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Marc Vandeputte4,5, Sachi Kaushik6, Chantal L Cahu1 and David Mazurais1*

Abstract

Background: Efforts towards utilisation of diets without fish meal (FM) or fish oil (FO) in finfish aquaculture have
been being made for more than two decades. Metabolic responses to substitution of fishery products have been
shown to impact growth performance and immune system of fish as well as their subsequent nutritional value,
particularly in marine fish species, which exhibit low capacity for biosynthesis of long-chain poly-unsaturated fatty
acids (LC-PUFA). The main objective of the present study was to analyse the effects of a plant-based diet on the
hepatic transcriptome of European sea bass (Dicentrarchus labrax).

Results: We report the first results obtained using a transcriptomic approach on the liver of two half-sibfamilies of
the European sea bass that exhibit similar growth rates when fed a fish-based diet (FD), but significantly different
growth rates when fed an all-plant diet (VD). Overall gene expression was analysed using oligo DNA microarrays
(GPL9663). Statistical analysis identified 582 unique annotated genes differentially expressed between groups of fish
fed the two diets, 199 genes regulated by genetic factors, and 72 genes that exhibited diet-family interactions. The
expression of several genes involved in the LC-PUFA and cholesterol biosynthetic pathways was found to be up-
regulated in fish fed VD, suggesting a stimulation of the lipogenic pathways. No significant diet-family interaction
for the regulation of LC-PUFA biosynthesis pathways could be detected by microarray analysis. This result was in
agreement with LC-PUFA profiles, which were found to be similar in the flesh of the two half-sibfamilies. In
addition, the combination of our transcriptomic data with an analysis of plasmatic immune parameters revealed a
stimulation of complement activity associated with an immunodeficiency in the fish fed VD, and different
inflammatory status between the two half-sibfamilies. Biological processes related to protein catabolism, amino acid
transaminations, RNA splicing and blood coagulation were also found to be regulated by diet, while the expression
of genes involved in protein and ATP synthesis differed between the half-sibfamilies.

Conclusions: Overall, the combined gene expression, compositional and biochemical studies demonstrated a large
panel of metabolic and physiological effects induced by total substitution of both FM and FO in the diets of
European sea bass and revealed physiological characteristics associated with the two half-sibfamilies.
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Background
For the majority of intensively-reared finfish species
including the European sea bass (Dicentrarchus labrax),
diets have traditionally been based on fish meal (FM)
and fish oil (FO). However, the decline in worldwide
supplies of marine oils and fish meal [1] has led the
industry and several research initiatives to investigate
the possibility of using plant proteins and vegetable oils
as alternatives to marine fishery-derived proteins and
oils. Nevertheless, the use of such plant products is
recognised to have several disadvantages, particularly
related to their protein contents, amino acid profiles
and unsaturated fatty acid imbalances, but also including
endogenous anti-nutritional factors. Taking into account
these limits and the dietary needs of different fish spe-
cies, efforts have been made over the last decade to
develop diets with a low content in fish resources. This
has been done by using a mixture of vegetable meals
and oils [2], resulting in the successful reduction of both
FM and FO in the feeds for several species [3]. Much
progress has indeed been made in the substitution of
FM and FO with plant products in feeds for salmonids
as well as marine fish, in the recent past [4-6]. While
several studies performed on salmonids indicate that
total replacement of fish meal by plant ingredients leads
to decreased growth rate [7,8], Kaushik et al. [9] showed
that it was possible to almost totally replace fish meal
with a mixture of plant protein sources for European
sea bass without reducing growth performance. The
same authors did, however, note a significant increase in
fat content and a decrease in plasma cholesterol concen-
trations for sea bass fed with plant protein, suggesting
altered regulation of lipid metabolic pathways.
For the replacement of fish oil, it is well established

that freshwater or anadromous fish species such as sal-
monids have higher tolerance to vegetable oil compared
with marine fish species. Thus, for Atlantic salmon
(Salmo salar) and rainbow trout (Oncorhynchus mykiss),
the total replacement of fish oil with a blend of vegeta-
ble oils poor in highly unsaturated fatty acids (LC-
PUFA) did not result in diminished growth perfor-
mance, feed conversion or development of histopathol-
ogy, despite an increase of polyunsaturated fatty acid
(PUFA) deposition in liver and muscle [10-12]. In some
studies, a high or total substitution of fish oil by linseed
and soybean oils for several months induced decreases
in growth rate of gilthead sea bream (Sparus aurata)
and European sea bass (Dicentrarchus labrax) [13-15].
Some other studies undertaken with gilthead sea bream
showed that while there were no differences in growth
of fish fed high levels of vegetable oil mixtures, there
were possibly other metabolic consequences [5,16]. This
lower adaptation of marine fish species to vegetable oil
has been suggested to be linked to their lower efficiency

at synthesizing LC-PUFA from n-3 and n-6 precursors
present in plants [17-19]. A recent study performed on
European sea bass indicates that the limiting step for
LC-PUFA synthesis could be linked to a deficiency in
the stimulation of delta-6-desaturase (FADS2) activity in
fish fed vegetable oil [13]. The resulting low tissue levels
of LC-PUFA in marine fish fed vegetable oil could
impact fish health, since LC-PUFA are not only impor-
tant as structural components of cell membranes but
also as precursors of eicosanoids. Eicosanoids are
involved in many physiological processes, including
osmoregulation, immune responses, blood coagulation
and reproduction [20-23]. Moreover, lowered eicosapen-
taenoic acid (EPA; 20:5n-3) and docosahexaenoic acid
(DHA; 22:6n-3) content in the flesh of marine fish fed a
vegetable diet diminishes their nutritional value for
consumers.
Recent studies on salmonids have suggested there is

genetic variability for ability to utilize plant-based diets
[24-26]. Interestingly, some genotype-diet interactions
for growth have also been recently demonstrated in Eur-
opean sea bass fed on a plant-based diet [27]. The exis-
tence of such interactions suggests that it could be
possible to select fish, and particularly sea bass, with a
better ability to grow on plant-based feeds. However,
the genetic factors and related metabolic or physiologi-
cal pathways responsible for these advantageous capaci-
ties are still unknown.
To our knowledge, studies on the total replacement of

both FM and FO have not been undertaken in a marine
fish species until now, except for the afore mentioned
work by Le Boucher et al. (2010) [27]. Moreover, inves-
tigations on the impact of FM and FO substitution with
plant products for marine fish species have only been
performed using molecular and/or biochemical
approaches focused on selected target metabolic path-
ways or physiological functions. Such dedicated
approaches do not allow an exhaustive and global over-
view of the molecular mechanisms underlying tissue and
organism response to diet substitution.
In order to gain a fuller picture of the effects of total

substitution of both FM and FO, the present study pri-
marily aimed to characterise the regulation of the liver
transcriptome in European sea bass fed on a fish-free
diet for 9 months, using an oligonucleotide microarray
recently developed for this species [28]. This investiga-
tion was performed on liver because this organ plays a
key role in intermediary metabolism, integrates a large
part of nutrient uptake and affects a wide range of func-
tions in the body, including plasma protein synthesis,
hormone production and detoxification. The present
study was undertaken using two half-sibfamilies that
exhibited similar growth rates when they were fed a
FM-FO diet, but different growth rates when they were
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fed a plant protein-vegetable oil based diet. The second
aim of this work was to pinpoint genes and related
metabolic and physiological pathways that could explain
the different adaptation of these two half-sibfamilies of
European sea bass to a plant-based diet. The hepatic
transcriptomes and flesh LC-PUFA profiles were, there-
fore, compared between these half-sibfamilies.

