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ABSTRACT

This paper deals with the problem of image colorization. A
model including total variation regularization is proposed.
Our approach colorizes directly the three RGB channels,
while most existing methods were only focusing on the two
chrominance channels. By using the three channels, our ap-
proach is able to better preserve color consistency. Our model
is non convex, but we propose an efficient primal-dual like
algorithm to compute a local minimizer. Numerical examples
illustrate the good behavior of our algorithm with respect to
state-of-the-art methods.

Index Terms— Colorization, total variation, patches, op-
timization, variational methods.

1. INTRODUCTION

Image colorization is an old research field that started in 1970
with Wilson Markle (see details in Levin et al. [2]). It ap-
peared naturally for restoration of old documents and movies.
The objective is to transform a given gray-scale image (called
target) into a colored one. As no color information is present
in a gray-scale image, additional prior is needed. It can be
done in two ways: with manual interactions or by giving a
color image as an example.

In manual methods (following the work of [2]), the user
defines colors on some points of the image and an algorithm
is used to spatially diffuse the color. These methods have a
main drawback: if the image represents a complex scene, the
user has to draw a lot of seeds. In exemplar-based coloriza-
tion methods, the color information is extracted from a color
image, called source, selected by the user. Figure 1 shows an
example of such a method where the final result is obtained
with the approach introduced in this paper.
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(a) Source. (b) Target. (c) Our result.

Fig. 1. Exemplar-based image colorization.

The first exemplar-based method is the one proposed by
Welsh et al. [3]. It is derived from the texture synthesis al-
gorithm of Wey et al. [4] which uses image patch similari-
ties on the intensity channel to provide colors. Such methods
suffer from spatial consistency since each pixel is processed
independently. Hence, Irony et al. [5] considered the diffu-
sion step of [2] as a post-processing, in order to regularize
the colors given by the exemplar-based approach. Recently,
Gupta et al. [1] segments the image in order to guide the se-
lection of examples and regularize the colors with [2]. The ap-
proach of Charpiat et al. [6] ensures a spatial coherency with-
out a segmentation but involves many complex steps while
Chen et al. [7] uses image matting. Finally, Bugeau et al. [8]
presents a framework for exemplar-based colorization based
on the minimization of a functional including a total variation
(TV) regularization on the chrominance channels. Neverthe-
less theirs results are too drab, in particular near the contours,
and a transformation in the Y UV space is needed which can
create colors that do not exist in the example images.

In this paper, we propose an extension of [8] that over-
comes these issues. Our new model differs from the chromi-
nance model [8] which suffers from a lack of coupling be-
tween the luminance Y and the chrominance channels (U and
V ) during the regularization. In our model the colorization is
done directly in the RGB space with coupled channels. This
permits to preserve colors, in particular near the contours. Up
to our knowledge, our model is the first exemplar-based col-
orization algorithm using the RGB color space. Notice that
the RGB space is only used in [9], [10], which are manual
methods.

The paper is organized as follows: we first review the



chrominance model [8], then we present our new model with
an efficient primal-dual like algorithm [11] minimizing the
functional. Finally, the behavior of the method is presented
with comparisons with the state-of-the-art methods.

2. REVIEW OF THE CHROMINANCE MODEL [2]

The authors of [8] chose to work in the Y UV space in order
to easily constrain the Y channel to be equal to the origi-
nal target image. Hence, all the information present in the
gray-scale image are preserved, i.e., contours or textures.
The method consists in only computing the two chrominance
channels (U and V ) of the colorized image. Together with
the Y channel, it permits to recover a RGB image.

The method starts by extracting, for each pixel of the tar-
get image, 8 chrominance candidates ci with i = 1, · · · , 8 by
comparing patches around pixel and using different features
(variance, cumulative histogram and magnitude of the DFT
for different sizes of patches). To select one color between
these 8 candidates, an energy-based method is proposed. To
ensure the regularity of the resulting image u defined on the
domain Ω, the model includes a TV regularization of the U
and V channels. Let u = (U, V ) be the chrominance to com-
pute and W = {wi} be the candidate weights, the model
of [8] reads:

F1(u,W ) := TV (u) + λ/2

∫
Ω

∑
i=1,··· ,8

wi||u− ci||2

+ α

∫
Ω

∑
i=1,··· ,8

wi(1− wi) + χu∈R + χW∈∆

(1)

where TV (u) =

∫
Ω

√ ∑
C=U,V

∂xC2 + ∂yC2 (2)

and ∆ := {(w1, · · · , w8) st 0 ≤ wi ≤ 1 and
∑

iwi = 1}. (3)

