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Introduction

As forest growth is a long planning period, considerable risks concerning the future state of the forest have to be dealt with. The main risks are due to natural disturbances such as wind damage, forest fire, that can also impact other sources of risk such as changes in market prices. Storms are the source of 53% of the total forestry damage due to natural hazards in the European forests (Schelhaas et al. [START_REF] Schelhaas | Natural disturbances in the european forests in the 19th and 20th centuries[END_REF]). For example, in January 2009, Windstorm Klaus was responsible for around 40 millions of cubic meters of damages in the South-Western part of France. Moreover, the price of the damaged species decreased in 30% after the storm due to a quality loss (Nicolas [14]). Storms affect forest owners' management through their effects on production, prices and timber quality, that are interdependent. First, storms impact forest stocks (production risk). Second, storms force the forest owner to rapidly put windfalls in the market, generating a timber price decrease (price risk). Third, storms cause timber quality losses amplifying the price decrease. This triple consequence highlights the importance of forest owner's response to such risks. Some models have been proposed to incorporate different sources of risk in forest management. These models consider price and/or production risk using various approaches: discrete time stochastic dynamic programming and Markov Decision Process (MDP), simulation models, option theory models, etc. Focusing on forest management models employing MDP, Kennedy [8] solves sequential decision-making problems applied to natural resources management and agriculture under risk or uncertainty. In the forestry domain, the MDP approach has been used to deal with numerous forest planning problems under risk and uncertainty: climate change (Spring et al. [START_REF] Spring | Optimal management of a forested catchment providing timber and carbon sequestration benefits: An australian case study[END_REF], [START_REF] Spring | Optimal management of a forested catchment providing timber and carbon sequestration benefits: Climate change effects[END_REF]), risk of forest fire (Spring and Kennedy [START_REF] Spring | Existence value and optimal timber-wildlife management in a flammable multistand forest[END_REF]), optimal stand management under growth and price uncertainty (Zhou et al. [START_REF] Zhou | Adaptative versus fixed policies for economic or ecological objectives in forest management[END_REF]; Insley and Rollins [START_REF] Insley | On solving the multirotational timber harvesting problem with stochastic prices: a linear complementarity formulation[END_REF]; Rollin et al. [START_REF] Rollin | anagement of mixed species, uneven-aged forests in the french jura: from stochastic growth and price models to decision tables[END_REF]; Lohmander [START_REF] Lohmander | Optimal sequential forestry decisions under risk[END_REF]; Lin and Buongiorno [START_REF] Lin | Tree diversity, landscape diversity, and economics of maplebirch forests: implications of markov models[END_REF]), maintenance of wildfire (Spring et al. [START_REF] Spring | Optimal management of a fammable multi-stand forest for timber production and maintenance of nesting sites for wildlife[END_REF]) and reserve site selection (Sabbadin et al. [START_REF] Sabbadin | Dynamic reserve site selection under contagion risk of deforestation[END_REF]). Focusing on optimal stand management under growth and price risks, the seminal application of MDP to forestry by Lembersky and Johnson's ( [START_REF] Lembersky | Optimal policies for managed stands: an infinite horizon markov decision process approach[END_REF]) was followed by similar applications (Kao [6], Teeter and Caulfield [START_REF] Teeter | Stand density management strategies under risk: Effects of stochastic prices[END_REF]; Lohmander [START_REF] Lohmander | Optimal sequential forestry decisions under risk[END_REF]; Pastor et al. [START_REF] Pastor | An application of markov models to the dynamics of minnesota's forests[END_REF]). MDP models have been used to deal with uneven-aged management (Kaya and Buongiorno [START_REF] Kaya | Economic harvesting of uneven-aged northern hardwood stands under risk: a markovian decision model[END_REF]), forest management with economic and ecological criteria (Lin and Buongiorno [START_REF] Lin | Tree diversity, landscape diversity, and economics of maplebirch forests: implications of markov models[END_REF]; Zhou et al. [START_REF] Zhou | Adaptative versus fixed policies for economic or ecological objectives in forest management[END_REF]), and to generalize Faustmann's formula under growth and price risks (Buongiorno [START_REF] Buongiorno | Generalization of faustman formula for stochastic forest growth and prices with markov decision process models[END_REF]). However, to the best of our knowledge, there is currently no method for optimizing a forest management under stochastic events using MDP that also explicitly incorporate the link with timber price and timber quality. In our work, four contributions can be underlined. First, all previous works consider that production and price risks are independent. Our model takes into account that for natural disasters, the production risk translates into a price risk. Second, we consider that the price risk is amplified by a timber quality reduction. Third, all previous researches analyze the impact of production and price risks on the optimal harvesting age, while these risks can impact on other management indicators such as the amount of timber harvested, which is the variable we focus on. Fourth, it is generally considered that the forest owner is risk-neutral while forest owners' risk preferences are known to be an important determinant of forest decisions (Lönnstedt and Svensson [12]). Therefore we consider a risk-averse forest owner.

