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BLIND SEPARATION OF UNCORRELATED SOUND 
SOURCES FROM THE PRINCIPLE OF LEAST SPATIAL 
COMPLEXITY 

DONG Bin and Jérôme ANTONI 
Vibrations and Acoustic Laboratory, INSA of Lyon (National Institute for Applied Sciences), 
Building of St. Exupéry, 25 bis avenue of Jean Capelle, 69621 Villeurbanne Cedex, France.  
e-mail: bin.dong@insa-lyon.fr 

A novel algorithm based on the principle of least spatial complexity is proposed to decom-
pose a sound field into uncorrelated sources by minimizing its spatial entropy. The global 
sound source distribution is first reconstructed from measurements returned by an array of 
microphones. Then it is transformed into uncorrelated virtual sources by means of the eigen-
value decomposition. However, it is well-known that having uncorrelated sources is a neces-
sary but by no means a sufficient condition for separation. In order to find a unique solution 
with physical meaning, it is proposed to invoke the principle of least spatial complexity 
which forces an optimal solution with maximum spatial compactness. This is accomplished 
thanks to a novel conjugate gradient algorithm operating on the Stiefel manifold. An experi-
ment is conducted to validate the proposed algorithm and evaluate its performance. Final re-
sults show that the sound field of each separated source perfectly matches that of the actual 
one, as would be obtained if all other sources could be switched off one by one. 

1. Introduction 

Localization and quantification of sound sources have attracted a lot of attention since many 
decades1. An ideal analysis procedure for identifying sound sources is as follows: sound sources 
stemming from distinct physical origins are decomposed into corresponding contributions based on 
measurements returned by an array of microphones. This is in essence a characteristic problem of 
blind source separation (BSS), which turns out extremely difficult to solve in practice. There have 
been numerous approaches to BSS in signal processing2-6. Unfortunately, most of these approaches 
can not be directly applied to sound source separation. One reason is the issue involves backpropa-
gating sound waves from the microphone array to the source surface, which is a severely ill-posed 
inverse problem prone to produce extremely unstable results7-8. Another reason is that many BSS 
approaches require sources to be non-Gaussian (more exactly, no more than one Gaussian source) 
in order to properly define independence (independent sources are sought by making their joint 
probability distribution separable). This condition is hardly met in acoustics where sound propaga-
tion is often described in frequency domain. Indeed, Fourier Transformed signals are forced to tend 
to a complex Gaussian distribution by virtue of the central limit theorem (CLT), which precludes a 
unique definition of independence (a separable joint Gaussian probability distribution implies un-
correlated, but not independent sources, that is an infinite set of solutions versus a unique one to 
separation). For instance, that means independent component analysis (ICA), a popular non-
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Gaussian based BSS methods, could not be applied for that reason. In order to overcome the limit of 
non-Gaussian, a series of BSS approaches employing the concept “information entropy” are pro-
posed9-13. However, the sound sources are the signals of both frequency and space after doing FT. 
One peculiarity which singles out the acoustical context, however, is that the effort to reconstruct a 
spatial distribution suggests exploiting spatial information rather than probabilistic properties (i.e. 
construing independence through spatial properties instead of a probabilistic definition). This led 
the authors to propose the concept of “spatial entropy”, inspired by “Shannon entropy”, which 
quantifies the spatial complexity of a source distribution. Uncorrelated sources are then separated 
that make the final distribution as simple as possible, that is which minimize the spatial entropy. 

The rest of the paper is organized as follows: the global reconstruction of sound source distri-
bution is introduced first. This distribution is then decomposed into uncorrelated “virtual” sources 
which, however, do not enjoy the property of uniqueness. The principle of least spatial complexity 
is then employed to find a unique solution from the set of virtual sources. Finally, the validity of the 
proposed algorithm is demonstrated by a laboratory experiment. Properties of the proposed algo-
rithm are then discussed in terms of final results. 

2. Reconstructing the sound source distribution 

The aim of this section is to introduce the direct propagation problem together with the corre-
sponding to be used hereafter. Let us consider the sound field produced by a combination of ns un-
correlated sound sources locates in free space and the resulting pressure signals recorded at some 
distance by an array of M microphones (see Fig. 1). 

p,v

Sound sources Microphone array  
Figure 1. Illustration of a sound field produced from uncorrelated sources recorded by a microphone array 

The M acoustic signals recorded by the array are denoted by vector p, whose each element 
reads p(rm,t) at time t, with rm the position vector of the m-th microphone. The pressure signal 
p(rm,t) is further divided into a series of snapshots( ; )mp t  r , where   stands for the snapshot 

label. Every snapshot( ; )mp t  r is then Fourier transformed from the time domain to the frequency 

domain and denoted by( ; )mp  r , with ω the radial frequency. 

