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Object Perception for Intelligent Vehicle Applications:

A Multi-Sensor Fusion Approach

Trung-Dung Vu, Olivier Aycard and Fabio Tango

Abstract— The paper addresses the problem of object per-
ception for intelligent vehicle applications with main tasks of
detection, tracking and classification of obstacles where multiple
sensors (i.e.: lidar, camera and radar) are used. New algorithms
for raw sensor data processing and sensor data fusion are
introduced making the most information from all sensors in
order to provide a more reliable and accurate information
about objects in the vehicle environment. The proposed object
perception module is implemented and tested on a demonstrator
car in real-life traffics and evaluation results are presented.

I. INTRODUCTION

In this paper we will describe our advanced research work

on the object perception problem which is carried out within

the framework of the European project interactIVe1 (2009-

2013). The project has aimed at pushing the safety of road

transport towards the goal of accident-free traffic by develop-

ing advanced driver assistance systems (ADAS) for safer and

more efficient driving. In the project, a common perception

platform was designed and developed which allows an easy

and flexible adaptation for a variety of applications with

different demonstrator cars on which different sets of sensors

are equipped. The designed perception platform is comprised

of different modules dealing with tasks at different levels,

such as sensor refinement, object perception and situation

understanding, where the research on novel algorithms of

sensor data processing as well as sensor data fusion are

emphasized in order to provide a more reliable and accurate

information about the vehicle environment.

Our contributions to the object perception task presented

in this paper is addressed in the frontal object perception

(FOP) module which is developed as part of the common

perception platform. The FOP module is designed to take

input from different sensors (i.e.: lidar, camera, radar) and

perform tasks of detection, tracking and classification of

obstacles appear in front of the vehicle. While the object

detection provides knowledge about the presence of obstacles

including static and dynamic ones, the object tracking allows

the prediction of future behavior of moving objects which is

a very important information for safety applications in highly

dynamic environments. Besides, the object classification pro-

vides further information about different type of obstacles

on the road, such as vulnerable users (e.g.: pedestrians)

T-D. Vu is with INRIA Rhône-Alpes, Grenoble, France (e-mail: Trung-
Dung.Vu@inria.fr)

O. Aycard is with Laboratoire d’Informatique de Grenoble (LIG), Uni-
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Fig. 1. Sensor setup on the CRF demonstrator.

and other vehicles which helps the target application to

decide suitable actions in case of confronting a developing

dangerous situation.

A. Related works

In the literature, the object perception problem with its

main tasks of detection, tracking and classification of ob-

jects have been active research topics. Due to the limited

characteristic of individual perception sensors, single-sensor

approaches have been revealed its flaws. For instance, the

radar provides good information for the object detection and

tracking but it provides no information for the classification.

Additionally, the radar has difficulty to detect non-rigid

objects like pedestrians. State-of-the-art vision system [6]

provides a very interesting way for the detection and tracking

of a specific class of object (ex: pedestrian). However the

image processing is usually time-consuming which makes

the vision-based systems not suitable for real-time appli-

cations especially when more than one object class are

considered. Using the lidar with very reliable source of

possible detections, a very good system for the tracking of

generic objects can be obtained [15]. However the lidar only

sees visible part of the object, the object classification with

lidar data is not easily determined and the object tracking can

be severely affected as indicated in [9]. Using a model-based

approach [9], the tracking with lidar data can be improved,

but unfortunately this method is limited to the detection and

tracking of vehicles only.

To overcome these limitations, in this paper we address

the object perception problem by a multi-sensor based ap-

proach where the detection, tracking and classification of

objects are solved simultaneously and different object classes

(i.e.: pedestrians, bikes/motorbikes, cars, trucks) are taken



into account. Firstly new algorithms for raw sensor data

processing (e.g.: lidar, camera) are introduced for a fast

and robust extraction of objects of interest. Then a fusion

process at object-level is employed to combine the most

information from all sensors. While lidar data allows for a

better estimation of object’s geometry and a better tracking

performance; camera images allow for a better object class

information. Final outcome will be a better and more reliable

representation of detected objects in the surroundings. To

demonstrate that our proposed method is able to meet critical

requirements for automotive applications, we also present

experiments and evaluation results.