The set R is the standard range for the chrominance and the
characteristic function χu∈X is 0 if u ∈ X and ∞ other-
wise. The model is continuous, and the fidelity-data term
is the transformation of a labeling problem into a continu-
ous term by introducing a weight wi corresponding to the
probability of considering the color candidate ci. The term∫

Ω

∑8
i=1 wi||u − ci||2 makes the link between the candidate

color ci and the color u which will be retained. Each candi-
date is weighted, and the fidelity-data term can be close to a
melting of two colors, which does not correspond to any color
of the source image. To tackle this issue the weights wi are
forced to be close to 0 or 1 with the sum equal to 1. To this
end, the term

∫
Ω

∑8
i=1 wi(1−wi) is introduced. λ and α are

parameters that weight the influence of the different terms of
the model. The functional is not convex and may admit local
minima.

3. RGB MODEL FOR COLORIZATION

The results presented in [8] are visually good but the methods
still presents some drawbacks. The resulting images are drab

since if a strong regularization is used, the U and V chan-
nels become constant, and the image is close to a gray-scale
one. Another problem which naturally arises is the lack of
coupling in direction between color channels creating halos
near strong contours. To couple the three color channels, we
propose to work directly with the RGB space.

The chrominance model [8] is invariant with respect to the
scene illumination but the method only retains the U and V
values. The consequence is: with a given U and V , different
colors can be obtained when varying Y (see Figure 2) and can
produce colors with hues that are not present in the candidates
data. It is therefore preferable to directly work with the three

Fig. 2. If U and V are constant, and Y variates, different
colors are obtained.

channels. In this paper, we propose a RGB-model that is
invariant with respect to the illumination. A main advantage
of our approach is that a color space transformation at the
beginning and the end of the algorithm is not necessary. In
order to take into account all these elements, we introduce the
following functional, where u is now a RGB image:

F2(u,W ) := TVRGB(u) + λ/2

∫
Ω

∑
i=1,··· ,8

wi||u− ci||2

+ α

∫
Ω

∑
i=1,··· ,8

wi(1− wi)

+ χu∈[0,255]3 + χY (u)=Ig + χW∈∆

(4)

where TVRGB(u) =

∫
Ω

√ ∑
C=R,G,B

∂xC2 + ∂yC2. (5)

Two constraints are added to the original model: the colorized
image should be between 0 and 255 and the second constraint
is that the luminance of the colorized image should be the
same as the target gray-scale image in order to preserve im-
age textures. The luminance constraint is given by Y (u) =
A.u = Ig where u = (R,G,B) , Ig is the original luminance
of the target image, andA = (0.2990, 0.5870, 0.1140) allows
recovering the luminance of a RGB color.
Minimization of the functional. In order to estimate a local
minimum of (4), we consider a primal-dual algorithm [11]
with respect to the variable u and a projected gradient up-
date for the variable W = {wi} with time step τw > 0.
The process is summarized in Algorithm 1. The dual vari-
able Z ∈ R6 is related to the TV regularization in the RGB
space and PB is the projection onto the unit ball of R6. P∆ is
the projection onto the simplex ∆ defined by (3) that can be
computed using [12]. The term (‖u − ci‖2)i represents the
array of the same size of W such that each weight is equal to
‖u(x) − ci(x)‖2 for i ∈ 1, · · · , 8 and position x ∈ Ω. No-
tice that if W is fixed, then the model is convex in u and the
algorithm converges [13] if 24τσ < 1.
The problem of luminance and range. The natural problem
that arises when we want to implement the primal-dual algo-



Algorithm 1 Primal-dual like algorithm applied to (4).
1: Z ← 0, W = 1/8 and u =

∑
i wici.

2: for n ≥ 0 do
3: Z ← PB (Z + σ∇u)

4: W ← P∆

(
W − τw(λ(||u− ci||2)i + α(1− 2W ))

)
5: u← PG

(
u+ τ (div(Z) + λ

∑
i wici)

1− τλ

)
6: end for

Algorithm 2 Algorithm computing projection PG.