The central assumption of this work is that the pressure field is produced by ns uncorrelated 
sound sources (e.g. normal component of particle velocity, parietal pressure)( ; )is   r , i=1, 2, …, 
ns, such that 

1

( ; ) ( || , ) ( ; ) ( )
sn

m m i
i

p s d     
     r G r r r r ,                                  (1) 

where r is the position vector of the sound source, ( || , )m G r r is the Green function in free space 

and Γ is the sound source surface. The next step is now to discretize the source surface Γ. Let re-
place the position vector r by N samples rl, l = 1, 2, …, N, associated with a related small surface 
element l . The discrete form of Eq. (1) is then 

1 1

( ; ) ( || , ) ( ; )
snN

m m l i l l
l i

p s    
 

       r G r r r ,                                      (2) 

which could be rewritten in a matrix form as: 
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  
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 (3) 

In Eq. (3), ( ; )ls   r  is the sum of the ns uncorrelated sound sources( ; )i ls   r  under the l-

th position vector rl; as suggested in Ref. [14], it is conveniently represented by an optimal basis Φ 
with a related vector of coefficients c: 

1 1 1 1 1

1

( ; ) ( ) ( ) ( ; )

( ) ( )

( ; ) ( ) ( ) ( ; )

K

N N K N K

s c

s c

     
 

     
                                            

r r r

s Φc

r r r

.                 (4) 

where the optimal basis dimension, K, is equal to the number of microphones in the array. The re-
covery of the unknown vector of coefficient, ( )c , from the measured pressure signals ( )p , is 
then obtained as  ( ) ( ) c GΦ p ,                                                           (5) 

where the exact expression of the pseudo-inverse  GΦ is detailed in Ref. [14] and not reported 

here due to lack of space. This surely solves the source reconstruction problem, but not source 
separation; in other words, coefficients ( ; )kic   , k = 1, 2, …, K, assigned to the i-th sound source 

( ; )is   r  still remain unknown. The object of the paper is specifically to find every uncorrelated 

sound source ( ; )is   r  and its corresponding coefficient vector ( ; )i  c , or in a matrix form, to 

solve: 

1 1 1

1

1 1 1
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
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ΦC

.                 (6) 

In order to do so, let us first note that the ns coefficients ( ; )kic    attached to the same basis 

function Φk are necessarily uncorrelated, since the sound sources ( ; )is   r  are. Therefore, comb-

ing Eqs. (4) and (6), ( ; )kc    can be further expanded as 

1 1

( ; ) ( ; ) ( ) ( ; )
s sn n

k ki ki i
i i

c c a      
 

      ,                                          (7) 

where ( ; )i   is a “latent variable” which completely describes the probabilistic properties of the 

i-th source, but does not depend on the index k of spatial basis Φ, and aki(ω) corresponds to the co-
efficient of the i-th latent variable in the decomposition of the k-th coefficient ( ; )kic   . Without 

loss of generality, all latent variables will be assigned unit power. Equation (5) can now be rewritten 
more compactly as: 
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1

( ; ) ( ; )

( ) ( )

( ; ) ( ; )

s

s s

n

K K Kn n

a ac

c a a

    
 

     
                                     

c A .                            (8) 

After ignoring the dependence on  for notational simplicity, one has  p Gs GΦA ,                                                               (9) 
where the parameters p, G and Φ are all known quantities and parameters A and are the un-
knowns to be determined. The next subsection explains how to solve this problem. 

3. Pre-whitening of measurements 

In order to find the unknown coefficient matrix A, its singular value decomposition (SVD) is 
considered first 

[ ] H
SVD A UDV ,                                                             (10) 

where U and V are unitary matrices, D is a nonnegative real diagonal matrix and superscript 'H' 
stands for the Hermitian transpose. 

  Since the ns sound sources are mutually uncorrelated, the latent variables ( ; )i    (which 

are assumed of unit power without loss of generality) are seen to have a diagonal correlation matrix 

  H  ,                                                              (11) 

with  the expectation operator ( ensemble average over all snapshots  ). 
Therefore, according to Eqs. (9) - (11), one has     2H H H H H H H H pp GΦA A Φ G GΦUD U Φ G ,                           (12) 

which uniquely returns the matrices U and D from the eigenvalue decomposition (EVD) of the cor-

relation matrix  H

pp , provided that GΦ  is known. However, the unitary matrix V which enters 

the SVD of matrix A is still missing. This proves that there exists an infinite number of uncorrelated 
sources – so called “virtual sources” – returned by the EVD of the correlation matrix, and demon-
strates the inability of this approach to solve alone the BSS problem15-16.  