Methods
Diets and fish
Two practical iso-energetic and iso-nitrogenous diets were
formulated (Table 1). The first, a fish-based diet (FD), was
composed of fish meal, wheat gluten and fish oil whereas
the second, a vegetable-based diet (VD), was devoid of
ingredients of fish origin and composed of plant protein
sources and vegetable oil (linseed). The fatty acid composi-
tion of the two diets is given in Table 2.
All procedures concerning the animals and their

handling were conducted in accordance with the Code
of Ethics of the World Medical Association (Declaration
of Helsinki). The study was performed under licence no.
29.021 of the French Department of Veterinary Services
(Direction Départementale des Services Vétérinaires) to
conduct experimental protocols and samplings on fish.
The present study focused on fish of two half-sibfamilies
(half-sibfamily G and half-sibfamily g), which exhibited a
similar daily growth coefficient (DGC) when they were
fed on a fish-based diet, but had significantly different
DGCs when they were fed an all-plant diet. The two
half-sibfamilies of fish were produced from a crossing
design between 8 females and 41 males, which was car-
ried out with European sea bass individuals from a
Mediterranean stock held at the Experimental Station of
Palavas-les-Flots (Ifremer, France) [27]. Rearing condi-
tions have already been described by Le Boucher et al.
[27]: fish were reared in two tanks per diet condition,
supplied with recirculated seawater (38 ppt) at a con-
stant temperature of 21°C, and subjected to a photoper-
iod of 12 h light:12 h dark. Fish were fed on a
commercial diet (Neogrower, Le Gouessant, Lamballe,
France) until they reached the mean weight of 192 g.
Before the beginning of the nutritional challenge, fish
were individually tagged, genotyped for microsatellite
markers to infer parentage [27], and distributed ran-
domly into two tanks per dietary condition (FD or VD),
with 196 fish per tank. After an acclimation period of 2
weeks, fish were hand fed to satiation (1 meal/day) for a
period of 9 months on the experimental diets (FD or
VD). Analysis of experimental data was done using the
following formulae:

Hepatosomatic index (%) : HSI = 100 ×
(

liver weight
(
g
) × body weight

(
g
)−1

)

Viscerosomatic index (%) : VSI = 100 ×
(

carcass weight
(
g
) × body weight

(
g
)−1

)
Daily growth coefficient (% day): DGC = 100 × (final

individual weight (g) 1/3 - initial individual weight (g) 1/3)/
days (According to Cho [29]).

Table 1 Ingredients, amino acid profiles and chemical
composition of the two diets fed to European sea bass.

Diets FD VD

Ingredients

Fish meal 38.0 0.0

Corn gluten 18.0 20.0

Soybean meal 0.0 18.2

Wheat gluten 7.2 20.0

Whole wheat 25.3 7.2

White sweet lupin 0.0 14.0

Fish oil 8.5 0.0

Linseed oil 0.0 9.4

Soy lecithin 0.0 1.0

L-lysine 0.0 2.7

Dicalcium phosphate 0.0 3.0

Binder (Sodium alginate) 1.0 1.0

Attractant mix1 1.0 1.5

Mineral premix2 1.0 1.0

Vitamin premix3 1.0 1.0

Chemical composition

Dry matter (DM), g/100 g 94.5 90.3

Crude protein, g/100 g DM 49.8 50.3

Crude fat, g/100 g DM 14.3 14.1

Gross energy (GE), kJ/g DM 22.8 21.9

Ash, g/100 g DM 6.3 7.9

Amino acid composition (g/100 g)

Arginine 2.2 1.8

Histidine 1.0 0.9

Isoleucine 1.9 1.8

Leucine 4.2 3.9

Lysine 2.5 3.6

Methionine+Cystine 1.8 1.4

Phenylalanine+Tyrosine 3.8 3.7

Threonine 1.7 1.3

Tryptophan 0.4 0.3

Valine 2.3 1.9

Glycine 2.5 3.5

Serine 2.2 4.7

Glutamic acid 10.6 22.1

Aspartic acid 3.3 7.6

Proline 2.8 5.4

Alanine 2.8 3.0

Ingredient composition (g 100 g-1), amino acid profiles (g 100 g-1) and chemical
composition (g/100 g DM-1) of the two diets fed to European sea bass.
1Attractant mix contained: glycine (0.2), alanine (0.2), betaine (0.3), taurine
(0.3) and glucosamine (0.5)
2 3 as per NRC [75]
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Feed efficiency (FE): [final weight (g) - initial weight
(g)]/feed ration (g) (According to Carter et al. [30])
At the end of the growth trial, liver, muscle and

plasma were sampled from 15 fishes per half-sibfamily
and per dietary treatment. Muscular LC-PUFA profiles
and real-time PCR investigations were performed on
these 15 sampled individuals per group. Microarray ana-
lysis of hepatic RNA and investigation of immune para-
meters in plasma were investigated on 5 to 8 sampled
individuals per group in order to respect similar sex
ratio, sampling time and RNA quality (RNA Integrity
Number as determined by Bioanalyser (Agilent) > 9).

Lipid extraction and fatty acid analysis
One gram of white muscle was dissected from 15 fish
per dietary treatment and immediately frozen in liquid
nitrogen. Total lipids were extracted according to the
method of Folch et al. [31], by Accelerated Solvent
Extraction 200 (ASE, Dionex) with dichloromethane/
methanol (2:1) containing 0.01% butylatedhydroxuto-
luene (BHT) as antioxidant. Lipids were extracted at
100 bars, 100°C, with a 5 min precallingphase, 2 min
static phase, and 60% flush for 60 sec (3 cycles). The
separation of neutral and polar lipids was performed
according to the procedure described by Juaneda and
Roquelin [32]. The total lipid (TL) extracts were fractio-
nated on silica cartridges (Sep-Pack, Waters®), neutral
lipids (NL) were eluted with chloroform and polar lipids
(PL) with methanol. Fatty acid methyl esters (FAME)

were prepared from total lipids by acid-catalysed trans-
esterification. FAME were quantified by gas-liquid chro-
matography (Clarus 500, Perkin Elmer) with a BPX70
column of 30 m length and 0.22 mm I.D. Hydrogen was
used as carrier gas and temperature programming was
from 50°C to 180°C at 20°C/min and then to 220°C at 3°
C/min. Individual methyl esters were identified by com-
parison with known standards. The fatty acid analysis
was performed on one sample per fish.

RNA extraction and real-time quantitative PCR analysis
Total mRNA of liver was extracted using Trizol reagent
(Invitrogen, USA) and quantified by measuring absor-
bance at 260 nm in a spectrophotometer (Nanodrop
Labtech, France). The reverse transcription was per-
formed using the QuantiTect® Reverse Transcription kit
(QIAGEN), including a genomic DNA elimination reac-
tion. Reactions were carried out in a volume of 20 μl,
containing 1 μg of total RNA, 1 unit of Quantiscript
Reverse Transcriptase, 4 μl of Quantiscript RT buffer (5
×) and 1 μM primer mix.
Seven genes involved in metabolic and/or immune

pathways of interest (fads2, hmgcr, fabp7, angptl3,
cxcl10, gck and lpl), whose the oligonucleotides were
spotted on the chip, were analysed by real-time PCR in
order to validate the gene expression patterns obtained
through the microarray approach. The relative mRNA
levels were automatically normalized with housekeeping
elongation factor 1 (ef1) gene expression and measured
by Bio-Rad IQ5 software using ΔΔCt method (Ct for
Cycle threshold):
Gene Normalized Expression in sample 1 = (Gene

