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Préface

JOBIM célèbre sa douzième année et s’est imposé depuis 2000 comme le lieu privilégié de rencontres et d’échanges
de la communauté francophone bio-informatique et biostatistique. Au cours de ces onze années, l’étendue sémantique du
terme bio-informatique et le champ de la conférence JOBIM se sont accrus substantiellement. JOBIM couvre actuelle-
ment des thèmes se rapportant à la génomique – avec une accumulation et une variété de données sans précédent liées
au développement rapide des technologies dites à « haut débit » –, la bio-informatique structurale, l’évolution et la
phylogénie, l’analyse fonctionnelle – en particulier l’étude de la régulation (génétique et épigénétique) des processus
cellulaires –, mais aussi la génétique des populations et l’écologie. JOBIM est ainsi une occasion unique de présenter des
approches méthodologiques originales dans ces domaines d’application, en particulier concernant l’intégration des données
et la représentation des connaissances, l’algorithmique (séquences, arbres, réseaux), les statistiques et la modélisation
mathématique, l’analyse d’images, ou encore les modèles dynamiques de réseaux d’interactions, utilisés en particulier en
biologie des systèmes.

Nous avons reçu cette année 161 soumissions (dont 42 résumés d’affiches lors de l’appel de seconde vague). Suite
au travail d’expertise du comité de programme et de quelques relecteurs additionnels, chaleureusement remerciés ici,
19 articles ont été retenus pour des présentations orales en séance plénière, et 24 pour des présentations orales lors de
sessions parallèles ; nous avons choisi d’organiser de telles sessions, pour la première fois cette année à JOBIM, dans le
but de répondre à la croissance de la discipline tout en offrant davantage de temps pour les exposés et leur discussion.
Les présentations orales ont été sélectionnées tant sur articles courts que sur articles longs. Quelque 110 affiches seront
également exposées et discutées lors de ces journées.

À ces présentations s’ajoutent les conférences invitées de Matthieu Blanchette, Michael Brudno, Patrick Forterre,
Edda Klipp, Marie-France Sagot, Peter Stadler et Sarah Teichmann. Nous leur adressons ici nos plus vifs remer-
ciements pour l’honneur qu’ils nous font en acceptant de venir exposer leurs travaux sur les sujets les plus actuels.

Afin d’inciter les doctorants et post-doctorants à soumettre leurs résultats, nous avons introduit pour cette édition
2011 deux prix à leur intention, décernés l’un pour la meilleure présentation sur affiche, et l’autre pour la meilleure
présentation orale. Nous espérons que ce soutien aux jeunes chercheurs de notre communauté sera apprécié, en tant que
reconnaissance de travaux de grande qualité scientifique, mais aussi en tant qu’encouragement à poursuivre la valorisation
des résultats obtenus.

Nous adressons nos remerciements à l’ensemble des membres du comité d’organisation pour le travail réalisé, tant en
amont que pendant ces journées. Nous remercions également nos partenaires institutionnels et industriels, et en partic-
ulier l’Institut Pasteur, pour l’accueil et le soutien offerts à l’organisation de ces rencontres, ainsi que la Société Française
de Bio-Informatique (SFBI) sous l’égide de laquelle ces journées sont placées.

Nous vous souhaitons la bienvenue à JOBIM 2011 et espérons que ces journées répondront à vos attentes bio-
informatiques.

Pour le comité de programme :
Emmanuel Barillot, Institut Curie – Inserm/Mines ParisTech, Paris

Christine Froidevaux, LRI CNRS – U. Paris Sud – INRIA, Orsay
Eduardo PC Rocha, Institut Pasteur – CNRS, Paris

Pour le comité d’organisation :
Hélène Chiapello, INRA, Jouy-en-Josas

Daniel Gautheret, IGM – U. Paris Sud, Orsay
Ivan Moszer, Institut Pasteur, Paris
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Session 1 : Protein Structure Présentation orale

Conférence invitée

Sarah Teichmann

MRC Laboratory of Molecular Biology, Cambridge, UK.

Evolution and Assembly of Protein Complexes

The formation of specific protein complexes is a basic requirement of all biological processes. Proteins interact through
surfaces that are complementary at the level of both sequence and structure, and so proteins often undergo changes in
conformation and flexibility when they bind to each other. At the same time, “sticky” patches on protein surfaces may
lead to spurious interactions between proteins in the cell. We can gain insight into these issues by analyzing the abundance
of data on protein interactions and protein complexes, both from conventional small-scale experiments collected over the
decades, including three-dimensional structures, and more recently by large-scale functional genomics experiments.

We have analyzed the relationships between the structures of proteins and the conformational changes that they un-
dergo upon binding by comparing crystal structures of free proteins and proteins in complexes. We find that the relative
solvent accessible surface area of both free and bound subunits can be used to predict the magnitude of binding-induced
conformational changes. We demonstrate that the relative solvent accessible surface area of monomeric proteins is useful
as a simple proxy for intrinsic flexibility and for predicting conformational changes upon binding. In addition to the
predictive power of this correlation, it reveals a strong connection between the flexibility of unbound proteins and their
binding-induced conformational changes, consistent with the conformational selection model of molecular recognition.

Inside the cell, specific interactions compete with non-specific interactions at some level. To what extent are proteins
under selection to avoid non-functional and deleterious interactions? To answer this question, we project evolutionary
and systems information onto 397, 196, and 701 proteins of known structure from E. coli, S. cerevisiae and H. sapiens
respectively. We find that the propensity of proteins to interact in a non-specific manner with other proteins is inversely
correlated with their abundance in E. coli and S. cerevisiae. This tendency is evident at surface residues: high abundance
proteins have evolved to have a less sticky surface. In E. coli and S. cerevisiae, we also find that the evolutionary
conservation of an amino acid is positively correlated with the stickiness of the surface environment around it. Thus,
residues in sticky surface patches are evolutionarily more constrained, possibly because they are more likely to trigger
non-functional interactions if they mutate. Although significant, the impact of protein stickiness is comparatively small
in shaping the physico-chemical properties and evolution of H. sapiens proteins. This suggests that promiscuous protein-
protein interactions are freer to accumulate in species with a small effective population size; a phenomenon akin to junk
DNA accumulation.
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PEP-FOLD: Biased Approach for the De Novo Prediction of Peptide
and Miniprotein Structure

Yimin SHEN1, Julien MAUPETIT1, Philippe DERREUMAUX2 and Pierre TUFFÉRY1

1 MTi, UMR-S973 INSERM, Unniversité Paris Diderot, 35 rue H. Brion, 75205 Paris, Cedex 13, France
{yimin.shen,julien.maupetit,pierre.tuffery}@univ-paris-diderot.fr

2 Laboratoire de Biochimie Théorique, UPR9080 CNRS, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie,
75005 Paris, France

philippe.derreumaux@ibpc.fr

Keywords Structural alphabet, peptides, miniproteins, de novo modeling.

PEP-FOLD: Prédiction De Novo de la Structure de Peptides et Mini-Protéines par
une Approche Biaisée d’Echantillonage Conformationnel.

Mots-clés Alphabet Structural, peptides, miniprotéines, modélisation de novo.

1 Introduction

While worldwide effort over the past 20 years (see CASP experiments [1]) has resulted in convincing ab
initio or de novo approaches such a Rosetta [2] for protein structure determination, accurate and fast peptide /
mini-protein 3D conformation prediction is still an open challenge. Yet, peptides play many biological functions
ranging from hormones, neurotransmitters to antibiotics, among others.

One of the reasons of this limitation is the low rate of peptide structure identification using either NMR
spectroscopy or X-Ray crystallography. It prevents the learning of specific sequence structure relationships:
in contrast to proteins, short peptides do not systematically adopt stable well-defined tertiary structures [3].
Concomitantly, until recently, the fast and reliable prediction of short peptides conformation has aroused limited
effort. Pioneering this domain in the late 90’s, Ishikawa and Dill proposed Geocore algorithm to generate
peptide conformations. It was followed by PepStr β-turn prediction, Peplook algorithm, the Generalized Pattern
Search algorithm (GPS) using secondary structure prediction, and most recently by PEP-FOLD (see [4,5] and
references included). We introduce here some early concepts of PEP-FOLD together with its most recent
evolutions.

2 PEP-FOLD

Concepts: PEP-FOLD is based on the concept of structural alphabet (SA) - i.e. a description of a
polypeptidic conformation as a series of local canonical conformations, and uses a HMM (Hidden Markov
Chain)-derived SA of 27 letters to describe proteins as series of overlapping fragments of four amino acids [6].
PEP-FOLD is based on a two-step procedure: (i) prediction of a limited set of SA letters at each position from
peptide amino acid sequence and (ii) assembly of the prototype fragments associated with each SA letter using
a greedy algorithm and a generic protein coarse-grained force field.

Results: Using a benchmark of 25 peptides with 9-23 amino acids, and considering the reproducibility
of the runs, the first version of PEP-FOLD[5] identified, on average, lowest-energy conformations differing
by 2.6 Å Cα RMS deviation (cRMSd) from the NMR structures. For 13 mini-proteins with 27-49 amino
acids, PEP-FOLD 1 reached an accuracy of 3.6 and 4.6 Å cRMSd for the most-native and lowest-energy
conformations, using the non-flexible regions identified by NMR (rigid core). However for several of these
mini-proteins, PEP-FOLD was not able to identify the native fold.

Session 1 : Protein Structure Présentation orale
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Figure 1. WW domain from the mouse transcription elongation regulator 1 (40 amino acids, PDB: 2ysi). De novo
conformations compared to experimental structures. Green: experimental. Blue: PEP-FOLD2, 2.6Å cRMSd. Wheat:
PEP-FOLD1, 4.3Å cRMSd. Magenta: Rosetta, 5.2Å cRMSd. For E14, Y23 and E31 side chains orientations clearly
show that only PEP-FOLD2 has identified the native fold.

We have recently reconsidered the prediction of the SA letters from the amino acid sequence. We find that
the posterior analysis of the probabilities of the SA letters at each position of experimental structures makes
possible to bias the set of SA letters used for the 3D assembly. This results in a dramatic decrease of the number
of SA letters to consider at each position (close to 40%). As a consequence, the new biased version of PEP-
FOLD can be safely extended for mini-proteins up to 50 amino acids. Considering a set of 56 peptides (i.e.
the whole collection of soluble (not in membrane) mini-protein structures available in the Protein Data Bank
of size 25-53 amino acids, not complexed with macromolecules or ions, at a pH more than 5.5), we find that a
protocol using 200 simulations of the new PEP-FOLD version, PEP-FOLD 2, is able to identify conformations
approximating the rigid core by 2.6Å cRMSd on average. Only 2 mini-proteins are misfolded. This is an
important improvement compared to the first version of PEP-FOLD that identified best conformations having
an average rigid core cRMSd of 3.0Å for 12 misfolded mini-proteins. Using a comparable de novo modeling
protocol of 200 simulations, Rosetta identifies conformations approximating the rigid core by 3.0Å cRMSd on
average.

3 Perspectives

Using PEP-FOLD, the de novo prediction of mini-proteins up to 50 amino acids reaches an unprecedented
level of reliability. At the same time, the PEP-FOLD approach is very fast (few minutes only) and opens new
perspectives for the in silico design of peptides.

Acknowledgements

The authors thank INSERM and CNRS for financial support and Pierre Thévenet for his help in producing
the latest results.
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Protein-protein Docking based on Shape Complementarity and
Voronoi Fingerprints

Thomas BOURQUARD1, Jerôme AZÉ2, Anne POUPON3 and David W. RITCHIE1

1 INRIA Nancy-Grand Est, LORIA, 615 Rue du Jardin Botanique, 54600 Villers-lès-Nancy, France
{Thomas.Bourquard, Dave.Ritchie}@inria.fr

2 INRIA AMIB group, Équipe Bioinformatique, CNRS UMR8623 Laboratoire de Recherche en Informatique,
Université Paris-Sud, 91405 Orsay Cedex, France

Jerome.Aze@lri.fr
3 Bios group, INRA, UMR85, Unité de physiologie de la Reproduction et des Comportements, F-37380 Nouzilly,

France ; CNRS, UMR6175, F-37380 Nouzilly, France ; Université François Rabelais, 37041 Tours, France
Anne.Poupon@inra.fr

Abstract Predicting the three-dimensional structures of protein-protein complexes is a major
challenge for computational biology. Using a Voronoi tessellation model of protein structure,
we showed previously that it was possible to use an evolutionary algorithm to train a scoring
function to distinguish reliably between native and non-native docking conformations. Here, we
show that this approach can be further improved by combining it with rigid body docking predic-
tions generated by the Hex docking algorithm. This new approach is able to rank an acceptable or
better conformation within the top 10 predictions for 7 out of the 9 targets available from rounds
8 to 18 of the CAPRI docking experiment.

Keywords Protein-protein Docking, Evolutionary Algorithms, Hex, CAPRI.

Amarrage Protéine-Protéine par couplage de la Complémentarité de Forme et des
Empreintes Voronoı̈

Résumé La prédiction de la structure tri-dimensionnelle des complexes protéine-protéine est un enjeu ma-
jeur pour la bioinformatique. Nous avions montré dans des travaux précédents que grâce à la modélisation
par un diagramme de Voronoı̈ de la structure des protéines, et à l’utilisation d’algorithmes évolutionnaires,
il était possible d’optimiser des fonctions de score permettant de distinguer avec une bonne fiabilité les
conformations natives des conformations non-natives. Nous montrons dans cet article que cette approche
peut être sensiblement améliorée en combinant celle-ci avec des modèles en corps rigide générés par l’al-
gorithme de docking Hex. Cette nouvelle approche, testée sur les cibles CAPRI des rounds 8 à 18, permet
de classer dans les 10 meilleures, une conformation quasi-native pour 7 cibles sur les 9 disponibles.

Mots-clés Amarrage protéine-protéine, Algorithmes Évolutionnaires, Hex, CAPRI.

1 Introduction

L’intégration des signaux extra-cellulaires en une réponse biologique adaptée repose en grande partie
sur l’association de complexes protéine-protéine. La détection et la détermination de l’organisation structu-
rale de ces assemblages moléculaires représente donc une étape essentielle pour la compréhension de ces
mécanismes et de leur régulation. Si les techniques qui permettent la détermination expérimentale des structures
protéiques ont connu des avancées fondamentales, notamment grâce aux projets de génomique structurale, cette
détermination reste délicate voire impossible, surtout lorsque l’objet étudié est un complexe. De plus, il a été
démontré expérimentalement que le nombre de complexes existant in vivo était bien supérieur au nombre de
protéines, rendant inenvisageable le recours systématique à l’expérimentation. L’amarrage protéine-protéine,
qui consiste à prédire la structure tridimensionnelle de ces assemblages macromoléculaires à partir des struc-
tures des partenaires isolés, serait donc un outil crucial dans l’étude du fonctionnement de la cellule [1].

Session 1 : Protein Structure Présentation orale
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Les différentes procédures existantes traitent généralement le problème en deux étapes : (i) une première
phase au cours de laquelle un grand nombre de conformations sont générées (étape limitante en temps de cal-
cul), (ii) puis une seconde phase au cours de laquelle ces différentes conformations sont évaluées afin d’en
extraire un sous-ensemble de conformations proches de la conformation native, que nous appellerons confor-
mations quasi-natives.

L’implémentation de l’algorithme de complémentarité de formes Hex sur cartes graphiques (GPU) a permis
de réduire considérablement le temps nécessaire pour l’échantillonnage statistique des quelques 109 modes
d’associations possibles pour deux protéines de taille moyenne [2]. Cet algorithme est capable de générer et
évaluer en quelques secondes plusieurs millions de conformations candidates afin d’en extraire un ensemble
réduit de conformations d’intérêt [3]. Cependant la fonction d’évaluation intégrée dans Hex ne permet pas
d’identifier de manière fiable une solution quasi-native dans cet ensemble.

Dans des travaux précédents, nous avons pu montrer que la représentation des structures protéiques par un
modèle “gros-grain” basé sur la tessellation de Voronoı̈ décrivait particulièrement bien les propriétés physico-
chimiques aux interfaces protéine-protéine [4]. Ce modèle, couplé à un algorithme évolutionnaire, permet d’op-
timiser des fonctions de score pour l’amarrage protéine-protéine [5,4,6]. Néanmoins, ces fonctions de score ne
sont pas suffisamment sensibles pour envisager l’exploration de l’interactome à grande échelle.

Dans ce travail, nous montrons que la génération de conformations candidates et l’évaluation de la complé-
mentarité de forme par Hex, couplées à l’évaluation des caractéristiques physico-chimiques par les empreintes
Voronoı̈, permettent une prédiction particulièrement efficace de la conformation de complexes protéine-protéine.
Afin d’évaluer cette approche, nous nous sommes placés dans le cadre de l’expérience CAPRI 1 [7]. L’objectif
de CAPRI est l’évaluation des méthodes d’amarrage protéine-protéine. Des complexes dont la structure tridi-
mensionnelle a été résolue, mais pas encore rendue publique, sont proposés aux prédicteurs. Le processus se
déroule en deux étapes : les prédicteurs proposent 10 candidats. Puis ils déposent une centaine de candidats,
qui sont alors proposés aux “scoreurs”, ce qui permet de tester les fonctions d’évaluation indépendamment de
la génération des conformations candidates [8]. Nous présentons dans cet article les résultats obtenus par notre
méthode pour les rounds 8 à 18 de cette expérience de “scoring”.

2 Méthodes

2.1 Base d’Apprentissage des Complexes Protéine-protéine

Les complexes utilisés pour les procédures d’apprentissage correspondent à ceux utilisés précédemment
[6], auxquels nous avons ajouté les complexes des benchmarks 3.0 et 4.0 proposés par Hwang et al.[9,10]
qui n’étaient pas déjà présents. Ce jeu d’apprentissage comprend 231 complexes liés-non liés ou non liés-non
liés (complexes pour lesquels la structure d’au moins un des partenaires isolé est connue). Tous les complexes
retenus ont été comparés deux-à-deux suivant la classification SCOP [11] afin d’éviter toute redondance.

Le jeu d’apprentissage est composé de structures natives, correspondant aux structures expérimentales,
et de structures non-natives associées. Les conformations non-natives ont été générées avec le logiciel Hex.
Pour un complexe donné, Hex recherche la conformation dans laquelle la complémentarité géométrique est la
meilleure. Cela permet de définir un axe de référence reliant les centres de gravité des deux partenaires. Les
solutions explorées sont alors celles pour lesquelles l’axe reliant les centres de gravité se trouve dans deux cônes
dont les sommets sont les centres de gravité, et dont l’axe central est cet axe de référence. Les angles définissant
ces cônes peuvent être choisis par l’utilisateur entre 0 et 180 ˚ . Dans cette étude, ces deux angles ont été fixés
à 45 ˚ car nous avons pu constater que des valeurs supérieures n’augmentaient pas la probabilité de générer des
conformations quasi-natives, mais augmentaient très fortement le nombre de conformations non-natives. Afin
d’éliminer les modèles trop proches les uns des autres, le seuil de clustering de Hex a été fixé à 9.0Å Root Mean
Square Deviation (RMSD). Les examples négatifs du jeu d’apprentissage ont été choisis dans cet ensemble de
conformations, et correspondent aux conformations non-natives (ayant un RMSD avec la conformation native
supérieur à 10Å) de plus basse énergie trouvés par Hex, et ayant une surface d’interface supérieure à 400Å2.

1. Critical Assessment of PRedictions of Interactions

T. Bourquard, J. Azé, A. Poupon and D. Ritchie Présentation orale
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10 structures non natives pour chaque structure native ont été incluses dans le jeu d’apprentissage (19 dans la
comparaison cœur-couronne).

2.2 Empreintes Voronoı̈ et paramètres d’apprentissage

Le modèle “gros-grain” défini dans [6], basé sur la tesselation de Voronoı̈, a été utilisé pour représenter
les structures des complexes. Pour chaque conformation candidate, la triangulation de Delaunay (duale de la
tesselation de Voronoı̈) est construite par utilisation de la CGAL [12]. L’interface est définie comme l’ensemble
des acides aminés d’un partenaire en contact avec l’autre partenaire. Cette interface est, soit restreinte aux
acides aminés qui ne sont pas en contact avec le solvant : interface cœur, soit non restreinte : interface cœur
plus couronne.

Pour chaque conformation, un vecteur de 96 paramètres est calculé et utilisé dans les procédures d’ap-
prentissage ou de test. Ce vecteur comprend le nombre total de résidus à l’interface, l’aire de l’interface, les
fréquences et volumes moyens des cellules de Voronoı̈ de chaque type de résidu, les distances et fréquences
de paires de résidus regroupés en six catégories physico-chimiques (hydrophobe (IFMLV), aromatique (FYW),
polaire (NQ), chargé positivement (HKR), chargé négativement (DE) et petits (AGSTCP)), les fréquences et
les volumes moyens de chaque catégorie de résidus (voir [6]).

2.3 Algorithme Évolutionnaire et Procédure d’Apprentissage

À l’aide des attributs d’apprentissage décrits plus haut, des algorithmes évolutionnaires ont été utilisés afin
de trouver un ensemble de fonctions permettant de discriminer les conformations quasi-natives et non-natives.
La fonction d’adaptation utilisée est l’aire sous la courbe de ROC (Receiver Operating Characteristic). Les
fonctions de score apprises dans cette étude sont de la forme :

Sj(conf) =

96∑

i=1

wi |xi(conf)− ci|

où pour chaque attribut d’apprentissageXi, xi, wi et ci représentent respectivement les valeurs, poids et valeurs
de centrage associés, wi et ci étant optimisés au cours de l’apprentissage. L’algorithme évolutionnaire est de
type λ + µ, avec λ = 20 parents µ = 120 enfants. Le maximum de générations a été fixé à 500. Les perfor-
mances ont été évaluées en validation croisée. Un apprentissage correspond à l’optimisation de 30 fonctions
de score, et le rang final d’une conformation correspond à la somme des rangs obtenus après application de
chacune des 30 fonctions apprises.

Les fonctions de score sont évaluées par la précision et le rappel :

Précision = V P
V P+FP Rappel = V P

V P+FN

Où VP : vrais positifs, FP : faux positifs et FN : faux négatifs.

2.4 Gestion des Valeurs Manquantes et Normalisation

Dans des travaux précédents, nous avions constaté que les valeurs manquantes ont un impact négatif très
important sur les performances des fonctions apprises. Afin de limiter cet impact, nous avons testé plusieurs
méthodes de gestion des valeurs manquantes. Nous avons retenu les méthodes les plus fréquemment utilisées
pour gérer des valeurs manquantes [13] : remplacement par une valeur constante (0), par une valeur dépendant
des données manipulées (valeur minimale, maximale, médiane ou moyenne de l’attribut considéré) ou par
des valeurs obtenues sur un sous-ensemble des données manipulées (calcul des exemples les plus proches et
remplacement par la valeur moyenne : knn ou kmeans).

Le remplacement des valeurs manquantes par l’approche knn est réalisée de la manière suivante : pour
chaque exemple ayant au moins une valeur manquante, ses k plus proches voisins sont recherchés en utilisant
une distance euclidienne calculée uniquement entre les valeurs renseignées de l’exemple considéré et le reste
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des données disponibles. Puis, pour chaque attribut non renseigné, la valeur manquante est remplacée par la
valeur moyenne de cet attribut dans ses k plus proches voisins. Si l’ensemble des plus proches voisins est
vide (trop de valeurs manquantes par exemple), ou que pour un attribut les plus proches voisins sont tous non
renseignés, alors les valeurs manquantes sont remplacées par les valeurs moyennes calculées sur l’intégralité
des données.

Pour l’approche kmeans, les données sont préalablement réparties en k clusters les plus homogènes pos-
sibles. La distance intra-cluster est calculée de la même manière que pour l’approche knn. Les clusters sont ini-
tialisés avec les exemples contenant le moins de valeurs manquantes (moins de 10%). Puis, dans chaque cluster,
les valeurs manquantes des exemples sont remplacées par les valeurs moyennes calculées sur les exemples du
clusters. De manière similaire à l’approche knn, si un attribut n’est jamais renseigné dans le cluster, alors la
valeur moyenne globale est utilisée pour remplacer les valeurs manquantes de cet attribut.

Enfin, les intervalles de valeurs admissibles pour chaque paramètre sont par définition très hétérogènes. Bien
que ces différences d’échelles soient en partie capturées par l’algorithme évolutionnaire via les valeurs de cen-
trage ci, l’ensemble des attributs dont les valeurs admissibles sont élevées peuvent atténuer voire complètement
masquer les attributs ayant des valeurs plus faibles.

Deux procédures de normalisation des données ont été mises en œuvre afin de réduire ce biais :
– la procédure minMax, qui normalise les attributs en fonction du minimum et du maximum observés pour

le paramètre :

xi(conf) =
xi(conf)−min(Xi)

max(Xi)−min(Xi)

– la procédure meanStd, qui normalise les attributs en fonction de la moyenne et l’écart-type :

xi(conf) =
xi(conf)− X̄i

σi

À l’issue de ces deux étapes de pré-traitement, une dernière étape de sélection d’attributs aurait pu être mise
en place et ainsi réduire ce problème de valeurs manquantes. Notre choix de représentation des complexes, et
notamment le grand nombre de paramètres utilisés, implique nécessairement qu’une partie de ces paramètres
soient non renseignés pour un example donné. Cependant, mis à part les paramètres concernant les acides
aminés les plus représentés dans les protéines, les paramètres non renseignés varient d’un exemple à l’autre,
reflètant la diversité des modes d’interaction, elle-même liée à la diversité des protéines. Considérons un com-
plexe dont l’interface comporte un tryptophane. L’attribut “volume moyen du tryptophane” est essentiel pour
la prédiction de cette interface. Or, le tryptophane est un acide aminé très peu représenté dans les protéines, et
les attributs correspondant seraient très certainement éliminés par une sélection de paramètres, rendant difficile
la prédiction correcte de la structure de ce complexe.

Ainsi, une phase de sélection d’attributs risquerait de nous faire perdre la capacité de représenter effica-
cement des complexes faisant intervenir, dans leur interface, des résidus peu fréquents dans l’ensemble des
complexes étudiés.

2.5 Classification des Conformations

Pour classer les conformations nous avons utilisé les critères définis dans l’expérience CAPRI :
– Haute qualité : [fnat ≥ 0.5 et (IRMSD ≤ 1 ou LRMSD ≤ 1)]
– Moyenne qualité : [(fnat ≥ 0.3 et fnnat < 0.5) et (IRMSD ≤ 2.0 ou LRMSD ≤ 5.0)] ou [fnat > 0.5

et (IRMSD > 1.0 ou IRMSD > 1.0)]
– Acceptable : [(fnat ≥ 0.1 et fnnat < 0.1) et (IRMSD ≤ 4.0 ou LRMSD ≤ 10.0)] ou [fnat > 0.3 et

(LRMSD > 5.0 ou IRMSD > 2.0)]
Où fnat est la fraction de contacts natifs présents dans la prédiction, fnnat est la fraction de contacts de la
prédiction qui sont natifs, IRMSD est le RMSD entre l’interface prédite et l’interface native, LRMSD est le
RMSD entre le ligand prédit et le ligand natif, les récepteurs étant superposés.
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3 Résultats
3.1 Interface cœur vs Interface couronne

La première question que nous adressons ici est de savoir si les résidus de la couronne, à savoir les résidus
de l’interface qui sont en contact avec le solvant, doivent ou non être pris en compte dans l’apprentissage et
l’évaluation. Ne pas inclure ces résidus revient à éliminer environ 2/3 de l’aire de l’interface, et surtout aug-
mente considérablement le nombre de valeurs manquantes. En effet, le pourcentage de valeurs non renseignées
pour les structures natives passe de 12, 63% en ne considérant que le cœur, à seulement 3, 63% en ajoutant la
couronne, et de 16, 9% à 5, 1% pour les conformations non-natives.

