Caphorn was partly overestimated if the effect of
Sankara was confused with that of Caphorn. Based on the
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existing dataset, the specific effect of Sankara cannot yet be
properly assessed by the model because the introduction of
this variety in the system is too recent.

The approach developed here provided documented situ-
ations and information that can be used with landscape
epidemiology models for designing variety management
strategies. It also made it possible to identify major effects
that have to be taken into account in the simulation of
large-scale epidemics. Based on parameters a and b, interac-
tion groups can be defined that account for both qualitative
(gene-for-gene) and quantitative host–pathogen interactions
in a landscape: pathotype 073100 was clearly related to
Isengrain and Soissons; 006xxx was influenced by Caphorn
and Orvantis and 106314 by Caphorn; 016206 was influ-
enced by Trémie with a moderate influence of Charger;
077317 appeared as a generalist and was not linked to a spe-
cific variety. This pattern can be linked to ecological
specialization (Devictor et al., 2010). In that field of
research, species specialisation indices are commonly calcu-
lated at the landscape scale, for example to understand the
impact of human activities on the structure of natural com-
munities (Clavero & Brotons, 2010). The present study
suggests that such specialisation indices could be relevant in
plant epidemiology to identify pathotype preferences in a
heterogeneous host population and to better understand
and predict pathogen population dynamics over the years in
cultivated landscapes.
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