Relative Quantity in sample 1)/(EF1 Relative Quantity in
sample 1) with Relative Quantity in sample 1 for a gene
i = E(gene i)

Ct (sample 2) - Ct (sample 1)

Ef1 was chosen to provide an internal control for real-
time PCR, since contrary to 18S rRNA and actin initially
tested, we did not observe any significant difference (t-
student test, p > 0. 1) between Ct values for Ef1 between
the dietary groups (See additional file 1: Comparison of
Ct values for ef1 gene between the dietary groups). Its
stability was also assessed by a low coefficient of varia-
tion over all the samples (CV < 5%).
Specific primers (Table 3) were designed from Eur-

opean sea bass sequences of fads2 (GenBank:
EU439924), fabp7 (EMBL: FM000669), hmgcr (EMBL:
CB043825), angptl3 (EMBL: FM023639), cxcl10 (EMBL:
FM015474), gck (EMBL: AM986860), lpl (EMBL:
DT044526) and ef1 (GenBank: AJ866727) (Table 3). All
primers used for real-time quantitative PCR analysis
were defined with the Primer3 software http://frodo.wi.
mit.edu/primer3/ in order to respect an annealing tem-
perature of 60°C. All PCR reactions were performed
with an efficiency of 100% (± 5%). The PCR reactions

Table 2 Fatty acid composition (% sum of fatty acids) of
the two diets FD and VD

Diets FD VD

Fatty acids composition

Σ saturates 27.67 11.82

Σ monoenes 36.27 23.85

18:2n-6 8.90 23.59

20:2n-6 0.25 0.11

18:3n-6 0.22 0.10

20:4n-6 0.71 0.00

Σ n-6 PUFA 10.31 23.91

18:3n-3 1.27 40.90

18:4n-3 1.84 0.00

20:3n-3 0.13 0.07

20:4n-3 0.87 0.00

20:5n-3 9.54 0.05

22:5n-3 1.56 0.00

22:6n-3 10.52 0.12

Σ n-3 PUFA 25.73 41.14

total lipid (%) 13.80 13.10

Σ n-3 PUFA/Σ n-6 PUFA 2.5 1.7

EPA/DHA 0.9 1.0

EPA/ARA 13.6 -
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were carried out in an I-cycler with an optical module
(Bio-Rad, Hercules, CA, USA), in a final volume of 15 μl
containing 7.5 μl SYBR Green Supermix (Biorad, Her-
cules, CA, USA), 0.5 μl of each primer (10 mM) and 5
μl of cDNA (1/10 dilution). The PCR program consisted
of an initial DNA denaturation of 94°C for 90 s, fol-
lowed by 45 cycles at 95°C for 30 s and 60°C for 60 s. A
triplicate of the amplification reaction was realised for
each sample.

Plasma lysozyme concentration
Plasma lysozyme activity was determined at ambient
temperature using a turbidimetric assay [33], adapted to
microtitration plates. Briefly, a bacterial suspension of
Micrococcus lysodeikticus (Sigma) was prepared at a
concentration of 1.25 g.l-1 in a 0.05 M sodium-phos-
phate buffer, pH 6.2. Fifty microlitres of the samples
were placed in 96-well microtitration plates. The reac-
tion was initiated in a Labsystems-iEMS analyser, by
addition of 160 μl well-1M. Lysodeikticus suspension
using an automatic dispenser. The optic density (OD)
reading was taken at a wavelength of 450 nm every 15 s
for 3 min, the plate being shaken before each reading.
Lysozyme values for samples were converted to mg.ml-1,
using a reference curve established with hen egg white
lysozyme (Sigma).

Plasma alternative complement pathway activity
Determination of the alternative pathway of plasma
complement activity was carried out at 4°C through a
haemolytic assay with rabbitred blood cells (RRC, Bio-
mérieux, Craponne, France) as described by Yano [34],
adapted to microtitration plates. Sea bass samples,
diluted to 1/64 in EGTA-Mg-GVB buffer to avoid nat-
ural haemolytic activity, were added in increasing
amounts, from 10 to 100 μl well-1. Wells were filled
with EGTA-Mg-GVB buffer to a final volume of 100 μl.
Finally, 50 μl of 2% RRC (Biomérieux) suspension was
added to each of the wells. Control values of 0% and
100% haemolysis were obtained using 100 μl of EGTA-
Mg-GVB buffer and 100 μl of non-decomplemented
trout haemolytic serum at 1/50 in ultrapure water,

respectively. The samples were then incubated for 1 h at
20°C. The microplates were centrifuged (400 g, 5 min,
4°C) and 75 μl of supernatant from each well was then
transferred into another 96-well microplate with 75 μl
of phosphate buffered saline (PBS, Biomérieux). The
absorbance (A540) was read in a Labsystems-iEMS analy-
ser and the number of ACH50 units per ml of plasma
was determined by reference to the 50% haemolysis.

Dicentrarchus labrax oligonucleotide microarray
Gene expression profiles were investigated using the
Agilent-019810 Dicentrarchus labrax oligo microarray
(GEO accession: GPL9663). This platform represents 19,
035 unique transcripts of the European sea bass. Two
non-overlapping probes were designed for each tran-
script for a total 38, 070 oligonucleotide probes (60
mers) synthesized onto the array (for details see [35]).
All sequences (DLPD) are publicly available in a dedi-
cated database [35], together with associated annota-
tions, GO entries and putative homologous genes in fish
model species.
Microarrays were synthesized in situ using Agilent

non-contact ink-jet technology with a 4 × 44 K format,
and included default positive and negative controls.
Microarray analysis was based on a single color (Cy3)
design. A mixture of 10 different viral polyadenilated
RNAs (Agilent Spike-In Mix) was also added to each
RNA sample to monitor labelling and hybridization
quality as well as microarray analysis work-flow.
Sample labelling and hybridization were performed as

reported in Ferraresso et al. [28]. Briefly, for each sam-
ple, 200 ng of total RNA were linearly amplified and
labelled with Cy3-dCTP according to the Agilent One-
Color Microarray-Based Gene Expression Analysis pro-
tocol. A mixture of 10 different viral polyadenilated
RNAs (Agilent Spike-In Mix) was also added to each
RNA sample to monitor labelling and hybridization
quality as well as microarray analysis work-flow. After
fragmentation, a total of 1, 650 ng of labelled cRNA
were dispensed in the gasket slide and assembled to the
microarray slide (each slide containing four arrays).
Slides were incubated for 17 h at 65°C in an Agilent

Table 3 Primers used for each gene expression analysis by real-time PCR.

Forward primers (5’-3’) Reverse primers (5’-3’) amplicon size

FADS2 CCTTCACTGCTCTTCATCCCAA CCCAGGTGGAGGCAGAAGAA 202

FABP7 GAAGGCACTTGGTGTTGGTT CAGGGTTTTCACCACCACTT 102

HMGCR CCAGCTTCGTATTCAGCACA GCTTTGGAGAGGTCGATGAG 105

LPL AGTTCCACATCCGGAAACTG GCTCCGGTTGTCTTCTTTTG 142

GCK GGTGAAGCAAGCCTGAACTC CTTCCAGCAGTGACTGTCCA 122

ANGPTL3 CAACATCTTGCAGGAGCGTA CTCTCCGACAGTCCCTTCAG 77

CXCL10 GGAGAGTGAGCCAGAACCTG CCCTTGTGCACTGAAGACAA 91

EF1 GCTTCGAGGAAATCACCAAG CAACCTTCCATCCCTTGAAC 153
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Hybridization Oven and washed following manufac-
turer’s instructions.