Cependant, de nombreuses études ont montré que le cœur et la couronne présentent des caractéristiques
physico-chimiques nettement distinctes, ce qui n’est pas favorable dans notre cas. La prise en compte de ces
résidus conduit à définir des interfaces contenant plus de résidus polaires et chargés, des volumes moyens
associés aux cellules de Voronoı̈ plus importants ou encore des distances entre paires de résidus en interaction
également plus grandes. De même, toutes les déviations standards sont plus élevées.

(VP + FP) / Total (VP + FP) / Total

P
ré

c
is

io
n

R
a

p
p

e
l

Coeur

Cœur + couronne

Coeur

Cœur + couronne

Figure 1. Précision et rappel en fonction de la fraction évaluée positive (VP + FP)/Total, pour un apprentissage en 10
validation croisée, en interface cœur (bleu) ou cœur+ couronne (rouge). La région correspondant aux fractions allant de 0
à 0,06 a été aggrandie (encadrés).

Nous avons réalisé, sur le jeu d’apprentissage en 10-validation croisée, une série d’apprentissages avec
les résidus du cœur, et une série d’apprentissages avec les résidus du cœur et de la couronne. Les mesures de
précision et rappel montrent que la prise en considération des résidus de cœur uniquement donne de meilleurs
résultats (voir Fig. 1). Idéalement, étant donné que le jeu d’apprentissage contient 19 négatifs pour 1 positif,
lorsque (V P + FP )/Total = 0, 05, c’est-à-dire lorsque la fraction de conformations évaluées positives est
égale à la fraction de conformations réellement positives, on devrait avoir une précision de 1 (toutes les confor-
mations évaluées positives sont positives), et un rappel de 1 (toutes les conformations positives sont évaluées
positives). À cette abscisse, nous obtenons une précision de 0, 66 en interface cœur, contre 0, 6 en interface cou-
ronne et des rappels de respectivement 0, 69 contre 0, 62. Ainsi, le “bruit” résultant de la prise en compte des
résidus de la couronne à un impact négatif qui est plus important que l’impact positif résultant de la diminution
du taux de valeurs manquantes. Par la suite, seuls les résidus du cœur de l’interface seront utilisés.

3.2 Gestion des Valeurs Manquantes et Variants Normalisés

Le fait que les résidus de la couronne ne puissent pas être utilisés rend la gestion des valeurs manquantes
d’autant plus importante. Par ailleurs, les différents paramètres ayant des valeurs dans des ordres de gran-
deurs très différents, il est nécessaire de déterminer si les valeurs doivent être normalisées, et si oui par quelle
méthode. Afin de répondre à ces deux questions, nous avons réalisé des apprentissages en 3-validation croisée
en faisant varier la normalisation des données et le remplacement des valeurs manquantes.

Les résultats obtenus (Table 1) montrent que la normalisation améliore de manière très sensible les perfor-
mances des fonctions de score. En effet, quelle que soit la méthode de gestion des valeurs manquante utilisée,
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zéro min max med moy kmeans knn
Normalisation k = 3 k = 5 k = 10
aucune 0,62 0,63 0,78 0,72 0,68 0,72 0,68 0,69 0,70
minMax 0,80 0,80 0,81 0,81 0,80 0,80 0,80 0,80 0,80
meanStd 0,78 0,81 0,74 0,79 0,79 0,78 0,78 0,79 0,80

Table 1. Valeurs des critères de ROC obtenus pour différentes méthodes de gestion des valeurs manquantes et avec ou
sans normalisation des données.

le critère de ROC est plus élevé avec normalisation que sans. Dans la majorité des cas, la méthode minMax
semble plus performante, excepté lorsque les valeurs manquantes sont remplacées par le minimum observé.
En ce qui concerne les méthodes de gestion des valeurs manquantes, trois des méthodes donnent des résultats
équivalents : remplacement par le minimum, le maximum et la médiane. Dans la suite de cette étude nous avons
appliqué le remplacement des valeurs manquantes par le maximum observé et la normalisation via l’approche
minMax.

On peut noter ici que la précision obtenue sans normalisation, et en remplaçant les valeurs manquantes
par la moyenne, correspondant à la configuration que nous utilisions précédemment, est supérieure à celle que
nous avions obtenue sur notre précédent jeu d’apprentissage “(0.62)”. Ceci est uniquement dû à l’utilisation
des structures non-natives générées par Hex. L’amélioration de la précision est lié au fait que ces confor-
mations non-natives sont plus “vraisemblables” que celles précédemment utilisées : bonne complémentarité
géométrique et bonne énergie d’interaction en particulier.

3.3 Résultats sur les cibles CAPRI

Afin de vérifier la validité de notre approche, nous avons repris l’expérience de “scoring” CAPRI des rounds
8 à 18, et comparé les résultats avec ceux obtenus par les autres participants. Certaines cibles ont été éliminées
de l’étude :

– Les cibles 23, 24, 26, 27 et 28 car les classements selon les critères CAPRI ne sont pas disponibles.
– La cible 30 car il s’agit d’un homodimère, le fait que ce dimère soit biologique est par ailleurs encore en

discussion, et les auteurs n’ont pu le démontrer expérimentalement.
– La cible 31 car la structure native n’est pas disponible, il n’est donc pas possible d’évaluer les résultats.
– Les cibles 36 et 38 car aucune conformation au moins acceptable n’est présente dans les ensembles de

conformations.
– Les cibles 33 et 34 car il s’agit de complexes protéine-ARN.
Les résultats obtenus pour les cibles restantes sont présentés dans la Table 2. Notre méthode est capable de

classer une solution de qualité moyenne ou haute pour 7 des 9 cibles (voir Fig. 2), ce qui en fait la méthode la
plus performante. Le cas de la cible 40 est particulièrement intéressant. En effet, ce complexe est un trimère
constitué de l’inhibiteur de protéinase à sérine A, et de deux trypsines cationiques [14]. Il y a ainsi deux
interfaces, notées T40A et T40B, et un seul ensemble de conformations candidates. Notre méthode classe une
conformation de haute qualité pour l’interface A en première position et une conformation de haute qualité
pour l’interface B en seconde position. Il y a par ailleurs dans le top 10 une autre conformation quasi-native
pour chacune des deux interfaces.

Le cas de la cible 35[15], pour laquelle aucun groupe n’est parvenu à isoler une solution au moins ac-
ceptable dans le top10, est un peu particulier. En effet, il ne s’agit pas réellement de deux protéines, mais de
deux domaines de la même protéine qui ont été artificiellement séparés, puis co-cristallisés. Or, nous avons
déjà montré dans des travaux précédents que les valeurs moyennes de nos paramètres sont significativement
différentes à l’intérieur des protéines et à l’interface entre deux protéines.

Pour la cible 39, aucun participant n’a été capable d’extraire une bonne solution parmi les conformations
proposées par l’ensemble des prédicteurs. Ceci s’explique en grande partie par le fait que la structure de l’un
des deux partenaire n’était pas connue, et a été modélisée avec un succès relativement mitigé. De ce fait, il
y a seulement 4 conformations au moins acceptables dans l’ensemble proposé (3 de qualité moyenne et 1
acceptable) pour 1 296 conformations incorrectes.
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T40 Protease A inhibitor/ 2 trpysins complex (3e8l)
T37 Pyruvate decarboxylase/
       Surrogate pyruvamide (2w93)

T29  Trm8/TrmA (2vdu)T22 binary U5 snRNP complex (1syx)

T32 Barley α amylase/Savinase (3bx1)

T25 Arf1/ArfBD (2j59)

Figure 2. Superpositions des structures des complexes obtenues par cristallographie avec les structures au moins ac-
ceptables obtenues par évaluation lors de la seconde phase CAPRI présentes dans les 10 meilleures conformations ou
“Top10”. Les structures cristallines sont en gris, le recepteur en vert, le ligand représenté en ruban apparaı̂t en jaune
(Moyenne qualité) ou vert (Haute qualité).

Groups T22 T25 T29 T32 T35 T37 T39 T40A T40B
C Wang 0 ?? 0 0 ? ?? 0 ??? ??

A.M.J.J Bonvin ? ? ?? 0 0 ? 0 ??? ??

H. Wolfson - ?? 0 0 0 ? 0 ? 0
P. A. Bates - - ?? 0 0 ??? 0 ??? 0
Z. Weng - - ?? 0 0 ??? 0 ??? 0

J. F.-Recio - ?? ??? 0 0 0 0 0 0
X. Zou - - - 0 0 ??? 0 ??? ???

T. Haliloglu - - - - - ?? 0 ??? ??

C. J. Camacho - - ?? - - - - ??? ???

M. Takeda-Shitaka - - 0 0 0 - - ??? ??

I. Vakser - - - ?? 0 0 0 - -
VDOCK 0 ? ?? ??? 0 0 0 ? 0

VDOCK-Hex Models ?? ?? ??? ?? 0 ?? 0 ??? ???

(6) (1) (10) (1) (145) (1) (80) (1) (2)

Table 2. Meilleures conformations détectées dans les top 10 des différents scorers. 0 : Aucune solution au moins ac-
ceptable n’a été trouvée ; - : scorer n’ayant pas participé. Pour notre méthode (VDOCK-Hex Models) lorsqu’aucune
conformation au moins acceptable n’est présente dans le top 10 le rang de la première conformation quasi-native est
indiqué entre parenthèses.

4 Conclusion

La génération d’exemples négatifs de très basse énergie par Hex, la restriction de l’étude aux résidus appar-
tenant au cœur de l’interface, la normalisation des valeurs des paramètres, et enfin la bonne gestion des valeurs
manquantes, nous ont permis d’améliorer considérablement les performances de notre méthode. L’impact, au
niveau de l’apprentissage, des exemples négatif générés par Hex est très important.
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Cependant, si les choix faits à la suite de cette étude permettent une meilleure performance globale, dans
certains cas particuliers ils ont un impact négatif. Par exemple, le remplacement des valeurs manquantes par 0
permet d’améliorer le classement de la première solution de haute qualité pour la cible 29. D’autre part, nous
avons pu également montrer que dans certains cas l’utilisation des interfaces cœur plus couronne était plus
performante. Il serait donc intéressant de mieux définir les cas dans lesquels ces méthodes alternatives sont plus
performantes afin de permettre un choix de la méthode la plus adaptée en fonction du complexe à prédire.
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The Role of Viruses (Virocell) in the Origin and Diversification of Biological Information

Viruses are traditionally considered as vehicles of information from cells to cells (horizontal gene transfer) but not as
inventors of new information. Viruses are often considered as byproducts of cellular evolution and non living biological
“entities”. I will discuss recent concepts on the nature of viruses (the virocell concept) that makes justice of their
importance in the biosphere and helps to understand the major role that viruses and derived elements have played in
the origin and evolution of biological information, systems and organisms.
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Abstract Analysis of protein structures is of great interest to explain molecular mechanisms in 
biology. We developed Protein Peeling approach to sub divide a protein structure in smaller 
sub-units. These elements called Protein Units (PUs) allow a simple and detailed analysis of 
protein structure organization. We propose here new methods based on Protein Peeling to 
assist and conduct elaborate studies: unstructured terminal segments recognition, novel scoring 
function for PUs characterization and lastly structural domains identification. 

Keywords  Protein structure, structural domain, structure analysis. 
 

1 Introduction 
Studying protein structure anatomy and architecture is fundamental to understand protein folding, 

stability, function or evolution. The classical approach to describe protein structure is to consider them, at a 
low level, as series of alpha-helices and beta-sheets, or at a higher level as an arrangement of protein 
domains. These descriptors are sometimes inadequate for explaining the complexity of protein structure 
arrangement.  

In order to better explain and describe the structure of proteins, we have proposed a new and 
intermediate view, the Protein Units (PUs) [1]. This is a novel level of description between secondary 
structures and domains. PUs are linear and compact sub-region of protein structure defined by high number 
of intra-PU contacts and low number of inter-PU contacts. The Protein Peeling (PP) method has been 
developed to identify PUs and has been implemented in a web server [2].   

We propose here a new version of Protein Peeling [3] incorporating new functionalities:  

- Structural domains identification 

- Novel scoring function for PUs characterization  

- Unstructured terminal segments recognition 

2 Material and Methods 
We have developed a new bottom up algorithm called Domain Reconstruction (DR) that provides 

domains identification. The principle is to combine PUs to identify structural domains accordingly to Contact 
Ratio and Contact Probability Density criterions. One of the main interests of this method is to suggest 
alternatives domains delineation.  

To characterize stability of PU, a pseudo-energetic criterion based on statistical potentials computed on 
carbon alpha has been also proposed.  

Finally we have defined a new assignment method [4] to identify unstructured N or C termini segments, 
based on a new refined non-redundant protein structure databank: PUs are identified as unstructured if they 
are isolated at the first cutting event and no more thereafter. 
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3 Results 
Protein Peeling (PP) and Domain Reconstruction (DR) methods have been both implemented in a web 

server [3] (http://www.dsimb.inserm.fr/dsimb_tools/peeling3). A protein structure is submitted to the server 
in PDB format then is analyzed by PP and DR algorithms. Results page give splitting events of structure into 
PUs using various visual outputs: dendrogram representing cutting events with the different generated PUs, 
secondary structure contents, visual representation of PUs and domains. Different measures to characterize 
PUs and domains are also proposed.  

Domains proposed by DR have been compared to classical protein domains benchmark datasets. Figure 1 
shows interest to provide alternative domain delineations on Actin structure (PDB code 1ATNA). Our 
method is able to identify different alternatives both on number and on boundaries of domains. 

 

 

Figure 1. Comparisons of 4 different domain delineation proposed by DR algorithm for Actin (pdb code 1ATNA). (A) 
is identical to SCOP [5] delineation, (C) to DALI [6] and (D) to Crystallographers [7]. 
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1 Introduction 
In all metazoa, transcription is inactive during the early stages of embryonic development. Zygotic 

Genome Activation (ZGA) is triggered at a specific stage in each species. Some of the molecular actors are 
likely to be conserved from Drosophila to Human, but most of the involved regulatory mechanisms remain to 
be discovered. In Drosophila embryos, no transcription occurs during the first seven cell cycles after 
fertilization. The control of the early steps of development is ensured by maternal mRNAs loaded in the egg 
during oogenesis. ZGA occurs in two waves: the first wave involves about 60 genes, whose transcription is 
activated during mitotic cycle 8; a second wave involving more than 300 genes occurs at the 14th mitotic 
cycle. Using Drosophila as model organism, we attempt to unravel the regulatory mechanisms involved in 
Zygotic Genome Activation.  

2 Results 
From transcriptome data [1], we selected 169 genes activated during ZGA. In order to find over 

represented motifs shared by the selected genes, we analyzed their non coding regions (5kb upstream TSS, 
first intron, UTRs) with discovery and research approaches (RSATools suite [2]; CisTargetX [3]). Two 
known motifs were found by both methods. First, the TAGteam motif known to be involved in the minor 
wave of  ZGA [4]. This motif is bound by Zelda, an activator of pre-cellular blastoderm genes [5], as well as 
by Grh, a repressor for some zygotic genes [6]. The second motif corresponds to Trithorax-like (Trl), which 
is involved in chromatin modulation, genes activation and repression. We discovered three novel motifs with 
no correspondence in motifs databases. Next, functional enhancers are regularly formed by multiple 
transcription factor binding sites (TFBS). Thus, we searched for cis-regulatory elements enriched regions 
(CRERs) combining significant clusters of putative TFBS. The analysis of the five previous motifs resulted 
in 421 identified CRERs. To reinforce previous results, we used available ChIP-seq data. Using ChIP-seq 
data for Trl in the 0-8h embryo, we observed a significant enrichment of Trl peaks in the non coding regions 
of the genes activated during ZGA. Moreover, high Trl binding-signals significantly discriminated CRERs 
from random regions. Since CBP is known to interact with Trl, we conducted the same analysis with  CBP 
ChIP-seq data from 0-4h embryo. In fact, CBP is known to interact with some members of the trithorax 
group, particularly with Trl in the hsp70 gene promoter, where Trl/HSP facilitate CBP recruitment for 
transcriptional activation [7]. As in the case of Trl, CBP peaks are significantly enriched in non coding 
regions of selected genes and high CBP binding-signals also significantly discriminate CRERs from random 
regions. Finally, using the novel workflow peak-motifs [8], which combines several motifs discovery 
algorithms, to analyze the collections of CBP and Trl peaks overlapping non coding sequences of ZGA-
induced gene, we found the Trl binding motif and the CAGGTAG (which belongs to TAGteam motifs), 
respectively.   
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3 Discussion and perspective 
Altogether, these results lead us to formulate several hypotheses. First, the presence of novel 

significantly over-represented  motifs could imply the participation of the corresponding factors in the 
activation of genes during ZGA. These factors could cooperate with Zelda or act independently (some genes 
do not contain any TAGteam sites). Next, Trl stands out as a good candidate as a general activator during 
ZGA. Indeed, Trl is produced during oogenesis and it is uniformly distributed in the early embryo. An 
homolog of Trl is involved in the early zygotic activation of hsp70.1 gene in the mouse [9]. Moreover, Trl 
activity is repressed by TTK [10], which is a well known repressor of zygotic activation titrated by increased 
amount of DNA during nuclear clivages in the syncytial blastoderm [11]. Finally, already known to be 
involved in the dorso-ventral patterning through its recruitment by Dorsal,  CBP could have a more general 
role in ZGA. Indeed, the very significant enrichment of CBP sites in non coding regions of ZGA-induced 
genes (122 genes over 169) and the presence of  a TAGteam motif at the center of the peaks could be 
explained by the recruitment of CBP by Zelda. However, some CRERs do not contain any TAGteam sites 
and overlap with strong signals of CBP binding. CBP could thus also be recruited by unidentified factors 
binding the novel discovered sites.  

To address these pending questions and test our hypotheses, we have selected a thirty of CRERs, which 
will be inserted in reporter constructs to assess their potential regulatory roles during ZGA. 
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With the increase in high-throughput data, signal transduction pathways’ reconstruction and analysis 
approaches are used to gain understanding  of the molecular mechanisms involved in cancer diseases. 

In the specific scenario of gene expression data, integrative approaches need to be further developed  to 
study molecular processes simultaneously at both transcriptional and post-transcriptional level. 

At the transcriptional level, protein-protein interaction (PPI) networks provide a global picture of cellular 
function and biological processes. However relevant functional changes of transcription factors (TFs), which 
commonly require post-transcriptional modifications or are regulated by protein-protein interactions, will not 
be captured by typical microarray experiments and thus will be missed by network construction methods that 
rely on such observational data. 

We present a combined method based on the integration of protein-protein interaction (PPI) network 
analysis in BiNoM1 and TFs analysis in Explain2. First we construct the signal transduction pathways 
controlling the activities of the corresponding TFs and identify master regulators for the observed 
transcriptomic microarray patterns. 

We apply this pipeline to study human epidermal growth factor receptor over-expressing (Her2+) breast 
cancer. We use transcriptomic microarrays to compare Her2+ data with that obtained from normal breast 
tissue samples. We identify master regulators of the ERBB family pathways together with less expected 
molecular mechanisms potentially involved in the molecular pathology of Her2+ breast cancer. These 
components provide new insights and potentially reveal new therapeutic approaches, including those based 
on synthetic lethality paradigm. 

                                                 
1 BiNoM http://bioinfo-out.curie.fr/projects/binom/ 
2 Explain http://www.biobase-international.com/index.php?id=572 
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1 Introduction

      In eukaryotes, genes are regulated at many different levels to produce the appropriate set of proteins for 
specific cell types. The discovery of RNA silencing pathways focused the attention on post-transcriptional 
control  as  a  key layer  of  regulation  in  several  biological  processes.  Untranslated  regions  of  eukaryotic 
mRNAs contain motifs that are essential to regulate post-transcriptional processes (e.g. mRNA processing, 
export, surveillance, silencing by microRNAs and turnover). At the end of every mRNA there is a signal 
indicating that the end of the mRNA is reached (the polyadenylation signal).  In many genes, two or more 
polyadenylation signals are found in the 3′ UTR, so that different isoforms with different 3'UTR length can 
be expressed. This mechanism, called alternative polyadenylation (APA) is quite common in human mRNAs 
and it is subject to  tissue or condition specificity [1]. Recently it has been shown that cancer cells often 
expressed substantial amounts of mRNA isoforms with shorter 3' UTRs [2]. This is relevant from the point 
of view of post-transcriptional regulation because if the 3'UTR of a mRNA is shorter or missing, miRNAs 
and other regulatory proteins are not longer able to bind. 

2 Methods and Results

We present here a computational procedure for systematically identifying APA events by Affymetrix 
GeneChip microarrays. The advantage of this technology compared with more recent and promising ones 
such  as  exon  arrays  and  RNA-Seq  is  that,  given  the  relatively  small  cost,  a  typical  study  includes  a 
considerably higher number of experiments. Moreover, the design of Affymetrix Gene Chips is well-suited 
for 3'UTR analysis  of a large number of genes. The proposed approach requires as input the expression 
profile from Affymetrix GeneChip array  for the samples of interest. As final result of our analysis we obtain 
a set of genes expressing short 3'UTR isoform in a minimum number of the analyzed samples. 

Initially, Affymetrix GeneChip single probes are assigned to CDS or 3'UTR of the transcript, according 
to NCBI  RefSeq database annotation (Release 45).  Then we define  for  each RefSeq two distinct  meta-
probesets, the first one including probes covering specifically the CDS and a second one including probes 
covering specifically the 3'UTR. The expression ratio between these two meta-probesets is expected to be 
equal to one in case the 3'UTR is not subject to shortening. A high value of CDS:3'UTR expression ratio is 
indicative of variation in the expression between the CDS and the 3'UTR and it can be interpreted as an 
event of short 3'UTR isoform expression.

The  procedure  has  been  applied  to  expression  data  from 75  samples  of  Ewing's  sarcoma  patients 
generated by Affymetrix U133A microarray. We used all sequences supported by RefSeq and required at 
least four probes in both CDS and 3'UTR meta-probesets for each gene. Among the 5500 genes selected in 
this  way,  we extracted a list  of  266 genes showing short  3'UTR expression in at  least  10% of Ewing's 
sarcoma patient samples. We checked whether the extracted genes have multiple annotated 3'UTR isoforms. 
The extracted gene list has been crossed with gene entries with multiple polyadenylation signals confirmed 

Session 3.B : Regulation and Pathways Présentation orale

–41–



by both AltTrans and AltPas polyA site databases (2856 entries) [3]. The overlapping list contains 74 genes 
(Pv ~ 10-9), confirming that our procedure enables us to identify candidate 3'UTR shortening events.

The impact of 3'UTR shortening on microRNA regulation was evaluated by crossing results of meta-
probeset  expression  analysis  with  predictions  of  microRNA binding  sites  by TargetScan  5.1  algorithm. 
Predicted  microRNA  binding  sites  have  been  distinguished  by  their  position with  respect  to  the 
polyadenylation cleavage signals annotated for the corresponding gene. We defined as alternative microRNA 
binding sites that sites located between two alternative polyadenylation cleavage sites. A list of  alternative 
microRNA binding sites has been compiled for all genes showing shortened 3'UTR  expression in Ewing's 
sarcoma data. As an example, the gene DCN (Bone proteoglycan II, a negative modulator of TGF-beta) is 
associated with very high CDS:3'UTR expression ratio in Ewing' sarcoma patients (Fig. 1a). Figure 1b shows 
that  microRNA  binding  sites  for  hsa-miR-496  and  hsa-miR-376c  are  located  between  two  alternative 
polyadenylation sites in DCN 3'UTR and they are lost when the short 3'UTR isoform is expressed.

Figure 1. DCN gene results for meta-probeset expression analysis in Ewing's sarcoma (a) and for alternative 
microRNA binding sites identification (b).

3 Conclusion

These results show that the proposed approach, based on appropriate meta-probeset definition to target 
specifically CDS or 3’UTR, is able to identify valid candidate events of shortened 3’UTR expression. The 
results obtained from the analysis of Ewing’s sarcoma data overlap significantly with available annotations 
of APA events, confirming the interest of the proposed approach.
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1 Introduction 
Previous analyses of the nucleotide compositional skew profile (S=(G-C)/(G+C)+(T-A)/(T+A)) along the 

human genome allowed us to reveal large domains of ~1Mb exhibiting a characteristic N-shaped pattern and 
covering more than 1/3 of the genome, called N-domains [1-3]. We have further shown that upward jumps of 
the skew profile (S-jumps) at N-domain borders are significantly associated with peaks of earlier replication 
initiation zones and result from mutational strand asymmetries associated with replication in germline cells 
[4]. The striking linear decrease of the skew inside the N-domains raises the following questions: does it 
result from mutational asymmetries associated with replication? To what extent does this reflect a specific 
spatio-temporal replication organization? Using both genome-scale experimental approaches and sequence 
analyses, we investigated here the spatio-temporal replication program in the human genome and set up a 
model of replication that reproduces the N-shaped pattern of the skew profile. 

2 Results and Discussion 
We examined the replication timing profile of embryonic stem cells along N-domains: the mean profile 

presents a “U-shape” pattern (Fig. 1A) with time values decreasing from early to late from border to centre. 
We developed a wavelet-based method to detect U-shaped patterns and applied it to define replication 
U-domains in timing profiles of seven cell types [5-7]. These replication U-domains cover about half of the 
genome and are significantly (P<10-3) co-localized with N-domains, showing that N-domains likely 
correspond to U-domains of the germline cell timing profile. Early replication initiation zones at U-domain 
and N-domain borders are significantly enriched in open chromatin marks suggesting that the replication 
program within replication domains is mediated by a gradient of open chromatin conformation.  