The objective of our paper is to analyze the impact of storm on forest owner's harvesting decision under dependent production and price risks amplified by a quality loss. We propose a MDP modeling framework to describe the timber stock dynamics and the forest owner's objective of expected intertemporal utility maximization. In this context, we show that the optimal harvesting increases with the level of windstorm risk but decreases with risk aversion, The expected intertemporal utility reacts in the opposite way to these parameters. Quality loss has little effect on harvesting although it lowers the expected intertemporal profit. Our tool also allows us to evaluate the forest owner's willingness-topay to cover, for instance, against a windstorm risk increase.

The rest of the paper is organized as follows. In section 2, we present the MDP model. We describe the modeling of timber stocks, storm risk, harvesting decision and stocks dynamics, timber prices, quality loss and forest owner's objective function. In section 3, we present the optimal harvesting decision. In section 4, we concentrate on the results of three sensibility analysis. In section 5, we discuss the results.

Markov Decision Process Model

Let us model a dynamic forest management process with an infinity of harvesting periods. Each period i is defined by the following sequence of events :

Stocks i Harvesting and Profit Growth Storm Stocks i+1 (X i , w i ) u i , π i γ s i (X i+1 , w i+1 )
Figure 1. Sequence of events Timber stocks. We consider a private forest owner with a stand composed of one unique species. We only consider the stock of trees in age to be harvested. The forest owner is not interested in cutting younger trees because of their low commercial value. We assume a constant forest growth γ between two harvesting periods 4 . The timber stock is divided in two parts: the stock of standing trees X i , available for harvesting, and the stock of windfalls w i , resulting from a storm.

Storm risk. The forest is exposed to a storm risk, represented by s, the intensity of the storm. In order to be consistent with a storm risk, we suppose that s follows a decreasing and convex distribution f (s). The occurrence of storm s impacts the stock of standing trees by generating a stock of windfall w. If the intensity of the storm is greater than the stock of standing trees, then all the stock of standing trees becomes a stock of windfall.

Harvesting decision and stocks dynamics. In each period i, the forest manager has to decide the timber volume u to be harvested. This decision is taken depending on a state of the stock represented by pair (X i , w i ) of timber volumes corresponding to standing trees and windfalls (state variables). As we will see later, the price of windfalls is lower than the price of standing trees due to a loss of quality. Therefore, the owner needs the information on both quantities to take the harvesting decision. The evolution of timber stock (standing trees and windfalls) is as follows :

X i+1 = X i -u i + γ i -min[s i , X i -u i + γ i ] (1) 
under the constraint 0 ≤ u i ≤ X i .