Data acquisition and normalization
Hybridized slides were scanned at 5 μm resolution using
an Agilent G2565BA DNA microarray scanner. Default
settings were modified to scan the same slide twice at
two different sensitivity levels (XDR Hi 100% and XDR
Lo 10%). The two linked images generated were ana-
lyzed together; data were extracted and background sub-
tracted using the standard procedures contained in the
Agilent Feature Extraction (FE) Software version 9.5.1.
Spike-in probe intensities were used to assess the per-
formance of the normalization procedure for each data-
set. Data normalization was performed using R
statistical software http://www.r-project.org; microarray
data were normalized across all arrays using the cyclic
loess approach [36]. Fold changes (FC) were calculated
for each gene by finding the average value for each
group (dietary or sibfamily group). Raw and normalized
fluorescence data of the present microarray experiment
have been deposited in the GEO database under acces-
sion number (under submission: NCBI tracking system
#16023742).

Statistical analysis
All the results are presented as mean values with stan-
dard deviations (SD). Daily Growth Coefficient (DGC)
was studied using a model accounting for diet as a fixed
effect and tank, sire, dam, sire*diet and dam*diet as ran-
dom effects, using SAS-GLM. Effects of diet and half-
sibfamily factors on biometry (hepatosomatic index: HSI
and viscerosomatic index: VSI), fatty acid composition,
gene expression (qPCR), plasma lysozyme concentration
and alternative complement pathway activity were tested

by two-way ANOVAs (P < 0.05) using Statistica biosoft
8.0. The microarray data were analysed by two-way
ANOVA using Tmev (Tigr MultiExperiment Viewer)
statistical software, and gene expression was considered
significantly different when P < 0.01. Significant enrich-
ment of GO biological process categories were tested
for using EASE software (version 2.0) with P < 0.05 [35].

Results
Growth and biometry
After 9 months of the feeding trial, European sea bass
fed VD exhibited significantly lower DGC than those FD
(Table 4). In addition, the fish of half-sibfamily G fed
the VD had a significantly higher DGC than fish of half-
sibfamily g fed VD, while there was no difference
between these two half-sibfamilies when they were both
fed FD (Table 4). The hepatosomatic index (HSI) was
regulated by diet and genetic factors while the visceroso-
matic index (VSI) was only regulated by the genetic fac-
tor. There were no significant interactions between
dietary and genetic factors for these two parameters.
The feed efficiency (FE) in the duplicate tanks was 0.56
and 0.60 for the FD and 0.51 and 0.55 for the VD,
respectively. Mortality was not significantly different
between dietary treatment and half-sibfamilies (Table 4).

Lipid and fatty acid compositions of the fillet
The flesh lipid composition was significantly affected by
dietary treatment (See additional file 2: Fatty acid com-
position in muscle). Feeding VD significantly increased
the percentage of saturated lipids in both the neutral
lipids and phospholipids. The a-linolenic acid (18:3n-3)
and linoleic acid (18:2n-6) contents were respectively
10-fold and 3-fold higher, in both lipid classes, when
fish were fed VD. In addition, AA, EPA and DHA

Table 4 Growth and biometric parameters of two half-sibfamilies of European sea bass (G and g) fed fish-based and
plant-based diets.

FD VD

HSF g HSF G HSF g HSF G Diet factor Sib family factor Diet × Sib family factors

p value p value p value

Initial length (cm) 22.5 ± 1.8 21.7 ± 2.5 21.2 ± 1.7 21.9 ± 1.5 NS NS NS

Initial weight (g) 218 ± 55 178 ± 61 179 ± 45 178 ± 36 0.01 NS 0.01

Final length (cm) 31.1 ± 2.1 30.3 ± 2.7 28.9 ± 1.8 30.0 ± 1.9 0.01 NS NS

Final weight (g) 625 ± 138 553 ± 154 475 ± 97 513 ± 96 0.01 NS 0.01

HSI (%) 2.67 ± 0.1 2.07 ± 0.1 2.09 ± 0.1 1.90 ± 0.1 0.01 0.01 NS

VSI (%) 6.86 ± 0.24 5.44 ± 0.35 7.17 ± 0.22 6.39 ± 0.34 NS 0.01 NS

DGC(10-4) 103.5 ± 5.7 103.9 ± 11.1 92.2 ± 3.4 98.0 ± 6.7 0.01 NS 0.01

FE 0.56 - 0.60 0.51 - 0.55 - - -

Survival (%) 99.5 99.5 100 100 NS NS NS

Initial and final weights and lengths (n = 15), HSI (n = 75) and VSI (n = 75). Effects of diet factor and genetic factor on the biometric parameters are determined
by two-way ANOVA. Results are expressed as mean +/- S.D. and significant differences are indicated by the p value (two-way ANOVA, P < 0.05).
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contents were around 2.5-fold lower in flesh of fish fed
VD. The Σn-3 PUFA/Σn-6 PUFA ratio decreased in
both the neutral lipid (2-fold) and phospholipid (4-fold)
fractions in the flesh of European sea bass fed VD.

Microarray gene expression profiling
A list of 4, 272 significant probes was obtained for the
effect of diet factor, corresponding to 582 unique tran-
scripts with gene ontology (GO) annotation. Among
these regulated transcripts, 358 exhibited higher levels
in fish fed VD while 224 were over-expressed in the
liver of fish fed FD. For the family factor effect, total of
989 significant probes were revealed corresponding to
199 unique transcripts with GO annotation. Among
these, 116 exhibited higher levels in half-sibfamily G
while 83 were more abundant in half-sibfamily g. In
addition, 297 probes related to 72 genes with functional
annotation exhibited significant diet × genetic interac-
tions. The main biological processes enriched out of
those associated with genes that were over-expressed in
fish fed VD were physiological process (324 genes),
metabolism (267 genes), RNA splicing (16 genes), pro-
tein catabolism (34 genes), aerobic respiration (5 genes),
sterol metabolism (8 genes), carboxylic metabolism (30
genes), amino acid metabolism (18 genes), blood coagu-
lation (12 genes) and hexose catabolism (8 genes) (See
additional file 3: Significantly enriched biological pro-
cesses associated with genes regulated by diet and half-
sibfamily factors). The genes involved in carboxylic acid
and sterol metabolism included fatty acid desaturase 2,
steroyl-CoA desaturase 9, NADH-cytochrome b5 reduc-
tase, Isopentenyl-diphosphate delta-isomerase 1, Lanos-
terol 14-alpha demethylase, Farnesyl pyrophosphate
synthase, C-4 methylsterol oxidase and 3-hydroxy-3-
methylglutaryl-coenzyme A reductase. Apolipoprotein
A-I, Apolipoprotein B-100 and lipoprotein lipase, impli-
cated in lipid transport, were also found to be up-
expressed in fish fed VD (Table 5). Similarly, some
genes involved in carbohydrate metabolism (hexose cat-
abolism), such as glucose-6-phosphate 1-dehydrogenase,
6-phosphogluconate dehydrogenase and fructose-1, 6-
bisphosphatase 1 were also expressed at a higher level in
the fish fed VD (Table 5). Expression levels of genes
involved in protein metabolism and amino acid metabo-
lism were also increased in fish fed VD (Table 5).
In contrast, the main biological processes enriched asso-
ciated with the genes that were lower-expressed in fish
fed VD were particularly related to cellular process (136
genes), cell communication (65 genes) and cell prolifera-
tion (32 genes) (See additional file 3: Significantly
enriched biological processes associated with genes
regulated by diet and half-sibfamily factors). In addition,
some genes involved in the immune function were less
expressed in fish fed VD (Table 5).