We showed previously that S-jumps result from different substitution rates on the leading and lagging 
DNA strands of the replication fork [4]. Here, we computed neutral substitution rates along N-domains: 
replication-associated asymmetries decrease from maximum values at the left end to zero at the centre and to 
negative values at the right end. The skew at equilibrium that would be produced by the observed 
substitution rates acting over long evolutionary times is strongly correlated with the observed skew S and 
displays an N-shaped pattern along N-domains (Fig. 1B). This strongly suggests that the S decrease in N-
domains reflects a progressive change in replication fork polarity. To test this hypothesis, we performed a 
genome-wide quantitative analysis of replicating DNA molecules stretched by DNA combing at different 
stages of the S phase in Hela cells [8], which revealed that the velocities of single forks remain constant 
during S phase. We then demonstrated that the mean fork polarity can be extracted from the derivative of the 
timing profile: the derivative of the U-shaped timing profile of N-domains is an “N”, strongly supporting that 
the N-shaped skew profile results from a replication fork polarity gradient.  
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2.1 Model of the Replication Program of N-domains 
We used the continuous wavelet transform to obtain a well defined and numerically stable measurement 

of the local slope of the Hela cell timing profile which corresponds to the inverse of the apparent replication 
speed, leading to a space-scale map of apparent replication speed. Multi-scale analysis showed a broad 
distribution of apparent replication speeds with practically no regions larger than 100 kb replicating at less 
than 2 kb/min and a higher proportion of fast-replicating regions in the late S phase, which cannot be 
explained by the range of single fork velocities (mean 0.7 kb/min obtained by DNA combing). DNA 
combing data also revealed that replication origins are spaced at mean 40 kb intervals and the global fork 
density increases during S phase because more replicon clusters and more origins within clusters become 
active as S phase progresses. We propose a domino model in which replication forks progressing from early 
origins stimulate initiation in nearby DNA: replication first initiates at U-domain extremities and secondary 
origins fire coordinately from the borders to the centers (Fig. 1C). This generates a linear gradient of 
replication fork polarity and a N-shaped skew. Given that U-domains are observed in human and mouse and 
N-domains are present in all studied mammals, it is likely that this replication program has been conserved 
at least since the mammalian radiation. 

 
Figure 1. N-domain replication. (A) Replication timing (mean±SEM) along the N-domains (length is rescaled to 1) (B) 

Skew S (black) and S at equilibrium (grey) along the N-domains (C) Domino model of the replication program. 

3 Materials and Methods 
The replication timing values of human cell types [5, 6] were computed as in [5]. Initiation zones [4] and 

U-domains [7] were detected using a continuous wavelet transform. N-domains were retrieved from [3]. 
Nucleotide substitution rates and skew at equilibrium were computed as in [4]. DNA combing were 
performed on Hela cells sorted into four temporal compartments of S phase as in [8]. 
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Abstract In a Genome-Wide Association Study (GWAS) the genomes of a large group of indi-
viduals are examined to establish the presence of a significant association between a disease and
particular genes. The group of individuals is divided in cases (people with the disease) and con-
trols (people without). The association is assessed through statistical hypothesis testing. The
distribution under the null hypothesis H0 is empirically studied shuffling uniformly affectation
status (case and control memberships), while complex genetic models are usually used to simulate
under the alternative hypothesis H1. We have developed an alternative approach to this problem.
The idea is to mimic the H0 simulations by affecting status to individuals under the constraint
that the probability to be a case is consistent with the chosen disease model and that the total
number of cases is fixed. We suggest a simple but efficient algorithm to perform this constrained
affectation. We apply our algorithm to a real data set from the 1000 Genomes Project to compare
the accuracy of different methods for identifying causal genetic markers and show that accuracy
quickly decreases as the candidate regions get wider.

Keywords Forward-backward sampling, phenotype, power, ROC curve.

Waffect: une Méthode pour Simuler des Données Cas-Témoins dans les Etudes
d’Associations à Grande Echelle

Résumé Dans une étude d’association à l’échelle du génome, les génomes d’un grand groupe de per-
sonnes sont examinés afin d’établir si une association significative existe entre une maladie et les gènes.
Le groupe de personnes est divisé en cas (les personnes atteintes) et témoins (ceux qui ne sont pas at-
teints). L’association est évaluée à travers des tests d’hypothèses. La distribution sous l’hypothèse nulle
H0 est étudiée empiriquement en permutant le statut cas/témoins, tandis que pour simuler sous H1 des
modèles génétiques complexes sont généralement utilisés. Nous avons développé une approche alternative à
ce problème. L’idée est d’imiter les simulations sous H0 en affectant le statut des individus sous la contrainte
que la probabilité d’être un cas est compatible avec le modèle de maladie choisi et que le nombre total de
cas est fixé. Nous proposons un algorithme simple mais efficace pour effectuer cette affectation. Nous appli-
quons notre algorithme à des données réelles issues du 1000 genomes project afin de comparer la précision
de différentes méthodes pour identifier des marqueurs génétiques causaux. Les résultats montrent que la
précision diminue rapidement quand la longueur des régions candidates augmente.

Mots-clés Échantillonnage, phénotype, puissance, forward-backward, courbe ROC.

1 Introduction

Genome-wide association studies (GWAs) are a widely-used approach to address the localization of causal
mutations responsible for common complex genetic diseases, [1]. Such studies involve the investigation of
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hundred of thousands to millions of genetic markers (such as single nucleotide polymorphisms – SNPs), for a
cohort of cases and controls whose sizes range in the thousands to tens of thousands individuals. GWASs have
met many successes, most notably for type 1 and type 2 diabetes, inflammatory bowel disease, prostate cancer
and breast cancer, [2].

In GWASs, very high false positive rates are expected unless a correction for multiple testing is performed.
Symmetrically, control for true negative rate - or power - is necessary. Power estimation is the key to evaluate
the efficiency of GWAS methods, [3]. The correct estimation of both rates must take into account the existence
of high-dependency patterns between SNPs, or linkage disequilibrium (LD). The accurate estimation of the
family wise type I error risk in presence of LD consists in sampling the H0 distribution through permutations
of phenotypes, [4]. Thus, any association between loci and the phenotype is broken. This permutation strategy
is implemented as a gold standard in numerous dedicated packages, together with software suites designed for
GWASs [5,6,7,8,9].

Power is a still more complicated function of several factors: study design, correlation patterns in the
genotypic data, sizes of cohorts, frequency of the causal allele, relative risk conferred by the causal factor,
genetic model (additive, dominant, recessive, multiplicative), [10]. As a consequence of this complexity, the
analytical computation of power necessarily relies on simplifying assumptions, including the approximation
of the H1 distribution of the statistic test through a probability law, [11]. Most power calculators based on
analytical approaches are used for two-stage GWAS design, e.g. [12,13]. Recently, an analytical approach
has been proposed to account for LD, under either H0 or H1 approximation [14]: a fixed-size sliding window
locally accounts for the inter-marker correlation. Unifying H0 and H1 processing in the same framework, this
approach brings an improvement over block-wise strategies [15,16,17]. However, regarding both accuracy and
computational burden, the optimal choice for the window size depends on the structure of the data. Moreover,
LD blocks are often ambiguous. Thus, the previous sliding window approach cannot account for high order
dependences between LD blocks. In particular, this method cannot be used to evaluate the power of any novel
approach designed to cope with such high order dependences, in GWASs. In the latter case, the only solution
remains using intensive simulations.

Symmetrically to sampling under H0, simulation of the H1 distribution is an appealing means to keep the
LD-structured genotypic data. These simulations consist in generating case and control samples which mimic
the LD structure in human genome, i.e. in the creation of, say, k datasets under the H1 assumption (at least one
SNP is causal). Nonetheless, breaking any association between a locus (or several loci) and the phenotype is
far more easy to implement than introducing such an association in a dataset.

Two main strategies have been developed to simulate H1: (i) the prospective one, [18], which first generates
a large sample of haplotypes conditional on reference haplotypes such as HapMap haplotypes [19], then pairs
haplotypes to build diplotypes and assigns the disease status depending on the penetrance model involving a
randomly selected causal SNP, and (ii) the retrospective strategy, [3], which first randomly selects a causal
SNP and generates a fixed number of cases and controls, then assigns diplotypes at the causal SNP for cases
and controls depending on the penetrance model and finally builds haplotypes (two for each diplotype) for
all remaining SNPs of the chromosome, conditionally on reference haplotypes. Nevertheless, both strategies
entail implementation problems when applied to power estimation in GWASs. The first strategy presents the
drawback to not allow the control of the numbers of cases and controls. To tackle this issue, rejection sampling
of case-control samples is used, but leads to a waste of data and time. An illustration of the first strategy is
Fregene [18]. The second strategy controls these numbers by first fixing them, but requires to build haplotypes
for each simulation. The widely-used simulator Hapgen [20] implements the second strategy. When assessing
the performance of gene mapping methods based on LD modeling, such as haplotype block-based methods
[21,22] or latent variable-based methods [23], it would be more interesting to use a benchmark dataset of
n +m genotypes (unphased data) and then to assign n cases and m controls to the set of n +m genotypes, k
times (for k simulations). In this setting, power would be fast to calculate because LD pattern identification,
which is computationally expensive, would have to be performed only one time and not k times.
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In this scope, we propose a new method able to exactly assign n cases and m controls conditional on n+m
simulated or real genotypes. Our idea is to perform the affectation of individual i according to a weight ωi

(for instance the relative risk for individual i) with a constraint on the number of cases. This method provides
several advantages. First, it generalizes permutations, the gold standard to generate H0 distribution in order to
control type I error in multiple testing. Indeed, permutations represent a particular case of our general approach
by using uniform weights. Second, our method is faster than previous ones [3,24] because it does not require
a rejection sampling step or the generation of new genotypes for each simulation. Moreover, in the case of LD
modeling-based mapping methods, LD pattern identification needs to be performed only one time. Third, no
assumption is made on the genotype distribution, because the latter is the same for each simulation. The last
advantage, maybe the most important when evaluating the performance of new mapping methods, is that power
can be directly assessed using real GWAS datasets, such as those provided by the 1000 Genome Project [25],
because disease status can be generated according to genotypes without loss due to rejection sampling.

We first describe the method itself, which we called WAFFECT, then illustrate its interest on real GWAS
data by comparing the power of several approaches. WAFFECT will be soon available as an R package. It can
affect the phenotypes of 10,000 individuals with 5,000 cases in 2.2 seconds (on a common - even a bit outdated
- workstation).

2 Methods

Let I = {1, . . . , q} be the ordered set of all individuals. We denote Pi, i ∈ I , the random variable
accounting for the status (phenotype) of individual i, Pi ∈ {0, 1} where 0 stands for control and 1 for case. The
probability πi that individual i is a case is proportional to a given weight ωi: P(Pi = 1) = πi ∝ ωi. For instance,
we can take ωi to be the relative risk for individual i. We denote Ni, i ∈ I , the random variable counting the
total number of cases among individuals indexed by {1, . . . , i}: Ni =

∑i
j=1 Pj , with the convention that

N0 = 0. Observe that Ni = Ni−1 + Pi and therefore Ni ∈ {0, . . . , i} for each i. When all the weights ωi are
given, we are interested in sampling the values of the Pis, given the condition that the total number of cases
Nq must be equal to r, i.e. in sampling the distribution P(P1, . . . , Pq|Nq = r). To achieve this goal we find
recursive formulas for the probabilities P(Pi = 1|Ni−1 = m,Nq = r), i ∈ I:

THEOREM 2.1. For each individual i = 1, . . . , q:

P(Pi = 1|Ni−1 = m,Nq = r) =
ωiBi(m+ 1)

Bi−1(m)
, (1)

where the backward quantities Bi can be computed using the recursive formulas

Bi(m) = ωi+1Bi+1(m+ 1) + (1− ωi+1)Bi+1(m), (2)

with the following edge conditions: B0(0) = ω1B1(1) + (1 − ω1)B1(0) and Bq(m) = δ(m, r), δ being the
Kronecker’s symbol.

The theorem gives a recursive algorithm, which we called WAFFECT, to sample in the space of all possible
configurations of the Pis under the condition that the number of cases must be r and knowing for each individual
i his weight ωi (e.g. his relative risk). Starting from i = q, simply compute all the backward quantities with
Eq. (2). Then starting from the first individual i = 1, affect a status for the individual i accordingly to the
binomial distribution which depends on the previous affectations Pi ∼ B

(
ωiBi(Ni−1+1)
Bi−1(Ni−1)

)
. The pseudocode is

given below. Observe that if ωi = ω0 for each i, then WAFFECT outputs a permutation of the phenotypes; this
is equivalent to simulating under H0.

It is possible to simulate affectations in the case of more than two classes by calling recursively WAFFECT.
For instance, in the case of three classes {0, 1, 2}, start by affecting status 0 versus status {1, 2} and then iterate
WAFFECT for the individuals with status {1, 2} to affect status 1 versus status 2.
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Algorithm 1 WAFFECT(ω, r)

Input: vector of weights (e.g. relative risks) ω = (ωi)i=1,...,q , number r of cases
Output: A vector of phenotypes for the individuals

1: B is q × (r + 2) matrix, B = 0 {/* Initialization of B *}
2: Bq(r) = 1
3: for i = q − 1 to 0 do {/* Iterative computation of Bi */}
4: for m = 0 to r do
5: Bi(m) = ωi+1Bi+1(m+ 1) + (1− ωi+1)Bi+1(m)
6: end for
7: end for
8: Sample P1 with P1 ∼ B

(
ω1B1(1)

ω1B1(1)+(1−ω1)B1(0)

)
{/* Sampling initialization */}

9: N1 = P1

10: for i = 2 to q do {/*Sampling of P2, . . . , Pq*/}
11: Sample Pi with Pi ∼ B

(
ωiBi(Ni−1+1)
Bi−1(Ni−1)

)

12: Ni = Ni−1 + Pi

13: end for
14: return P1, . . . , Pq

3 Application

We applied WAFFECT on real data to assess the accuracy of different association methods based on the
Cochran-Armitage trend test.

The original data set consists on the real genotypes of 629 individuals from the 1000 Genomes Project [25].
We focused on the first 100,000 SNPs on the X chromosome. In the pretreatment stage, we filtered out all the
SNPs with Minor Allele Frequency (MAF) less than or equal to 5%, ending up with 8,048 SNPs.

We arbitrarily defined an additive disease model with two interacting causal SNPs. In particular, we arbi-
trarily chose two SNPs S1, S2 (the ones with base-pair positions 627,641 and 1,986,325) with low MAF and
showing no linkage disequilibrium (i.e. correlation). For each individual, we defined the following relative
risk: RR = 1+0.1×GS1 if GS2 = 0, RR = 1+0.1×GS2 if GS1 = 0, RR = 1+0.3+0.1× (GS1 +GS2) if
GS1 ×GS2 > 0, where GSi ∈ {0, 1, 2} is the number of the less frequent allele in the genotype of Si. The last
expression defines an epistasis (interaction) between the two genes. Then, for each individual we computed
his relative risk ωi accordingly to his genotype and the disease model. Running 1,000 times WAFFECT on the
vector (ωi)i=1,...,629 and under the constraint that the total number of cases must be 314, we obtained 1,000
simulations of the phenotype of each individual under H1. Similarly, we ran WAFFECT on a vector whose
elements have all the same value (e.g. ωi = 1 for each i) and obtained 1,000 affectations of the phenotypes
under H0.

The association analysis was performed running the toolset PLINK v1.07, [9]. In particular, for each SNP
we obtained the p-value for the trend statistics under H0 and H1. The association methods we studied consider
two intervals centered in the two causal SNPs and having the same length. The statistics is defined as the
max of − log of the p-values in the overall region. We considered intervals centered in S1, S2 with radii
ρ = 0, 1, 5, 10, 50, 100 and ∞ kb. For each radius, we assessed the accuracy of the method analyzing the
trade-offs between false positive rate and true positive rate (power). More precisely, for each ρ we computed
the corresponding Receiver Operating Characteristic (ROC) curve, Fig. 1, the empirical Area Under the Curve
(AUC) value and an upper bounds σm for the standard deviation of the estimate, Table 1, see for instance [26].

The results show that the accuracy is good when the radius is 0 kb, and fair up to a radius of 1 kb. For greater
radii, AUC ≤ 0.70 and the accuracy quickly decreases. We conclude that the association method that we have
considered is typically suitable for testing the association between a given disease and a pair of candidate genes
but not for testing wider regions.
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Figure 1. ROC curves at different radii ρ of the intervals centered in the two causal SNPs. The statistics is equal to the
max of − log of the p-values in the overall region given by the two intervals.

ρ AUC σm Accuracy
0 kb 0.80 0.012 good
1 kb 0.70 0.014 fair
5 kb 0.60 0.015 poor

10 kb 0.59 0.015
20 kb 0.56 0.016
50 kb 0.55 0.016 fail
100 kb 0.54 0.016
∞ kb 0.51 0.016

Table 1. AUCs and s.d. upper bounds σm at different radii ρ of the intervals centered in the causal SNPs.
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4 Conclusions

We introduced a new iterative algorithm, which we called WAFFECT, to sample case-control affectations
under the constraint that the probability to be a case is consistent with the chosen disease model and that the
total number of cases is fixed. This method can be used to simulate under H1 for assessing the power of
GWAS methods. WAFFECT generalizes the method of permutations, the gold standard for sampling under
H0. New values of the disease status are generated by permuting them accordingly to weights proportional
to the probabilities to be a case. Similarly to the method of permutations, WAFFECT presents the advantage
that genotypes are fixed and only phenotypes are sampled. Two other possible ways to sample case-control
affectations along these lines involve rejection and MCMC algorithms. An R package including all these
algorithms will be released shortly.

Unlike its competitor HapGen, [20], WAFFECT allows to simulate the phenotypes under any disease model,
also in presence of two or more causal genetic markers and when epistasis is taken into account. Not surpris-
ingly, when the disease model consists in only one causal SNP, WAFFECT’s results are coherent with the ones
found by HapGen. However, WAFFECT is faster than HapGen because it does not generate new genotypes for
each simulation.

Our algorithm allows to evaluate the performance of GWAS methods using real GWAS data sets. We
applied it to data sets from the 1000 Genomes Project to assess the accuracy of a region candidate approach and
showed that, given the chosen design (629 individual) and the modest effect used for the simulation (relative
risk of 1.7 in the most favorable case), we have only power to detect the association signal at the gene candidate
level. For wider candidate regions, the power drops quickly.
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1 Introduction

Sequencing technologies applied to transcriptome interrogation (RNA-Seq) permit a high precision in the
inference of transcript localization and relative expression level. Namely, RNA-Seq produces millions of reads
that, once aligned to the reference genome, provide counts that reflect the transcriptional landscape. This
landscape is, even in the presence of post transcription processes, directly correlated to the expression activity.
Read counts can serve to estimate, with an existing annotation, gene expression level up to the isoform level
[1] assuming homogeneous distribution of the reads inside predefined genome segments. Transcript boundaries
can also be identified from abrupt variations in the local abundance of reads using sliding windows. However,
realistic probabilistic models that simultaneously account for transcript boundaries and expression levels are
still not available to describe RNA-Seq data. This precludes the use of a parametric inference framework to
obtain estimate expression at the basepair level.

In this work, we design a strand specific model that includes the changes in expression level along the
genome and randomness due to the read sampling. Through Hidden Markov Model formalism this problem
reduces to estimating the hidden path for the unobserved variable ut - the expression level at basepair t. ut is
defined as the product between the relative abundance of the position t and the total number of reads. We then
use a Sequential Monte Carlo (SMC) approach [2] to infer hidden expression level (ut)1:T along a genome se-
quence of length T from observed read counts (yt)1:T . Model parameters are estimated in Bayesian framework.
The SMC approach allows us to specify a reasonable model that fully exploits the complexity of RNA-Seq data.

2 Model and SMC Algorithm

The Hidden Markov model includes two main dependencies: the hidden chain transition kernel that de-
scribes changes in expression level and the emission function that relates counts to expression levels. Our
choice for the transition between the hidden states (ut) aims at including abrupt changes characteristic of tran-
script boundaries, and smooth variations, arising from technological biases or biological processes. Biological
effects could be partial termination or degradation, which generate progressive changes in transcription levels.
In keeping with [3] we refer these two types of changes as the shifts and the drifts. The transition kernel writes:

π(ut+1, ut) = 1{ut=0} ·
[
(1− η) · δ0(ut+1) + η · 1

c
e−

1
c ·ut+1

]

+ 1{ut>0} ·
[
α · δut(ut+1) + β · 1

c
e−

1
c ·ut+1 + β0 · δ0(ut+1)

+γu · 1{ut+1>ut} ·
λu
ut
· e−

λu
ut
·(ut+1−ut) + γd · 1{ut+1<ut} ·

ut
ut+1

· λd
ut+1

· e−
λd
ut+1

·(ut−ut+1)
]

and is best understood as a mixture of several move types. In expressed regions, expression remains at the
same level with probability α; jumps to a non expressed region with probability β0; changes to a different
level exponentially distributed with probability β; and can finally drift upward or downward with probabilities
γu and γd. Small increases or decreases caused by drifts have percentual amplitudes exponentially distributed
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with parameters λu and λd. A jump from a not expressed position into an expressed region has probability η.
Read counts (yt) are considered independent given (ut). This assumption holds when counting only the first
position of the reads. We model the read count yt as a mixture between a Poisson with expectation ut [4] and a
distribution accounting for technological outliers.

The reconstruction of expression levels is based on a Monte Carlo approach where estimation of u1:T given
the observation y1:T relies on the sampling of particles (trajectories) from the target distribution π(u1:T | y1:T ).
In our context this distribution is complex and T is large. An Importance Sampling scheme is used where
sampling is done from a proposal whose outcomes are reweighted. For long sequences, a good importance pro-
posal q(u1:T ) to approximate π(u1:T | y1:T ) is impossible to define directly but the problem remains tractable
using a sequential approach [2]. Briefly, at each position t we obtain a sample from π(u1:t | y1:t) using the
sample from π(u1:t−1 | y1:t−1) obtained at position t − 1 by drawing ut and updating importance weights
according to the formula wi

t = {π(uit | uit−1)π(yt | uit)/qt(uit;uit−1)}wi
t−1 where i is the particle index. As

t increases, weights wi
t tend to degenerate leading to a poor estimation. A resampling step is performed avoid

this behaviour. The choice of the importance proposal can improve the number of used particles, the resampling
frequency and thus the performance of the algorithm. Our proposal qt(ut;u1:t−1) was designed to approximate
π(ut | u1:t−1, y1:T ). This algorithm is a filtering algorithm that provides sample approximating π(u1:t | y1:t)
for each t and therefore from our target distribution π(u1:T | y1:T ) at time T . For large T, when looking back-
ward, the trajectories of the particles coalesce due to resampling and thus make impossible a good estimation of
ut for t � T . To tackle with this problem a backward smoothing is implemented. From the backward sample
we can compute both point estimates and credibility intervals of the expression level ut for each t.

3 Results and Discussion

Relevance of this method is illustrated in Fig. 1 by the application on simulated data for low expressed
regions. We used a Gibbs algorithm for the estimation of the parameters.
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Figure 1. Expression level inference on simulated data. Left panel: simulated expression level (thin line) and read counts
(dots). Right panel: estimated expression level (black line) and 95% credibility interval (gray area).

This methodology extends previous work on tiling array data [3]: it introduces a model adapted to RNA-
Seq data and it presents an SMC algorithm for estimation of underlying expression levels that overcomes the
need for discretization. Better description of the RNA-Seq data is an important step towards disentangling
technological artifacts from subtle biological signals. A software is in preparation and will be made available.
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Discovering and Visualizing Structural Variation from High Throughput Sequencing Data

High throughput sequencing (HTS) technologies have enabled the inexpensive sequencing of human genomes, and the
discovery of some genomic variants from the resulting short read datasets is well underway. In this talk I will present two
algorithms for the discovery of structural variants from HTS paired-end data: First, I will describe a method to predict
CNVs from paired short reads. Our method combines information from paired short reads to identify variable regions
and depth-of-coverage to predict the true copy count in the donor genome. Together, these datasets help overcome both
sequencing biases of HTS platforms and spurious read mappings. Our method allows for the detection of CNVs within
segmental duplications. We use our method to detect CNVs within the same dataset, and make a total of 5000 calls that
show high concordance with previously known CNVs in this individual. I will then describe PRISM, a method to infer
the precise breakpoints of structural variants by finding reads that map in two different locations on the genome. We
use pairing information to identify putative location to map the split reads. Our preliminary result shows that PRISM
outperforms other methods for split read mapping for insertions and deletions, and can detect borders of structural
variants, including inversions and duplications, to the base pair. Finally I will give a brief overview of Savant, a method
for visualizing HTS data that we have developed, and showcase some of its unique features, including a powerful plug-in
framework that allows developers to extend Savant.
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Abstract Next Generation Sequencing (NGS) is an efficient approach to scan the entire genome
for DNA copy number variations or alterations (DNA-seq) or transcribed regions of the genome
(RNA-seq). Segmenting or splitting the genome into regions of homogeneous read counts is a
natural approach to analyze these profiles. The computational burden is one of the foremost issues.
Indeed, due to the very large size of NGS profiles, standard segmentation algorithms cannot be
applied to NGS data. We present a fast and exact algorithm to recover the best segmentation of a
NGS profile w.r.t. the log-likelihood loss. The algorithm proceeds in two steps. It first compresses
the NGS data. Then it uses a fast and exact pruned dynamic programming algorithm that we
recently developed. We theoretically demonstrate that the compression does not hamper our ability
to recover the best segmentation of the raw NGS profile. We applied our algorithm to real DNA-
seq profiles of human tumors and cell-lines and real RNA-seq profiles of bacteria to demonstrate
the efficiency of the compression and the competitive runtime of our exact algorithm.

Keywords Next Generation Sequencing, segmentation, exact algorithm, compression, pruned dy-
namic programming.

1 Introduction
Next generation sequencing (NGS) has enabled the generation of large-scale genome sequence data. From

NGS profiles it is possible to detect DNA copy number alterations or transcribed regions of the genome. A
common strategy is to first map reads to a reference genome and then detect regions with unexpectedly high or
low number of reads. In the case of DNA-seq data these regions hopefully correspond to DNA copy number
amplifications or deletions. In the case of RNA-seq data they hopefully correspond to transcribed regions of
the genome. The aim is thus to split the genome into regions of homogeneous read counts. At least in the case
of DNA copy number analysis using microarrays, segmentation models [1,2] have been shown to be the best
performing methods [3].

For NGS profiles, with many million nucleotides per chromosome (for example 108 in the case of human
chromosomes), recovering the most likely segmentation or split with respect to maximum likelihood is a chal-
lenging optimization problem. Until recently, the fastest exact algorithm to solve this problem had a space
complexity of Θ(n2) and a time complexity of Θ(Kn2), where n is the number of points and K the number of
segments or change-points [4]. These space and time complexities are prohibitive for profiles with more than
105 points. Thus, even for SNP arrays (with 105 up 106 points), most segmentation methods rely on heuristic
computational schemes to reduce the runtime [5]. However, this is done at the price of some errors as heuristics
may not recover the best segmentation but rather a good candidate segmentation. This is clearly a problem for
biological interpretation as we cannot guarantee that there is not a better way to segment the data. We recently
proposed a new exact algorithm that recovers the best segmentation with a worst space complexity of Θ(Kn),
a time complexity of O(Kn2) at worst and of order O(Kn log(n)) in practice and that takes a few minutes
only to analyze an Affymetrix SNP 6.0 profile with 2.106 probes across the human genome ([6] available on
arXiv).