B. Experimental platform

All the experiment and test results reported in this paper

are performed with the CRF demonstrator car on which

the FOP module is implemented and integrated. The car is

equipped with a 2D lidar, a radar and a mono camera with

the configuration and sensor coverage is shown in Fig. 1.

C. Paper outline

The rest of the paper is organized as follows. In the next

section, we describe in detail our implementation of the FOP

module together with the lidar and camera data processing

as well as the fusion process. Section III presents test results

with qualitative and quantitative performance evaluation of

the FOP module in different scenarios. Section IV will

concludes the paper and future works are given.

II. FRONTAL OBJECT PERCEPTION

The architecture of the FOP module is depicted in Fig.

2. The FOP module takes inputs from camera, radar, lidar

sensors. In addition, the ego-vehicle dynamics information

is provided by another module in the perception platform,

named Vehicle State Filter (VSF). The FOP module delivers

as output a list of objects (tracks) together with object

classification information. While the lidar and camera pro-

vide raw data at low-level in terms of points and images,

respectively, the radar provides high-level data in terms of

detected targets. Additionally, the FOP module takes vehicle

dynamics information from another module in the common

perception platform.

At the beginning, raw data from the lidar and the camera

are processed and objects are extracted separately before

Fig. 2. The Frontal Object Perception architecture.

Fig. 3. Grid-based fusion of raw lidar data. From left to right: a) reference
situation; b) occupancy grid is built by fusion of all data received; c) new
scan received (in red); d) static and moving entities can be identified based
on the grid map: green boxes represent moving objects.

being incorporated with the radar data all together at a

fusion stage which is done at object-level to decide the final

output. Furthermore, for the target application, we would

like to pay more attention to several classes of road-users

(i.e.: pedestrians, bikes/motorbikes, cars, trucks), for each

object extracted from camera or lidar, a likelihood that object

belonging to one of these classes is also estimated. The object

class at the final output is also decided at the fusion stage.

In the following, we will detail the data processing at each

stage of the FOP module.

A. Lidar Object Extraction

The input to this stage is a list of lidar points which are

processed to deliver as output a list of lidar objects including

static and dynamic objects.

Static objects: To identify static objects from moving

ones, we employ a grid-based fusion approach which was

developed in our previous work [14]. A occupancy grid

is used to represent a static map of the local environment

which is constructed incrementally. In this representation,

the environment is divided into a two-dimensional lattice of

rectangular cells and each cell is associated with a measure

indicating the probability that the cell is occupied by an

obstacle or not. A high value of occupancy grid indicates

the cell is occupied and a low value means the cell is free.

An example of the occupancy grid is illustrated in Fig. 3,

where color of each pixel indicates the occupancy of the

cell: black: occupied, white: free, grey: unexplored cell that

has no information yet. Based on the constructed grid, when

a new lidar data measurement is received, a static object and

dynamic object can be detected if it appears at occupied

or object-free regions, respectively. Since a static object

can be of various size and shape, it is then extracted in a

form of contour points or a bounding box of measurements

depending on the target application. And as remarked in

our previous work, one obvious advantage of using grid-

map representation compared with other approaches using

feature-based [5] that the noise and sparseness of raw lidar

data can be inherently handled and at this low-level fusion,

no data association is required.

Dynamic objects: For dynamic objects, after being de-

tected from the grid map, we would like to track them

in order to estimate their dynamics and can predict their

future behaviors. A conventional detection-before-tracking



approach [3] can be applied here using classic data associa-

tion algorithms like the Joint Probability Data Association

(JPDA) [10] or Mutiple Hypothesis Tracking (MHT) [2].

However, these approaches face two well-known problems

as described in [13]. Firstly, due to the inherent discreteness

of the grid and threshold functions, moving object detec-

tion at one time instant usually results in ambiguities with

missed/false detections and objects can be split into several

segments that make data association for tracking sometimes

very difficult. Secondly, due to the fact that the lidar sensor

only sees part of object, object extraction in this way does not

always reflect the true geometry of the object which severely

affects the accuracy of the tracking result.