Equation [START_REF] Buongiorno | Generalization of faustman formula for stochastic forest growth and prices with markov decision process models[END_REF] means that the stock available for harvesting in period i + 1 only depends on the standing stock at the previous period X i , on the harvesting decision in the previous period u i , on the growth γ and on the intensity of the storm si . As we can see, the timber stock follows a MDP. The harvesting decision u i is taken after observation of the state of the timber stocks (X i , w i ). The storm affects the remaining stock of standing trees after harvesting and growth, to the extent that its intensity is not greater than the available stock. More precisely,

w i+1 = min[s i , X i -u i + γ i ].
Therefore :

• if si < X i -u i + γ then min[s i , X i -u i + γ i ] = si and X i+1 = X i -u i + γ i -si > 0 • if si ≥ X i -u i + γ then min[s i , X i -u i + γ i ] = X i -u i + γ i and X i+1 = 0
As a result, constraints 0 ≤ u i ≤ X i and w i+1 ≤ X i -u i + γ i ensure the non-negativity of the stock of standing trees (X i+1 ≥ 0). Timber prices. We consider two different markets. One for timber coming from the stock of standing trees and the other for the windfalls. The owner is assumed to be price taker in the market of standing trees. This assumption is consistent with the atomicity of private forest ownership 5 . We suppose that timber price p t is constant over time in the market of standing trees. In the other market, the price of windfalls is supposed to be a linear decreasing function of the volume of windfalls :

p w i = a -bw i (2) 
Note that we assume that windfalls are systematically sold in the market (no loss of quantities).

Quality loss effect. In order to model an amplification of the price decrease due to a quality loss, we consider that a = αp t with α ∈ [0; 1] the percentage of price p t . For α = 1, windfalls are sold at the same price than timber coming from standing trees. Lower values of α correspond to a quality loss. For instance, α = 0.7 illustrates the case of a quality loss of 30% as in Nicolas [START_REF] Nicolas | Les conséquences de la tempête du 24 janvier 2009 dans le sud-ouest[END_REF]. In order to avoid negative profits, we suppose that p w (N ) = 0, leading to b = αp t /N (N being the maximum windfall). As a result, the price of windfall can be written :

p w i = αp t (1 - w i N ) (3) 
Forest owner's objective function. Given the stock and price functions described above, the forest owner's profit for each period is written :

π i = p t u i + p w i w i (4) 
We assume constant marginal costs of extraction for both standing timber and windfalls so that p t and p w i are modeled as net prices. We suppose that the forest owner is risk averse. Following Eeckhoudt and Gollier [START_REF] Eeckhoudt | Les risques financiers -evaluation, gestion, partage. Ediscience international[END_REF], we use the Constant Relative Risk Aversion (CRRA) utility function :

V i = π i 1-β 1 -β (5) 
with β the relative risk aversion coefficient.

The forest owner's objective is to maximize the expected intertemporal utility (EIU) in infinite horizon :

max u i E ∞ i=0 V i (1 + λ) i (6) 
with λ > 0, the discount rate.

The maximization problem described above cannot be solved analytically. Therefore, we solve it numerically.

Optimal harvesting decision

The MDP approach has become a standard in the forest economics literature for incorporating risks into harvesting decisions (Insley and Rollins [START_REF] Insley | On solving the multirotational timber harvesting problem with stochastic prices: a linear complementarity formulation[END_REF]). Markov chains are a powerful representation of dynamic stochastic processes. The key element of MDP models is the establishment of the transition matrix that contains the probabilities of moving from one state of the stock to another, conditional on the decision. Let us describe in more details the resolution method.

Stocks and decision discretization

Let E be the discrete set of states (X, w) of timber stock and windfall. Let N be the maximum timber stock. Timber stock

X ∈ [[0, N ]] and storm s ∈ [[0, N ]] results in a windfall w ∈ [[0, N ]], therefore E = [[0, N ]] 2 . Since Card[[0, N ]] = N + 1 (
we add the empty stock to the set of possible stocks and the storm of intensity zero to the set of possible storms) then there exists (N + 1) 2 states of the stock (X, w).

The harvesting decision u ∈ F corresponds to the quantity harvested from the standing timber stock in order to be commercialized, where

F = [[0, N ]].
This means that there is N + 1 levels of harvesting6 .