Yet, even this new algorithm is too slow in practice to analyze NGS profiles with 108 nucleotides or more
per chromosome. A common approach to reduce the computational burden is to use non-overlapping windows
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[7]. The total number of reads per window is averaged or summarized in some way to recover in the end a much
smaller profile. Choosing the size of these windows is obviously not a trivial task and it undoubtedly affects the
resolution of the analysis and the final result. More importantly, by averaging over more or less predetermined
windows one takes the risk to average the signal in regions where it should not be averaged. Indeed, except for
very small window sizes, transitions in the signal are much more likely to occur inside windows rather than at
their borders. In other words, it is very likely that these non-overlapping windows will smooth signal transitions
and thus hamper our ability to detect them.

Here we propose an exact algorithm to segment a NGS profile into 1 up to K homogeneous regions w.r.t.
some loss function (for example the quadratic loss or the negative log-likelihood Poisson loss). The algorithm
can be used either on DNA-seq data to detect DNA copy number amplifications and deletions and on RNA-seq
data to detect transcribed regions of the genomes in RNA-seq data. It can also be used as a preprocessing step
to define homogeneous regions or windows of the genome where the information can indeed be averaged or
summarized.

The algorithm proceeds in two steps. It first compresses the data. Then it uses the exact pruned dynamic
programming algorithm (DPA) for segmentation that we developed recently [6]. The compression step relies
on Theorem 2.2 proven in Section 2. Intuitively, this theorem says that when searching for the best possible
segmentation of a profile you should not consider change-points in plateaux of the observed signal. In Section
4, we apply our methodology to some real NGS data (DNA-seq profiles of human cells and RNA-seq profiles
of bacteria). In the case of the DNA-seq experiment compressed profiles are around 105 to 106 nucleotides long
and are a hundred times smaller than raw NGS profiles. Given these compressed profiles, the pruned DPA is
able to recover the best segmentation in a matter of 5 to 30 minutes on a 2.3Ghz processor.

In the following, we briefly describe the statistical framework of our approach, which is similar to the one
proposed by [1] for CGH profiles. We then highlight the challenging optimization problem that comes with this
framework in the case of NGS data.

1.1 Statistical Framework

Let us assume that we have an ordered sequence of n observations {Yi}i∈J1,nK, where n is the number of
nucleotides on the chromosome and Yi is either the number of reads starting at nucleotide i or the number of
reads covering nucleotide i. A segmentation m of the sequence is defined by a set of K segments and K + 1
change-points {τk}k∈J0,KK with the convention that τ0 = 0 and τK = n. The k-th segment rk of m is delimited
by τk−1 and τk: rk = Jτk−1 + 1, τkK. We defineMk,t the set of all possible segmentations in k > 0 segments
up to point t.

The segmentation model can be written as follows:

{Yi} independant and Yi ∼ G(µr) if i ∈ r,
where i is in segment r andG is some probability distribution depending on parameter µr. Typical examples for
G are the Poisson or the normal distribution. We denote p(yi, µr) the likelihood of data-point i in segment r. In
a maximum likelihood framework, the goal is to identify the segmentation m inMk,t of maximum likelihood
defined as follows:

maxm∈Mk,t
{
∑

r ∈ m
min
µr
{
∑

i∈r
log p(yi, µr)} }.

More generally one way to identify k + 1 change-points is to find the segmentation m inMk,t of minimal
cost ([8,9]):

∑
r ∈ m c(r), with c(r) the cost of segment r of m defined as:

c(r, µ) =
∑

i ∈ r
γ(Yi, µ)

c(r) = min{µ ∈ R} {c(r, µ)} ,
where γ is a loss function (it is used as a measure of fit to the data). A typical example is the quadratic loss,
namely: γ(Yi, µ) = (Yi − µ)2 or the likelihood loss, namely: γ(Yi, µ) = − log p(yi, µ).
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1.2 Optimization Problem

From a computational perspective, the goal is then to recover for every k in between 1 and K the best
segmentation Mk,t with respect to the chosen loss function and its cost Ck,t:

Mk,t = arg min{m ∈ Mk,t}

{∑

r ∈ m
c(r)

}
and

Ck,t = min{m ∈ Mk,t}

{∑

r ∈ m
c(r)

}
.

Recovering Mk,n and Ck,n is a difficult problem due to the very large number of possible segmentations
in k segments:

(
n−1
k−1
)
. A DPA recovers exactly Mk,n and Ck,n in O(K.n2) [4], which is prohibitive for NGS

profiles. Recently, we proposed a faster pruned and exact DPA to recover Mk,n and Ck,n [6]. This new
algorithm allows the analysis of profiles with a million points in a matter of minutes. Yet, for large NGS
data, scanning chromosomes with more than 108 base pairs, the empirical runtime of the pruned DPA is still
prohibitive, even though its asymptotic complexity is of order O(K.n. log(n)). Thus, there is a need for an
even more efficient exact algorithm.

One important feature of NGS data is that they are discrete and that the probability of featuring the same
count in two consecutive rows is high. In other words there are plateaux in the observed signal. As we will see
in the next section these plateaux allow for an efficient compression of NGS profiles. Importantly, Theorem
2.2 shows that given a compressed profile it is still possible to recover the best segmentation of the raw NGS
profiles w.r.t. the considered loss function.

After compression, the signal is small enough to be processed by our exact pruned DPA. However, the
compressed signal is still too long to be processed by the original DPA [4]. In other words, our approach truly
relies on the complementarity of the compression and the pruned DPA to obtain a reasonable runtime.

2 Signals with Plateaux

In the following section we will consider a sequence of n observations with a plateau, meaning that between
two arbitrary t1 and t2 (> t1) the signal is constant:

∀t, t1 ≤ t ≤ t2, yt = yt1 = yt2 .

Using this sequence we will demonstrate Theorem 2.2. This Theorem proves, the arguably intuitive idea that
having a change-point between t1 and t2 is never beneficial in terms of cost. We first demonstrate this property
for k = 2 in Lemma 2.1.

2.1 Searching for one Change-point

Let us consider a segmentation in 2 segments with a breakpoint at t. We define Pt(µ1, µ2), the cost of this
segmentation given some parameter µ1 for the first segment and µ2 for the second segment:

Pt(µ1, µ2) =
t∑

i=1

γ(yi, µ1) +
n∑

i=t+1

γ(yi, µ2)

The optimal cost Pt is:

Pt = minµ1{
t∑

i=1

γ(yi, µ1)} + minµ2{
n∑

i=t+1

γ(yi, µ2)}
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Having these notations, let us prove the following lemma:

LEMMA 2.1.

– If t1 = 1 and t2 = n then ∀ t Pt ≥ C1,n

– If t1 = 1 and t2 < n then ∀ t1 − 1 ≤ t ≤ t2 we have Pt ≥ Pt2
– If t1 > 1 and t2 = n then ∀ t1 − 1 ≤ t ≤ t2 we have Pt ≥ Pt1−1
– If t1 > 1 and t2 < n then ∀ t1 − 1 ≤ t ≤ t2 we have Pt ≥ min{Pt1−1, Pt2}

Proof

First scenario [t1 = 1 and t2 = n] We have:

Pt = t.minµ1{γ(y1, µ1)}+ (n− t).minµ2{γ(y1, µ2)} = C1,n.

Thus we get: Pt ≥ C1,n.

Second scenario [t1 = 1 and t2 < n] For any t such that t ≤ t2 we have:

Pt = t.minµ{γ(y1, µ)}+minµ{(t2 − t)γ(y1, µ) +
n∑

i=t2+1

γ(yi, µ)}

Thus we have:

Pt ≥ t.minµ{γ(y1, µ1)}+ (t2 − t).minµ{γ(y1, µ)}+minµ{
n∑

i=t2+1

γ(yi, µ)}

And we get ∀ t ≤ t2 Pt ≥ Pt2 .

Third scenario [t1 > 1 and t2 = n] We get ∀ t1 − 1 ≤ t Pt ≥ Pt1−1 by reversing the index and using
scenario 2.

Fourth scenario [t1 > 1 and t2 < n] For any t such that t1 − 1 ≤ t ≤ t2 we get:

Pt(µ1, µ2) =

t1−1∑

i=1

γ(yi, µ1) +
n∑

i=t2+1

γ(yi, µ2)

+ (t− t1 + 1)γ(yt1 , µ1) + (t2 − t)γ(yt1 , µ2)

Thus, for fixed µ1 and µ2 and for t ∈ [t1 − 1, t2], Pt(µ1, µ2) is a linear function of t. Thus we get that for any
µ1 and µ2:

Pt(µ1, µ2) ≥ min{Pt1−1(µ1, µ2), Pt2(µ1, µ2)} ≥ min{Pt1−1, Pt2}.
As this is true for any µ1 and µ2 we get Pt ≥ min{Pt1−1, Pt2} �

2.2 Searching for several Change-points
THEOREM 2.2. There exists a segmentation m in K or less segments without any change-point in the plateaux
such that the optimal cost of m is equal to CK,n.

Proof Assume that we have a segmentation m in MK,n with a breakpoint τk in a plateau. Then applying
lemma 2.1 on the sequence {yi}i∈Jτk−1,τk+1K we see that τk can either be discarded or moved to t1 − 1 or t2
without increasing the cost. Thus there exists a segmentation in K or less segments without any change-point
in the plateau such that its optimal cost is CK,n �

This theorem is more subtle than we might have thought based on our intuition. It does not mean that a
change-point in a plateau is never optimal but only that it is not necessary to have change-points in plateaux to
achieve optimality.
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2.3 Compression of the Signal

According to Theorem 2.2 when searching for the best segmentation of the data we don’t need to look
for change-points in plateaux. In other words a plateau starting at position t1 and ending at position t2 can
be considered as a unique data point with value yt1 and weight t2 − t1 + 1. At worst the signal cannot be
compressed. Thus, the two-step algorithm (compression and pruned DPA) does not change the worst case
complexity. Yet, as we will see, very often the compression is efficient and allow for a significant reduction of
the overall runtime.

Let us now consider a chromosome with n nucleotides. We have mapped R reads on this chromosome. Let
us assume that R is smaller than n and that Yi is the number of reads starting at nucleotide i. In that case the
worst compression is achieved if all reads map different starting nucleotides. If R is smaller than n − R then
we can define at most 2R + 2 plateaux in the signal. If R is bigger than n − R then we can define at most
2(n − R) + 2 plateaux in the signal. In the end we get at most 2min(R,n − R) + 2 plateaux allowing for a
2min(R,n−R)+1

n compression. So for reads of length 55 and a 5× coverage we overall have n
11 reads and we

will get at worst a 2
11 + 2

n ≥ 18.2% compression. In the case of RNA-seq we do not expect reads to be evenly
scattered, on the contrary they are concentrated in transcribed regions and between those regions we expect
large plateaux of 0 allowing for an efficient compression.

3 Segmentation of the Compressed Profile

The compressed profile is still quite large, with 105 to 106 points. The original DPA [4] cannot be run on
such a large profile because of its Θ(n2) space and Θ(Kn2) time complexities. Thus, we used the exact pruned
DPA for segmentation that we developed recently [6]. Here we give a brief overview of this new algorithm and
outline its main differences compared to the original DPA.

The segmentation problem involves two different types of parameters: change-points, which are discrete,
and the parameters within each region (µ), which are often continuous. First, the original DPA recovers for all
n(n+1)

2 possible segments the best possible µ and its associated cost or minimal loss. The result is stored in
Θ(n2) space. Then using a segment additivity property it recovers the best possible segmentations in 1 to K
segments. The main idea behind our pruned DPA is to proceed the other way around. First, the pruned DPA
optimizes the position of change-points for unspecified µ and then optimizes the value of µ. This way we get
a point additivity property and a pruning property that allows for an efficient update and pruning of possible
solutions.

4 Application to Real Data

In this section we applied the algorithm to two real datasets. The algorithm was coded in C++ and ran on a
laptop with a 2.53 Ghz processor and 4 GB RAM.

The first dataset is a nine-sample DNA-seq dataset of human tumors and cell-lines. Human chromosomes
are made of 50 million up to 250 million nucleotides. There was around 10 million mapped reads of length
55 per sample. In this DNA-seq experiment the reads are hopefully relatively well scattered across the whole
genome. We thus expect the compression of each chromosome to be around 2×106

3×109 ≈ 0.66%. It is indeed what
we observed in Fig. 1 (Up). After the compression step we applied the pruned DPA algorithm to recover the
segmentation in 1 up to 1000 segments of each chromosome. The runtime of the pruned DPA to analyze one
chromosome never exceeded 35 minutes and the relationship between the runtime and the length of the profile
after compression seems linear (see Fig. 1 (Bottom)). Note that in this dataset it was not possible to run the
pruned DPA on the raw NGS profiles (without compression) due to the very large size of the chromosomes.

We also analyzed a five-sample RNA-seq dataset of bacteria. We analyzed separately the forward and
reverse strands making for a total of 10 NGS profiles. The size of the chromosome was 1.3 106 base pairs.
There was around 7.106 mapped reads of length 54 for the 10 profiles. If the mapped reads were scattered
across the whole chromosome we would expect a low compression level of around 2.(1.3−0.7)

1.3 ≈ 92.3%. Yet, as
expected, reads are concentrated on transcribed regions of the chromosome allowing for a much more efficient
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Figure 1. (Up) Compression efficiency in % across the nine samples and for the different chromosomes. The compression
ratio is measured as the length of the compressed NGS profile divided by the size of the raw NGS profile. (Bottom)
Runtime in minutes of the pruned DPA as a function of the length of the chromosome after compression.
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compression. Compressed profiles are 19.6% to 1.8% the length of the raw NGS profiles. On this dataset it
was possible to run the pruned DPA with or without compression (due to the smaller size of the chromosome).
The compression ratio is smaller than the runtime ratio (runtime with compression over the runtime without
compression in %, see Fig. 2 (Left)), still the gain in time is important. The relationship between the runtime
and the length of the sequence after compression seems linear similarly as for the DNA-seq dataset (see Fig. 2
(Right)).

Importantly, in both datasets even the compressed profiles are most of the time too large to be analyzed by
orginal DPA.

Figure 2. (Left) Runtime ratio in % of the pruned DPA as a function of the compression ratio. The runtime ratio
is measured as the runtime of the pruned DPA with compression divided by the runtime without compression. The
compression ratio is measured as the length of the compressed NGS profile divided by the size of the raw NGS profile.
(Right) Runtime in minutes of the pruned DPA as a function of the length of the chromosome after compression.

5 Conclusion

Segmentation of NGS profiles to discover DNA copy number alterations or transcribed regions of the
genome is a computationally difficult problem due to their very large size. Thus many methods rely on heuris-
tic computational schemes. Here we presented an exact algorithm to segment these profiles. Our algorithm
recovers the best segmentation in 1 up to K segments with respect to some loss function (either the Poisson or
quadratic loss). Our algorithm first compresses the data. After compression, the signal is processed by an exact
pruned DPA that we recently developed. The combination of the compression step and the efficient pruned
DPA enables the analysis of large NGS profiles. In the case of human DNA-seq experiments the compressed
signals are less than 2% the size of the original data. The compressed profiles are still large (n ≈ 106) but small
enough for the pruned DPA. Overall our approach allows to recover the best segmentation of an NGS profiles
with more than 50 million nucleotides in a matter of minutes.
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1 Introduction 
During the last five years, high throughput sequencing techniques evolved to achieve better accuracy, 

ease of use and yield [1]. As the amount of data generated growths exponentially, the request for computer 
resources needs to follow these evolutions [2]. Data analysis requires large computer infrastructures that are 
only profitable for large genomic or informatics centers. In these conditions, how will platforms equipped 
with one sequencing device or teams working on smaller projects be able to access the computer resources 
they need occasionally? 

Answers to this problem can be found through cloud computing solutions [3]. Here cloud computing 
refers to on demand access to computer resources using distant networks. Thanks to such data center there is 
no need to invest in a big computer infrastructure to perform large calculation processes. Through 
parallelized algorithms, such as MapReduce, data analysis from high throughput sequencing, distributed over 
several processors at the same time, can be performed in some hours [4]. Meanwhile, programming software 
using MapReduce algorithm is not widespread among bioinformatics developers, and only few solutions 
have been made available to deal with sequencing data over distributed networks. 

We present Eoulsan, an open source workflow to work on high throughput sequencing data analysis 
using distributed calculation. This framework has been developed with the aims to automate the analysis of a 
large number of samples at once, simplify the configuration of cloud computing infrastructure and work with 
various already available analysis solutions. We first implemented Eoulsan to work on the differential 
analysis of transcript expression and tried it using Amazon Web Services (AWS) cloud computing facilities. 
We assess the performances of AWS in order to select the best parameter combination among the type and 
number of computer servers (instances) that can be used, and we analyze how Eoulsan can deal with the 
throughput increase that will come from future sequencing devices. 

2 Results 
Eoulsan works in 5 steps: quality control filtering, mapping, expression calculation, normalization and 

differential analysis. All information available on the experimental design is gathered in one text file inspired 
from the one of the limma R package for microarray analysis [5]. All the options needed to run the workflow 
are gathered in one XML file that allows for the usage of plugin programmed by external developers. 

Analyse Distribuée des Données de Séquençage à Haut Débit grâce au 
Calcul dans le « Nuage » 

Mots-clés Séquençage à haut débit, RNA-Seq, Amazon Web Services, cloud computing, MapReduce 

Session 4 : The Challenges of NGS Présentation orale

–83–



 

 

Eoulsan has been adapted for distributed calculation using the Hadoop system, the main open source 
implementation of the MapReduce algorithm. The workflow runs on AWS as described on Figure 1. It 
connects to AWS Simple Storage Service (S3) and transfers all the files needed for analysis. AWS books the 
requested number of instances on AWS Elastic Compute Cloud (EC2). The data are uploaded from S3 to 
EC2. Eoulsan performs filtering, mapping and expression calculation. The data are then downloaded back to 
the S3 storage location and AWS shuts down the cluster created on EC2. 

 

Figure 1. Description of the Eoulsan analysis workflow on Amazon Web Services (AWS). 

We ran Eoulsan with 8 mouse samples from RNA-Seq sequencing for a total of 188 million reads using 
three different read mappers: BWA, Bowtie and SOAP2. We surveyed the time needed to perform the 
calculation process and the cost charged by AWS on three different EC2 instance types: m1.large, m1.xlarge 
and c1.xlarge (Table 1). Eoulsan succeeds in calculating the expression of mouse transcripts except for the 
SOAP2 mapper on c1.xlarge and m1.large instances due to the high memory requirement of SOAP2 
algorithm (Table 2). Comparing the time spent using m1.xlarge instance on the three mappers, most of the 
duration differences come from the mapping step, varying from 39 minutes with Bowtie to 195 minutes with 
SOAP2. For BWA and Bowtie the fastest result is always obtained from the c1.xlarge instance, followed by 
m1.xlarge and m1.large. In term of costs, whatever the mapper used, the price of the calculations is always 
the most expensive using m1.xlarge instances followed by c1.xlarge, with m1.large being the most economic 
choice. 

Instance Memory (Go) Virtual cores I/O performance Price USD/hour 
m1.large 7.5 2 high $0.44 
m1.xlarge 15.0 4 high $0.88 
c1.xlarge 7.0 8 high $0.88 

Table 1. Instance selection for our study was made from the available EC2 servers from AWS accessible in all world 
regions with high input/output access performances. Prices are given for Ireland based instance location. 

We tested how the number of instances booked influences the calculation process by varying the number 
of m1.large and c1.xlarge instances using the Bowtie mapper. The whole time spent for the calculation 
follows an exponential decrease curve for both instance types. The main contribution to these curve shapes 
comes from the mapping and expression steps. The best economic solution is achieved with 6 and 5 
instances for m1.large and c1.xlarge respectively. In addition the cost per hour is linear over the number of 
instances used. This means that the number of instances can be increased with no risk to fall in a suboptimal 
configuration in order to speed up the data analysis process. 
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Mapper Instance Total 
(min) 

Upload 
(min) 

Mapping 
(min) 

Expression 
(min) 

Download 
(min) 

Startup/Shutdown 
(min) Cost 

BWA m1.xlarge 250 16 151 28 43 11 $44.00 
BWA c1.xlarge 187 13 106 23 38 7 $35.20 
BWA m1.large 412 20 300 36 47 8 $30.80 
Bowtie m1.xlarge 121 14 40 27 31 8 $26.40 
Bowtie c1.xlarge 109 14 34 20 32 8 $17.60 
Bowtie m1.large 176 21 70 33 43 11 $13.20 
SOAP2 m1.xlarge 270 17 195 25 25 8 $44.00 
SOAP2 c1.xlarge 126 18 - - - 7 $26.40 
SOAP2 m1.large 822 16 - - - 11 $61.60 

Table 2. Comparison of execution time duration with various read mappers on several AWS EC2 instances. Prices are 
given for Ireland based instance location. 

Finally, to follow throughput evolution we assessed the impact of raw data increase on computational 
time by running Eoulsan with 16 and 32 samples, respectively 376 and 752 million total reads. The plot of 
run time against the number of samples for various instance number shows linear relations (data not shown). 
This clearly demonstrates that Eoulsan is able to handle the increase of raw data coming from future 
evolutions of sequencing devices. 

Eoulsan is distributed under the GNU Lesser General Public License (LGPL) and CeCill-C and is 
available for download with a complete documentation at http://transcriptome.ens.fr/eoulsan. 

3 Discussion 
Our framework provides from standalone workstation to cloud computing clusters an integrated and 

flexible solution for high throughput sequencing data analysis from reads alignment to the list of significant 
differentially expressed transcripts. With its modular structure and parallel data processing, Eoulsan is ready 
to fulfill the challenges coming from the massive increase of the amount of data and the new applications of 
sequencing technologies. 

The major limitation of the usage of cloud computing comes from data transfer as the network used to 
send data to Amazon S3 server storage is shared among all Internet users. However, the distributed 
calculation process used in Eoulsan is based on Hadoop and it can be installed on numerous cluster server 
configurations. It would be of interest to create regional genomic computer infrastructures to be shared 
among several local high throughput sequencing users. With dedicated high-speed networks, this can speed 
up the time transfer process. In addition, this could also favor the standardization of analysis pipelines 
developed from the bioinformatics community, making high throughput sequencing technologies really 
accessible for a wide audience. 
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1 Background

In silico discovery of regulatory motifs (RM) can be seen as a feature extraction problem. Given a set of
nucleic acid sequences that are mapped to some expression data, the goal is to find a concise set of motifs that
is the most informative with regards to that mapping. Apart from few exceptions (e.g. [1]), one of the most
common approaches is to use a clustering algorithm to partition the expression dataset, and to apply on each
cluster one of the numerous algorithms that have been designed to find over-represented motifs in a predefined
set of sequences, such as MEME [2] or AlignACE [3]. However, the partition induced by this clustering
rarely corresponds to a biological reality. Firstly, expression data is inherently noisy, and determining the
“real” number of clusters is considered to be one of the most difficult problems in classification. Secondly,
different RM usually have overlapping gene sets, which cannot be appropriately modeled by a single partition.
In addition, these algorithms rely on statistical models of sequence background, which have been reported to
produce many false positives [4,5], especially with repeat-rich and atypical genomes. This is the case, for
example, with Plasmodium falciparum, whose A+T content almost reaches 90% in the intergenic regions.

The FIRE [4] and GEMS [5] algorithms have been designed for finding RM from whole genomes and
high dimensional datasets without models of sequence background. However, they both rely on a clustering of
the expression data and are subject to the aforementioned criticisms. The two methods differ in the way the
dependency between the presence of a motif and the expression profile of the corresponding gene is measured.
GEMS uses the hypergeometric distribution to measure motif enrichment in each co-expression cluster, while
FIRE computes the mutual information between the presence/absence of a motif and the cluster membership
of the corresponding genes. These two approaches can be seen as two extremes of a simple model, which only
assumes that RM must show some kind of statistical dependency with the expression data. The hypergeometric
approach is a local criterion, as it considers motif enrichment in a single cluster at a time, while the mutual
information approach is a global one including the contributions of all the clusters.

2 Method and Results

In this work, we show that the hypergeometric distribution and the mutual information criteria can be used
without requiring any clustering, using the notion of motif density in expression space. Namely, rather than
considering the number of genes that contain a motif in each cluster, we compute motif densities locally around
each gene with a k-nearest neighbors approach. For the hypergeometric criterion, the score of a motif is then
defined as the negative logarithm of the lowest p-value observed among all these neigborhoods. For the mutual
information, the score is obtained by summing over the density estimate of each gene, instead of each cluster.

We compared the original and new version of both criteria on two S. cerevisiae and three P. falciparum gene
expression datasets. All possible 8-mers were enumerated and scored with the four objective functions, and a
false discovery rate (FDR) was estimated for different score thresholds using a shuffling procedure. For the
original criteria, we used the k-means algorithm with different number of clusters (3− 10, 20, 30, 40), and kept
the clustering that yields the best sensitivity at 0.1 FDR. Fig. 1 shows the number of 8-mers identified by the new
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and original criteria under various FDR for two datasets. We see that avoiding the clustering step results in a
significant increase of the sensitivity over the original methods. Overall, we observed a significant improvement
on the five datasets for the hypergeometric criteria, and on four datasets for the mutual information.

Figure 1. Number of predicted 8-mers, according to different estimated FDR thresholds, for (left) the yeast dataset [6]
and (right) the P. falciparum dataset [7]. The best results of the original scoring functions (hypergeometric and mutual
information) are achieved with 9 and 7 clusters (respectively) in yeast, and 3 and 7 clusters (respectively) in P. falciparum.

Using yeast Protein Binding Microarray (PBM) datasets [8], we further show that our continuous ap-
proaches also improve prediction. A True Positive Rate (TPR) that measures the fraction of predicted 8-mers
bound by a transcription factor in the PBM experiments was computed for the four approaches. As we observed
with the estimated FDRs, the new criteria outperform the original ones in this experiment. For the Gasch dataset
presented in Fig. 1, the TPR is 55% for the 200 highest scoring 8-mers returned by the original criteria, whereas
it reaches 65% for the new versions. Finally, we showed that using motif densities presents several advantages
compared to the clustering approach. In addition to the increased sensitivity, it provides a simple way of com-
paring different motifs and predicting the functionality of individual motifs occurrences. All these methods
have been implemented in a software called RED2, for Regulatory Elements Discovery from Raw Expression
Data. Motifs are represented as IUPAC strings of arbitrary lenght, allowing an easy and comprehensive analysis
of a wide range of expression data.
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1 Introduction 
Genetic interactions are useful to study biological processes and their functional relationships, and very 

powerful to predict gene function [1]. A genetic interaction is a deviation from the expectation for a double 
mutation in terms of a certain phenotypic readout in a given environment. How different are genetic 
interaction networks in different conditions or using different phenotypic readouts? 

In Saccharomyces cerevisiae, most genetic interaction studies assess yeast cell growth in standard 
laboratory conditions. Recently some studies were performed in DNA damage conditions [2] or were based 
on a different phenotypic readout [3]. A comparison of genetic interaction networks in standard laboratory 
conditions and in DNA damage conditions revealed large differences and many interactions specific to each 
condition [2]. Nevertheless genetic interaction networks are subject to systematic and stochastic errors. Are 
the differences between the networks only the result of lack of coverage of both networks and errors in the 
experimental identification of genetic interactions? What do we expect by chance? In addition, we don’t 
know if those results hold more generally for any pairs of conditions or for different phenotypic readouts. 

