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Abstract 

A novel algorithm based on the principle of least spatial complexity is proposed to decompose 

an acoustic field distribution into uncorrelated acoustic sources with maximum spatial 

compactness. First of all, the acoustic field source distribution is reconstructed by backpropagating 

the acoustic pressures measured by an array of microphones. In a second step, the reconstructed 

source field is classically decomposed into uncorrelated sources by means of a principal 

component analysis. However, it is well-known that having uncorrelated sources is a necessary but 

by no means a sufficient condition: there exists an infinity of uncorrelated virtual sources that can 

produce the same acoustic field. In order to find a unique and optimal solution to source 

separation, it is proposed to invoke a “principle of least spatial complexity” which forces solutions 

with high spatial compactness. This is achieved thanks to recent results about optimization within 

the Stiefel manifold. An experiment is conducted to demonstrate the validity of the proposed 

algorithm. The final result proves that the principle of least spatial complexity and its related 

algorithm can successfully decompose an acoustic field into its actual constituents. 

 

Keywords: Blind source separation; principle of least spatial complexity; spatial entropy; 

inverse acoustic problem; near-field acoustic holography 

 

1. Introduction 

Blind source separation (BSS) has been applied in many research areas. One of remarkable 

applications of BSS is to identify positions of faults in a diesel engine 
[1]

. As we known, different 

sources originate from different phenomena. That means the total sound radiated by an engine can 

be simplified as a linear combination of distinct sound sources. However, due to acoustical signal 

complexity and the instability inherent to the backpropagation of the waves from the microphone 

array to the sourcesurface, classic approaches of BSS such as independent component analysis 
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(ICA) can hardly be applied directly. Another reason is that most of these approaches require the 

sources to be non-Gaussian (more exactly, no more than one Gaussian source), which is hardly 

verified when working in the frequency domain as is commonplace in acoustics. Indeed, when the 

acoustic signals are transformed from time domain to frequency domain, the Fourier Transform 

(FT) forces the acoustic signals to tend to a Gaussian distribution according to the central limit 

theorem (CLT). That means ICA could not find a relevant solution 
[2-4]

. Therefore, there is still a 

need for alternative approaches to efficiently decompose an acoustic field into distinct sources (i.e. 

stemming from different origins) when these do not necessarily meet the assumptions of ICA. 

Acoustical array processing naturally suggests the exploitation of spatial information rather than 

probabilistic properties (i.e. independence). For these reasons, a method based on minimizing the 

spatial complexity is proposed. 

The paper is organised as follows: the reconstruction of the acoustic field distribution on the 

surface of sources is introduced first. Then principal component analysis (PCA) is used to 

decompose the acoustic field into uncorrelated “virtual” sources which, however, do not enjoy the 

property of uniqueness. The principle of least spatial complexity is then invoked to find an optimal 

solution to the BSS problem. Finally, the validity of the proposed algorithm is demonstrated by a 

laboratory experiment. Properties of the proposed algorithm are then discussed in terms of 

measurements of the experiment results. 

2. Methodology 

2.1 Reconstruction of the acoustic field distribution 

The pressure field is recorded by a microphone array delivering the M acoustic pressure signals 

( m )p t, r , m=1, 2, …, M, where is the position of the m-th microphone and t is time. The 

signal 

mr

( m )p t, r  is divided into a series of snapshots ( ;mp t )ω,  r  , where ω  stands for the 

snapshot label. The Fourier transform ( ;mp )ω ω,  r  of ( ;mp t )ω,  r  will be considered from 

now on, where ω stands for radial frequency. 

The acoustic pressure signal ( ;mp )ω ω,  r  is assumed to be produced by ns uncorrelated 

acoustic sources ( ;is )ω ω,  r , such that 

1

( ; ) ( || , ) ( ; ) (
sn

m m i

i

p sω ω ω ω ωΓ =
,  =  ,  Γ∑∫r G r r r )d r ,                (1) 

where r is the position vector, ( || , )m ω G r r is the Green function in free space, and  is the 

source surface.  