To overcome these drawbacks, we have an important

remark that the number of classes of moving object of

interest is quite limited and fortunately they can be repre-

sented by simple geometric models, for example: rectangle

for vehicles and bicycles, small circle for pedestrians. In

this work, we introduce a new algorithm using a model-

based approach which formulates the detection and tracking

of moving objects as a batch optimization problem using

a temporal sliding window over a fixed number of data

frames. Dynamic measurement detection at a single frame

based on the grid map mentioned previously is now used

as a coarse detection that provides bottom-up evidences

about potential moving objects. Since these evidences are

actually visible parts of the objects, they are used to generate

hypotheses of the actual object using all possible object

models. Object hypotheses generated from all frames are

then put into a top-down formulation (a global view) taking

into account all object motion models and sensor models.

This leads to an optimization problem where we search for

a set of trajectories of moving objects explaining the best

of the measured data. The optimal solution is found by a

very efficient sampling technique that can meet the real-time

requirement (in several tens of milliseconds). More detail

description about the algorithm can be found in our published

work [13].

Our new approach for tracking dynamic objects has many

advantages. Firstly the detection and tracking of objects are

solved simultaneously taking into account data from several

frames which significantly reduces the ambiguities that might

be caused by the detection at a single frame. Secondly, using

our model-based approach, object geometry are estimated

more accurately which also helps to improve the overall

tracking results. Thirdly object class information is naturally

given by the chosen object model.

B. Image Object Extraction

For the target applications, we would like to pay more

attention about several object classes, namely pedestrians,

cars and trucks. While information about the class of objects

extracted from the lidar can be estimated based on its

estimated geometry. Camera images with rich appearance

information can help to provide more accurate about the type

of objects.

Fig. 4. Different detection windows with informative blocks are selected for
each class of object, from left to right: pedestrian, car and truck (for visibility
purpose, only some of them are displayed). Histograms of gradients are
computed over these sparse blocks and concatenated to form SHOG features.

To identify these objects of interest from the camera

images, we follow most popular approaches using a sliding-

window paradigm where a detection window is tried at dif-

ferent positions and scales. For each window, visual features

are extracted and a classifier (usually pre-trained off-line)

is applied to decide if an object of interest is contained

inside. In general, the choice of image representation and

classification methods decides the performance of the whole

system.

Image representation: we based our approach on the work

of Dalal and Triggs [4] on the histograms of oriented gra-

dients (HOG) which has recently become a state-of-the-art

feature in computer vision domain for object detection tasks.

In their original idea, a detection window is divided into a

dense grid of cells and histograms of gradients are computed

over all overlapping square blocks of four cells adjacent.

From experiments, we found out that for a given class of

object (e.g.: pedestrian, vehicle), a block is not necessarily

square and by only using a few of the most informative

blocks we could represent the object image to obtain similar

performance with a benefit of much less computational effort.

The resulting feature vector is quite compact with its dimen-

sion of about a few hundred compared with about several

thousands in the original method. Fig. 4 illustrates some of

our blocks selected to extract features for different object

classes: pedestrian, car, truck. It turns out that these selective

blocks correspond to meaningful regions of the object image

(for example: head, shoulder, legs for the pedestrian class).

We call our feature selection method SHOG which stands

for Sparse HOG feature. In our implementation, we used 6

histogram bins for all object classes, 9 blocks for pedestrian,

7 blocks for car and 7 blocks for truck. To accelerate

the SHOG feature computation process, we employed the

idea of using integral image introduced by Viola [12]. We

compute and store an integral image for each bin of the HOG

(resulting in 6 images in our case) and use them to compute

efficiently the HOG for any rectangular image region which

requires only 4*6 image access operations.

Image classifier: Given computed features, the choice of

classifiers has a substantial impact on the resulting speed

and quality. To achieve a suitable trade-off, we chose the

discrete Adaboost method [7], a boosting-based learning

algorithm. The idea of a boosting-based classifier is to



Fig. 5. Examples of successful classification-based object detection of
pedestrians and cars from images.

combine many weak classifiers to form a powerful one where

weak classifiers are only required to perform better than

chance hence they can be very simple and fast to compute.