To answer those questions, we compare genetic interaction networks mapped with two different 
phenotypic readouts in standard laboratory conditions: cell growth (SGA) [1] and endocytosis defect 
(Burston) [3]. Using the error rates estimated by Costanzo et al., we estimate the overlap expected by chance 
between the two data sets in terms of interactions. In addition, we use an alternative genetic interaction 
network based on cell growth as a control for the comparison (Collins) [4]. 

2 Results 

2.1 The Quantitative Scores Are not Correlated 
Both SGA and Burston data sets provide biological insights and are independently biologically informative 

as shown in the original analysis [1, 3]. To perform a meaningful comparison, all analyses are limited to the 
set of gene pairs tested in both data sets. Considering all measured scores, we first note that their quantitative 
scores are not correlated (Pearson r=0.06). This shows that both networks provide different information. As a 
control, we consider SGA and Collins networks, which are both based on growth phenotypic readout and in 
the same conditions. The scores from those data sets are much more correlated (r=0.45), which suggests that 
genetic interaction networks using same conditions and phenotypic readouts are expected to be correlated.  

2.2 The Filtered Binary Interactions Show Low Overlap 
We then consider data sets as binary (filtered interactions). We find that the overlap (Jaccard coefficient) 

between Burston and SGA is very low (8%) and much lower than the overlap between Collins and SGA 
(20%). In addition, we note that both data sets provide unique information. We define the unique ratio as the 
number of interactions observed in exactly one data set among all observed interactions. Burston and SGA 
provide mostly (92%) unique information (Table 1). Surprisingly we find that Collins and SGA also provide 
much (80%) unique information. Finally we ask whether both data sets agree on the type of genetic 
interactions (positive/negative). Among the gene pairs with an edge in both data sets, we compute the 
percentage of pairs of the same sign. We find that SGA and Burston agree on 64% of the interactions as 
opposed to 93% for SGA and Collins (Table 1). All together, these results show that the Burston and SGA 
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data sets overlap less than data sets obtained with the same phenotypic readout and give complementary and 
unique information. 

 Tested No One Two Agree Positive Negative Agree% Overlap% Unique% 
Burston 10100 7013 2835 252 162 58 104 64 8.1 92 
Collins 101908 84124 14168 3616 3359 741 2618 93 20.3 80 

Table 1. Comparison between SGA and two other data sets. Burston uses a different phenotypic readout whereas 
Collins uses the same and is thus used as a control. No/One/Two indicate how many of the tested gene pairs 
are identified as interacting in 0/1/2 data sets. Agree is when the observed interactions have the same sign. 

2.3 Positive and Negative Networks Overlap Less than Expected by Chance 
Since positive and negative interaction networks have different properties and different error rates, we 

also analyze positive and negative networks separately. Again we find that the overlap between Burston and 
SGA is lower than between Collins and SGA both for positive (4% vs 9%) and negative interactions (7% vs 
24%). Moreover Burston and SGA provide mostly unique information for both positive (96%) and negative 
(93%) networks. Recently the comparison of DNA damage to standard conditions revealed a lot of unique 
information for positive (79%) and negative (61%) genetic interactions [2]. Comparing SGA and Collins as a 
control, we find that they also provide mostly unique information for positive (91%) and negative (76%) 
networks even though the negative networks have a lower rate of unique information.  

To assess the overlap expected by chance between both data sets, we model the genetic interaction 
networks by ordinary graphs, build a stochastic model and use an estimation of the error rates. We find that 
Burston and SGA overlap less than expected by chance (Table 2). This suggests that both data sets provide 
different information. As a control, we compare SGA and Collins which both map genetic interaction using 
growth as a phenotypic readout and find that they overlap more than expected by chance. 

 No One Two Overlap Overlap ratio p-value 
Burston-Pos 12262 1645 75 0.044 0.99 8.4e-09 
Burston-Neg 12219 1568 195 0.110 0.61 1.8e-17 
Collins-Pos 114900 8819 501 0.054 1.68 1.2e-30 
Collins-Neg 109623 12650 1947 0.133 1.82 1.8e-146 

Table 2. Expected values based on the stochastic model and comparison with the observed overlap. 

3 Conclusions 
In this work we explore the similarities and differences of genetic interaction networks obtained with 

different phenotypic readouts. We show that the networks mapped based on cell growth and endocytosis 
defect provide complementary information, controlling both with a stochastic model of the expected overlap 
and with an additional network based on the same phenotypic readout. It appears that different networks in 
the same conditions and using the same readout can be surprisingly complementary as well. Nevertheless, 
networks based on different readouts show lower overlap and correlation and overlap less than expected by 
chance while the control overlap more than expected by chance. We are currently investigating more 
networks and some detailed examples of various biological processes showing significant differences. 
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Mathematical Modeling of Yeast Stress Response

Microorganisms live in changing environments. They have to face nutrient alteration, chemical and physical stresses,
and they change themselves over cell cycle and aging. The ability to perceive and respond to information in their envi-
ronment is one of the most ubiquitous properties of cellular organisms. It is crucial for a cell to react appropriately to
changes or signals in its environment. This becomes apparent in many situations such as the search for nutrients, the
detection of potentially harmful external conditions and in cell-cell communication as it is required for any multicellular
organism. Even though there is a huge selection of perceivable signals the underlying mechanisms are surprisingly alike,
which suggests that they are highly conserved in the course of evolution.

Over the last years, we have studied various signal transduction and regulatory pathways in a model organism, the
yeast Saccharomyces cerevisiae, and investigated the response of cells to external perturbations on various levels. To
this end, we have established mathematical models, mainly in form of ordinary differential equation systems, but also as
Boolean models, stochastic models or spatial models, which are supported by experimental data. We focus on results with
respect to interaction of different signaling and regulatory pathways. Specifically, new aspects in cell cycle regulation and
the interaction of stress-activated signaling pathways with cell cycle progression will be discussed. The results indicate
that yeast cells have developed different mechanisms for coping with external stress during different periods of their life
time.
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Abstract  Evolutionary analyses of biological data are becoming a prerequisite in many fields 

of biology. At a time of high-throughput data analysis, phylogenetics is often a necessary 

complementary tool for biologists to understand, compare and identify the functions of 

sequences. But available bioinformatics tools are frequently not easy for non-specialists to use. 

We developed PhyleasProg (http://phyleasprog.inra.fr ), a user-friendly web server as a turnkey 

tool dedicated to evolutionary analyses. PhyleasProg can help biologists with little experience 

in evolutionary methodologies by analyzing their data in a simple and robust way, using 

methods corresponding to robust standards. Via a very intuitive web interface, users only need 

to enter a list of Ensembl protein IDs and a list of species as inputs. After dynamic 

computations, users have access to phylogenetic trees, positive/purifying selection data (on site 

and branch-site models), with a display of these results on the protein sequence and on a 3D 

structure model, and the synteny environment of related genes. This connection between 

different domains of phylogenetics opens the way to new biological analyses for the discovery of 

the function and structure of proteins. In future, it will be possible to submit to PhyleasProg, a 

private sequence as input. 

Keywords  Phylogenetic tree, Positive selection, protein three-dimensional structures, synteny. 

 

1 Introduction 

Today, more and more eukaryotic genomes have been sequenced thanks to second generation sequencing 

technologies thereby providing an extraordinary wealth of information for evolutionary analyses. Currently, 

the GOLD website [1] lists more than 3 000 eukaryotic genomes whose sequencing is complete or ongoing. 

Under these circumstances, bioinformatics tools could help understand the evolutionary histories of proteins 

especially by connecting phylogenetics analysis and positive selection calculations. These approaches 

constitute the core of many biological research areas, and as stated by Theodosius Dobzhansky “Nothing in 

biology makes sense except in the light of evolution”. Indeed, present protein sequences are the result of a 

long, complex and extensive evolutionary process. Proteins have different levels of conservation. Active 

sites or protein–protein interaction domains are often well conserved, while highly variable regions may 

carry sites under positive selection. Such positively selected sites may be interpreted as being a consequence 

of molecular adaptation, which may confer an evolutionary advantage to the organism [2-4]. 

Accordingly, the association of (i) the establishment of orthology and paralogy relationship, (ii) the 

functional inference by reconstruction of the phylogenetic tree, and (iii) the identification of sites/genes 

under positive selection is an important step, not only in studies of evolutionary biology, but also in 

functional studies. By projecting the results of positive selection onto the three-dimensional structure of 

proteins, this becomes a powerful and very useful tool for biologists. The combined data could help 

biologists plan site-directed mutagenesis experiments. However, obtaining a phylogenetic tree requires 

successive computations including identification of homologous sequences, multiple alignment, phylogenetic 
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reconstructions and graphic representation of the inferred tree. Obtaining positive selection data requires the 

use of mathematical methods, such as PAML [5], which are designed for specialists. 

Several web sites offer phylogenetic tree reconstruction. Some are turnkey systems such as PhyloBuilder 

[6] and POWER[7]. Some offer a single tool, while others bring together many of the most popular programs 

for phylogenetic reconstruction such as Mobyle [8]. The web server Phylogeny.fr [9] is designed for non-

specialists and has up-to-date programs that are often designed for experts. In parallel, two phylogenetic tree 

databases, PhylomeDB [10] and TreeFam [11], offer a large number of pre-computed trees based on all 

genes of all genomes. A number of web sites are also available for analyzing evolutionary forces. The web 

server Selecton [12] offers a user-friendly tool to compute positive selection and displays results on a three-

dimensional structure of proteins. However, it only allows calculation of one set of orthologues. The 

DataMonkey server [13] enables detection of signatures of positive and negative selection from coding 

sequence alignments using a wide range of statistical models. The Selectome [14] database provides the 

results of a branch-site specific likelihood test for positive selection based on whole gene families from the 

TreeFam database. Phylemom [15] enables experts to build a complete pipeline dedicated to phylogenetics 

and evolution. 

Many tools are already available to reply to phylogenetics and evolutionary questions. However, they are 

complex to use and do not allow all the necessary computations to be carried out on a single server. 

Phylogenetic tree reconstruction, positive selection detection and protein three-dimensional structure 

modelling require (i) installation/use of numerous tools, (ii) knowledge of up-to-date tools and (iii) 

substantial computational resources. In particular, when biologists analyze several proteins of interest, they 

want to repeat bioinformatics methods on their data in the same conditions and they want to obtain results in 

a reasonable amount of time. This is why we built PhyleasProg web server in such a way that it could be 

used by the largest possible number of biologists. Our aim was to combine usefulness and usability. Such a 

server is a helpful guide for biologists with little experience in evolutionary methodologies as it can analyse 

their data in a simple and robust way, using methods corresponding to well-accepted standards. 

Via a very simple interface, users enter one or a list of Ensembl protein IDs [16] and choose a set of 

species about which they wish to obtain evolutionary information among the sequenced vertebrates in 

Ensembl. There is currently no limit to the number of IDs or the number of selected species. However, we 

recommend submitting jobs containing less than 20 IDs on all species in order to facilitate analysis of results. 

Once submitted, each ID is treated independently and the computations are performed on both orthologues 

and paralogues of the related genes. As output, PhyleasProg provides (i) phylogenetic trees, (ii) 

positive/purifying selection data (on site and branch-site models) with visualization of these outcomes on the 

protein sequence and whenever possible, on a 3D structure, and (iii) the genomic environment of related 

genes. To our knowledge, no other web server performs all these tasks on several input sequences 

simultaneously. In addition, PhyleasProg computes the degree of purifying selection and positive Darwinian 

selection for each site in the protein sequence and displays these data on the modelled molecular structure of 

the protein. To guide users through these different evolutionary methods, which are not always very easy for 

non-experts, the pipeline only returns results if they are statistically significant. 

This unique connection between phylogenetic trees, synteny studies, positive/purifying selection data and 

3D structures opens the way to new biological analyses to improve our understanding of function and 

structure of proteins. 

2 Overview 

The PhyleasProg pipeline is a combination of Perl modules and external software (Figure 1). As input 

data, it requires one or a list of Ensembl protein IDs and a list of species selected among completely or 

partially sequenced vertebrates in Ensembl [16]. Once the process is complete, users can obtain evolutionary 

results on each ID submitted, treated independently but simultaneously, on orthologues and paralogues of the 

related genes. 

We intentionally chose to not embed an exhaustive number of similar methodologies in our platform. We 

chose rapid, up-to-date, accurate and proven tools. Multiple sequence alignments are performed by 

MUSCLE [17] and are refined by GBLOCKS [18], itself improved by a home-made Perl program. 

TREEBEST (http://treesoft.sourceforge.net/treebest.shtml) reconstructs phylogenetic trees. CODEML, a 
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PAML program [5], performs positive selection computation. MODELLER [19] builds homology models of 

the three-dimensional structure of proteins. 

Data visualization was an important goal for the development of this platform. JALVIEW [20] is used to 

display multiple sequence alignments, ARCHAEOPTERYX [21] for interactive manipulation of 

phylogenetic trees and JMOL [22] to display the 3D structure of proteins. We were careful to present 

processes and results very simply to enable biologists to navigate through a user-friendly environment. To 

guide users, the pipeline only returns significant results. Moreover, all input and output data can be 

downloaded as flat files. 

A cluster computer manages the execution of the whole pipeline. This choice allows a very reasonable 

execution speed and authorizes PhyleasProg to work on several proteins simultaneously. The user interface 

was optimized for Firefox browser developed in Perl CGI. 

3 PhyleasProg Pipeline 

3.1 Data Acquisition 

3.1.1 Input 

For a very simple use of PhyleasProg, only Ensembl IDs of the proteins to be studied and a list of the 

species with which they should be compared are required as inputs. Protein IDs can be separated by a 

comma, a space or a new line character. Ensembl protein IDs are unique, they start with „ENS‟ and their last 

letter must be a „P‟ (e.g. ENSMUSP00000099398). To choose species for which they want evolutionary 

results, users simply tick the name of the species in the lists of completely and partially sequenced genomes. 

The Job summary page summarizes the list of IDs submitted, the selected species, and displays the status of 

process for each ID. 

3.1.2 Interrogation of Ensembl Database 

We chose to work with Ensembl protein IDs because Ensembl provides high-quality genome annotation 

across vertebrate species and allows computer scientists to retrieve a lot of data very quickly, thanks to a Perl 

application programming interface (API) [23]. 

Using this API, for each protein ID submitted, we retrieved protein and related transcript sequences, 

related gene ID, orthologous and paralogous protein IDs, orthologue and paralogue protein sequences and 

related transcript sequences (Figures 1A, 1A‟). Among the numerous orthologues identified in Ensembl, we 

chose to keep either the one-to-one orthologues or the related gene with the shortest evolutionary distance 

among the one-to-many or the many-to-many orthologues [24]. 

3.2 Reconstruction of Phylogenetic Trees 

3.2.1 Multiple Sequence Alignment and Refinement 

For each protein ID submitted, PhyleasProg reconstructs phylogenetic trees of both orthologues and 

paralogues. And for each orthologue related to one of the protein IDs submitted, a phylogenetic tree of 

paralogues is also reconstructed. 

As shown in Figure 1B, multiple sequence alignment (MSA) of proteins is generated by MUSCLE. This 

alignment is then converted into multiple codon alignment by PAL2NAL [25]. As our pipeline offers a 

turnkey process, we had to pay particular attention to the quality of MSA because this is essential for the 

quality of the related phylogenetic tree. Thus, GBLOCKS is used to edit MSA. This software removes all 

sites containing at least one gap and sites that are too divergent because these positions might not be 

homologous or might be saturated by multiple substitutions. First of all, GBLOCKS is performed with strict 

parameters (type=codons; maximum number of contiguous non-conserved positions= 8; minimum length of 

a block= 10; no gaps allowed). After this first step, the generated MSA can be very short, which would 

seriously damage the rest of the computations in the PhyleasProg pipeline. Consequently, refinement step are 

performed recursively: if after GBLOCKS, the MSA length is less than 30% of the median length of 

sequences in the raw MSA, the sequence that induces most of the gaps is removed from the dataset, and a 
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new MSA is computed. If the length of the clean MSA is between 30% and 50%, a new editing with 

GBLOCKS is performed on the raw MSA with relaxed parameters (type=codons; maximum number of 

contiguous non-conserved positions= 10; minimum length of a block= 5; no gaps allowed). If after this last 

step, the length of the MSA is still too short, computation is aborted. Thus it is important to estimate the 

quality of the MSA (downloadable through the flat files menu) before analyzing the other results of the 

pipeline (Figure 2). 

 

 

Figure 1. The workflow of PhyleasProg web server. 
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3.2.2 Phylogenetic Reconstruction 

The clean MSA from the previous step is used to reconstruct the phylogenetic tree by TreeBeST (Figure 

1C). TreeBeST integrates multiple tree topologies, in particular both DNA level and protein level models and 

combines them with a species-tree aware penalization of topologies, which is inconsistent with known 

species relationships. TreeBeST is run with the option best. This enables the combination of (i) a maximum 

likelihood (ML) tree built using PhyML [26] based on the protein alignment with the WAG model; (ii) a ML 

tree built using PhyML based on the codon alignment with the Hasegawa-Kishino-Yano (HKY) model; (iii) 

a neighbour-joining (NJ) tree using p-distance based on the codon alignment; (iv) a NJ tree using dN 

distance (rate of non-synonymous substitutions) based on the codon alignment; and (v) a NJ tree using dS 

distance (rate of synonymous substitutions) based on the codon alignment. As TreeBeST runs with a species 

tree, the final phylogenetic tree is rooted by minimizing gene duplications and then losses, the best rooting 

strategy for this type of input. TreeBeST produces trees with a bootstrap analysis. 

3.2.3 Visualization 

Archaeopteryx, the successor of ATV [27], is a Java application used as applet for the display and 

manipulation of annotated phylogenetic trees. 

3.3 Positive/Purifying Selection Calculations 

3.3.1 Overview 

PhyleasProg gives positive and purifying selection data using maximum likelihood calculations which 

underlie the stochastic process of evolution. CODEML, from the package PAML (Figure 1D) [5], evaluates 

the ratio of non-synonymous/synonymous substitution rates (dN/dS), denoted ω, which is a measure of 

selective pressure. Values of ω < 1, = 1, and > 1 are indicators of purifying selection, neutral evolution and 

positive selection, respectively. Two distinct categories of codon substitution models are used: site models 

(M1a vs. M2a, M7 vs. M8 and M8a vs. M8) and branch-site models. For the two types of analyses, two 

models are compared: one model which allows positive selection and one model which does not allow 

positive selection. For each model, the lnL (log likelihood) value is retrieved (lnL1 for the model allowing 

positive selection, lnL0 for the other) and a LRT (Likelihood Ratio Test) is calculated (LRT= 2 x (lnL1-

lnL0)) to assess the significance of the results. The LRT value follows a χ² law which allows the p-value of 

the LRT to be obtained. If the LRT is significant for the comparison, PhyleasProg lists sites under positive 

selection detected by Bayes Empirical Bayes (BEB) with posterior probabilities greater than 95% and sites 

under purifying selection. 

As shown in Figure 2, selection pressure data appear in two separate menus. One is dedicated to results 

of site models and the other one to results of branch-site models. In the second case, these models allow the 

ω ratio to vary both among sites in the protein and across branches on the tree and aim to detect positive 

selection affecting a few sites along particular lineages (foreground branches). In the pipeline, all branches of 

the tree are tested as foreground branches for positive selection. Two models are used, one called Alternative 

and one called Null. In the alternative model, three classes of sites are admitted for the foreground branch, 

ω0: dN/dS < 1, ω1: dN/dS = 1 and ω2: dN/dS ≥ 1. In the Null model, ω2 is fixed to 1. Significant results 

with branch-site models are accessible on a clickable tree. Branches under positive selection are represented 

by a purple star and are highlighted in green. Raw result files (rst) of CODEML are also available. 

3.3.2 Visualization 

Results of selection pressure calculation with site and branch-site models share the same presentation 

(Figure 2). Data are visualized on 1D and 3D structures on the same results page. A dropdown menu 

embedded in the positive selection results web page enables users to visualize data on each protein in the 

orthologue or paralogue dataset. For the two types of representations, a discrete color scale is used to 

distinguish the different values of ω for each site. The scale from green to yellow represents purifying 

selection, i.e. ω < 0.3, while red and orange represent positive selection with posterior probabilities greater 

than 99% or 95%, respectively. White means that no information is available for this site because no 
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calculation was performed by CODEML due to at least one gap in the multiple sequence alignment at this 

position. Grey means results are not significant enough to infer either purifying or positive selection. To 

locate different amino acids in different organisms, the multiple sequence alignment used for PAML 

computation is displayed using the JalView applet. 

These data can greatly help biologists to plan site-directed mutagenesis experiments to target essential 

functional residues. This was the main reason to have PhyleasProg display results on a 3D structure, if one 

can be modelled (Figure 1E). To model the 3D structure, a BLAST [28] search is performed to find a similar 

structure in the PDB database [29] in order to use it as a template to calculate a model with Modeller. Three-

dimensional structure is sometimes difficult to predict, mostly when the template is too distant from the 

sequence to be modelled. To avoid models of insufficient quality, a model is built only if: (i) the alignment 

between the sequence to be modelled and the length of the PDB template covers at least 80% of PDB 

sequence and at least 50% of the query sequence and, (ii) the percentage of identity between the two 

sequences is at least 50%. If the query sequence is shorter than the template, amino acids in the C- or N-

terminal are removed. In order to enable users to locate differences between a raw query sequence and the 

model, the alignment between the PDB sequence and raw query sequence is displayed using JalView. Hence, 

when a homology model can be built, evolutionary results are directly visualized on the modelled structure, 

while if homology modelling is not possible, results are only presented on the 1D sequence. 

 

 

Figure 2. Overview of the results menu of PhyleasProg and its results pages. 

3.4 Synteny Exploration 

In order to achieve complete evolutionary analysis of the protein submitted, PhyleasProg offers the 

possibility to explore the genetic environment of related genes. Indeed, in the results menu (Figure 2) the 

user has a link to Genomicus [30]. This database is a synteny browser that can represent and compare 
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numerous genomes in a broad phylogenetic view. In addition, Genomicus includes the reconstructed 

organization of ancestral gene, thus greatly facilitating interpretation of the data. We chose not to develop 

our own genome browser because this web tool is really accurate, complete, up-to-date, user-oriented and 

also based on Ensembl data. 

4 Conclusion and Future Developments 

With PhyleasProg, we offer biologists a tool specially developed for non-specialists of phylogenetics, 

which is user-oriented, fast, complete, up-to-date, ready-to-use and accessible via a web interface, and allows 

the user to submit several jobs at the same time. All computations are dynamically produced and displayed 

as soon as the results are available, so the user can begin to analyze results without waiting for the whole 

process to end. 

Thanks to the modular architecture of our pipeline, it is relatively easy to update and to incorporate new 

tools. In the short term, our main plan is to extend the range of possible inputs. With the present system, only 

proteins from organisms available in Ensembl can be treated in PhyleasProg. A FASTA sequence as input, 

for example, could be useful. We also want to let users upload their own PDB files. In the very near future, 

we will offer a 3D structure model based on a multiple alignment including several proteins from the PDB 

database, which would improve the quality of the models. Finally, to provide more accurate pressure 

selection data, we are already thinking about a way to minimize the GC bias in positive selection results. 
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1 Introduction 
The molecular clock hypothesis, which states that the rate of molecular evolution is constant in time and 

across lineages, is rarely observed in molecular data. Heterogeneity in protein evolutionary rates along 
lineages may result from many factors affecting the balance of mutation, genetic drift and selection. For 
example, both the increase in mutation rates or the decrease in effective population sizes, (e.g. in maternally 
inherited endosymbiotic bacteria [1]) result in higher evolutionary rates in lineages. Factors affecting the 
mutation/selection balance will often result in a genome-wide shift in evolutionary rate. On the other hand, 
events such as mutational hotspots or diversifying selection acting on specific genes (e.g antigenic proteins 
[2]) create local rate heterogeneity across lineages.  

Besides these lineage-specific rate variations, different proteins systematically evolve at drastically 
different rates in every lineage. Many determinants of protein evolutionary rates have been proposed, 
including protein dispensability [3], the number of protein interactions [4] and the level of expression. The 
latter is the only ubiquitous undisputed determinant of protein evolutionary rates, where highly expressed 
proteins evolve more slowly than lowly expressed ones. This trend has been found in many diverse species, 
including bacteria (e.g. E. coli and B. subtilis), yeast and mammals [5,6]. 

Ultimately, one of the major goals of evolutionary biology is to link evolutionary rate variations to 
species physiology, ecology or life-history traits [7]. We hypothesized that minimum generation time, a key 
life-history trait, may cause protein evolutionary rate heterogeneity. Minimum generation times reflect a 
gradient of ecological strategies: while fast-growers (copiotrophs) quickly proliferate in high nutrient 
conditions, slow-growers (oligotrophs) are better competitors in low-nutrient environments [8]. During 
periods of fast growth, bacterial cells adopt a particular physiology that is highly dedicated to protein 
translation [9]. The associated selective pressure consistently imprints genome of fast-growers [10]. As a 
result, the relative weight of highly expressed proteins in the cellular fitness depends on growth rate. 
Therefore, we propose that the selective pressure associated to gene expression levels may be stronger in 
organisms subjected to periods of fast growth. That is to say that we expect changes in minimum generation 
time to impact the evolutionary rate of highly expressed proteins but not, or much less so, that of lowly 
expressed proteins across lineages.  

2 Results 
We identified by best bidirectional hit the 61 families of orthologs shared by 74 different proteobacterial 

species with diverging minimum generation times. We found that indeed the difference between the rates of 
evolution of highly and lowly expressed essential proteins (i.e. among-protein rate heterogeneity) is greater 
for rapidly dividing organisms. That is to say that the evolutionary rates of highly expressed proteins 
decrease relative to that of lower expressed proteins when minimal generation times decrease. We observe 
that for all pairs of proteins with at least a 5-fold difference in expressivity, the distribution of the 
correlations between the among-protein rate heterogeneity and the minimum generation times is significantly 
different from the random expectation. These results were also confirmed by comparing the concatenation of 
the protein constituents of the ribosome and DNA polymerase. These are well-described essential protein 
complexes with strikingly different expression levels. These results support our general hypothesis that fast-
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growers exhibit stronger purifying selection on highly expressed genes in comparison to lowly expressed 
genes.  

Under the premise that among fast growers the most highly expressed proteins do evolve slower relative 
to other essential lowly expressed proteins, we also tested that the topology of deep-phylogenetic inferences 
could be influenced by the choice in phylogenetic marker. To this purpose, we performed phylogenetic 
reconstructions for 316 bacteria and archaea based on markers with different expression levels. The 
robustness of the results was evaluated by performing 500 jacknives on each marker set. The results show 
that clades with a majority of slow-growing representatives, branch deeper in a phylogenetic reconstruction 
based on highly expressed proteins than in one based on lowly expressed proteins. This is consistent with a 
effect of minimum generation time creating systematically longer branch lengths in slow-growers and 
therefore affecting the final topology of trees based on highly expressed proteins. Therefore, the results 
suggest that minimum generation times and the particular physiology associated to periods of fast growth can 
severely influence the evolutionary patterns of essential proteins along time and lineages. 