The comparison of hepatic transcriptomes between
the two half-sibfamilies indicated that genes involved in
immune function, such as complement component C2,
C3 and C9 and mannan-binding lectin serine protease 2,
were more greatly expressed in half-sibfamily g than in
half-sibfamily G (Table 6). Inversely, expression levels of
NADH dehydrogenase genes (ndufb4, ndufb6, ndufs4,
ndufs6 and ndusv2), involved in the electron transport
to the respiratory chain, were significantly lower in half-
sibfamily g compared with half-sibfamily G. Half-sibfam-
ily g was also characterised by lower expression level of
genes implicated in ATP production (atp5c1 and
atp5g3) and protein synthesis, such as ribosomal subu-
nits (mrpl22, mrpl27, mrpl30, mrpl34, mrpl48, mrps14
and mrps17) than the half-sibfamily G (Table 6). Among
the 72 genes exhibiting an interaction between half-sib-
family and diet factors, 50 were involved in metabolism.
However, only the processes related to aromatic amino
acid family (hpd, hpgd and hsd17b4) and nucleotide
metabolism (ctps, dck, gmpr, nt5e and tln1) were found
to be over-represented among these genes (Table 7).
In order to validate the accuracy of the microarray

data, the fads2, hmgcr, fabp7, angptl3, cxcl10, gck and
lpl genes, which were spotted on the microarray, were
also investigated by means of real-time PCR. The com-
parison of the gene expression pattern obtained through
the real-time PCR and microarray approaches, revealed
a correlation greater than 0.75 (Table 8).

Immune parameters
Lysozyme activity was significantly lower (0.7-fold; P <
0.05) in fish fed VD than in fish fed FD, while the alter-
native complement activity was 1.5-times higher (P <
0.05) (Figure 1). There was no effect of the half-sibfam-
ily factor on these activities.

Discussion
The present work is the first investigation into the effect
of an exclusively vegetable diet on the hepatic transcrip-
tome in a marine fish species. It is also the first study to
have explored the transcriptome of two half-sibfamilies
of European sea bass exhibiting different capacities to
grow on such a diet. The replacement of FM and FO
with increasing levels of plant protein and oil sources
for marine fish species can modify feed intake and con-
version, which should be the major reason for associated
growth delay [37,38]. In the present study, there was a
tendency for higher FE in fish fed FD (0.56, 0.60) com-
pared with fish fed VD (0.51, 0.55). However, this differ-
ence could not be statistically tested since fish were
reared in only two tanks per diet condition. A vegetable
diet is also known to potentially impact fish metabolism
through regulation of gene expression, especially in the
liver [8,39,40]. Analysis of the oligo-DNA microarray
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Table 5 Genes involved in the main physiological processes regulated by dietary treatments.

Physiological process Swiss prot description Gene name Fold-change (FC)

Lipid metabolism and transport Fatty acid desaturase 2 FADS2 4.9

Stearoyl-CoA 9-desaturase SCD9 1.4

NADH-cytochrome b5 reductase 2 CYB5R2 2.0

1-acyl-sn-glycerol-3-phosphate acyltransferase gamma AGPAT3 2.3

Phosphatidylserine decarboxylase proenzyme PISD 2.8

Phosphatidylinositol-glycan biosynthesis class F protein PIGF 1.6

Isopentenyl-diphosphate Delta-isomerase 1 IDI1 2.0

Lanosterol 14-alpha demethylase CYP51A1 3.6

Farnesyl pyrophosphate synthase FDPS 2.6

C-4 methylsterol oxidase SC4MOL 2.6

3-hydroxy-3-methylglutaryl-coenzyme A reductase HMGCR 4.4

Apolipoprotein A-I APOA1 1.3

Apolipoprotein B-100 APOB100 1.5

Lipoprotein lipase LPL 3.1

Angiopoietin-related protein 3 ANGPTL3 0.3

Phosphatidylcholine-sterol acyltransferase LCAT 1.9

Carbohydrate metabolism Glucose-6-phosphate 1-dehydrogenase G6PDH 1.3

Hexose-6-phosphate 1-dehydrogenase H6PDH 1.2

6-phosphogluconate dehydrogenase PGD 1.5

Fructose-1, 6-bisphosphatase 1 FBP1 2.3

Fructose-bisphosphate aldolase A ALDOA 2.7

Fructose-bisphosphate aldolase B ALDOB 2.3

Protein metabolism Proteasome subunit alpha type-4 PSMA 1.2

Proteasome subunit beta type-7 PSMB7 1.3

26S protease regulatory subunit 7 PSMC2 1.3

26S proteasome non-ATPase regulatory subunit 4 PSMD4 1.5

Ubiquitin-associated protein 1 UBAP1 1.8

Ubiquitin-conjugating enzyme E2 A UBE2A 1.9

Ubiquitin-conjugating enzyme E2 G1 UBE2G1 1.7

Ubiquitin-conjugating enzyme E2 N UBE2N 1.2

Amino acid metabolism CTP synthase 1 CTPS 1.7

Glutamine amidotransferase GMPS 1.8

Alpha-aminoadipate aminotransferase AADAT 1.7

Glutamate oxaloacetate transaminase 1 GOT1 4.4

Tyrosine aminotransferase TAT 2.6

Succinate dehydrogenase iron-sulfur subunit SDHB 1.4

Isocitrate dehydrogenase subunit gamma IDH3g 1.3

Malate dehydrogenase MDH 2.5

Immune function Interleukin-8 IL8 0.5

C-X-C motif chemokine 10 CXCL10 0.5

C-reactive protein CRP 0.5

Lysozyme g like protein LYG 0.7

Integrin beta-2 ITGB2 0.6

Receptor-type tyrosine-protein phosphatase F PTPRF 0.5

Prostaglandin synthase 2 PTGS2 0.6

Fatty acid-binding protein FABP7 4.5

Plasma protease C1 inhibitor SERPING1 1.3

Prostaglandin D2 synthase 2 PTGS3 0.6

Cell communication Cytokine receptor common subunit gamma IL2RG 0.5

protein tyrosine phosphatase, receptor type, F PTPRF 0.5

Integrin beta-2 ITGB2 0.6
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data by two-way ANOVA indicated that several hundred
genes were differentially regulated according to diet or/
and half-sibfamily factors. The accuracy of the present
microarray data is validated by the similar gene pattern
expression obtained from different oligonucleotides
representing the same genes spotted on the array (data

not shown), as well as by the correlation shown between
results of microarray and qPCR approaches.

LC-PUFA metabolism
Metabolism-related biological processes constitute the
largest group among the GO terms associated with the

Table 5 Genes involved in the main physiological processes regulated by dietary treatments. (Continued)

Blood coagulation Antithrombin-III SERPINC1 1.9

Plasma protease C1 inhibitor SERPING1 1.3

Vitamin K-dependent protein S PROS1 1.4

Plasminogen PLG 1.4

Platelet glycoprotein 4 CD36 2.2

Coagulation factor X F10 1.3

Prothrombin F2 1.2

Coagulation factor VII F7 1.5

Fibrinogen beta chain FGB 1.3

Fibrinogen gamma chain FGG 1.3

The fold-changes (FC) are indicated considering FD as the reference group. (two-way ANOVA, P < 0.01).

Table 6 Genes involved in the main physiological processes regulated by the genetic factor.