Transition matrix

The probability distribution of variable s being known, we can construct the transition matrix M u ∈ M (N +1) 2 ,(N +1) 2 (R) of the MDP thanks to the following proposition :

Proposition 1 The transition matrix corresponding to a fixed harvesting decision u ∈ [[0, N ]] is : ] of the matrix per blocks, where I is the integer part of the Euclidian division of j by N + 1. J can be interpreted as the stock of standing trees in period i. A particular column k of M belongs to a column K = I k N +1 of the matrix per blocks. K can be interpreted as the stock of standing trees in period i+1. The remainder of the Euclidian division of j by N +1, denoted r j N +1 ∈ [[0, N ]], corresponds to the index of the row of J-th block and can be interpreted as the stock of windfalls w i due to storm of intensity s i-1 that has happened before the observation of the state variables. r k N +1 ∈ [[0, N ]] represents the index of the column of K-th block and corresponds to the stock of windfalls w i+1 due to storm of intensity s i . The coefficient M u j,k contains the probability of transition from state

M u =           A 0 B 0 0 . . . 0 . . . . . . . . . . . . A 0 B 0 0 . . . 0 A 1 B 1 B 0 0 . . . 0 A 2 B 2 B 1 B 0 0 . . . 0 . . . . . . . . . . . . . . . . . . A N -u B N -u B N -u-1 . . . B 1 B 0 0 . . . 0           with blocks A i , B i ∈ M N +1,N +1 (R) such that :
(X i , w i ) = (I j N +1 , r j N +1 ) to state (X i+1 , w i+1 ) = (I k N +1 , r k N +1
), that is to say :

P (X i+1 , w i+1 ) = I k N +1 , r k N +1 | (X i , w i ) = I j N +1 , r j N +1 (7) 
= P max

I j N +1 + γ -w i+1 -u, 0 , w i+1 = I k N +1 , r k N +1 (8) 
= P max

I j N +1 + γ -w i+1 -u, 0 = I k N +1 |w i+1 = r k N +1 .p r k N +1 (9) 
= P max

I j N +1 + γ -r k N +1 -u, 0 = I k N +1 .p r k N +1 (10) 
2 Equation ( 7) is the definition of a coefficient of a transition matrix. Since initial state (X i , w i ) is observed by the forest owner, we can replace X i in equation ( 1) that gives X i+1 . In equation (8) we see that w i+1 intervenes in the definition of X i+1 . The next step uses the formula of conditional probability, since stock X i+1 is conditional to the occurrence of storm s i resulting in windfall w i+1 .

Illustration

Let us consider the case where N = 2 and u = 1. We obtain the transition matrix :

M 2 = A 0 B 0 0 A 0 B 0 0 A 1 B 1 B 0
For clarity reasons, we explicitly rewrite this matrix in the following table.

Initial Final stock (X i+1 , w i+1 ) stock (X i , w i ) 0 1 2 0 0 p 1 p 2 p 0 0 0 0 0 0 0 p 1 p 2 p 0 0 0 0 0 0 0 p 1 p 2 p 0 0 0 0 0 0 1 0 p 1 p 2 p 0 0 0 0 0 0 0 p 1 p 2 p 0 0 0 0 0 0 0 p 1 p 2 p 0 0 0 0 0 0 2 0 0 p 2 0 p 1 0 p 0 0 0 0 0 p 2 0 p 1 0 p 0 0 0 0 0 p 2 0 p 1 0 p 0 0 0
Consider the boxed element M 2 (7, 4). Applying formula [START_REF] Lembersky | Optimal policies for managed stands: an infinite horizon markov decision process approach[END_REF], we obtain that :

M 2 (7, 4) = P max I 7 3 + γ -r 4 3 -u, 0 = I 4 3 .p r 4 3 = P [max (2 + 1 -1 -1, 0) = 1] .p 1 = P [max (1, 0) = 1] .p 1 = P [1 = 1] .p 1 = p 1
Indeed, as j = 7 (2-nd block) the initial stock of standing trees is X i = 2. The manager harvests u = 1 of this stock. As a result, only 1 portion remains. The timber stock grows by 1 in period i + 1, which results in a stock of standing trees of 2. Since k = 4 (1-st block), we wonder about the probability to end up with X i+1 = 1. The only way to end up with X i+1 = 1 is that a storm of intensity s i = 1 occurs. This happens with probability p 1 . Note that blocks with J = 0 to J = u are identical. This is coherent with the fact that from an initial stock X i ≤ u the harvesting decision u leaves the manager with a stock of standing trees of 0 (non-negativity constraint).