3 Conclusions 
Cells in exponential growth are mostly devoted to transcription and translation, which are themselves 

dedicated to the few percent most highly expressed genes. Therefore, the relative cost of translation of highly 
expressed proteins is increased in cells experiencing high growth rates. As a result, highly expressed proteins 
evolve slower in fast-growers relative to the average protein in the proteome of fast-growers, and relative to 
their orthologous counterpart in slow growers. The latter results in a systematic heterogeneity in the 
evolutionary rates of highly expressed genes across lineages according to their growth capacity. This 
evolutionary rate heterogeneity leads to topological differences in deep-phylogenetic reconstruction based on 
highly expressed markers compared to those based on lowly expressed markers. Incidentally, the former 
correspond to the core proteins involved in informational processes most typically used to reconstruct the 
evolutionary history of distantly related taxa. 
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Abstract An unusual protein composed of a DnaJ domain and a ferredoxin domain has been 

found to be present only in Viridiplantae and Thaumarchaeota. To understand this unexpected 

repartition, we have carried out a phylogenetic analysis of this protein, and highlighted a 

transfer from plants to the Thaumarchaeota. We have also studied the evolution of the archaeal 

chaperone DnaK and its cochaperones, which interact with DnaJ domain containing proteins. 

Our results suggest a more complex evolutionary history than previously thought, involving 

multiple horizontal gene transfers from diverse donors. This has implications for our knowledge 

of the adaptation to mesophilic lifestyle in Archaea. 
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In 2004, the study of a genome fragment from an uncultured thaumarchaeon highlighted an unusual 

protein composed of a N-ter DnaJ domain fused with a C-ter ferredoxin (Fer) domain [1]. A first analysis 

showed homologues of this DnaJ/Fer protein only in Thaumarchaeota and Viridipantae (green algae and land 

plants), a surprising taxonomic repartition. In fact, Thaumarchaeota are a widespread lineage of Archaea, 

formerly classified as mesophilic crenarchaeota group I but recently proposed to be a third phylum within the 

Archaea, together with the Euryarchaeota and Crenarchaeota [2]. Thaumarchaeota are therefore extremely 

distant from the Viridiplantae. Moreover, the plant homologues contain a N-terminal chloroplast-targeting 

signal region. This has been studied in detail in the green algae Chlamydomonas reinhardtii, showing the 

chloroplast localization of two of the three homologues found in this species. In addition, they have been 

shown to interact with the chloroplast Hsp70B (Heat Shock Protein 70 also called DnaK) [3]. Two 

hypotheses can be proposed to explain this particular taxonomic distribution of such a rare association 

between DnaJ and Fer domains: it results either of two independent fusions in Thaumarchaeota and in 

Viridiplantae or of a single fusion event followed by a horizontal gene transfer (HGT) between these two 

distant groups. To clarify its evolutionary history we have carried out a phylogenomic analysis of this 

protein, including the study of each domain independently. 

We have also studied the evolutionary histories of the chaperone DnaK and its co-chaperone GrpE, 

because DnaK interacts specifically with DnaJ domains. In fact, DnaK recognizes unfolded or misfolded 

proteins through the intermediate of DnaJ-domain containing proteins. From an evolutionary point of view, 

DnaK and GrpE homologues are present in bacteria, eukaryotes and some archaea, and genes coding for 

DnaK are often located close to grpE and dnaJ (a protein different from the DnaJ/Fer protein) in many 

bacterial genomes. Previous studies have proposed that the archaeal DnaK had been acquired by HGT from 

bacteria [4,5]. 

The phylogenomic analysis of the DnaJ/Fer protein strongly supported the sistership of the Viridiplantae 

and Thaumarchaeota homologues indicating that the hypothesis of an HGT between these two lineages was 

the most parsimonious explanation. More precisely, our analyses suggested that the HGT occurred from 

Viridiplantae to Thaumarchaeota. The absence of any DnaJ/Fer homologue in the recently published genome 

sequence of ‘Candidatus Caldiarchaeum subterraneum’ (representative of a deep branching archaeal lineage 

related to Thaumarchaeota) suggested that Thaumarchaeaota have acquired the DnaJ/Fer protein after the 

divergence of ‘Candidatus C. subterraneum’. 
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The evolutionary study of the three proteins DnaK and GrpE and DnaJ is particularly interesting in the 

context of the adaptation to mesophily in Archaea. In fact, their taxonomic repartition is clearly correlated to 

a non-hyperthermophilic lifestyle, as they are encoded only in (even if not in all) the genomes of mesophilic 

or thermophilic archaea, but not in hyperthermophilic species. Although not always in the same order, the 

three genes coding for these proteins are next to each other in the genomes of Archaea, except for some 

Halobacteriales. The phylogeny of each of these three proteins showed a very complex history, including at 

least two HGTs from bacteria to archaea (one to Halobacteriales and the other likely to Methanomicrobia), 

followed by many HGT among different archaeal lineages, including Thaumarchaeota. In fact, the latter 

appear to have acquired these three genes from euryarchaeota, as suggested by their robust placement among 

the euryarchaeotal sequences, although the limited resolution of our trees did not allow identifying precisely 

the euryarchaeal donor.  

Until now, the presence of DnaK in Archaea has been proposed to be linked to the adaptation to 

mesophily. Our results suggested that this adaptation may have been more complex than previously thought, 

probably including multiple adaptations in different archaeal groups. In conclusion, we have highlighted the 

complex evolutionary history of a set of interacting chaperone proteins in Archaea, and more precisely in 

Thaumarchaeota. All of them appeared to have been acquired by independent HGTs from diverse donors, 

including Viridiplantae (in the case of the DnaJ/Fer protein), bacteria and other archaea (in the case DnaK, 

GrpE and DnaJ). 
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Abstract Tpms is a portable C++ program allowing to retrieve gene trees from large 
collections, this according to tree patterns defined by the users. It can be used for different 
purposes such as orthologs search or horizontal gene transfers identification. Documentation, 
source code, as well as Linux and MacOSX binaries can be freely downloaded at ftp://pbil.univ-
lyon1.fr/pub/mol_phylogeny/tpms/. 
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1 Introduction 
Comparative genomics is a common approach in sequence analysis, and many biological results have been 

obtained through its use. Among the different programs and packages developed for comparative genomics, 
those using the information contained in phylogenetic trees are of special interest. Indeed, orthology 
detection methods using phylogenetic trees usually perform better than the simpler (and easier to use) 
methods based on best reciprocal hits of sequence similarity scores [1]. In that context we developed tpms, a 
program allowing to retrieve gene trees from a tree collection, this according to patterns defined by the users. 
Those patterns usually include some kind of constraints, such as node nature (duplication, speciation), or 
subtree content. Therefore this program can be used for orthologs search, but also for any studies that require 
to retrieve sets of gene families matching constraints in their corresponding phylogenetic tree (e.g., gene 
duplications identification or horizontal gene transfers prediction). 

2 System and methods 
The tree pattern-matching algorithm used in tpms is a C++ version of the one from the RAP program 

implemented in FamFetch [2]. It requires the Bio++ [3, 4] and Boost [5] libraries to be run. This new 
implementation consists in a command-line standalone binary and is not embedded into a graphical interface. 
Moreover, it is also no longer dependant on the use of the HOVERGEN, HOGENOM and HOMOLENS 
gene families databases [6], and it can be used on collections build by the users. Binaries of the program are 
provided for Linux and MacOSX (Intel architectures only), as well as the source code at ftp://pbil.univ-
lyon1.fr/pub/mol_phylogeny/tpms/. 

3 Program use 
At first, the user needs to build a gene trees collection in the RAP format [7]. This collection will be then 

accessed by the program when performing pattern searches. Collection construction can be done easily 
through the use of tpms_mkdb program, distributed with tpms. This tool uses a reference species tree, also in 
RAP format, and a set of individual gene trees in standard Newick format. The species tree can contain 
unresolved nodes (multifurcations), but not the individual gene trees. 

Tree patterns have to be written in an extended Newick format. The simplest constraints that can be 
introduced are represented by the taxa found on the leaves of the pattern. The labels can stand for a given 
species (e.g., Homo sapiens) or larger taxonomic groups (e.g., Primates). For instance, the pattern: 

((Homo sapiens,Pan troglodytes),Rodentia) 
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will allow to find all the gene trees in which a subtree with sequences from H. sapiens and Pan troglodytes 
species are grouped, while sequences from any rodents are located outside of this group. 

The programs also allows to specify constraints on subtrees: one can ask that a subtree from the entered 
pattern will only contains genes from a defined set of species. This set can be one species, one taxon, or a list 
with a combination of species and taxa. This makes it possible to exclude a subgroup of a larger group. 
Elements of the list are bracketed, and indication of addition or removal is done through + or − operators. 
For example, the pattern: 

((Homo sapiens,Pan troglodytes),Mammalia{-Primates}) 

will allow to find all the gene trees in which a subtree with sequences from H. sapiens and P. troglodytes 
species are grouped, while any sequences from mammals – excluding primates – is located outside this 
group. 

A third kind of constraint can be set on nodes if the program is running on a reconciled trees collection: it 
is possible to search specifically for speciation or duplication nodes. This kind of nodes can be specified in 
the pattern by the use of letters S or D. In the following example: 

(Homo sapiens,Mus musculus){D} 

will allow to find all the gene trees in which a subtree with sequences from H. sapiens and M. musculus 
species are grouped, while the node that groups them is a duplication node. 

In order to search for orthologs, the program can perform queries in the gene trees collection with a 
pattern extracted from the reference species tree. Orthologs can be then identified from the subparts in the 
gene trees that match that pattern. Another possibility is to search for all gene trees in which there is a 
subtree containing a list of taxa defined by the user, this whatever the topology of the subtree is, and giving 
the fact that all taxa are present in single copy. This later approach is suited only for the detection of 1:1 
orthology relationships, but it is extremely fast and can be used on very large collections containing 
thousands of trees. 

Search for horizontal gene transfers is also straightforward, as it will only require to enter anomalous 
patterns, this relatively to the reference species tree. 
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Abstract  Transposable  elements  (TEs)  play  a  major  role  in  genome  evolution  and their  
dynamics are particular. Although many algorithms are designed for repeats detection, but none  
is  able to take into account all TEs dynamics specificities. In this study, we present a combined  
approach  for  TEs  detection.  We  evaluated  three  programs  based  on  different  algorithms:  
GROUPER, RECON and PILER. Our results show that a combined approach provide a better  
TEs detection than using a program alone.

Keywords  transposable elements, detection, annotation.

1 Introduction

Les éléments transposables (ET) sont des séquences d'ADN mobiles présentes dans pratiquement tous les 
génomes eukaryotes. Longtemps considérés comme des parasites, les ETs sont maintenant reconnus comme 
jouant un rôle majeur au cours de l'évolution. Ils ont un impact sur la structure et l'organisation des génomes 
[1].  Nous développons une suite  d'outils  permettant  d'identifier,  caractériser  et  annoter  les  ET dans un 
génome. Pour cela, nos outils reposent sur une compréhension fine de leur dynamique évolutive dans les  
génomes. La dynamique d'évolution des éléments transposables est très particulière. Leur mobilité et leur 
nature  répétée  dans  les  génomes  en  font  des  objets  biologiques  évoluant  de  façon  très  spécifique.  La 
compréhension de celle-ci est au coeur d'une annotation efficace. 

2 Un Modèle de Dynamique des ET dans les génomes

Schématiquement,  la  dynamique  d'évolution  des  ET  comprend  une  phase  d'amplification  et  de 
dégénérescence. La phase d'amplification suit un transfert horizontal ou apparaît en réaction à une mutation 
ou un stress. L'ET envahit alors rapidement le génome en se multipliant. On parle souvent de « burst » de 
transpositions. Suit alors une phase de dégénérescence où chacune des copies créées lors de la première 
phase  évolue  au  cours  du  temps  par  des  événements  d'insertion,  de  délétion,  de  substitution  et  de  
recombinaison. Pendant cette phase, il n'est pas rare que ces copies subissent l'insertion d'une autre famille  
d'ET qui est alors en phase du «burst ». Il en résulte des copies dégénérées et d'âges d'insertion variables dans 
le génome. On ne retrouve alors que des copies plus ou moins fragmentées traces des éléments ancestraux.

3 Intérêt d'une Approche Combinée

Cette dynamique spécifique des éléments transposables n'est prise en compte que partiellement par les  
algorithmes actuels de détection d'ET.  

L'algorithme de GROUPER [2,3] procède en deux étapes: (i) Les copies fragmentées issues d'alignements 

Une Approche Combinée pour la Détection d'Eléments Transposables

Résumé  Les éléments transposables (ETs) jouent un rôle important dans l'évolution des génomes. Leur  
dynamique d'évolution présente des caractéristiques particulières. Comme aucun algorithme ne couvre  
l'ensemble de ces caractéristiques,  nous présentons une approche combinée pour la détection d' ETs.  
Nous avons évalués 3 programmes basés sur différents algorithmes : GROUPER, RECON et PILER.  Nos  
résultats montrent que cette approche est plus efficace pour la détection d'ETs.

Mots-clés  éléments transposables, détection, annotation.
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2 à 2 sont connectées par programmation dynamique. (ii) Les chaînes obtenues sont ensuite clusterisées par 
un algorithme simple lien avec contrainte de recouvrement à 95%. Ainsi ne clusterisent que les copies ayant  
des tailles identiques, c'est à dire celles supposées être  peu dégénérées. On obtient alors des copies proches  
des  copies  fonctionnelles,  ce  qui  en  fait  une  méthode  très  spécifique.  RECON [4]  repose  aussi  sur  du 
clustering simple lien, mais exploite des informations issues d'alignements multiples afin d'identifier (i) les 
extrémités des copies et (ii) les familles d'éléments homologues. L'approche est plus sensible que celle de  
GROUPER mais perd en spécificité.  PILER [5]  exploite des profils d'alignements locaux (les «  piles » ) 
propres à certaines répétitions. L'approche est identique dans le principe à celle de GROUPER: ne regrouper 
que les copies ayant  des tailles identiques,  c'est  à dire celles supposées être peu dégénérées. Cependant 
PILER ne réalise pas de connections des fragments comme GROUPER, il apparaît donc moins sensible que 
ce dernier, ne prenant pas en compte cette caractéristique de leur dynamique.

4 Résultats

Nous  avons  combiné  ces  trois  programmes  afin  de  tester  la  détection  des  ET sur  les  génomes 
de D.melanogaster et  A.thaliana.  Comme les ET de ces espèces sont connus par ailleurs,  il  est  possible 
d'évaluer les performances de cette approche par la mise au point de mesures de sensibilité (Sn*) et de  
spécificité (Sp*) ainsi que par le taux récupération de copies complètes (Rcc), [3] et Table1.

Génome Programmes Sn* Sp* Rcc

D.melanogaster GROUPER 80.34%  85.89% 66.20%

D.melanogaster RECON 92.31%  73.17% 66.20%

D.melanogaster
GROUPER + 
RECON

93.16%  81.03% 79.40%

Table 1. Résultats partiels de l'approche combinée.

Nous  avons  aussi  comparé  les  séquences  retrouvées  par  GROUPER  à  celles  retrouvées  par  RECON 
(données non fournies, cf [3]): les premières sont proches en taille et en identité alors que  les secondes sont  
plus  hétérogènes.  Cela  nous  mène  à  penser  que   chaque  algorithme  puisse  être  associé  à  une  phase 
particulière de la dynamique des ET: GROUPER identifie des évolutions récentes de type « burst » alors que 
RECON met en évidence des évolutions plus anciennes.

5 Conclusion

Nous avons implémenté cette approche combiné dans un pipeline le « TEdenovo ». Celui-ci est intégré 
au package REPET (http://urgi.versailles.inra.fr/Tools/REPET) de détection et d'annotation automatique de 
génomes. Plusieurs génomes eukaryotes ont été annotés avec ce package.
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Abstract With the advent of new generation sequencing, the annotation of new prokaryotic ge-
nomic sequences will occur in a data-rich context, including a variety of libraries of short reads
of transcriptomic sequences. This rich context creates new potentialities in annotation. In this pa-
per, we describe the new prokaryotic variant of the integrative gene prediction software EuGene.
By leveraging RNA-Seq data, EuGene becomes capable of predicting new functional structures,
including RNA genes and untranslated transcribed regions inside operons.

Keywords Gene prediction, RNA gene, NGS, RNA-Seq.

1 Introduction

Following the initial development of gene prediction tools for prokaryotic genomes, the complexity of
eukaryotic gene prediction led to the development of highly integrative gene prediction tools. Very few, if any,
prokaryotic gene prediction tools have evolved along the same line, mostly because prokaryotic protein gene
structures are simple and defined by open reading frames. Other dedicated tools have however been designed
for the prediction of other functional (transcribed) elements such as RNA genes.

Through RNA-Seq short reads, new generation sequencing gives unprecedented access to transcriptomic
data. In genomes with low gene density, such as plant or animal genomes, the availability of such transcribed
sequences sampling is extremely useful to delineate gene structures. In bacterial genomes, most if not all the
genome is transcribed, making such data much less easy to exploit. However, NGS technology is able to produce
oriented read for which the strand of transcription is known. Such data facilitates the automatic prediction of a
variety of transcribed elements, including protein genes, (possibly antisense) RNA genes and operon structures.

2 Changing EuGene Gene Model

EuGene is an eukaryotic gene finder [1,2] that can be described as a Conditional Random Field (CRF)
predictor [3], a variant of random Markov fields capturing the conditional probability of structural annotations
given available evidence. The default gene model of EuGene includes intergenic regions, coding exons, introns,
5’/3’ untranslated terminal regions and introns within UTRs.

To be able to predict new functional elements in prokaryotes, the gene model underlying EuGene has been
extensively modified. In the absence of splicing, intronic and spliced exonic states have been removed (overall
34 states removed). Conversely, new states have been introduced to capture:

– overlapping protein gene regions (on the same strand or not) on any of the 6 different coding frames.
– untranslated transcribed internal regions (UIR) between non overlapping gene appearing in the same

operon on either strand. These new states complete the existing 5’ and 3’ UTR (untranslated terminal
regions) defining operon extremities.

– and finally RNA genes on either strand.
Overall, the new prokaryotic variant of EuGene includes 30 states, compared to the 45 origianl states.

This work has been partially funded by the french “Agence nationale de la Recherche” SYMbiMICS project.
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3 Integrating Evidence

In EuGene, each “feature”, representing a specific type of evidence used for prediction is weighted in the
CRF model and integrated through independent software plugins. We just integrated the prokaryotic translation
start predictor of FrameD [4,5], based on RBS/ribosomal RNA hybridation energy, as a new plugin to get a
fully functional prokaryotic gene finder capable of predicting protein genes, RNA genes and operons.

We are experimenting with the integration of oriented RNA-Seq data through existing generic plugins,
either directly or following a segmentation based on the level of transcription. In the simplest variant, partial
transcripts defined by oriented pair-end short reads are mapped to the genome. Their abundance at a given
position is used as a weighted feature that indicates that the current region is transcribed on the corresponding
strand. By integrating translation/transcription start and stop prediction, statistical models of different regions
(especially coding regions) and RNA-Seq data inside a unique tool, EuGene becomes capable of discriminating
protein genes (which are transcribed and follow a coding region statistical model) from RNA genes (which are
transcribed but do not follow a coding model). In some sense, this is related to the QRNA [6] comparative RNA
gene predictor which relies on a stochastic context free grammar model for RNA genes and a usual 3-periodic
Markov model for coding regions. In a non comparative settings, we use a simple homogeneous Markov model
for RNA regions instead but the integration of oriented RNA-Seq restricts the discrimination between coding
and RNA genes to transcribed regions.

Similarly, a “stable” expression level inside a region, in several different conditions, identified through
prior segmentation, should help delineate operons. This information can be directly injected inside EuGene as
a feature informative about transcription start/stop but has not been evaluated yet.

Most, if not all, eukaryotic gene finders assume that only one strand is transcribed at a given position. To
overcome this limitation, EuGene has been slightly modified to allow to perform independent gene prediction
on each strand. Together with oriented RNA-Seq data, this allows to perform an automatic annotation that
includes protein genes, RNA genes but also anti-sense RNA (RNA gene predicted on one strand overlapping a
gene predicted on the other strand).

We are currently applying this new strand-independent prokaryotic variant of EuGene to the genome of
Sinorhizobium meliloti using oriented RNA-seq data (representing 48Gb of reads). The results we have obtained
closely match the existing genome annotation (with 6483 genes predicted compared to the 6235 annotated)
and show that EuGene correctly identifies ribosomal and transfer RNA genes and many potentially new RNA
genes (2040 ncRNA predicted compared to the 64 annotated ones). These new genes, predicted without any
specific RNA related information (except for RNA-Seq and 3-periodic Markov coding models), needs to be
experimentally evaluated.
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Abstract The URGI platform (http://urgi.versailles.inra.fr) develops a genome annotation 
system dedicated to plants and their pathogens. This Integrated System relies on: (i) pipelines 
for Transposable Elements annotation (REPET) and gene structural and functional predictions 
(ii) databases and user-friendly interfaces to browse and query the data (URGI Information 
System GnpIS, Genome Report System GRS), (iii)  A distributed annotation system for curation 
of gene structure. 

Keywords  genome annotation, pipelines, databases, interfaces, genes, transposable elements, 
plants, fungi. 

 

1 Introduction 
The INRA URGI (Unité de Recherche en Génomique-Info) develops and maintains an information 

system for plant and pathogens genomes. This system is used in number of national and international 
collaborative projects involving biologists and bioinformaticians. Nowadays, the recent development of new 
generations of sequencing tools leads to a spectacular increase of the number of sequenced genomes. But, 
genome annotation has difficulties to follows this pace, introducing a lack between the release of genome 
sequences and their annotations. To face this problem, the URGI develops and provids tools to annotate 
entirely sequenced genome (pipeline, databases, and interfaces). 

2 The URGI Annotation System 
The URGI annotation system relies on three components: pipelines, databases and interfaces. 

2.1 Pipelines 
- A transposable element detection and annotation package, called REPET [1,2] is composed of two 

pipelines: TEdenovo and TEannot. Thanks to their high level of automation and accuracy, they were used 
within many international genome projects concerning plants, fungi and insects. 

 - A gene prediction pipeline, based on ab initio and similarity gene finding softwares. It uses the EuGene 
program to integrate all sources of information [3]. 

- A functional annotation pipeline, based on (i) various methods of patterns matching and motifs 
recognition, (ii) intracellular targeting prediction methods, and (iii) comparative genomics with other fungal 
genomes.  
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2.2 Databases 
Our database component relies on the well known schemas from the GMOD consortium 

(http://gmod.org). All annotation features and analysis results are primarily stored in the Chado or 
Bio ::SeqFeature ::Store schema according to the need (speed access or genericity). Data can then be 
searched through GnpIS QuickSearch (http://urgi.versailles.inra.fr/gnpis) and Biomart (GMOD).The GnpIS 
QuickSearch is based on the Apache Lucene™ full-featured text search engine library. Indexes are generated 
to query structural or functional data stored in same or separate DBs. Query results are returned according to 
significance with terms, and linked to GnpIS modules and/or Genome Report System (GRS). BioMart based 
datamarts were used as an advance search tool. Results of complex search criteria could be exported in 
different formats or directly send to Galaxy (http://main.g2.bx.psu.edu/) for further bioinformatic analysis. 

2.3 Interfaces 
We provide textual or graphical interfaces over the databases. We use GBrowse as graphical interface to 

display sequence annotations. Apollo or Artemis are used for gene structure curation shared by a community, 
as they are committed in the database using “pure JDBC” direct communication protocol between Apollo (or 
Artemis) and Chado. The Genome Report System GRS was developed (in Java) in the frame of the ANR 
GnpAnnot project. It provides comprehensive categories of reports through a user-friendly textual interface 
over structural and functional genomic data stored in Chado databases.GRS also proposes a Gene Ontology 
browser and an editing module (GRE) to allow manual functional curations.  

2.4 Conclusions and Perspectives  
The platform was chosen by the international grapevine consortium (IGGP) to manage grapevine 

genomic annotations and to help the community to perform the manual gene annotation. It also hosts wheat 
genomic and genetic data for the International wheat scientific community (IWGSC). It is used for the 
annotation of the first wheat chromosome (3B) sequence. The integrated genome annotation system was also 
successfully used for fungal genomes as Botrytis cinerea T4 (grey mould disease) and Leptosphaeria 
maculans (stem canker) [5] in the frame of their genome consortium for sequencing and annotation. Portal 
for the different plant and fungi species are available at http://urgi.versailles.inra.fr/index.php/Species.  

Data integration of sequences from the next generation sequencing technologies is a new scientific 
challenge in bioinformatics. To face this challenge, evolution of GnpIS architecture is in progress: evolution  
of DB schemas and interfaces, new datamarts and galaxy workflow manager based pipelines to mine data. 
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1 Introduction
Our laboratory focusses on novel gene expression mechanisms and genome structures. The 

organisms of choice are a group of poorly investigated unicellular eukaryotes, the Diplonemids 
(Euglenozoa). Euglenozoa are thought to have emerged as one of the earliest diverging eukaryotic 
groups, much before the emergence of the well-studied animals, fungi and plants.

Diplonemids possess a highly unusual mitochondrial genome. Not only is this genome composed 
of a hundred or so circular chromosomes, but also mitochondrial genes are all split into several pieces 
(modules) each of which is located on a different chromosome. Gene modules are transcribed 
separately into RNA and then joined to a complete messenger RNA by some sort of trans-splicing. At 
least one mitochondrial pre-mRNA is modified in sequence post-transcriptionally, and this RNA editing 
proceeds by addition of uridines exactly at the junction of two modules [1,2]. Uridine-based RNA 
editing is known from the Diplonemids’ sister group, the Kinetoplastids (addition and deletion), but 
editing being interlinked with trans-splicing is unheard of.

RNA editing and trans-splicing are likely performed by a multifunctional molecular machine. My 
project consists in the identification of genes involved in this machinery using bioinformatics methods. 
These genes must be encoded in the nucleus, yet, nothing is known about the nuclear genome, except 
the size estimated experimentally.

2 454 Sequencing and Assembly
Sequencing of the nuclear genome from the Diplonemid species Diplonema papillatum is well 

underway at the IMG in Prague, using the 454 massive parallel pyrosequencing technology of Roche 
Life Science, which produces reads of about 300 nt in length. A preliminary sequence assembly with 
the Newbler assembler using 900 Mb of reads including paired-end libraries (3 kb, 8 kb, and 20 kb), 
led to 66 Mb in more than 70000 contigs. The large number of contigs is a known problem. No 
eukaryotic genome, sequenced by 454 solely, and assembled without a reference genome, has ever 
been completed (and published). To address this problem, we built smaller datasets, benchmarked a 
selection of 454 sequence assemblers [3], and tested different ways of removing sequencing errors. Our 
tests are still underway. I will present the strategy that we plan to adopt to reach an assembly that is well 
suited for gene annotation.