Γ

The continuous acoustic field distribution is next discretised on the source surface . The 

position vector r is replaced by N samples rl, l = 1, 2, …, N, associated with a small surface 

element . The discrete form of the signal

Γ

lΔΓ ( ;mp )ω ω,  r  is then 
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1 1

( ; ) ( || , ) ( ; )
snN

m m l i l

l i

p G sω ω ω ω ω
= =

,  =  ,  ΔΓ∑∑r r r r l ,               (2) 

which may be rewritten in a matrix form as: 

1

1 1 1 1 1

1 1

( ; )

( )

( ; )

( || , ) ( || , ) ( ; )

( || , ) ( || , ) ( ; )

M

N N

M M N N N

p

p

G G s

G G s

ω ω
ω

ω ω
ω ω ω ω
ω ω ω ω

⎡ ⎤,  ⎢ ⎥= ⎢ ⎥⎢ ⎥,  ⎣ ⎦
⎡ ΔΓ       ΔΓ ,  ⎡ ⎤ ⎢⎢ ⎥         =                                           ⎢⎢ ⎥⎢ ⎥ ΔΓ     ΔΓ ,  ⎣ ⎦ ⎣

r

p

r

r r r r r

r r r r r

( )ω
⎤⎥ =⎥⎢ ⎥⎦

Gs . 

  

 

 (3) 

The next step is to expand the source distribution ( ;ls )ω ω,  r  on an optimal basis Φ with 

corresponding coefficient c in order to allow its recovery [5]. That is: 

1 1 1 1

1

( ) ( ) ( ; )

( ) ( )

( ) ( ) ( ; )

K

N K N K

c

c

ω ω ω ω
ω ω

ω ω ω ω

⎡ ⎤Φ ,     Φ ,  ⎡ ⎤ ⎢ ⎥⎢ ⎥=                           =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥Φ ,    Φ ,  ⎣ ⎦ ⎣ ⎦

r r

s Φc

r r

.            (4) 

The index K of the optimal basis is equal to the number of microphones on the microphone 

array according to Ref. [5]. The recovery of the unknown coefficient c from the measured pressure 

signals ( )ωp  is obtained as  

[ ]( ) ( )ω ω+=c GΦ p ,                         (5) 

where the exact expression of the pseudo-inverse [ ]+
GΦ is detailed in Ref. [5] and not reported 

here due to lack of space. However, this is source reconstruction but not source separation: in 

other words, the coefficients ( ; )kic ω ω  assigned to the i-th acoustic source ( ;i ls )ω ω,  r  still 

remain unknown. It is the object of this paper to recover them. 

  In order to do so, let us first note that for uncorrelated sources the ns coefficients ( ; )kic ω ω  

attached to the same optimal basis Φk are necessarily mutually uncorrelated. Therefore, 

( ; )kc ω ω  may be further expanded as 

1 1

( ; ) ( ; ) ( ) ( ; )
s sn n

k ki ki i

i i

c c aω ω ω ω ω ω
= =

 =  =  ∑ ∑ S ω ,                 (6) 

where ( ; )i ω ω S is a “latent source”, which is a statistical variable that does not depend on the 

index "k" of the basis function, and aki(ω) is the corresponding coefficient. Equation (5) may be 

rewritten more concisely in a matrix form: 
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11 1 1

1

( ; )

( ) ( )

( ; )

s

s s

n

K Kn n

a a

a a

ω ω
ω ω

ω ω

⎡ ⎤  ⎡ ⎤  ⎢ ⎥⎢ ⎥=         =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥   ⎢ ⎥⎣ ⎦ ⎣ ⎦
c A

S
S

S
.                 (7) 

Therefore, after omitting the dependence on ω  for notational simplicity, one has 

= =p Gs GΦAS ,                             (8) 

where parameters p, G and Φ are all known, but parameters A and  are still undetermined. 

The next subsection explains how to find them. 