For each object class of interest (e.g.: pedestrian, car, truck),

a binary classifier is pre-trained to identify object (positive)

and non-object (negative) images. For the off-line training

stage, positive images are collected from public datasets [1]

or manually labeled containing objects of different view-

points, for example: pedestrian (frontal, profile), car (frontal,

rear side), truck (frontal, rear side). They are all scaled

to have sampling images of the same size for each object

class: pedestrian: 32x80 pixels, car: 60x48 pixels, truck:

60x60 pixels. Negative samples are generated randomly from

images which do not contain an object of interest. SHOG

features are computed for all samples which are then used

for training classifiers.

The training process starts where each training sample is

initially assigned the same weight and iterates for a fixed

number of times. On each round, a weak classifier is trained

on the weighted training data and its weighted training is

recomputed. The weights are increased for training samples

being misclassified so that the weak classifier is forced to

focus on these hard samples in the next step. The final

classifier is the sign of weighted sum over individual learned

weak classifiers. In our implementation, decision trees are

used as weak classifiers in this boosting scheme.

Image object detection: Final classifiers for each object

class (i.e.: pedestrian, car, truck) obtained after the off-line

training are used for the online object detection stage in the

sliding-window scheme. Detection time is affected by both

phases of feature extraction and classification. Thanks to the

use of the integral image, the feature extraction step is fast

only taking about 10ms or less. Likewise, the classification

time is very fast taking only about 2ms per 100 samples. For

an input image of size 752x250 pixels, there are about several

thousand windows to check and the whole detection time is

about 70ms for each object class. Fig. 5 shows examples

of pedestrian and car detection results (green and red boxes

respectively) before merging into the final objects.

Speed-ups: Although the image object detection process

is quite fast, we still need a lot of speed-ups since the total

time allowed for both FOP and MOC modules is only 75ms.

Instead of searching for the whole input image, we make

use of information about targets detected by radar sensor and

lidar processing module described above to focus on some

regions of interest (ROIs) in the image. Thanks to the sensor

calibration parameters, we can compute the homograph to

transform coordinates of radar and lidar targets onto the

image to calculate ROIs. In this way, the number of sliding

windows per image can be then reduced to several hundreds

that makes the whole image detection process in only about

20-30ms.

Image object classification: In our image-based object

detection process with the sliding-window scheme, the like-

lihood of object class can be naturally estimated based on

the number of detection around object location. Basically, the

greater the number of positive windows (containing object of

interest), the greater is the probability that the object belongs

to that class. False alarms are often returned with very few

positive responses.

C. Object Fusion

At this stage, a unified fusion process takes place to fuse

all information from list of objects detected by different

sensors (i.e.: lidar, camera, radar) in order to decide the final

FOP output. Since sensors have different fields of view (Fig.

1), the fusion is performed only in the overlapping region in

the common coordinate system. Moreover, different sensors

have different characteristics, the fusion aims to make use of

the complementary information of these sensors to improve

the overall object detection and classification provided by

individual sensor. Additionally, conflict evidences can be

used to reduce the number of false positives and missed

detection/classification. Our fusion approach is based on the

Dempster-Shafer (DS) theory [11]. It takes, as sources of

evidences, individual lists of objects provided by all sensors.

For each object, its complete state includes information about

its location, shape, size and velocity together with individual

object classification. Using the DS theory we are able to

represent evidences about these object features coming from

different sensor detectors, and their classification likelihood

into a common representation. The proposed fusion process

relies on two main parts: the instantaneous fusion, obtained

from the combination of evidence provided by individual

sensor per object at current time; and the dynamic fusion,

which combines evidence from previous times with the

instantaneous fusion result. The mechanism used to combine

the sources of evidence is a proposed rule of combination

based on the one presented in [16]. This mechanism al-

lows us to give more support to common hypothesis and

use complementary evidence by managing situations with

different levels of conflict without getting counter-intuitive

results. These situations usually appear when sensors with

low reliability are used, their evidence is noisy or contra-

dictory and when the demonstrator is placed in cluttered

scenarios. Given that the performance of the individual object

detectors varies according to the type of sensor and their

specifications, we included two uncertainty factors into the

rule of combination: sensor reliability and sensor precision

to certain properties of the returned objects. The final state

(location, shape, size, velocity and classification information)