Policy iteration algorithm

We use a policy improvement algorithm to obtain optimal decisions. A deterministic policy σ is an application of E in F , which associates a harvesting decision u to each state of the stocks (X, w). The objective of the forest owner is to determine the optimal harvesting policy σ * in order to maximize the expected intertemporal utility (see equation ( 6)). This problem can be solved using the Howard's algorithm [START_REF] Howard | Dynamic programming and markov processes[END_REF]. This algorithm is based on the proof of a theorem that ensures the existence and uniqueness of the optimal solution. The interest of Howard's algorithm is that it allows to obtain a series of policies improving monotonically at each iteration. It is an actor-critic algorithm, which means that each policy is first applied (calculation of the utility associated to a strategy) and then maximized in order to obtain a new policy. This algorithm has been implemented using Mapple software and following Laye and Laye [START_REF] Laye | Bilan économique du stockage en réserve qualitative de vin de champagne[END_REF].

Results

Benchmark scenario

We consider a forest with a potential of 10 units of trees in age to be harvested. We discretize this stock into 10 portions of 1 unit, so that N = 10. We suppose that it is part of the total forest area, the rest ensuring a constant growth γ = 1 of the timber stock. The standing timber price is normalized to p t = 1. We assume that the price decrease amplification parameter is α = 1 (no quality loss in the benchmark scenario). The resulting storm/price elasticity b = αp t /N = 1/10. The discount rate is λ = 0.05. The risk aversion parameter7 is β = 0.5. There is no data on storm risk distribution. However, we can suppose that the probability of storm is inversely proportional to its intensity, so that the vector of probabilities anticipated by the forest owner P B = (p 0 , p 1 , ..., p 10 ) is : Let us take the example of the boxed element of the first column. The stock of standing trees is X i = 4 and there is no windfall (w i = 0). The corresponding optimal harvesting decision is u i = 3 units of trees and to keep one unit standing. For these state variables, the forest owner's expected intertemporal utility is 32.4.

P B = (0.
As we could expect, expected intertemporal utility increases with the stock of standing trees. Remark that the optimal harvesting decision and the expected intertemporal utility are symmetrical with respect to the central column (windfall amounting to N/2). This comes from the fact that the profit function is quadratic (parabola reaching its maximum in w = N/2). Indeed, π(w) = π(N -w). Economically speaking, this means that for a given windfall level there exist another windfall level that leads to the same harvesting decision and the same profit. For a low level of windfall, the profit coming from the windfall is relatively low, which forces the owner to harvest standing trees and to sell them in the standing trees market. For the symmetrical high level of windfall, the price decrease in the windfall market is relatively high, therefore reducing the income in such a way that the owner is forced to harvest the same quantity of standing trees in order to obtain the same profit. Since, for these symmetric windfall levels, the profits and the harvesting decisions in period 0 are the same (resulting in the same amount of un-cut trees), then the rest of the sum of the EIU is also the same. This proves the symmetry with respect to the central column of the EIU.

Sensitivity analysis

The sensitivity analysis is carried out for three parameters: storm risk distribution, risk aversion coefficient and quality loss. These analysis embed three effects. The first one, commonly called 'wealth effect', derives from the revenue resulting from timber harvesting and commercialization. This effect corresponds to an incentive to harvest. The second effect, called 'risk effect', is driven by the forest owner's tendency to reduce the risk exposure of the forest. In this case, the owner has incentives to harvest in order to diminish future potential damages. Nevertheless, the fact of harvesting reduces the timber stock at the beginning of the next period which lowers expected future utility. To avoid this phenomenon, the forest owner has incentives to reduce timber harvesting. This last effect is called 'continuation effect'.