4. The principle of least spatial complexity 

In order to find the missing unitary matrix V, the principle of least spatial complexity is intro-
duced in this section. Inspired from the definition of the Shannon entropy in information theory17, a 
novel concept, the spatial entropy H, is proposed. The authors suggest defining the spatial entropy 
H as 

1 1

( ) ln ( ) ( )
s sn n

i i i i i
i i

H H P P d   
      r r r ,                                         (13) 

where Hi, ( )iP r  and πi are the i-th spatial entropy element, the statistical spatial intensity and the 

averaged power of the i-th source, respectively. For the continuous case, upon defining the statisti-
cal spatial intensity ( )iP r as   

2

2

( ; )

( ; )
( )

( )

i

i

iP
s

s d

 
 

 
  
r

r r
r ,                                                  (14) 

and the i-th averaged power πi as  2( ; ) ( )i is d     r r ,                                                    (15) 

the spatial entropy H reads 
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    
2

2

2
1

( ; )
( ; ) ln ( )

(( ); )

s

i

n
i

ii

s
H

d
s d

s

     

  
   

r
r r

r r
.                       (16) 

In brief, the spatial entropy is constructed such that, the more complex the sound source dis-
tribution, the higher the value of H is and vice versa. This means that minimizing spatial entropy 
with respect to matrix V will favor the recovery of the sound sources with as simple a spatial struc-
ture as possible. In other words, the spatial entropy is a measure of the compactness of the sound 
source distribution. This corresponds very well to our physiological perception of a sound source. 

  Let us now rewrite the expression of H in an explicit way as a function of V in order to un-
dertake its minimization. The i-th sound source for its l-th position vector can be represented as 

  ( ; ) T
i l l is    r e ΦAE ,                                                       (17) 

where el is the l-th column of the identity matrix and Ei = ei ei
T is a matrix whose all elements are 

zero except the i-th diagonal entry which equals one (superscript 'T' stands for the transposition op-
eration). Therefore ( ; )i ls   r  has the statistical spatial intensity  

   
1

( )
T H H H T H H H
l i i l l i i l

i l N H H H
T H H H i i
l i i l

l

P
tr



 
e ΦAE E A Φ e e ΦUDv v DU Φ e

r
ΦUDv v DU Φe ΦAE E A Φ e

,                       (18) 

with vi, the i-th row of matrix V and tr, the trace of matrix H H H
i iΦUDv v DU Φ . After substituting 

Eq. (18) into Eq. (16) and discretizing the sound source distribution as in Section 2, the spatial en-
tropy reads 

 1 1

( ) ( ) ln
s T H H H

T H H H l i i l
l

n N

i
i i l H H H

i il tr
H

 

       e ΦUDv v DU Φ e
e ΦUDv v DU Φ e

ΦUDv U
V

v D Φ
.                 (19) 

This cost function H(V) is now to be minimized with respect to matrix V under the constraint 
of unitarity of the latter. A very elegant approach to this difficult problem is to explicitly perform 
the optimization on the Stiefel manifold (ensemble of all unitary matrices). A recently proposed 
conjugate gradient (CG) algorithm owning outstanding optimization performance is used here, yet 
not detailed due to lack of place – (see Refs. [18-19]). 

5. Experiment 

5.1 Experimental setup 

To assess the separation performance of the proposed algorithm, an experiment was con-
ducted in a semi-anechoic room. The experimental setup is depicted in Fig. 2. A 60-microphone 
array is placed parallel to loudspeaker membranes which produce the sound sources. The distance 
between the microphone array and the loudspeakers is represented by z. The spacing between the 
centers of the loudspeaker membranes is defined by D. Different parameter combinations (i.e. z, D 
and the number ns of the loudspeakers) have been investigated respectively. Near-field as well as 
far-field configurations are investigated. Loudspeakers are fed by mutually uncorrelated white 
noises with different power levels. All signals are sampled at 16384 Hz. The snapshot length is set 
to 4s, with 50% overlap and use of a Hanning window; the total number of the snapshot is 119. 
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Figure 2. Experimental setup for blind separation of uncorrelated sound sources 

5.2 Experimental results 

The recordings from the microphones were then processed with the proposed algorithm. The 
global source distribution in the plane of the loudspeaker membranes was first reconstructed using 
the approach described in Section 2. The distribution was then decomposed into several uncorre-
lated sources by using the principle of least spatial complexity described in Section 4. Separation 
results for the case „z=100cm, D=18cm and ns =4‟ are illustrated in Fig. 3.  