for each object is selected as the hypothesis with a highest

evidence value after the dynamic fusion is performed. By this

way final outcome comprises the most of sensor capabilities

to detect specific features of the object. For example, a



camera sensor provides a better approximation of a vehicle

width, radar can give a direct measurement of relative speed

and lidar sensor can give a more precise moving direction for

moving object and gives more accurate measures of object’s

geometry and size when it is available. Cluttered urban

areas are a common scenario where image-based classifiers

capabilities help to classify a pedestrian/group of pedestrians

correctly where usually lidar is not able to. The output of

this stage is a list of FOP objects with all information about

the object’s properties: location, geometry, dynamics plus the

classification information from the fusion process. For more

details about this fusion process, the reader can refer to our

published work [8].

III. TESTING AND EVALUATION

In the project interactIVe, the FOP module is integrated

and tested on the CRF demonstrator within the common

perception platform, called the Reference Perpetion Platform

(RPP), together other perception modules where critical

requirements have to be met.

A. Computational time

In the RPP, some modules have dependencies with others

and they are designed to run at different stages (levels)

which is assured by a common scheduler. The integrated

FOP module is triggered to run from level 2 to level 5

of the RPP with a total time allowed of 75ms (per 100ms

of one RPP cycle) which is still a challenge for the whole

sensor data processing. From the statistics which measure the

running time of each RPP module, the average and maximum

computing time of the FOP module is about 40ms and 65ms,

respectively which fulfills the timming requirement of the

designed platform.

B. Qualitative performance

For the qualitative assessment, we would like to ver-

ify general functionality of the whole module (i.e.: object

detection, tracking and classification). Additionally, we are

interested in assessing the advantages of the fusion process.

In the following, we will show some results obtained from

different scenarios. Output provided from the FOP module is

checked with the camera video to see if all the functions are

working as expected. Note that, the FOP output is displayed

in both the camera view and the birds-eye view.

Fig. 6 shows two scenarios on the test track. In the first

situation, the ego-vehicle is approaching a stationary car. In

the camera view, we can see that the target vehicle is well

detected and correctly classified. Although it is seen by all

sensors: radar (red circles), lidar (green dots) and camera

(yellow boxes), only the camera can provide information

about object class. The lidar only sees the rear part of the

car giving no clue about the type of object. In the second

situation, the ego-vehicle is following a moving car. Again

this target is seen by all sensors and is correctly classified

as a car. In this situation, when the target car moves, the

lidar is able to estimate the target model which supports

the correct classification. The accuracy of the lidar tracking

algorithm is verified by comparing the lidar-based estimated

speed with the speed provided by the radar sensor and the

speed of the ego-vehicle. However, while the radar only

provides Doppler velocity of the target and no information

about target moving direction, thanks to the lidar tracking

module, the car moving direction and its geometry are both

well estimated. For the assessment of dangerous situations,

this information of moving target is very important.

Fig. 7 shows examples of detecting pedestrians on the test

track. In the first situation, two pedestrians are crossing each

other in the frontal area and in the second situation two

pedestrians are moving, closely, towards the ego-vehicle. In

both cases, we observe that radar detection of pedestrians

is not fully reliable in particular for distances above 30m.

On the other hand they are well detected and tracked by

the lidar. However, only the camera is able to provide good

class information of objects. Two pedestrians in the first test

are well recognized and the final target in the second test is

correctly classified as a group of pedestrians thanks to the

image classification module.