S

2.2 Pre-whitening of measurements 

In order to find the unknown mixing matrix A, let us first consider its singular value 

decomposition (SVD) 

[ ] H

SVD = A UDV ,                             (9) 

where U and V are unitary matrices, D is a nonnegative diagonal matrix, and superscript 'H'' 

stands for the transposition conjugate operation. 

  Next, because by definition the ns acoustic sources are uncorrelated to each other, the latent 

source ( ; )i ω ω S  are seen to have a diagonal correlation matrix, 

 { }H =E SS I ,                             (10) 

where  is the expectation operator of E ω . Note that the power of each latent sources is 

assumed unitary by convention and the actual intensity is captured in coefficients aki(ω) of the 

matrix A. 

Therefore, according to Eq. (8) and Eq. (10), one has { } { } 2H H H H H H H H= =pp GΦA A Φ G GΦUD U Φ GE E SS ,       (11) 

which uniquely returns U and D from the eigenvalue decomposition (EVD) of the correlation 

matrix { }H

ppE  provided that G  is known. However, matrix V which entered the SVD in 

Eq. (9) is still missing. This characterises the non-uniqueness of PCA (i.e. EVD of the data 

correlation matrix) as a solution of the BSS problem 
[6, 7]

. The next subsection now addresses its 

recovery. 

Φ

2.3 The principle of least spatial complexity 

To search for the matrix V, the principle of least spatial complexity is introduced. Inspired from 

the definition of Shannon entropy in information theory 
[8]

, a novel concept, the spatial entropy H, 

is proposed. The authors propose to define the spatial entropy H as 
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1 1

( ) ln ( ) ( )
s sn n

i i i i i

i i

H H P P dπ π Γ= =
= = − Γ∑ ∑ ∫ r r r ,               (12) 

where Hi,  and πi are the spatial entropy, the intensity and the averaged power of the i-th 

source, respectively. Upon defining the intensity as 

( )iP r

{ }2

( ; )( ) iiP s ω ω= ,  r rE ,                        (13) 

and the averaged power as { }2

( ; ) (i is dω ωπ Γ= ,  ∫ rE )Γ r ,                     (14) 

one has 

{ } { }{ }
2

2

2
1

( ; )

( ; )

( ;

ln ( )

( ))

sn

i

i

i

i

H s

d

s

d

s

ω ωω ω ω ωΓ=
Γ

,  ,   = − ΓΓ,  ∑∫ ∫
r

r r

r r

E
E

E
.      (15) 

In words, the spatial entropy is constructed such that, the more complexity the source distribution, 

the higher the value of H and vice versa. This means that minimising the spatial entropy with 

respect to V will favor the recovery of sources with as simple a spatial structure as possible, i.e. 

with some sort of compactness. This corresponds very well to our physiological perception of 

sound sources. 

  Let us now rewrite the expression of H explicitly as a function of V in order to undertake its 

minimisation with respect to the later. The discrete acoustic source can be rewritten as 

  ( ; ) T

i l l is ω ω,  =r e ΦAE S ,                         (16) 

where el is a vector whose elements are all zero except the l-th one, and Ei = ei ei
T
 is a matrix 

whose elements are all zero except the i-th diagonal one (superscript 'T'' stands for the 

transposition operation). Therefore the acoustic source ( ;is )ω ω,  r  has intensity 

{ }*( ) T H H T H

i l i j j i l l i iP = =r e ΦAE E A Φ e e ΦUDv v DU Φ eE S S H H

l ,       (17) 

with vi the i-th row of the matrix V. After substituting Eq. (17) into Eq. (15) and discretising the 

fields, the discrete spatial entropy reads 

{ }1 1

( ) ( ) ln
s T H H H

T H H H l i i
l i i l H

n

i
H

i

d H

i

N

l

H
tr= =

⎛ ⎞⎜ ⎟= − ⎜ ⎟⎝ ⎠∑∑ e ΦUDv v DU Φ e
e ΦUDv v DU Φ e

ΦUDv v DU Φ
V l .    (18) 

This cost function Hd(V) is now to be minimised with respect to matrix V; the optimal solution 

will then return a unique set of compact source distributions. The difficulty here is to minimise 