1: X ← A

||A||2
(Ig − 〈X|A〉) +X

2: if X 6∈ [0, 255]3 then
3: for i = 1 : n− 1 do
4: for j = i+ 1 : n do
5: α←

〈−−→
PiPj |

−−→
PiX

〉
/
(
‖
−−→
PiPj‖2‖

−−→
PiX‖2

)
6: if α > 1 then
7: Xi,j ← Pj

8: else if α < 0 then
9: Xi,j ← Pi

10: else
11: Xi,j ← Pi + α

−−→
PiPj

12: end if
13: end for
14: end for
15: X ← argminXi,j

‖X −Xi,j‖2
16: end if

rithm is the projection of u onto its constraints through the
operator PG, i.e., the computation of the proximal operator
of χu∈[0,255]3 + χY (u)=Ig . This is equivalent to computing
the projection onto the intersection of the cube [0, 255]3 and
the affine plane defined by A.u = Ig . There are four cases
for this set. It can be a singleton, a triangle, a quadrilateral
or a pentagon. To compute the projection we proceed in two
steps. First, we compute the projection onto the plane, then
we project onto the intersection of the cube and the plane.
The projection of a point onto the intersection of the cube
[0, 255]3 and the affine plane defined by A.u = Ig is given in
Algorithm 2, assuming this intersection is a polygon defined
by points P1, · · · , Pn.

The main drawback of this projection is the change of hue
of the color (the H channel of theHSI color space [14]) dur-
ing the computation, because the plane {Y = constant} is
not orthogonal to the axis I oriented from the white to the
black. In practice, the H channel is maintained constant dur-
ing the projection by slightly modifying Algorithm 2 in or-
der to consider an oblique projection that preserve the hue.
For the sake of simplicity, this projection is not detailed here
(see [15] or [16] for more details).

4. NUMERICAL RESULTS

(a) Source image. (b) Target image.

(c) Initialization. (d) Final labeling.

(e) Result with [8]. (f) Our result. (g) Our result with
strong regularization.

Fig. 3. Results with different regularization, with initializa-
tion and with data term at convergence. See text for details.

Figure 3 shows the details of a first colorization. Fig-
ure 3(c) is the initialization of the algorithm: u =

∑
i ci/8.

The result obtained by our method is presented in Figure 3(f).
Resulting colors are visually close to the ones of the source
image (Figure 3(a)). Our approach improves visually the re-
sult obtained with the chrominance model [8] (Figure 3(e)).
Indeed, the contours with our method are better preserved and
we are able to recover some green on the hills. This confirms
that the regularization term must couple all the three channels
of color to have a good preservation of shapes. It is worth
mentioning that our algorithm also provides a regularized la-
beling of the discrete original problem which is the choice of a
candidate for each pixel. This is illustrated in Figure 3(d) that
presents the labeling image u =

∑
i wici after convergence

of the algorithm. Finally notice that the images are drab when
a strong regularization is used (λ = 10−7), see Figure 3(g).
If the regularization is weaker, the images are shinier and vi-
sually close to the obtained labeling (Figure 3(d)). In natural
images a good parameter is about 7.10−3.

The minimization of the functional with respect to u im-
proves the quality of contours and prevents stains in constant
regions of the image. Figure 4 shows experimental results
compared to the state-of-the-art methods. On the left, the
source and target images are shown. Our results are in the
third column and other columns are results from [1], [5], [3]
and [6] (these results have been directly taken in the arti-
cle [1]). The results of [5] and [6] are not good although
their algorithms need many steps. Due to the lack of reg-
ularization, images of [3] present artefacts where areas that
were originally homogeneous now present irregularities. Our
algorithm better preserves the homogeneous parts as the sky.



Source. Target. Our result. [1]. [5]. [3]. [6].

Fig. 4. Comparison with state-of-the-art methods. On the left, the source and the target images. Results of our method on four
images, compared with the results of the state-of-the-art methods [1], [5], [3] and [6] (images taken from [1]).

The quality of our results are comparable to [1] whereas our
algorithm is much simpler since local segmentation like su-
perpixels [17] is not needed. Currently, our is faster, but we
expect to speed-up it more with discrete optimization meth-
ods.

Fig. 5. Additional results.

Figure 5 present additional results. They show that our
method is efficient and competitive in order to colorize gray-
scale images with examples. Finally, Figure 6 highlight the
influence of the source image on the colorization result. Us-

Fig. 6. Influence of the source image.

ing several source images could improve the quality of all the
results and is directly feasible with the described method.

5. CONCLUSION AND FUTURE WORKS

In this paper a new model for exemplar-based colorization in
the RGB color space has been described. The regularization
is provided by the minimization of the coupled total variation
of color channels. An efficient algorithm solving the proposed
model has been given. This new approach extends and im-
proves the chrominance model [8]. The resulting images are
less drab, the color are better preserved and the contours are
well colorized. In futur works, we plan to extend the method
to integrate manual colorization, and to investigate the choice
of good metrics for searching color candidates.
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