Fig. 8 shows output examples of the FOP module in two

real-life scenarios: one on a highway and one on an urban

road. Although these scenarios contain lots of traffic, all

vehicles moving in two directions are well detected, tracked

and correctly classified as cars and trucks. In these examples,

static objects (e.g.: barriers) are also reported in the birds-eye

view. Moving objects are distinguished by attached velocities

and their moving directions are well estimated thanks to

the lidar tracking module. Note that, in the object-level

fusion stage, the radar Doppler velocity information helps

to improve the target speed estimated by the lidar after its

moving direction is known. However the radar only covers

a small frontal area (FOV of 15
◦) compared with the lidar

area (FOV of 110◦).

We can see that in all tests performed, from specific test

scenarios to real-life traffic scenarios, the FOP module with

all functions of detection, tracking and classification has been

working well as expected. And it is very interesting to see

that data fusion process help to make use of the best charac-

teristics of different sensors into the final perception output.

The state of object at output contains lots of information:

location, geometry, object class, speed, moving direction (for

moving ones) that cannot be provided by only one individual

sensor.

C. Quantitative performance

Since there is no ground-truth data available at the testing

moment, we have evaluated the performance of FOP-MOC

module manually and we focus on the detection and classi-

fication functions since they are more critical to the target

application. The evaluation procedure will be conducted as

follows. We choose some typical scenarios from the available

dataset and perform a frame-by-frame evaluation. For each

data frame, we label objects of interest (e.g.: car, truck,

pedestrian) identifiable by human eyes from the camera

video. For each object, we will count for how many frames

it is correctly detected and classified. The number of wrong-



Fig. 6. Detection, tracking and classification of stationary and moving vehicles on the test track.

Fig. 7. Detection, tracking and classification of pedestrian/group of pedestrians on the test track.

Fig. 8. Examples of successful detection, tracking and classification of pedestrians and cars in real-life scenarios.

Fig. 9. Quantitative evaluation of the FOP module.



detections and wrong-classifications (false positives) are also

counted.

Fig. 9 summarizes the results collected after testing the

FOP module with data from different scenarios. The testing

scenarios are grouped into three categories: motorway, urban

road and test track. Bikes/motorbikes rarely appear in any of

the available test data, so this object category is omitted in the

table. We can see that in all tests performed, for all consid-

ered objects of interest, high detection and classification rates

are achieved with relatively low false positives. In the test

track scenarios where only one car or a few pedestrians are

present, the detection and classification rate of pedestrians

and cars is nearly perfect (97% and 100% respectively). In

the motorway scenarios, the detection rate of vehicles is

also very good: car (96%), truck (93%) where the missed

detections are due mainly to inherent noisy and clutter data

(for example: lidar hitting ground cant see object). The large

size of the truck explains the truck detection is not as good

as the car detection since it is sometimes confused with the

barrier. The false detection (false positives) of cars (3%) is

due mainly to the reflection which creates ghost objects.

However, the false positives are very low for the vehicle

detection and classification thanks to the fusion process from

different sensors. In the urban scenarios, the vehicle detection

and classification is still high (83% and 94% respectively).

However the pedestrian detection goes down to 82% with a

false positive for the detection of 12%. This is mainly due

to the fact that in urban roads, there are lots of traffic posts

that are easily detected and misclassified as pedestrians.

We can see that from the initial quantitative evaluation

process, the FOP module is shown to perform well pro-

viding quite reliable object perception outputs in terms of

detection, tracking and classification while maintaining the

tight computational time requirement of the Reference Per-

ception Platform. A more complete quantitative evaluation,

in particular the tracking evaluation, will be part of our future

work when the ground-truth data for the testing scenarios is

available.

IV. CONCLUSIONS

We have presented our solution for an advanced object

perception task using different sensors (i.e.: lidar, camera

and radar) through the integrated FOP module which is

developed within the interactIVe project. Firstly, new algo-

rithms for raw sensor data processing (i.e.: lidar, camera)

are introduced which help to obtain better and more reliable

results. Secondly, a unified high-level fusion is described to

make use of the best information from individual sensors to

the final output. Finally, promising results obtained through

the initial test and the evaluation process has confirmed the

efficiency and the applicability of our perception module for

real-time automotive applications. Future works focusing on

the quantitative evaluation dedicated to the tracking result

assessment are foreseen.
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