3 Annotation of Highly Divergent Species
The annotation of poorly investigated protozoan genomes such as Diplonema is the second 

challenge. Experimental data are scarce and sequences are highly divergent from others so that 
similarity-based annotation (e. g. Blast) is of limited success. Similar difficulties were encountered by 
others when annotating the nuclear genomes of the divergent Kinetoplastid and Apicomplexan 
genomes [4,5], but a general strategy has not yet been designed. We aim at using Diplonema as a model 
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for developing an effective annotation approach for divergent genomes. A powerful and affordable 
asset for genome annotation is the availability of EST data. This allows defining an effective gene 
model for the first, syntactic, annotation phase. For Diplonema, a dataset of about 4000 EST clusters 
has been generated previously in the context of the pan-Canadian Protist EST Program [6]. By mapping 
ESTs to genome sequence, we addressed the following questions: (i) are nuclear genes of Diplonema 
discontinuous as its mitochondrial genes or rather orthodoxically contiguous? (ii) Do they contain 
introns, and if yes, what is their frequency, length and type? I will report my preliminary results on the 
nuclear gene structure of D. papillatum and use the identification of a key composent of the trans-
splicing machinery to examplify challenges typically encountered in annotating genes of highly 
divergent species.
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Abstract   The rapid growth of collected biodiversity data, their heterogeneity and their 
dissemination can be the bottleneck of safeguarding our environment. Semantic Web 
technologies aim to address these issues. Based on these technologies, we extended the 
ecoRelevé platform which is dedicated to biodiversity data management with the ecoQuery 
module. This module is able to query the Web of data in order to move up scale and provide an 
answer to complex issues.   

Keywords   Biodiversity, linked data, Web of data, semantic Web. 

 

1 Introduction 

L’érosion accélérée de la biodiversité, diagnostiquée lors de l’Evaluation des écosystèmes du Millénaire 
[1], a été confirmée par les résultats de l’étude des coûts de l’inaction en matière de biodiversité en 2008 [2]. 
Ces études ont eu pour conséquence d’accentuer, ces dernières années, la prise de conscience internationale 
sur le rôle vital de la biodiversité. 

Cette prise de conscience s’est naturellement accompagnée d’un besoin généralisé d’approfondir les 
connaissances du monde qui nous entoure dans l’objectif de mieux le préserver. Ce besoin se traduit par une 
augmentation de la collecte des données de biodiversité. Leur analyse vise à proposer des zones de protection 
spéciale ou de conservation i.e. dans le cadre du réseau Natura 2000 [3], faire des études d’évaluation du 
risque pour une espèce ou un écosystème, quantifier le nombre d’individus d’une espèce dans une zone 
géographique donnée, etc. Répondre à ces objectifs nécessite d’intégrer un grand nombre de données de 
biodiversité. La nature complexe, l’hétérogénéité et la dispersion sur le Web de ces données rendent leur 
intégration et, en conséquence, leur analyse longues et fastidieuses.  

Le Web sémantique désigne un ensemble de technologies dont l’objectif est de favoriser l’interopérabilité 
des données en vue notamment de leur intégration. Utilisant la famille de langages développés par le W3C, 
le contenu des ressources du Web devient accessible et utilisable par les programmes et agents logiciels, 
grâce à un système de métadonnées formelles [4]. Dans ce cadre, le « Linked Data » désigne un ensemble de 
bonnes pratiques pour publier et connecter les données structurées sur le Web [5]. Ces données constituent le 
Web de données. Elles peuvent être découvertes et collectées automatiquement par des machines sans 
intervention humaine. L’utilité du « Linked Data » pour représenter la sémantique des observations relatives 
à la biodiversité et favoriser ainsi l’interopérabilité des données a été décrite dans [6]. Les auteurs soulignent 
également l’importance de construire des outils offrant aux utilisateurs la possibilité de fouiller le Web de 
données et facilitant l’intégration automatique des données.  

ecoQuery : un Module Sémantique pour Interroger les  Données de 
Biodiversité sur le Web  

Résumé   L’accroissement rapide du nombre de données de biodiversité collectées, leur hétérogénéité et 
leur dispersion sur le Web peuvent être un frein pour la préservation du monde qui nous entoure. Les 
technologies du Web sémantique ont pour objectifs de pallier ces problèmes. Basé sur ces technologies, 
nous avons étendu la plateforme ecoRelevé dédiée à la gestion des données de biodiversité avec le 
module ecoQuery. Ce module est capable d’interroger le Web de données pour apporter un changement 
d’échelle et une réponse à des questions complexes.  

Mots-clés   Biodiversité, linked data, Web de données, Web sémantique.  
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Récemment, nos travaux se sont concentrés sur la construction de la plateforme open source ecoRelevé1 
dédiée à la gestion des données de biodiversité [7]. Cette plateforme a été initialement conçue pour stocker et 
visualiser les données d’observation. Le module ecoQuery, présenté ici, est une extension de cette 
plateforme, permettant de consommer les données publiées au sein du Web de données rendant ainsi 
transparentes leur recherche et leur intégration. Agrémentée du module ecoQuery, la plateforme ecoRelevé 
favorise des études de données à plus large échelle et a pour objectif de répondre à des questions plus 
complexes.  

Ce papier s’organise de la manière suivante : la section 2 présente le cas d’utilisation sur lequel nous 
avons basé la construction du module ecoQuery, la section 3 traite du Web de données et de son application 
à la biodiversité, la section 4 présente l’extension de la plateforme ecoRelevé avec le module ecoQuery. 

2 Définition d’un Cas d’Utilisation 

Pour spécifier les exigences fonctionnelles du module ecoQuery, nous avons défini un cas d’utilisation 
concret dans le domaine de la biodiversité. Ce cas d’utilisation devait répondre à un problème courant et 
transposable et nécessiter l’intégration de données pour être résolu.  

Suivant ces critères, nous nous sommes intéressés à la réalisation d’une étude environnementale dans le 
cadre du projet de restructuration des dispositifs de protection contre les crues entre les Communes de Sénas 
et de Cheval-Blanc dans le département du Vaucluse. Plusieurs études ont en effet démontré qu’il existe un 
risque majeur de débordement de la Durance lors de crues pouvant conduire à l’inondation des communes 
situées sur la rive droite de la rivière. Les communes concernées ont décidé d’établir une ligne de protection 
empêchant tout risque de débordement (digue insubmersible, élévation du remblai de la voie ferrée, etc.). La 
construction de ce type d’ouvrages nécessite la réalisation d’un inventaire de la zone. Nous avons restreint ce 
cas d’utilisation à l’inventaire de l’avifaune.  

Pour chaque inventaire naturaliste, la première étape consiste généralement à établir une liste de taxons 
déjà observés sur le site. Ces informations sont, tout d’abord, recherchées sur le Web et utilisées, dans un 
deuxième temps sur le terrain, en tant que référence. Les naturalistes notent cependant avec attention les 
nouveaux taxons observés. Différentes informations peuvent être ensuite collectées de manière à évaluer 
l’incidence de la construction d’ouvrages sur ces taxons. Dans le cadre des oiseaux, il est, par exemple, 
important de distinguer pour le site donné, les oiseaux nicheurs des oiseaux de passage et des oiseaux 
hivernants. Le statut de protection des espèces est également important lors des études d’impacts. 

Répondre à cette étude nécessite donc d’intégrer un ensemble de données. A minima, ces données doivent 
être décrites par trois attributs spécifiques, i.e. le nom scientifique du taxon, ses coordonnées géographiques 
et la date d’observation. La section suivante présente les données disponibles dans le Web de données et 
comment y accéder.  

3 Le Web de Données et la Biodiversité 

Le « Linked Open Data Cloud » désigne l’ensemble des données en accès libre publiées suivant les 
principes du « Linked Data ». En septembre 2010, 203 jeux de données dont 40 en sciences de la vie et 15 en 
géographie2 étaient présents dans le Web de données libres. Parmi ces jeux de données, nous avons recensé 
six jeux impliquant des données ouvertes relatives à la biodiversité (voir table 1).  

Les données minimales nécessaires à la mise en place de notre cas d’utilisation concernent 
essentiellement des données d’observations (taxons, coordonnées, dates d’observation). Seul le jeu de 
données « TaxonConcept » propose des données d’observations. Cependant, bien qu’il y ait actuellement 
pratiquement 100000 concepts relatifs aux taxons, ce jeu de données ne contient qu’un nombre relativement 
faible d’observations. Ce nombre est amené à évoluer, de nombreux travaux vont dans ce sens (notamment 
dans le cadre du Global Biodiversity Information Facility, GBIF [8]). 

En attendant l’enrichissement du Web de données, nous avons choisi d’appliquer les principes du 
« Linked Data » sur une source qui, nativement, ne les respecte pas. L’agrégateur de données aviaires le plus 

                                                 
1 https://code.google.com/p/ecoreleve/ (stable release) 
2 http://richard.cyganiak.de/2007/10/lod/lod-datasets_2010-09-22_colored.html 
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important est l’« Avian Knowledge Network (AKN) » [9]. L’AKN contient actuellement environ 89 millions 
d’observations sur plus de 9500 taxons. Nous avons extrait de l’AKN les données correspondant aux 
observations d’oiseaux en France et transformé ces données en RDF (Resource Description Framework) en 
utilisant le standard de données de biodiversité Darwin Core1. Les données obtenues ont été stockées dans un 
entrepôt RDF, la version open source de Virtuoso (VOS). Elles sont accessibles par le langage de requête 
SPARQL, spécifique au données RDF, via un « endpoint2 ». La section suivante présente les outils mis en 
place pour consommer ces données de manière à répondre aux besoins du cas d’utilisation. 

Jeu de données Description 

TaxonConcept 
Fournit des URI informatives afin d'améliorer la qualité 
et la stabilité des liens entre une espèce et les données 
relatives à cette espèce. 

Geospecies Information sur les ordres, familles, espèce. 

European Nature Information System 
Informations sur les espèces et sur les sites européens où 
elles sont attendues. 

DPpedia 
Extraction d’informations structurées de Wikipedia. Les 
données sont liées à un ensemble de données présentes 
sur le Web.   

Fishes of Texas 
Standardisation et géoréférencement des informations 
scientifiques connues sur les poissons d’eau douce du 
Texas. 

Geonames 

Fournit des données géographiques à partir de 
différentes sources telles que les noms de lieux, 
l’altitude, la population, etc. Les coordonnées (latitude 
et longitude) sont en WGS84 (World Geodetic System 
1984). 

Table 1. Jeux de données du Web de données relatif à la biodiversité. 

4 Les Requêtes Sémantiques et l’Intégration de Donn ées 

Cette section décrit nos travaux en cours, à savoir la plateforme ecoRelevé, un système de gestion de 
données de biodiversité, et son nouveau module ecoQuery interrogeant, de manière transparente pour 
l’utilisateur, le Web de données.  

4.1 La Plateforme ecoRelevé 

La plateforme ecoRelevé comprend actuellement trois modules :  1) ecoRelevé Core dédié au stockage des 
données, 2) ecoRelevé Data pour l’import des données de terrain à partir du logiciel mobile pocket eRelevé 
[10] et 3) ecoRelevé Explorer permettant de visualiser les données sur une carte. Cette application internet 
riche (RIA) est basée sur Adobe Flex/AIR et OpenScales pour la couche de présentation (module Explorer et 
Data), JAVA/Hibernate pour la manipulation/persistance des objets biologiques (i.e. relevés, taxons), 
geoserver pour la manipulation des objets cartographiques, et PosgreSQL/PosGIS pour le stockage des 
données (module Core). 

Le module Explorer propose, via un filtre, une visualisation cartographique des données suivant trois 
dimensions : la taxonomie, le temps et la localisation géographique. Le filtre traduit les contraintes sur ces 
dimensions en un service Web interrogeant la base de données sous-jacente au module ecoRelevé Core. Les 
filtres ainsi créés sont gérés au sein d’un gestionnaire. Afin d’obtenir de la plateforme ecoRelevé qu’elle 
réponde aux exigences fonctionnelles spécifiées lors de l’élaboration du cas d’utilisation, il s’agissait 
d’étendre l’application d’un filtre au Web de données, d’intégrer les données obtenues avec celles stockées 
dans le module Core et de visualiser les résultats. La section suivante présente le module ecoQuery 
répondant à ces exigences. 

                                                 
1http://rs.tdwg.org/dwc/  
2 http://natural01.gn-noc.com:8890/sparql (URI du graphe : urn:rdf.Occurences_AKN_dwc) 

Présentation orale ecoQuery: a Semantic Module to Query Biodiversity Data on the Web

–127–



 

4.2 Le Module ecoQuery 

Le module ecoQuery transforme à la volée les contraintes sur les trois dimensions de chaque filtre établi 
par l’utilisateur dans le langage SPARQL. La requête ainsi obtenue s’exécute sur le « endpoint » spécifique 
que nous avons mis en place pour pallier le manque actuel de données d’observations au sein du Web de 
données. Le XML résultant de la requête est ensuite traité afin de visualiser les résultats au sein du module 
Explorer. Le gestionnaire a également été modifié de manière à étendre un filtre à une autre source de 
données sans modifier la requête sous-jacente.  

La Figure 1 présente la requête SPARQL sur laquelle sont automatiquement appliquées les contraintes 
définies par l’utilisateur dans le module Explorer (sous forme de filtres). La construction de la requête est 
transparente pour l’utilisateur. A l’instar du service Web interrogeant la base de données sous-jacente au 
module ecoRelevé Core, la requête SPARQL est construite automatiquement à partir de l’interface 
cartographique, de la liste de taxons et du diagramme de temps présents au sein de l’interface graphique du 
module Explorer. 

Actuellement, le standard Darwin Core autorise seulement des requêtes basiques, d’expressivité limitée, 
nous verrons dans la discussion les efforts effectués pour pallier ce problème. 

 

 

Figure 1. Requête SPARQL générique.  

Associé à la plateforme ecoRelevé1, le module ecoQuery permet désormais de réaliser une requête 
sémantique sur le Web de données et d’intégrer les résultats avec les données stockées dans le module Core 
de la plateforme (voir Figure 2 pour l’architecture du système).  

                                                 
1 https://code.google.com/p/ecoreleve/ (latest release) 
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Figure 2. Architecture de la plateforme ecoRelevé agrémentée du module ecoQuery. 

4.3 L’Inventaire de l’Avifaune  

Afin de valider l’utilisation de la plateforme ecoRelevé agrémentée du module ecoQuery, nous avons 
réalisé l’étude définie par le cas d’utilisation présenté dans la section 2.  

L’utilisation du module ecoRelevé Explorer débute par la sélection d’une emprise géographique. Cette 
sélection peut se faire à partir de la carte ou via une recherche textuelle utilisant le service Web associé à 
l’ontologie Geonames [11]. Dans ce dernier cas, l’échelle de la portion de carte affichée dépend de l’unité 
administrative associée à la localisation (Pays, Région, Département, Ville, etc.). Nous avons ensuite établi 
un filtre en fixant comme contraintes la commune de Cheval-Blanc, la classe des oiseaux (taxon Aves) et une 
plage de dates (2000 – 2011). Le module ecoQuery permet d’exécuter le filtre sur le jeu de données présent 
dans le VOS, à savoir les données de l’AKN.   

Seules deux stations (association des coordonnées géographiques, d’une date, d’un observateur) sont 
affichées sur la carte, couvrant six taxons : Columba livia (pigeon biset), Garrulus glandarius (geai des 
chênes), Phoenicurus ochruros (Rougequeue noir), Erithacus rubecula (Rouge-gorge familier), Sitta 
europaea (Sittelle torchepot) et Fringilla coelebs (Pinson des arbres). Avec deux stations, l’effort de 
prospection est trop faible pour tirer des conclusions sur ces données. Cette première utilisation de la 
plateforme enrichie du module ecoQuery permet cependant de dégager une liste de taxons déjà observés sur 
le site.  

Pour pallier le manque de données, nous avons effectué une mission d’inventaire de l’avifaune muni du 
logiciel mobile pocket eRelevé. La liste de taxons précédente a été utilisée comme référence pour cette étude 
de terrain. Après deux jours de prospection sur la commune de Cheval-Blanc, tous les oiseaux rencontrés ont 
été identifiés et les données correspondantes ont été enregistrées sur l’appareil mobile, i.e. la date, le nom 
scientifique du taxon et les coordonnées GPS. De retour de mission, les données ont été importées à l’aide du 
module ecoRelevé Data au sein de la base de données du module Core. Les données ainsi stockées dans le 
Core, le gestionnaire de filtres est utilisé pour les intégrer avec les données du Web. L’ensemble des stations 
est ensuite visualisée sur une carte. En supplément des six taxons de la liste de référence, 17 taxons sont 
désormais affichés sur la carte. Parmi ces taxons, certains, tels que Coracias garrulus (Rollier d’Europe), 
sont quasi-menacés (statut de conservation de l’IUCN). 

Pour finir, les données de l’AKN ont permis d’étendre cette étude à tout le département du Vaucluse sans 
nouvel effort de prospection. Nous obtenons 49 taxons dont 34 nouveaux par rapport au jeu de données 
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précédent (voir Figure 3). Ces nouveaux taxons pourraient éventuellement être associés au rapport 
d’inventaire en tant que taxons potentiels. 

 

Figure 3. Présentation des stations sur l’emprise du Vaucluse. 

5 Discussion 

ecoQuery est un module sémantique permettant d’interroger le Web de données de manière transparente et 
de visualiser les résultats intégrés avec des données locales au sein de la plateforme ecoRelevé, une 
plateforme dédiée à la gestion des données de biodiversité. Bien qu’actuellement les observations 
naturalistes soient peu présentes dans le Web de données, ce premier prototype démontre la faisabilité de 
l’approche sur un jeu de données aviaires transformé en RDF et stocké dans un entrepôt accessible via 
un « SPARQL endpoint ».  

Dans cette approche, l’avantage d’utiliser le RDF réside essentiellement dans l’interopérabilité qu’il 
procure. Contrairement aux données contenues dans des bases de données classiques, difficilement 
accessibles et généralement non compatibles entre elles, les jeux de données, décrits en RDF et présents dans 
le Web de données sont désormais accessibles, liés et exploitables par tous. L’application sur un cas 
d’utilisation concret a démontré que l’accès aux données de biodiversité via le Web de données est un gain 
de temps pour le naturaliste par rapport au travail long et fastidieux de recherche de données, notamment 
bibliographiques, en amont des études environnementales. En effet, la plateforme ecoRelevé agrémentée du 
module ecoQuery propose un accès centralisé et transparent à des données unifiées. 

Récemment, un jeu de données d’observation a été mis à disposition au sein du « endpoint » du créateur 
de TaxonConcept1. Il s’agit des données obtenues dans le cadre d’un bioblitz2 organisé lors de la conférence 
TDWG 2010 à Woods Hole, Massachussetts3. ecoQuery a donc été utilisé pour interroger ce nouveau jeu de 
données et obtenir une visualisation intégrée avec les données de l’AKN concernant le Massachussetts dans 
la plateforme ecoRelevé. Cette dernière expérimentation a permis de valider notre étude sur un jeu de 
données distant, RDF-natif et a démontré que notre système était techniquement prêt à accueillir les données 
d’observation qui viendront prochainement enrichir le « Linked Open Data Cloud ». 

                                                 
1 http://lsd.taxonconcept.org/sparql  
2 Bioblitz : inventaire biologique intensif sur une portion bien précise de terrain. 
3 http://bioblitz.tdwg.org/ 
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Actuellement, la version RDF du standard Darwin Core utilisé pour structurer les données de biodiversité 
n’exploite pas pleinement les capacités du Web sémantique pour définir des données. Bien qu’offrant un 
vocabulaire commun pour partager les données, ce vocabulaire ne permet pas de définir formellement les 
termes utilisés ni de raisonner sur les données de manière à produire automatiquement de nouvelles 
connaissances. Le niveau d’expressivité des requêtes qui en découle reste donc assez bas. Pour pallier ce 
problème, nous travaillons sur l’élaboration d’une ontologie de la biodiversité dans le cadre du projet 
collaboratif « ecoOnto » [12]. Basée sur une extension de l’ontologie OBOE [13], les classes de cette 
ontologie seront mises en relation avec les standards actuels de la biodiversité, notamment Darwin Core, de 
manière à obtenir une meilleure structuration des données d’observation et ainsi résoudre des problèmes 
complexes de biodiversité via les mécanismes de raisonnement associés aux logiques de description. Cette 
ontologie sera notamment utilisée dans la plateforme ecoRelevé pour élaborer des requêtes complexes sur le 
Web de données et fournir ainsi une aide à la décision pour l’utilisateur. Dans cet objectif, la plateforme 
ecoRelevé sera prochainement étendue de manière à accueillir des données de biodiversité autres que les 
observations, e.g. les statuts de protection des espèces, les habitats, etc. 
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Integrated Bioinformatics Solutions for Microbial Genome, Proteome 
and Metabolome Comparative Analysis 
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1 Genostar, 60 rue Lavoisier, 38330 Montbonnot, France 
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Avec l’objectif de concevoir et développer un environnement bioinformatique pour l’annotation de 
génomes bactériens, le consortium Genostar rassemble en 1999 l’Institut Pasteur de Paris, l’INRIA (Institut 
National de Recherche en Informatique et en Automatique) et les sociétés de biotechnologie Hybrigenics 
(Paris) et GENOME Express (Grenoble). 

Financé par ses partenaires et par le Ministère de la Recherche (Direction de la Technologie et Direction 
de la Recherche), le consortium fait une présentation publique en mai 2002 à l’Institut Pasteur de la première 
version opérationnelle du logiciel. Deux ans plus tard, la société Genostar est créée pour valoriser ce 
développement et ceux réalisés au sein de l’équipe Helix de l’INRIA Rhône-Alpes.  

La société Genostar propose des solutions bioinformatiques pour l’annotation, la comparaison et la 
gestion de génomes, protéomes et métabolomes microbiens (virus, bactéries, levures). Le logiciel Metabolic 
Pathway Builder permet de sélectionner et enchaîner un vaste ensemble de méthodes d’analyse, et de 
visualiser, évaluer et exporter les résultats d’annotation et de comparaison. À l’issue de ces processus 
d’analyse, les génomes peuvent rejoindre une base de données structurée pour accueillir les informations 
génomiques, protéiques et biochimiques adéquatement connectées et consolider ainsi les données de 
référence utilisées pour les analyses comparatives ultérieures.  

Les solutions Genostar évoluent avec les progrès technologiques (NGS) et méthodologiques (biologie 
des systèmes) qui marquent ses domaines d’application. Caractérisation de génomes et protéomes viraux, 
mise en contexte de données métabolomiques, analyses métagénomiques sont ainsi les projets majeurs 
actuellement menés au sein de la société. Dans ce contexte de R&D, Genostar est ouvert aux partenariats, en 
particulier avec des laboratoires publics, tant sur des projets de bioanalyse que de développements 
méthodologiques et logiciels. 

 

Solutions Bioinformatiques Intégrées pour l'Analyse et la Comparaison 
de Génomes, Protéomes et Métabolomes Microbiens 
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1 Introduction 
Dynamic visualization interfaces are required to explore data obtained by “next-generation sequencing” 

technologies (NGS). SynTView offers such functionalities. The program foundation is a generic genome 
browser with sub-maps holding information about genomic objects (in a broad meaning). The main features 
of the software are the presentation of the syntenic [1] organization of microbial genomes (prokaryotes and 
lower eukaryotes) and the interactive visualization of polymorphism data along these genomes. 

2 Implementation and Access 
SynTView is a Flash software (AS3 language) [2], a technology increasingly used in comparative 

genomics [3,4]. The user can access the application through a web interface, in combination with the 
GenoList environment [5], thus taking advantage of comparative genome data (see 3.2). Alternatively, a 
stand-alone client is available (multi-platform AIR), allowing the user to work with its own locally stored 
data. Currently, the accepted file formats are ptt (GenBank) for genome annotation, tab-delimited files for 
other information (protein correspondences, Single Nucleotide Polymorphisms – SNPs) and the Newick 
format for phylogenetic trees. Web access can also be implemented using local user flat files. 

3 Functional Modules 

3.1 Genome Browser 
SynTView is built as a generic genome browser which allows the user to visually explore genomes by 

genomic location, or to directly access genes by names. Several genomic maps can be stacked on top of each 
other. Users can dynamically change their respective order, adjust the scale of the maps to take advantage of 
the entire screen area, zoom in and out. Contextual menus are associated to genes, allowing the user to 
compute local views around a given gene, get sequence information, access the GenoList gene card, or add 
genes to a gene basket that can subsequently be used for various operations on gene lists. 

3.2 Synteny Viewer 
Besides its local implementation (see Section 2), SynTView is embedded in GenoList [5], an integrated 

environment dedicated to the analysis of microbial genomes, where comparative genomics data are pre-
computed. There are two ways to access SynTView in this environment: either from one given gene card or 
through a direct access to the 750 organisms stored in GenoList. The synteny information is computed from 
the correspondence between proteins of different organisms (Bi-Directional Best Hits – BDBH) and the 
conserved order of the corresponding genes along the genomes. 

A color is randomly assigned to every gene of the reference organism. By construction, BDBH genes get 
the same color as the reference gene and orphan genes remain black. When the user clicks on a gene to show 
its local synteny, the other genomes shift to be aligned with the main sequence and the non-syntenic genes 
fade away. In the GenoList-associated implementation, clicking on the links between corresponding genes 
redirects to a protein multiple alignment performed in GenoList. 

Session 6.C : Software Tool Présentation orale

–135–



In addition to the local view described above, four global views are available. (i) The Dot Plot shows the 
synteny ruptures and the chromosome re-arrangements. From there, BDBH can be graphically selected and 
exported to a file. (ii) The Line Plot shows the organization of syntenic groups at the chromosome level. (iii) 
The phylogenetic profile consists in a heat map of BLASTP hits sorted according to a phylogenetic tree. (iv) 
Finally the user can browse the pivot genome or the content of user-defined gene baskets through gene tables 
with sorting functionalities and backward access to the local view. 

3.3 SNP Viewer 
The SNP map allows the user to navigate through SNP data sets (e.g., obtained by NGS), which are 

colored according to the mutation type and the gene/intergenic location (Fig. 1). SNP types can be 
dynamically hidden and are mutually linked to cognate genes (e.g., when the mouse is over a gene, this 
triggers an animation of the enclosed and surrounding SNPs). The user can build groups of strains (according 
to epidemiological, phylogenetic or other criteria) to obtain a SNP density map, i.e. a histogram where the 
size of the bars represents the number of SNPs per gene. Sequence variations (both at the nucleotide and 
protein levels) can be obtained in a dedicated view. Finally, an artificial sequence can be determined across 
all genomes or for a group of genes, in order to compute phylogenetic distances (Fig. 1). 

 

Figure 1. SNP visualization in the SynTView application (upper left), dynamically linked to a reconstructed artificial 
sequence from site sequence variations (bottom left) and to a SNP density map per gene and per strain (right). 

Both in synteny and in SNP visualizations, the various views that can be generated are interactively 
linked together: a user selection (genes, genome region) in one panel dynamically triggers either a related 
selection or a view modification in other panels. 