Storm risk distribution

In order to observe the impact of the storm risk distribution on harvesting decisions, we consider two other distributions corresponding to a risk increase. More precisely, we replace the vector of probabilities P B (benchmark situation) by P s1 (scenario 1) and P s2 (scenario 2), with : These scenarios are consistent with the assumption of increase in the frequency and intensity of storms due to climate change. The following figure shows the three risk distributions from less risky (white) to riskier (black). The difference, between scenario 1 and benchmark, in terms of harvesting and EIU due to the storm risk increase is the following : Very risk averse forest owners have a tendency to reduce harvesting due to the 'continuation effect'. For instance, the following table summarizes the results for β = 0.7 9 . In such a situation, the expected intertemporal utility is multiplied by two for all the pairs (X i , w i ). Extreme risk aversion (β → 1) leads to a situation where the forest owner harvests nothing except for the extreme cases of no windfall (w i = 0) or maximum windfall (w i = 10), where u i = 1. It corresponds to an extreme 'continuation effect'.

P B = (0.
Standing Windfall (w i ) stock (X i ) 0 1 2 3 

Quality loss

The price decrease due to the quality loss of windfall after Klaus in 2009 was equal to 30% (Nicolas [START_REF] Nicolas | Les conséquences de la tempête du 24 janvier 2009 dans le sud-ouest[END_REF]), so that we consider α = 0.7. Nevertheless, we obtain almost no difference with the benchmark decisions in terms of harvesting :

Standing Windfall (w i ) stock (X i ) 0 1 2 3 4 5 6 7 8 9 10 
0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2) 0 (-13.4) 0 (-13.6) -1 (-13.5) 0 (-13.5) -1 (-13.5) 0 (-13.6) 0 (-13.4) 0 (-13.2) 0 (-13.1) 9 0 (-13.2) 0 (-13.3) 1 (-13.2) 0 (-13.4) 0 (-13.6) 0 (-13.3) 0 (-13.6) 0 (-13.4) 1 (-13.2) 0 (-13.3) 0 (13.2) 10 -1 (-12.7) 0 (-12.9) 1 (-12.8) 0 (-13.2) 0 (-13.2) 0 (-13.2) 0 (-13.2) 0 (-13.2) 1 (-12.8) 0 (-12.9) -1 (-12.7) * Variation in timber harvesting (variation in % of EIU)

Following the intuition, although very few differences appeared in terms of harvesting, differences emerge in terms of expected intertemporal utility, with reductions up to 15% compare to the benchmark scenario. 9 According to Holt and Laury [START_REF] Holt | Risk aversion and incentive effects[END_REF], a very risk averse forest owner is characterized by a coefficient 0.68 < β < 0.97.

In our simulations, we did not get noticeable effects of the parameter α on the harvesting decision. This phenomenon can be explained by the relatively small impact of the price decrease (due to the quality loss) in front of the forest owner's objective of smoothing the utility. In order to eliminate the slightest and most likely windfall to come (w i+1 = 1 caused by a storm s i = 1), the owner should harvest all the stock. Indeed, slightly increasing the benchmark harvesting decision to reduce the exposure of standing trees would have no effect for storms which intensity would be less than the remaining standing stock.

Concluding remarks

We have developed a MDP model for forest management under storm risk and proposed a tool for finding the optimal harvesting policy that shows coherent behaviors :

i) increasing storm risk or decreasing risk aversion leads the forest owner to harvest more. Wealth effect and risk effect are stronger than continuation effect. This situation lower the expected intertemporal utility. ii) decreasing storm risk or increasing risk aversion leads the forest owner to harvest less (reinforcement of the continuation effect compared to the other effects). This situation increases the EIU.

Our tool is able to evaluate the forest owner's willingness-to-pay to avoid a change of situation from the benchmark scenario.