Physiological process Swiss prot description Gene name Fold-change (FC)

Immune function Complement C2 C2 1.2

Complement C3 C3 1.7

Complement component C9 C9 1.5

Mannan-binding lectin serine protease 2 MASP2 1.3

Tumor necrosis factor receptor superfamily member 14 TNFRS14 1.7

Electron transport for ATP synthesis NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4 NDUFB4 0.8

NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6 NDUFB6 0.8

NADH dehydrogenase [ubiquinone] iron-sulfur protein 4 NDUFS4 0.8

NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 NDUFS6 0.7

NADH dehydrogenase [ubiquinone] flavoprotein 2 NDUFV2 0.8

Cytochrome b-c1 complex subunit 7 UQCRB 0.8

Energy pathway ATP synthase subunit gamma ATP5C1 0.4

ATP synthase lipid-binding protein ATP5G3 0.5

Cytochrome c oxidase copper chaperone COX17 0.8

Cytochrome b-245 heavy chain Cybb 0.6

3-hydroxyisobutyrate dehydrogenase HIBADH 0.7

Mitochondrial inner membrane protein OXA1L 0.8

Protein biosynthesis T-complex protein 1 subunit beta CCT2 0.8

Eukaryotic translation initiation factor 4 gamma 1 EIF4G1 0.6

Basic helix-loop-helix domain-containing protein KIAA2018 KIAA2018 0.9

39S ribosomal protein L22 MRPL22 0.8

39S ribosomal protein L27 MRPL27 0.8

39S ribosomal protein L30 MRPL30 0.8

39S ribosomal protein L34 MRPL34 0.7

39S ribosomal protein L48 MRPL48 0.7

28S ribosomal protein S14 MRPS14 0.8

28S ribosomal protein S17 MRPS17 0.8

60S ribosomal protein L18 RPL18 0.7

60S acidic ribosomal protein P1 RPLP1 0.8

40S ribosomal protein S18 RPS18 0.8

The fold-changes (FC) are indicated considering the half-sibfamily g as the reference group. (two-way ANOVA, P < 0.01).
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genes regulated in VD-fed fish. Among these, genes
involved in lipid metabolism and, particularly, in LC-
PUFA biosynthesis, were found to be up-regulated in
fish fed VD. Not surprisingly, delta-6-desaturase (fads2),
steroyl-CoA desaturase 9 (scd9) and NADH-cytochrome
b5 reductase (cyb5r2), involved in long chain fatty acid
desaturation and/or elongation, were up-regulated in
VD-fed fish. It is indeed established that in most fish
species that the LC-PUFA biosynthetic pathway is posi-
tively regulated in response to the use of a diet poor in
LC-PUFA but rich in PUFA, although this regulation
depends on fish species, degree of fish oil substitution,
nature of the vegetable oil, and environmental para-
meters (e.g., salinity) [41].
The positive regulation of the LC-PUFA biosynthetic

pathway is in agreement with results obtained by tran-
scriptomic approaches in salmonids fed vegetable oil
[39,40]. Altogether, the expression data obtained in mar-
ine fish species and salmonids indicate that the different
capacity of marine and fresh water species to grow on a
LC-PUFA-deprived diet does not seem to be due to a dif-
ferent transcriptional regulation of key genes involved in
lipid synthesis, such as fads2 or scd9. Indeed, the level of
induction of fads2 expression found in this experiment
(5-fold induction) is of similar amplitude to that observed
in the liver and intestine of Atlantic salmon [42].
The stimulation of this biosynthetic pathway in fish

fed a diet poor in LC-PUFAs can be explained by the
fact that LC-PUFAs play several key physiological roles
in vertebrates, particularly in fish. For example, fish are
poikilothermic organisms and therefore need a high

degree of unsaturation of LC-PUFA included in mem-
brane phospholipids to maintain phospholipid bilayer
fluidity at reduced temperature [43]. LC-PUFA, espe-
cially arachidonic acid (ARA) and eicosapentaenoic
acid (EPA), are also precursors of eicosanoids, which
are involved in pro and anti-inflammatory pathways.
This hypothesis is reinforced by our data, indicating a
stimulation of genes involved in phospholipids bio-
synthesis (agpat3, pisd and pigf) when fish were fed
the VD.
Despite this stimulation of LC-PUFA and the phos-

pholipid biosynthesis pathway at the transcriptional
level, our investigation of fatty acid profiles indicated
that the amounts of LC-PUFA, particularly eicosapen-
taenoic acid (EPA) and docosahexaenoic acid (DHA),
were still considerably lower in the flesh of fish from
both half-sibfamilies fed VD in comparison with fish fed
FD. This finding is in agreement with those previously
obtained [13], which revealed that the stimulation of
fads2 expression in fish fed a vegetable diet was not
associated with an induction of its enzymatic activity,
suggesting a post-transcriptional regulation of fads2
expression. Such EPA and DHA deficiency can notably
explain the growth deficiency observed in fish fed VD,
as well as effects observed on immune function (dis-
cussed below).
Concerning the genetic aspect, the comparable overall

expression pattern of genes involved in LC-PUFA synth-
esis in the liver, associated with similar LC-PUFA profile
in muscle, in both half-sibfamilies suggests that the dif-
fering capacities of these European sea bass half-

Table 7 Genes involved in the main physiological processes regulated by genetic and diet factors interactions.

Physiological process Swiss prot description Gene name

Aromatic amino acid family 4-hydroxyphenylpyruvate dioxygenase HPD

15-hydroxyprostaglandin dehydrogenase HPGD

Peroxisomal multifunctional enzyme type 2 HSD17B4

Nucleotide metabolism CTP synthase 1 CTPS

Deoxycytidine kinase DCK

GMP reductase 1 GMPR

5’-nucleotidase NT5E

Talin-1 TLN1

Table 8 Correlation between gene expression patterns obtained through real-time PCR and microarray approaches.

Gene name Swiss-prot description Correlation coefficient

angptl3 Angiopoietin-related protein 3 0.75

cxcl10 C-X-C motif chemokine 10 0.77

fabp7 Fatty acid-binding protein 0.86

gck Glycerol kinase 0.90

hmgcr 3-hydroxy-3-methylglutaryl-coenzyme A reductase 0.96

lpl Lipoprotein lipase 0.85

fads2 Fatty acid desaturase 2 0.89
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sibfamilies to grow on a vegetable diet are not due to
differing capacities to synthesize LC-PUFA.

Sterol metabolism
The present microarray data also indicate an increase in
expression levels of genes involved in sterol metabolism
in VD-fed fish. Among these, isopentenyl-diphosphate
delta-isomerase 1 (idi1), lanosterol 14-alpha demethylase
(cyp51a1), farnesyl pyrophosphate synthase (fdps), c-4

methylsterol oxidase (sc4mol) and 3-hydroxy-3-methyl-
glutaryl-coenzyme A reductase (hmgcr) genes [44-49]
are known to be implicated in the cholesterol metabolic
pathway (Figure 2). More particularly, HMGCR, a trans-
membrane glycoprotein involved in the rate-limiting
step of sterol biosynthesis, is increased, as shown in
mammals [50]. The stimulation of cholesterol biosynth-
esis in fish fed VD could be related to the difference in
sterol composition between diets. Indeed, while the fish
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Figure 1 Influence of the vegetable diet on plasma lysozyme concentration (A) and alternative complement pathway activity (B).
Results are expressed as mean +/- S.D. (n = 15). Different letters indicate significant differences (two-way ANOVA, P < 0.05).
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diet is rich in cholesterol, the vegetable diet used in this
experiment contains exclusively plant sterols, which
have been shown to affect membrane properties by
decreasing permeability and fluidity, and modifying
phospholipid order in mammals [51,52]. As a conse-
quence, the increase in cholesterol biosynthesis could be
a metabolic response to its deficiency in the diet, as well
as a way to restore membrane properties by incorpora-
tion of endogenous cholesterol. Since we did not mea-
sure the cholesterol content in the liver, flesh or blood,
it is not possible for us to assess the capacity of Eur-
opean sea bass to compensate for possible dietary defi-
ciencies in cholesterol through a regulation of its
biosynthesis. Moreover, similarly to the LC-PUFA path-
way, no significant difference of cholesterol biosynthetic
regulation was observed between the half-sibfamilies.
Interestingly, several VD-stimulated genes (fads2,

hmgcr, idi1, cyp51a1, fdps and sc4mol) involved in the
lipogenic pathway (LC-PUFA and sterol pathways) are

known to be molecular targets of sterol regulatory ele-
ment binding proteins (SREBPs), which are key regula-
tors of fatty acid and cholesterol synthesis [53,54].
Recent data indicating an up-regulation of the srebp-1
gene expression in European sea bass fed a vegetable
diet [13] could thus be due to such stimulations.