 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 3. Separated sound sources at 1800Hz                    Figure 4. References sound sources at 1800Hz 

The first upper left panel in Fig. 3 shows the configurations of the four loudspeakers; the 
lower left panel shows the irregular 60-microphone array; „|pmicro|

2‟ is the average power of the 
acoustic pressure interpolated in the plane of the microphone array; „|V0|

2‟ is the average power of 
the backpropagated normal component of particle velocity in the plane of the loudspeaker mem-
branes and the other four panels are the average power of normal component of particle velocity 
corresponding to the four separated sound sources. (Note that the final separation results are all dis-
played in terms of the particle velocity because its spatial resolution is usually much better than for 
the acoustic pressure.) It is seen that the globally backpropagated source distribution can not distin-
guish the existence of four sound sources: there is basically only one “hot spot” positioned on the 
loudest source. On the other hand, the proposed BSS algorithm perfectly singles out the four differ-
ent sources which are perfectly localized on the four loudspeaker membranes.  

In order to evaluate the separation performance of the proposed algorithm, a series of addi-
tional experiments were conducted in which only one loudspeaker was switched on each time. Four 
groups of measurements corresponding to four “reference sound sources” were independently proc-
essed (back-propagation from the microphone array to the plane of the sound sources). All recon-
structed source distributions are depicted in Fig. 4. The four pictures on the right side of the dashed 
line display the average power of normal component of particle velocity of the four sources. Com-
parison of Figs. 3 and 4, it evidences a perfect match between the blind separation results and the 
controlled ones, both in terms of localization and of magnitude (even for the sound source with the 
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smallest power magnitude). The only difference is in the order of the separated sound sources, 
which obviously must be arbitrary. Indeed, this fundamental indeterminacy inherent to all BSS al-
gorithms is not at all a practical limitation.  

5.3 Discussion 

A large number of similar experiments with various parameter combinations (i.e. z, D and ns) 
demonstrated the validity of the proposed decomposition algorithm in a wide frequency range 
(compatible with the backpropagation requirements). Three important aspects are further discussed 
based on these results, namely the effect of distance z between the sources and the array, of spacing 
D between the sources, and the estimation of the number ns of sources. 

As described in Refs. [20] and [14], the distance z between the loudspeakers and the micro-
phone array has a direct impact on the expected reconstruction‟s quality, especially in terms of 
magnitude. In this regards, blind separation will suffer from exactly the same limitations as the 
global backpropagation (i.e. the reconstruction errors on the global source field ( ; )s   r will be 

inherited by its separated components( ; )is   r ).  

As for the spacing D between the centers of the loudspeaker membranes, it determines the 
spatial resolution limit of the algorithm. For instance, global backpropagation was unable to resolve 
between the loudspeakers with the settings in Fig. 3. One remarkable benefit of the source separa-
tion is that it is able to single out spatially overlapping sources, even below the spatial resolution 
limit. This is of considerable importance for source identification. In contrast, it means all sound 
sources could be overlapped together so that they would be regarded as a whole and large source, 
when D tends to be an enough small threshold, in which case source separation will no longer make 
sense. 

In the previous example, the number ns of sound sources to be separated was set to be equal to 
the actual number, say na, of loudspeakers. Further experiments have shown that when ns is smaller 
than na, the separated sound sources usually correspond to the actual most powerful ones as a result 
of selecting the greatest eigenvalues in the whitening step (see Section 3). On the other hand, when 
ns is greater than na, the extra separated sources mainly account for additive noise. This means the 
proposed algorithm has ability to correctly estimate the actual number of the uncorrelated sound 
sources, provided eigenvalues of the signal subspace are greater than those of the noise subspace. 
By way of an example, the blind separation of four sound sources (na =4) at 1800Hz, is illustrated in 
Figs. 5 and 6 with estimated source number ns set to 3 and 6, respectively. Figure 5 exemplifies a 
good reconstruction of the three most powerful sources, despite the fourth one is not accounted for 
in the separation. In Fig. 6, although the two extra separated sources look very much like compact 
sources, their power magnitudes are orders of magnitude smaller than the other sound sources and 
thus can actually be categorized as noise. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Separated sound sources                               Figure 6. Separated sound sources  

with ns =3 at 1800Hz                                                      with ns =6 at 1800Hz 
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6. Conclusion 

The proposed BSS algorithm is based on two simple assumptions. The first one is the mutual 
decorrelation of the sound sources of interest and the second one is their spatial compactness, or 
“least spatial complexity”. It is believed that these two assumptions may be easily met in many in-
dustrial applications. It has been shown that a unique separation of sources is then possible by 
minimizing a spatial entropic cost function. 

Experimental results have demonstrated excellent performances of the algorithm, and in par-
ticular its ability to go much beyond the spatial resolution limit allowed by standard backpropaga-
tion. The algorithm also has the ability to find the exact number of actual sound sources by inspect-
ing their relative powers. 

It must be emphasized, however, that the method is not tailored to decompose correlated 
sound sources, as would be the case with reflections for instance. Yet it is believed that the pro-
posed principle of least spatial complexity would still achieve separation in this situation, an objec-
tive which is left for future work. 
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