  . 0 P i+1 P i+2 . . . P N . 0 P i+1 P i+2 . . . P N . 0 P i 0 . . . 0   Proof. M u has (N + 1) 2 rows indexed by j ∈ [[0, (N + 1) 2 ]] and (N + 1) 2 columns indexed by k ∈ [[0, (N + 1) 2 ]]. M u contains (N + 1) 2 blocks. Let us index by J ∈ [[0, (N + 1)]] the N + 1 rows of the matrix per blocks and by K ∈ [[0, (N + 1)]] the N + 1 columns. A particular row j of M belongs to a row J = I j N +1 ∈ [[0, N ]

Figure 2 .

 2 Figure 2. Storm risk distributions

Indeed, we wish to focus only on the variability of the stock due to storms and not on the variability associated with the forest growth.

For instance, in France, 3.5 million of private forest owners share 71% of the total forest area.

In the literature, only two levels of decisions are generally considered: to cut nothing or all the stock.

Holt and Laury [3] propose a classification of behaviors toward risk depending on the value of the relative risk aversion coefficient. This classification goes from 'highly risk loving' for a coefficient β < -0.95 to 'stay in bed' for β > 1.37 with 'risk averse' for β = 0.5.

(-0.3) 

According to the classification of Holt and Laury[START_REF] Holt | Risk aversion and incentive effects[END_REF], a slightly risk averse individual is characterized by a coefficient 0.15 < β < 0.41.

Let us consider pair (6, 1) to illustrate this table (boxed element of second column), i.e. a standing stock X i = 6 and a stock of windfall w i = 1. The corresponding optimal decision is to harvest 2 units of trees in addition of the optimal harvesting of the benchmark for this pair (6, 1) (i.e. u i = 3), so that 5 units of trees are harvested. The pair (6, 1) procures an expected intertemporal utility which is 0.3% lower than the benchmark, i.e. 33.9(1 -0.003) = 33.8. We observe that, when the risk increases, the harvesting tends to be higher than in the benchmark scenario. This comes from the fact that the forest owner reduces the standing timber stock exposed to the future storm risk. It seems that the 'risk effect' dominates the owner's decision process. The expected intertemporal utility is lower than in the benchmark scenario. These trends are stressed when we increase even more the risk, as in scenario 2 :

0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 0 (-13.9) -1 (-12.9) 0 (-12.4) 0 (-12.2) 0 (-12.1) 0 (-12.1) 0 (-12.1) 0 (-12.2) 0 (-12.4) -1 (-12.9) 0 (-13.9) In conclusion, the higher the storm risk, the higher the harvesting and the lesser the expected intertemporal utility. This reduction in the expected intertemporal utility is interesting since it may reflect the forest owner's willingness-to-pay to be covered against the risk increase. For instance, in scenario 1, the willingness-to-pay would not be very high, but in scenario 2, it could reach more than 12% of the benchmark EIU.

Risk aversion

The sensitivity analysis on risk aversion is divided in three parts depending on the values of β :

The following table presents the differences (in terms of harvesting and expected intertemporal utility) between a situation where a relative risk aversion coefficient of β = 0.1 is considered and the benchmark scenario where β = 0.5 :

9 10 0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) A forest owner characterized by a relative risk aversion coefficient of β = 0.1 harvests more standing trees than a forest owner characterized by a relative risk aversion coefficient of β = 0.5 (benchmark scenario). Indeed, according to our simulations, as long as β ∈ [0; 0.225], the forest owner can be considered as risk neutral since all the standing stock is harvested. The risk neutrality turns the owner into a simple profit maximizer at period 0. In such a situation, the 'wealth effect' drives the forest owner's behavior.

• 0.225 < β < 0.5

When the forest owner is slightly risk averse 8 , the optimal harvesting increases and the expected intertemporal utility decreases. The following table presents the differences (in terms of harvesting and EIU) between a situation where a relative risk aversion coefficient of β = 0.3 is considered and the benchmark scenario where β = 0.5 : It seems that the behavior of a slightly risk averse forest owner is driven by the 'risk effect'.

• β ∈]0.5; 1[