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Overview

Introduction

? Binary classification setting

? Model and variable selection in classification

? Classification tree

Variable selection for CART

? Classes of classification trees

? Theoretical results

? Comparison with practice.
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Binary classification

Binary classification

Prediction of the unknown label Y (0 or 1) of an observation X .

⇒ Use training sample D = (X1,Y1), ...,(Xn,Yn)
i.i.d∼ P to build a classifier f̂

f̂ : X → {0, 1}
X 7→ Ŷ .

Quality assessment

? Classification risk and loss : Quality of the resulting classifier f̂

L(̂f) = P(̂f(X) 6= Y |D)

`(̂f , f∗) = L(̂f)−L(f∗)

? Average loss : Quality of the classification algorithm

ED [`(̂f , f∗)]

Remark : All these quantities depend on P that is unknown.
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Basics of Vapnik Theory : structural risk minimization (SRM)

Consider and collection of classes of classifiers C1, ...,CM . Define

f m = argmin
f∈Cm

L(f), f̂m = argmin
f∈Cm

Ln(f), f̂ = argmin
m

[
Ln(̂fm)+αVCm

n

]
? Class complexity

If C1, ...,CM have finite VC dimensions VC1
, ...VCM

, then

ED [`(̂f , f∗)]≤ C

{
inf
m

(
`(f m, f∗)+K

√
VCm

n

)}
+ λ

n
(Vapnik, 1998).

? Classification task complexity (Margin Assumption)

If there exists h ∈]0;0.5[ such that

P(
∣∣η(x)−1/2

∣∣≤ h)= 0, with η(x)=P(Y = 1|X = x)

then

ED [`(̂f , f∗)]≤ C

{
inf
m

(
`(f m, f∗)+K ′

(
VCm

n

))}
+ λ′

n
(Massart & Nédélec, 2006).
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Application to variable selection in classification

Assume that X ∈Rp. Define

f m(k) = argmin
f∈Cm(k)

L(f), f̂m(k) = argmin
f∈Cm(k)

Ln(f)

? Variable selection

Choose f̂ such that

f̂ = argmin
m(k)

[
Ln(̂fm(k))+α

VCm(k)

n
+α′ log[(p

k)]

]
Then (under strong margin assumption)

ED [`(̂f , f∗)]≤ Clog(p)

{
inf

m(k)

(
`(f m(k), f∗)+K ′

(VCm(k)

n

))}
+ λ

n

(Massart, 2000, Mary-Huard et al., 2007)
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Classification trees

General strategy Heuristic approach (CART, Breiman, 1984)

? Find a tree Tmax such that Ln(fTmax
)= 0,

Choose ? Prune Tmax using criterion :

f̂ = argmin
T

Ln(fT )+α |T |
n

f̂ = argmin
T⊆Tmax

Ln(fT )+α |T |
n
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Definitions
Consider a tree Tc` with

- a given configuration c,

- a given list ` of associated variables.

Remark : A same variable may be associated

with several nodes.

Class of tree classifiers

Define

Cc` = {f/f based on Tc`} ,

Hc` = VC log-entropy of class Cc`,

f c` = argmin
f∈Cc`

L(f) ,

f̂c` = argmin
f∈Cc`

Ln(f) .

Remark : Two classifiers f , f ′ ∈ Cc` only differ in their

thresholds and labels.
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Risk bound for one class

Proposition

Assume that strong margin assumption is satisfied. For all C > 1, there exist positive

constants K 1 and K 2 depending on C such that

ED [`(̂fc`, f∗)]≤ C

{
`(f c`, f∗)+K 1

( |Tc`| log(2n)

n

)}
+ K 2

n
.

Idea of proof

? Show that E[Hc`]≤ |Tc`| log(2n),

? Apply general theory (Koltchinskii, 2006).
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Combinatorics for variable selection

To take into account variable selection in the penalized criterion, one needs to count

the number of classes sharing the same a priori complexity.

? Parametric case (Logistic regression, LDA,...)

- One parameter per variable,

- 2 classes with classifiers based on k variables have the same a priori complexity,

⇒ (p
k) classes of a priori complexity k .

? Classification trees

- One parameter per internal node (threshold),

- 2 classes Cc` and Cc′`′ such that |Tc`| = |Tc′`′ | have the same a priori complexity

⇒ Count the number of classes based on trees of size k !
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Combinatorics for variable selection

A tree Tc` is defined by

- a configuration,

- a list of variables associated with each node.

? Number of configurations of size k :

Nk
c = 1

k

(
2k −2

k −1

)
? Number of variable lists of size k :

- the list is ordered : {1,2,3} 6= {2,1,3},

- variables are selected with replacement : {1,2,1}.

⇒ Nk
` = pk−1 instead of (p

k) !

? Number of classes based on trees of size |Tc`| = k :

Nk = Nk
c ×Nk

` = 1

k

(
2k −2

k −1

)
×pk−1

⇒ log(Nk) ≤ λ|Tc`| log(p)
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Risk bound for tree classifiers

Proposition

Assume that strong margin assumption is satisfied. If

f̂ = argmin
c,`

(Ln(̂fc`)+pen(c,`)) ,

where pen(c,`) = C1
h

|Tc`| log(2n)

n
+C2

h

|Tc`| log(p)

n

with constants C1
h , C2

h depending on h appearing in the margin condition, then there

exist positive constants C, C′, C′′ such that

ED[l (̂f , f∗)]≤ C log(p)

{
inf
c,`

{
`(f c`, f∗)+C′

( |Tc`| log(2n)

n

)}}
+ C′′

n
.

Remark :
Theory : pen(c,`) = (an +bn log(p)) |Tc`| = αp,n|Tc`|

Practice (CART) : pen(c,`) = αCV |Tc`|
Does αCV match αp,n ?
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Illustration on simulated data (1)

- Variables X 1, ...,X p are independent,

- If X 1 > 0 and X 2 > 0 P(Y = 1)= q, otherwise P(Y = 1)= 1−q

Remark : Easy case

- The Bayes classifier belongs to the collection of classes,

- Strong margin assumption is satisfied.
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Illustration on simulated data (2)

- P(Y = 1)= 0.5
- For j = 1,2, X j |Y = 0 ,→N (0,σ2) and X j |Y = 1 ,→N (1,σ2),

- Additional variables are independent and non-informative.

Remark : Difficult case

- The Bayes classifier does NOT belong to the collection of classes,

- Strong margin assumption is NOT satisfied.
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Conclusion

Model selection for tree classifiers :

- Already investigated (Nobel 02, Gey & Nedelec 06, Gey 10),

- Variable selection not investigated so far.

- Pruning step now validated from this point of view.

Theory vs practice

- Theory : exhaustive search,

- Practice : forward strategy,

- Nonetheless theoretical results are informative !

Extension

- In this talk : strong margin assumption

- Can be extended to less restrictive margin assumption

- Manuscript on arXiv.org :

http ://arxiv.org/abs/1108.0757
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