Lipid and sterol transport
The present microarray data indicate that the stimula-
tion of genes involved in fatty acid and cholesterol
synthesis in VD-fed fish was associated with an over-
expression of genes involved in their transport, such as
apolipoproteins APOA1 and APOB100, which are the
major protein constituents of high and low density lipo-
protein (HDL, LDL), respectively (Figure 2). The LDL,
including APOB100, are involved in the transport of
cholesterol and lipids from the liver to other tissues.
Thus, up-regulation of apob100 combined with the
induction of the expression of lipoprotein lipase (lpl), a

Figure 2 Main metabolic pathways regulated in the liver of fish fed an all-plant-based diet. Schematic view of the main metabolic
pathways regulated in the liver of European sea bass fed a FM/FO free diet for 9 months. Some major metabolites are indicated in italics. The
genes stimulated by the VD in the present study are indicated by their gene name in boxes.
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key enzyme involved in the hydrolysis of triglyceride,
suggests an increase in lipid transport and metabolism
from the liver to tissues in fish fed VD. The decrease in
angiopoietin-related protein 3 (angptl3) that we
observed in fish fed VD reinforces this idea since
ANGPTL3 suppresses LDL clearance via the inhibition
of LPL activity [55]. In parallel, we observed that the
reverse transport of cholesterol not used by tissues via
HDL to the liver was also stimulated in fish fed VD.
Indeed, APOA1, which participates in the transport of
cholesterol to the liver by promoting cholesterol efflux
from tissues and by acting as a cofactor for the lecithin
cholesterol acyltransferase (lcat), exhibited higher tran-
script levels in fish fed VD. Altogether these results
reveal that another major response in the liver of Eur-
opean sea bass fed a vegetable diet is the stimulation of
cholesterol synthesis and transport, irrespective of the
half-sibfamily considered.

Carbohydrate metabolism
LC-PUFA and cholesterol biosynthesis require reducing
power in the form of NADPH. It is well documented in
vertebrates, including fish, that NADPH required for
malonyl-CoA synthesis is mainly supplied by the dehy-
drogenases of the pentose phosphate shunt [39,56,57].
Interestingly, our transcriptomic data indicate that the
use of the VD induced a significant increase in the level
of glucose-6-phosphate dehydrogenase (g6pd tran-
scripts). G6PD catalyses NADP+-linked oxidation of D-
glucose-6-phosphate and has been shown to be a major
contributor of NADPH production for lipogenesis in
Atlantic salmon (Salmo salar) [58] and European sea
bass [58]. Moreover, our data indicate an increase in the
expression of hexose-6-phosphate dehydrogenase
(h6pdh) and phosphogluconate dehydrogenase (pgd),
enzymes of the pentose phosphate pathway that gener-
ate NADPH, in fish fed VD [59,60] (Figure 2). Once
synthesized, the resulting pentose sugar intermediate
generated by the pentose phosphate pathway can be
reconverted to intermediates of the glycolysis/gluconeo-
genesis pathway such as glyceraldehyde 3P or fructose
6P. In the liver of fish, it is known that glycolysis pro-
vides essential precursors for biosynthesis rather than
pyruvate for oxidation [61]. Thus, the stimulation of
fructose-1, 6-bisphosphatase 1 (fbp1) and aldolase
(aldoa and aldob) expression that we observe in fish fed
VD could provide high levels of fructose-6-phosphate
from glyceraldehyde 3P, then glucose 6P that serves as
substrate for repeated passage in the pentose phosphate
shunt (Figure 2).

Protein/amino-acid metabolism and ATP synthesis
Our data revealed over-expression of genes involved in
proteolysis and, more particularly, in proteasome activity

(psma4, psmb7, psmc2 and psmd4) and ubiquitin activity
(ubap1, ube2a, ube2g1 and ube2n) in fish fed VD (Fig-
ure 2), which is in total agreement with proteomic data
obtained in rainbow trout, indicating a stimulation of
proteolysis in fish fed vegetable diets [8]. In our study,
the stimulation of proteolysis in the fish fed the vegeta-
ble diet was associated with the induction of 18 genes
involved in amino acid metabolism and, more impor-
tantly, 4 genes involved in glutamine metabolism. In
addition, gmps, aadat, got1 and tat genes, which are
implicated in transamination, were also stimulated in
fish fed VD. The processes related to amino acid meta-
bolism and, especially transamination, are important
steps in the synthesis of some non-essential amino acids
such as a-ketoglutarate. For example, the synthesis of
a-ketoglutarate through transamination reactions could
be used in the TCA cycle to provide energy. Interest-
ingly, we found over-expression of genes encoding
enzymes involved in the TCA cycle, such as succinate
dehydrogenase (sdhb), isocitrate dehydrogenase (idh3g)
and malate dehydrogenase (mdh), in fish fed VD. This
stimulation of the TCA cycle could be related to the
higher levels of ATP required for LC-PUFA and choles-
terol biosynthesis in fish fed VD. Since marine fish have
a low capacity to digest complex carbohydrates, in con-
trast to mammals [62,63], the use of proteins as an
essential source of energy can thus explain the stimula-
tion of the amino acid metabolism in fish fed VD. As
shown in rainbow trout fed on a vegetable-based diet
[64], the lower growth rate in fish fed VD in the present
study could be associated with higher proteolytic activity
compared with fish fed FD.
Interestingly, while both half-sibfamilies G and g

exhibited similar proteolysis regulation, the expression
of several genes involved in macromolecule biosynthesis,
and particularly in protein biosynthesis (cct2, eif4g1,
kiaa2018, mrpl22, mrpl27, mrpl30, mrpl34, mrpl48,
mrps14, mrps17, rars, rpl18, rplp1 and rps18), were up-
regulated in half-sibfamily G. This result, suggesting a
higher protein turnover in half-sibfamily G compared
with half-sibfamily g when fish were fed VD, could be
related to the higher growth rate observed in half-sib-
family G fed VD. As protein biosynthesis requires
energy from ATP hydrolysis, the higher protein bio-
synthesis in half-sibfamily could be related to a higher
activity of mitochondrial ATP production. Accordingly,
genes involved in ATP biosynthesis (atp5c1, atp5i and
atp5j2) and ATP synthesis-coupled electron transport
(ndufb4, ndufb6, ndufs4, ndufs6, ndufv2 and uqcrb) were
found up-regulated in half-sibfamily G. The diet × half-
sibfamily interaction that we found for the expression of
genes involved in aromatic amino acid metabolism rein-
forces the difference in protein metabolism between the
two half-sibfamilies.
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Immune function
In the present study, the vegetable diet used, based on
linseed oil, was characterised by a very low ARA content
and poor levels of n-3 LC-PUFA. Eicosanoids derived
from ARA are known to be involved in the proliferation
of hepatocytes and immune cells [65-67]. As a conse-
quence, the lower hepatosomatic index (HSI) measured
in fish fed VD could be linked to a lower hepatocyte
proliferation due to a deficiency in ARA, which was sup-
ported by down-expression of 32 genes involved in cell
proliferation in this dietary group. Moreover, fatty acid
imbalances can induce an immune deficiency in all ver-
tebrates including fish [14,15,22]. In particular, the Σ n-
3/Σ n-6 fatty acid ratio is considered as a key element
regulating immune cell structure, cell signalling, and
eicosanoid production.
The present microarray data revealed genes of the