Hd(V) under the constraint of unitarity of V. A recent and efficient conjugate gradient (CG) 

algorithm under unitary constraint (optimised within the Stiefel manifold) is used yet not detailed 

here due to lack of space – see Refs [9, 10]. 
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3 Experiment 

3.1 Experimental setup 

To assess the performance of the proposed algorithm, an experiment was conducted in a 

semi-anechoic room. The experimental setup is shown in Fig.1. The microphone array is parallel 

to the loudspeaker membranes. The distance between the microphone array and the loudspeakers 

is represented by Z. The spacing between each loudspeaker is defined by D. The loudspeakers 

were taken as the actual acoustic sources. When the loudspeakers were turn on, an acoustic field 

was radiated from the loudspeakers to the microphone array. The pressures of the acoustic field 

were recorded by 60 microphones located on the array and sampled at 44.1 kHz.  

 

Fig.1 Experimental setup for blind source separation 

3.2 experimental results 

The experimental data were then processed with the proposed algorithm. First the source field 

on the loudspeakers is reconstructed according to the backpropagation technique described in Ref. 

[5]. Then it is decomposed into four distinct and uncorrelated sources by using the principle of 

least spatial complexity described above. 

Various experimental parameters were tested. Those illustrated hereafter are for a frequency 

band of 1320 Hz, a distance Z equal to 10 cm and a spacing D set to 24 cm. The final results are 

displayed in Fig.2. The first upper left picture shows the positions of the four loudspeakers; the 

first lower left one presents the microphone array; the second lower left one is the acoustic 

pressure interpolated on the surface of the microphone array; the second upper left one is the 

acoustic pressure on the surface of the loudspeakers and the other four pictures are the acoustic 

velocity distribution separated on the surface of every single uncorrelated acoustic source. 

Because the spatial resolution of the acoustic velocity is much better than that of the acoustic 

pressure, the final results are displayed in terms of the former. It can be seen that the location of 

the separated acoustic sources match very well with the expected positions of the loudspeakers. 
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Fig.2 Separation result returned by the proposed algorithm 

3.3 Discussion 

A large number of similar experiments with various parameter settings demonstrated the 

validity of the proposed separation algorithm in most cases. However, the following limitations of 

the algorithm can be identified. 

First, it is seen in Fig. 2, that the order of the separated acoustic sources does not correspond to 

the actual one. That is a fundamental indeterminacy of any BSS algorithm. However, this is not a 

practical limitation. In addition, in this experiment attention was paid only to the resolvability of 

the source field reconstruction and separation. 

Second, the proposed approach is based on the fundamental assumption of uncorrelated sources, 

which is likely to be met in many configurations where sound sources are stemmed from different 

physical phenomena. This means the method will fail to decompose the correlated acoustic 

sources, as may be found in case of reflections for instance. 

Third, the quality of the separation results is directly impacted by the performance of the 

backpropagation (acoustic inversion) which is a preliminary step in the proposed approach. The 

latter is restricted by three experimental parameters. The first one is the analysis frequency of the 

acoustic signal. As well-known, the lower the analysis frequency is, the more difficult the 

inversion is due to large wavelengths. The second one is the distance Z. The larger the distance Z, 

the less information is captured by the array. A critical case is the filtration of evanescent wave at 

low frequencies and large distances. Hence, the proposed algorithm will have excellent 

performance at a small distance Z to the sources and at high frequencies. The last critical 

parameter is the spacing D. When D tends to zero, it means the sound sources are overlapping. 

They will be regarded as a whole and large source, in which case source separation will no longer 

make sense. 
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4. Conclusion 

The proposed source separation algorithm is based on two simple assumptions. The first one is 

the uncorrelation of the sound sources of interest and the second one is their spatial compactness 

or low “complexity”. It is believed that these two assumptions may be easily satisfied in many 

industrial applications. The other limitations of the method are similar to classical source 

reconstruction by backpropagation. 

A future direction of research is to generalise the separation to the case of correlated sound 

sources. 
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