immune system, particularly the innate immune
response, exhibiting lower expression in fish fed with
VD. Interleukin 8 (il8) and C-X-C motif chemokine 10
(cxcl10), which are chemotactic factors for granulocytes
and monocytes, respectively, were found to be less
expressed in fish fed VD, suggesting a down regulation
of the innate defence system and the pro-inflammatory
pathway in this group. Deficiency of the inflammatory
response was also in agreement with the higher levels of
transcripts of fatty acid binding protein 7 (fabp7), whose
expression in mammals has been shown to be restricted
to the Kupffer cells [68], and the down expression of
the C-reactive protein (crp), an acute phase protein
synthesised by hepatocytes, in fish fed VD. Decrease in
inflammatory response can also be related to the low
level of ARA in the fish fed VD, which induces a reduc-
tion of prostaglandin synthesis derived from this fatty
acid. Our microarray data indeed show that prostaglan-
din E synthase 2 (ptgs2), involved in the synthesis of
pro-inflammatory prostaglandin E2, is down-regulated
in fish fed VD, while prostaglandin E synthase 3 (ptgs3),
which has anti-inflammatory properties, exhibited higher
messenger levels in fish fed VD. This depression of
innate immune system, particularly pro-inflammatory
activity, could also be partially explained by a defect in
membrane properties in fish fed VD, as revealed by the
down-regulation of a large number of genes (65) related
to cell communication, including factors such as cyto-
kine receptor common subunit gamma (il2rg), receptor-
type tyrosine-protein phosphatase F (ptprf) or integrin
beta 2 (itgb2), which are cell-surface receptor binding
proteins and/or cell adhesion receptors involved in
immune response. The depression of the innate immune
response in fish fed VD was confirmed by the lower
plasmatic lysozyme concentration and lower-expression
of lysozyme g (lyg) gene. Surprisingly, the alternative
complement pathway activity involved in the innate

immune response, which we assessed by analysis of
plasma parameters, showed a significantly higher level in
fish fed VD. Such an opposite regulation of the immune
pathway revealed that different components of the
immune systems can be regulated in opposite directions.
Interestingly, processes related to the humoral

immune response were also over-represented among the
genes up-regulated in half-sibfamily g. Indeed, comple-
ment component c2, c3 and c9 genes showed higher
expression levels in half-sibfamily g. However, the up-
regulation of genes involved in the alternative comple-
ment pathway cannot be associated with an increase of
the plasma alternative complement pathway activity,
probably due to the complexity of factors and regulation
levels (transcriptional and post-transcriptional) involved
in the regulation of this pathway [69]. Moreover, the
higher expression of masp2, tnrfrf14, c2 and c3 genes
involved in the inflammatory response might reflect
higher inflammatory states in half-sibfamily g, which
could be associated with a decrease in growth rate, as
demonstrated in chicken [70].

Blood coagulation
Blood coagulation is another process involved in the
innate immune system. LC-PUFA and, more specifically,
EPA, DHA and ARA are precursors for eicosanoid
synthesis involved in the control of the blood coagula-
tion [71-73]. As mentioned above, the use of a diet
composed of vegetable protein and oil induces modifica-
tions in the membrane phospholipid composition, with
possible consequences for eicosanoid production and
the blood coagulation process. We found that the use
of the vegetable diet induced an increase in the expres-
sion of genes involved in the blood coagulation pathway
(Figure 3). Among these genes, prothrombin (f7), coagu-
lation factor × (f10), fibrinogen beta chain (fgb), fibrino-
gen gamma chain (fgg) and coagulation factor VII (f7)
were positively involved in the blood coagulation pro-
cess. On the basis of these results, the use of a VD
seems to cause pro-coagulant action by the stimulation
of the blood coagulation pathway, which is in agree-
ment with our visual observation of plasma clotting
(data not shown). In agreement with these results,
Tavares-Dias [23] showed that, contrary to a vegetable
diet, dietary enrichment in long-chain n-3 fatty acids
has a strong hypocoagulant action. In addition, the reg-
ulation of the coagulation pathway is complex and
under the control of several negative factors that main-
tain a physiological homeostasis. The pro-coagulation
effect in response to a vegetable diet is notably rein-
forced by some of these genes [the vitamin K-dependent
protein S (pros1), plasminogen (plg) and antithrombin-
III (serpinc1)], which also exhibited higher expression in
fish fed VD (Figure 3).
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Conclusions
The nutrigenomic approach used here has revealed sev-
eral new genes and related biological processes regulated
by a vegetable diet. In particular, genes involved in lipid
metabolism, protein/amino acid metabolism, carbohy-
drate metabolism, immune function, blood coagulation
and the RNA splicing process were expressed at a
higher level in fish fed with VD. The comparison of
transcriptomic response in two half-sibfamilies of fish
exhibiting different growth rates when fed the vegetable
diet also revealed some biological processes related to
protein turnover and immune response, potentially due
to better adaptation to this diet. Finally, in the context
of developing novel diets for aquaculture and selecting
fish families exhibiting higher adaptation to fish oil and
meal substitution, this work enabled us to pinpoint
potentially useful new molecular markers for identifying
the physiological effects of a vegetable diet, as well as a
family exhibiting a phenotype of interest.

Additional material

Additional file 1: Comparison of Ct values for ef1 gene between the
dietary groups. Quantitative PCR did not reveal any significant
difference (t-student test, p > 0. 1) between Ct values for Ef1 between

the dietary groups (FD: Fish diet; VD: Vegetable diet; G: G-sibfamily; g: g-
sibfamily).

Additional file 2: Fatty acid composition in muscle of two European
sea bass half-sibfamilies fed FD or VD. Composition in terms of the
main fatty acids (% of total fatty acids) in neutral lipid and phospholipid
fractions in muscle of each of the half-sibfamilies (g and G) of European
sea bass fed FD or VD. Effects of diet factor and half-sibfamily factor on
fatty acid composition were determined by two-way ANOVA. Results are
expressed as mean +/- S.D. (n = 15) and significant differences are
indicated by the p value (two-way ANOVA, P < 0.05).

Additional file 3: Significantly enriched biological processes
associated with genes regulated by diet and half-sibfamily factors
(EASE, P < 0.05). The main biological processes enriched out of those
associated with genes that were over-expressed in fish fed VD were
related to physiological process, metabolism (sterol metabolism,
carboxylic metabolism, amino acid metabolism), RNA splicing, protein
catabolism, aerobic respiration, blood coagulation and hexose
catabolism. In contrast, the main biological processes associated with the
genes lower-expressed in fish fed VD were related to cellular process, cell
communication and cell proliferation. Regarding half-sibfamily factors,
biological process related to Humoral immune response was shown to
be over-represented within genes up-expressed in half-sibfamily g while
processes related to energy pathways (ATP synthesis, mitochondrial
electron transport) were enriched within genes up-expressed in half-
sibfamily G.
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