4 Conclusion 
The most important asset of SynTView is the interactivity inherent to the use of the Flash technology. In 

addition, there is a tight integration between SynTView and the GenoList environment, and dynamic 
interactions between the various views. Further developments will take into account the management of 
incomplete genomes and multiploid organisms. SynTView is freely available for download at the URL: 
http://genopole.pasteur.fr/SynTView. Documentation, tutorials and demonstration sites are also provided. 
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The process of exploring banks of biological sequences responds to an important issue: given a new set 
of sequences to study, it is a question of locating the most similar sequences in a bank of known sequences. 
It is by recognizing these homologs and the associated information that possible functions and origins are 
usually predicted. 

As well as sequence banks, biologists use additional databases (functional annotations, taxonomic bases, 
etc.), which are essential for in silico analyses of sequence diversity. The quantity of data available for 
studying genomes has become such that laboratories are faced with significant remote access issues to data 
providers. Transfer times, execution times for analysis tools on remote servers, and the user interfaces for 
exploring the results of these tools no longer live up to the needs of laboratories for studies involving huge 
batches of sequences. 

Laboratories now have the ability to rapidly create vast repositories of sequences. The appearance of 
specialized databanks for a specific biological theme or even for a laboratory can be imagined. Biologists 
using these data will have a real need for Tools capable of effectively managing and analyzing their 
databanks. 

KoriBlast is a software platform especially designed to gather within a single application the tools 
needed to explore sequence diversity, either functional or taxonomic. It provides the biologists with tools to 
prepare reference annotated databanks, to run databank search jobs in batch mode (either locally or on 
remote clusters), to query and to visualize the results. In connection with Pathway Explorer (provided by our 
partner Genostar), users can interactively explore metabolic pathways out of databank search results. During 
the presentation, some use cases will illustrate the capabilities of the KoriBlast Platform. 
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Towards an Algorithmic and Mathematical Exploration of Symbiosis

Symbiosis is described as a close relationship between different biological species, often of a long term nature. It is a
pervasive phenomenon. It has for instance been estimated that 50% of all known species are parasites, that is maintain
a symbiotic relation with another species from which they benefit while the partner in the relation is harmed. And it is
believed that close to a 100% of all plants and animals are parasitised as individuals, in general by more than one species.
Indeed, there are thought to be 10 times more bacterial cells in a human body than human cells (Savage, Annual Review
of Microbiology, 1977). The idea of humans, and other animals or plants, as “superorganisms with an internal ecosystem
of diverse symbiotic microbiota and parasites” has thus been advanced (Nicholson, Nature Biotechnology, 2004) and
raises the issue of what is an individual, and what is species identity.

Symbiosis, or at least its extent, role and precise nature are controversial but symbiosis appears also essential to un-
derstand some of the most fundamental evolutionary and functional questions related to living organisms. The enormous
variety in the observed types of pair- and multi-wise symbiotic relations, and the fact that these relationships touch upon
almost every aspect of biology, from molecular to ecological, raise formidable mathematical and computational issues
that should keep a computational biologist busy for decades.

This talk will survey part of the work we have done on this issue, and some of the questions we wish to address in the
coming years.
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Abstract Phylogenies in short, are the most convenient way to describe the relationship between
different species and are widely used in several fields of biology: comparative genomics, epidemi-
ology, conservation biology, etc. However, most inferences drawn from phylogenies are accurate
only if the reconstructed phylogeny itself is accurate. For a given reconstruction bias, robust phylo-
genies are preferred to non robust ones. We are concerned here with the loss of robustness induced
by outliers. One way to mitigate this loss is to detect and remove outliers from the dataset.
We advocate the use of empirical influence functions to detect influent characters and taxa, which
are prone to be outliers, and their removal from the data set to build robust phylogenies. Three
data sets (Zygomycetes, placental mammals, T-box gene family) show that maximum likelihood
phylogenies are not robust and that removing as few as a handful of outliers can significantly
increase the robustness of a tree, as measured by average bootstrap values.

Keywords Biostatistics, Phylogeny, Influence Function, Outliers, Robustness.

1 Introduction

Phylogenies are an essential tool in many fields of biology and it is thus crucial to reconstruct accurate
phylogenies and moreover to assess the uncertainty associated with these phylogenies. The most frequent way
of doing so is to use bootstrap replicates of the alignment and to compute bootstrap values [1] of inner branches.
This approach produces a global index of uncertainty that captures, among others, the variability induced by
sampling of characters. However, bootstrap probabilities should be handled with caution as they do not have a
clear-cut statistical interpretation [2]. Moreover, the sampling of character is not the only cause for uncertainty
in the inferred phylogeny: taxon sampling is also known to impact the accuracy of phylogenetic analysis[3].
Outlying characters resulting for example from alignment artifacts as well as rogue taxa can introduce bias in
the reconstruction process which leads. If the bias is strong enough, measures of variability based on random
resampling, such as bootstrap values, can be blind to the influence of these characters. Here, we use influence
function to systematically investigate the influence of a given character and/or a given taxon on the inferred
phylogeny.

2 Methods

We work with the maximum likelihood (ML) framework under which all characters X = (X1, . . . , Xn) of
an alignment are considered as random variables independently drawn from the same distributionQ on a sample
space A (for an alignment made of s taxa and nucleotide characters, A = {A,C,G, T}s). To each topology
T with branch lengths bT , we can associate a probability distribution P (.;T,bT ) on A. The goal of ML
phylogenetic inference is to find the tree (T̂ , b̂T̂ ) that minimizes the Kullback-Leibler divergence between Q
(unknown and replaced by the empirical distributionQn of theXi) and P (.;T,bT ) or similarly that maximizes
the per-character log-likelihood L(X1, . . . , Xn;T,bT ) of the alignment under tree (T,bT ):

L(X;T,bT ) = L(X1, . . . , Xn;T,bT ) =
1

n

n∑

i=1

logP (Xi;T,bT ).
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Using definitions first introduced in the robustness literature [4], we define the influence IF (Xi) of character
Xi as the normalized shift in per-character log-likelihood induced by the removal of that character:

IF (Xi) = (n− 1)[L(X; T̂ , b̂T̂ )− L(X−i; T̂−i, b̂T̂−i
)]

where X−i is the alignment deprived of character Xi and (T̂−i, b̂T̂−i
) is the tree reconstructed from X−i.

Characters with a high positive IF (Xi) have a phylogenetic signal that strongly conflicts the signal coming
from the rest of the alignment and are potential outliers.

Similarly, we define the influence TII(Tj) of taxon Tj as

TII(Tj) = d(T̂−j , T̂−j)

where d is a distance between trees, T̂−j is the tree reconstructed on the complete alignment and then pruned
of taxon Tj and finally T̂−j is the tree reconstructed on the alignment deprived of taxon Tj from the start. Taxa
with a high TII(Tj) strongly change the topology when included in the alignment and are potential rogue taxa.

3 Results

We applied our method to three datasets to detect outliers and propose alternative phylogenies: 16S rRNA
from fungi (Zygomycetes and Chytridiomycetes), mtDNA from placental mammals and the T-Box transcription
factor gene family in bilaterians. Our results on Zygomycetes [5] show that outliers have a strong effect on the
inferred phylogeny. The two most influential characters affect the topology in no less than 20 inner branches
(out of 155) and reduce the log-likelihood of the ML tree by more than 100 units. Excluding these two characters
leads to a robust topology, which has higher bootstrap values and reduced influence values for the remaining
characters. Our results on placental mammals [6] show that rogue taxa also have a strong impact on the resulting
topology and confirms the status of the guinea-pig as a rogue taxa for this dataset. Our results on the T-Box
gene family enable us to identify a subset of taxa for which the phylogeny can be reconstructed with greater
confidence (higher bootstrap values) for both recent and old branches than in the initial alignment. The resulting
phylogeny is then used to ascertain the position of a new T-Box gene within the family.
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Abstract When a multiple sequence alignment suffers from a strong compositional heterogeneity
across sequences, some biasing effect may alter the phylogenetic analysis of this dataset. Indeed,
many phylogenetic tree inference methods artificially group together sequences with strong com-
positional similarities. To circumvent this problem, thispaper presents new algorithms that search
for a compositionally homogeneous character subset from a multiple sequence alignment. These
polynomial algorithms progressively remove the characters that are involved in the heterogeneous
composition across sequences. The benefit of this approach is illustrated by simulation results, as
well as two real-case phylogenetic studies.

Keywords Compositional heterogeneity across sequences, matched-pairs Stuart test of marginal
homogeneity, polynomial algorithms, phylogenetic tree.

1 Introduction

Most of the phylogenetic tree reconstruction methods are based on an alignment of homologous sequences.
Therefore, the quality of a multiple sequence alignment canhave a strong impact on the accuracy of the
inferred phylogenetic tree, some characters (i.e. columnsor sites inside the multiple sequence alignment)
being ambiguously aligned or too variable [25,28,29]. In order to minimize errors in the phylogenetic tree,
a current approach is to detect and remove these problematiccharacters prior to the phylogenetic analysis
[7,8,10,12,30,38]. However, even if the homology is correctly depicted by a multiple sequence alignment, a
strong heterogeneous composition of character states (e.g. nucleotides, amino acids) across sequences may
cause systematic errors during the phylogenetic analysis.Indeed, sequences with very similar composition are
often inaccurately grouped together by some phylogenetic tree inference methods [17,24,31,36]. This bias is
often corrected by two distinct techniques: the first methodperforms a character state recoding[10,11,21,31,37],
whereas the second approach allows using phylogenetic treereconstruction methods that do not invoke
the stationarity assumption (i.e. considering that the character state composition do not remains constant
over all lineages) [4,5,15,17,18,19,26,27,39]. Knowing that each of these two techniques sometimes leads
to incorrect results (e.g. [16,31,36,40]), this paper suggests using a third approach by removing the prob-
lematic characters (i.e. involved in the heterogeneous composition across sequences) in order to produce
compositionally homogeneous data that can be analyzed withtraditional phylogenetic tree inference methods.

Among the numerous statistical tests that assess whether aligned sequences are compositionally
homogeneous (see [24]), the matched-pairs Stuart test of marginal homogeneity [35] is used throughout
this paper. This test, described in subsection2.1, allows assessing the marginal symmetry in the character
state frequency table built from a pair of aligned sequences. If the Stuart test does not assess homogeneous
composition, the subsection2.2 describes an algorithm that allows building a compositionally homogeneous
character subset from the two aligned sequences. This polynomial algorithm iteratively removes one character
from the pairwise alignment as long as the Stuart test does not assess the homogeneous composition between
the two aligned sequences. In subsection2.3, this algorithm is extended to the case of multiple sequencealign-
ments. Simulation results are described in section3, as well as two real-case phylogenetic studies, in order to
illustrate the usefulness of this approach for nucleotide sequences.
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2 Methods

2.1 Assessing Compositional Heterogeneity Between Two Ali gned Sequences

Given an alphabetΣ of character states (e.g. nucleotides, amino acids), and the pairwise alignment of
lengthℓ of two sequencesi andj over the alphabetΣ, the matched-pairs Stuart test of marginal homogeneity
can be used to assess whether the two aligned sequences have similar composition [1,35]. This test requires
the preliminary building of the frequency matrix(Fxy), whereFxy is the number of times the character statex
of the sequencei is aligned with the character statey of the sequencej. The matrixF is then a square matrix
of size|Σ|×|Σ|. The Stuart test then verifies the null hypothesis of marginal symmetry in the matrixF [35]:

Fx. = F.x, ∀x ∈ Σ, (1)

whereFx. andF.x are the sum ofFxy andFyx over y, respectively. The test statistic is computed by using
some simple matrix operations. Given the column vector(Vx) containing anyνΣ = |Σ| − 1 of the values
Vx =Fx.−F.x, theν

Σ
×ν

Σ
variance/covariance matrix(Sxy) of the elements ofV is computed with the two

formulaeSxx = Fx. +F.x−2Fxx andSxy = −Fxy −Fyx. After computing the transposeVT of V and the
inverseS−1 of the matrixS, the Stuart statistic

Xij := VTS−1V (2)

is interpreted as aχ2 value withν
Σ

= |Σ|−1 degrees of freedom [35]. The null hypothesis (1) is then verified
if Xij ≤ X

Σ
, whereX

Σ
is a known constant value. With a 10% critical value,X

Σ
:≈ 6.251 for the nucleotide

alphabetΣ (i.e. ν
Σ

= 3), andX
Σ

:≈ 27.203 for the amino acid alphabetΣ (i.e. ν
Σ

= 19). Verifying the
null hypothesis (1) from the pairwise alignment of lengthℓ of two sequencesi andj over the alphabetΣ then
requiresO(ℓ) time complexity to compute the contingengy matrixF, O(|Σ|2) to computeV andS, andO(|Σ|3)
to perform the matrix operations in formula (2). Therefore, assessing the compositional homogeneity between
two aligned sequences with the Stuart test requiresO(ℓ + |Σ|3) time complexity.

2.2 Compositionally Homogeneous Character Subset from Two Aligned Sequences

The formula (2) allows the level of heterogeneous composition to be quantified: the valueXij is as large
as the two aligned sequencesi and j are compositionally heterogeneous. Based on this observation, this
subsection describes a method that allows selecting a compositionally homogeneous character subset from two
aligned sequencesi andj (i.e. a character subset implyingXij ≤ X

Σ
). If a characterc = (ci, cj) is removed

from the two aligned sequencesi andj, the two character statesci andcj are removed from the sequencesi
andj, respectively. Consequently, the entryFcicj is decremented by 1, which modifies the value computed by

formula (2). Let X(ci,cj)
ij denote this value, andγij(ci, cj) the criterion defined as

γij(ci, cj) :=

{
Xij

(
Xij − X

(ci,cj)
ij

)
if ci, cj ∈ Σ,

0 otherwise.
(3)

If γij(ci, cj) < 0, then removing the character(ci, cj) leads to a worsening of the heterogeneous composition
between sequencesi and j, i.e. Xij < X

(ci,cj)
ij ; reciprocally, if γij(ci, cj) > 0, removing(ci, cj) leads to an

improvement of the compositional homogeneity. Moreover, as the differenceXij − X
(ci,cj)
ij is multiplied by the

factorXij, the criterionγij(ci, cj) allows quantifying how the character(ci, cj) is involved in the compositional
heterogeneity between the two aligned sequencesi andj. Note thatγij(ci, cj) := 0 if ci 6∈ Σ or cj 6∈ Σ, which
could occur whenci or cj is a gap or an unknown character state.

As Xij is already known, formula (3) only requires the computation ofX
(ci,cj)
ij . When(ci, cj) is removed,

decrementingFxiyj by 1 is performed inO(1) computing time. Therefore, computingX(ci,cj)
ij only requires the

computation of formula (2), with O(|Σ|3) time complexity (see subsection2.1). However, the two aligned
sequencesi and j being defined over the alphabetΣ, there exist only|Σ|2 distinct charactersc = (x, y).
Precomputing all possible valuesX(x,y)

ij — then every valuesγij(x, y) — requiresO(|Σ|5) time complexity.
This computation time is acceptable, given that standard alphabets are small (i.e.|Σ| = 4 for nucleotides,
|Σ|= 20 for amino acids). However, it should be stressed that precomputing the|Σ| valuesγij(x, x) is unnec-
essary, because constant characters (i.e. diagonal entries in F) are not taken into account by the Stuart test.
Moreover, precomputingγij(x, y) is only required for the characters(x, y) that exist in the pairwise alignment,
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i.e.Fxy>0. The precomputing step of required valuesγ(x, y) is then performed inO(η|Σ|3) time complexity,
whereη is the number of non-diagonal and non-zero entries of the matrix F.

By iteratively removing (one of) the characterc̃ = (c̃i, c̃j) that maximizes the criterionγij, build-
ing a compositionally homogeneous character subset from two aligned sequencesi and j can be easily
performed. TheO(|Σ|2) required values ofγij(x, y) being precomputed, searching for one of the character
c̃ = argmaxc=1,2,··· ,ℓ (γij(ci, cj)) is performed withO(ℓ) time complexity. After the removal of̃c, the update of

F (i.e.Fc̃ic̃j := Fc̃ic̃j − 1) andXij (i.e. replaced byX(c̃i,c̃j)
ij = Xij − γij(c̃i, c̃j)/Xij) is done withO(1) time

complexity. This algorithm iteratively performs these different polynomial steps (i.e. precomputingγij(x, y),
removing the character̃c, updatingF andXij) until Xij ≤ X

Σ
.

2.3 Compositionally Homogeneous Character Subset from a Mu ltiple Sequence Alignment

The algorithm described in subsection2.2 can be easily extended for more than two aligned sequences.
Let (Fij,xy) denote the contingency matrix(Fxy) for each pair of sequencesi, j from an alignment ofn
sequences of lengthℓ over the alphabetΣ. From(Fij,xy), then(n − 1)/2 different valuesXij are computed
with formula (2). FromF andXij , all the required valuesγij(x, y) are precomputed with formula (3) for each
pair of sequencesi, j and each pair of character states(x, y) such thatx 6=y andFij,xy >0. Let σ(c) denote a
criterion for each characterc = 1, 2, · · · , ℓ in the multiple sequence alignment defined as:

σ(c) :=
∑

i<j

γij(ci, cj). (4)

If σ(c)> 0, then the removal of the characterc from the multiple sequence alignment leads to the decrease of
then(n − 1)/2 valuesXij on average; reciprocally, ifσ(c)<0, then removingc leads to an overall worsening
of the compositional heterogeneity across sequences. Consequently, removing a character that maximizes the
criterion (4) will produce a character subset with an improved compositional homogeneity.

The character trimming algorithm that builds a compositionally homogeneous character subset from a mul-
tiple sequence alignment iteratively removes one of the charactersc̃ that maximizeσ as computed by the
formula (4). After the removal of̃c, the matrix(Fij,xy) and then(n−1)/2 valuesXij are updated for each pair
of sequencei, j, and this procedure is iteratively performed until the remaining character subset is composi-
tionally homogeneous, i.e.Xij ≤XΣ for each pair of sequencesi, j. This algorithm is summerized below:

(a) • For each pair of sequencesi, j Algorithm 1
(b) • Computing the matrix(Fij,xy) ;
(c) • ComputingXij with formula (2) ;
(d) • While ∃ i, j such thatXij > X

Σ

(e) • For each pair of sequencesi, j
(f) • For each pair of character states(x, y) such thatx 6= y andFij,xy > 0
(g) • Computingγij(x, y) with formula (3) ;
(h) • Removing the character̃c that maximizes the criterion (4) ;
(i) • For each pair of sequencesi, j
(j) • Fij,c̃i c̃j := Fij,c̃ic̃j − 1 ;
(k) • Xij := Xij − γij(c̃i, c̃j)/Xij ;

Steps (a-c) in Algorithm 1 correspond to the calculations described in subsection2.1 performed for each pair
of sequences; they are then performed in timeO(n2(ℓ + |Σ|3)). Step (g) requiringO(|Σ|3) time complexity
(see subsection2.2), steps (e-g) are performed in timeO(n2|Σ|5). Step (h) requires the computation in time
O(n2) of the criterion (4) for each of theO(ℓ) characters in the multiple sequence alignment; this step then
requiresO(n2ℓ) time complexity. Finally, steps (i-k) perform constant time update operations for each pair of
sequences, then requiringO(n2) time complexity. Note that the end condition can be verified during step (k).
Steps (e-k) then requireO(n2(|Σ|5 + ℓ)) time complexity, and the Algorithm 1 runs in timeO(n2ℓ(|Σ|5 + ℓ)).

The Algorithm 1 being based on the different Stuart statistics Xij , it should be recalled that these values
are interpreted as aχ2 value withν

Σ
= |Σ|−1 degrees of freedom (subsection2.1). It should also be stressed

that a large sampling is required to verifyXij ∼ χ2(νΣ), especially whenνΣ is large (e.g. [42]). Therefore, the
Algorithm 1 is expected to fulfill its purpose (i.e. buildinga character subset that is effectively compositionally
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homogeneous) when used with a large number of characters (e.g. ℓ ≥ 1,000 non-constant characters).
Unfortunately, its use with large sets of characters involves important running times (see section3). However,
faster running times are expected by simultaneously removing more than one character from the multiple
sequence alignment at each iteration, i.e. steps (e-k) in Algorithm 1. Indeed, if the charactersc are sorted
according to theirσ(c) values, an alternative is to simultaneously remove the character setC̃ containing the
m > 1 characters̃c that maximize the criterion (4). This new algorithm is summerized below:

(a) • For each pair of sequencesi, j Algorithm 2
(b) • Computing the matrix(Fij,xy) ;
(c) • While ℓ > 0
(d) • For each pair of sequencesi, j
(e) • ComputingXij with formula (2) ;
(f) • For each pair of character states(x, y) such thatx 6= y andFij,xy > 0
(g) • Computingγij(x, y) with formula (3) ;
(h) • If Xij ≤ X

Σ
for all pair of sequencesi, j Then STOP ;

(i) • For each characterc = 1, 2, ...,ℓ of the multiple sequence alignment
(j) • Computingσ(c) with formula (4) ;
(k) • Computing the set̃C such that|C̃| = m and∀c 6∈ C̃, ∀c̃ ∈ C̃, σ(c) ≤ σ(c̃) ;
(l) • For each character̃c ∈ C̃
(m) • Removingc̃ from the multiple sequence alignment ;
(n) • For each pair of sequencesi, j
(o) • Fij,c̃i c̃j := Fij,c̃i c̃j − 1 ;
(p) • ℓ := ℓ − m ;

As steps(d-h), (i-k),and (l-p) in Algorithm 2 requireO(n2|Σ|5),O(ℓ(n2+log m)),andO(n2m) time complex-
ity, respectively, the Algorithm 2 runs in timeO

(
n2ℓ(|Σ|5+ℓ) + ℓ2 log m

)
. However, it runs faster than the

Algorithm 1 (see subsection3.1). Indeed, one iteration (d-p) in Algorithm 2 removesm characters in time
O
(
n2(|Σ|5+ℓ)+ℓ log m

)
, whereas the Algorithm 1 removes the same number of characters by performingm

iterations (e-k) in timeO
(
n2(|Σ|5+ℓ)

)
. The main difference between the two algorithms is the precomputing

of the different valuesγij(x, y), which is performed after the removal ofm = 1 character by the Algorithm 1,
andm > 1 characters by the Algorithm 2. Consequently, the Algorithm 2 is expected to stop after the removal
of more characters than the Algorithm 1. However, by settingm to ⌊ℓ/1,000⌋ in the provided implementation
of the Algorithm 2, very close results are observed between the two algorithms during simulations.

3 Results

3.1 Simulation Results

A method searching for compositionally homogeneous character subsets from multiple sequence
alignments was previously described in [10]. First, this method, named the Stationary-based Character Trim-
ming (SCT), progressively removes the characters ranked infunction of their decreasing entropy values in
order to obtain a first compositionally homogeneous character subset; secondly, SCT completes this subset by
adding the remaining characters sorted following a criterion closely related to (4) (see [10] for more details).
The efficiency of SCT was assessed from artificially generated nucleotide sequences with heterogeneous base
compositions. From a 4-taxon treeuv|xy (external and internal branches of lengths 0.475 and 0.025,respec-
tively), the evolution of sequences of lengthℓ = 10,000 nucleotide character states was simulated with the
evolutionary model F81 [13]. For each valuep = 0, 10, ..., 50,p% of the sequence length was simulated with
80% GC-content for the external branches corresponding to the leavesu andx, and 80% AT-content for the
external branches corresponding to the leavesv andy. For the other characters (i.e.100−p% of the sequence
length), equal relative character state frequencies were used to generate compositionally homogeneous regions.
For each valuep, 200 alignments of four sequencesu ,v, x andy were simulated following this protocol. From
each of these intial data, aMaximum Likelihood(ML) phylogenetic tree was inferred with the software PhyML
[20] (evolutionary model F81). Knowing that base composition is as heterogeneous asp is large, theTable 1
clearly shows that the quartet treeuv|xy is almost never inferred from the sequences generated withp > 20%
(see [24] for similar findings). However, when the compositionally heterogeneous data are trimmed by the
method SCT, the quartet treeuv|xy is almost always revovered (Table 1; see [10] for more details).
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Proportionp of characters with heterogeneous composition

0% 10% 20% 30% 40% 50%
Average running time

SCT 2.6 s 9.3 s 10.7 s 16.8 s 21.4 s 25.1 s
Algorithm 1 1.6 s 12.3 s 27.3 s 46.1 s 70.2 s 88.3 s
Algorithm 2 1.3 s 2.9 s 4.9 s 7.5 s 10.6 s 13.7 s

Average proportion of removed characters
SCT 2.96% 6.04% 10.82% 15.88% 21.09% 26.26%
Algorithm 1 0.08% 2.56% 6.12% 10.77% 16.45% 22.13%
Algorithm 2 0.10% 2.60% 6.18% 10.91% 16.57% 22.27%

Overlapping rate between removed character subsets
Algorithms 1 and 2 64.67% 68.89% 90.08% 80.20% 75.88% 81.53%

Proportion of correctly inferred trees
Initial data 100% 95.0% 50.5% 2.0% 0.5% 0%
SCT 100% 98.0% 93.5% 96.0% 91.0% 91.0%
Algorithm 1 100% 100% 100% 100% 96.0% 94.5%
Algorithm 2 100% 100% 100% 100% 96.0% 94.5%

Table 1 . Simulation results. The average running times and proportions of removed characters are reported for
the Algorithms 1 and 2, as well as for the Stationary-based Character Trimming method (SCT [10]). Given
the subsetsR1 andR2 of characters removed by the Algorithms 1 and 2, respectively, the overlapping rate is
estimated by|R1∩R2|/|R1∪R2|. The proportion of correctly inferred trees is reported forthe initial (non-trimmed)
data, as well as for the character subsets returned by SCT, and Algorithms 1 and 2.

The same simulation protocol was used to compare the respective performance of the Algorithms1 and 2,
and the observed results were reported inTable 1. This shows the Algorithm 1 allows building the largest
compositionally homogeneous character subsets, but at thecost of very important running times. However, as
expected, the Algorithm 2 leads to character subsets of similar size, with large overlapping rates (i.e.> 60%),
but with faster running times. Interestingly, Algorithms1and 2 remove less characters than SCT (Table 1). This
shows that directly removing characters from a multiple sequence alignment (i.e. Algorithms1 and 2) allows
building larger compositionally homogeneous character subsets than the inverse procedure (i.e. adding charac-
ters in an initial compositionally homogeneous character subset) performed by SCT. Consequently, Algorithms
1 and 2 lead to more correctly inferred quartet trees than theuse of SCT (Table 1).

3.2 The Rokas, Williams, King and Carroll (2003) Dataset of Y easts

A 106-gene dataset of nucleotide sequences gathered from eight yeast genomes (sevenSaccharomycestaxa,
andCandida albicansused as ougroup taxon [34]) was observed to suffer from a heterogeneous GC-content
bias [31]. Indeed, when these 106 phylogenetic markers are concatenated, they form a supermatrix of 127,026
characters that leads to a monophyletic relationship between the two taxaS. bayanusandS. kudriavzeviiin the
phylogenetic tree (Fig. 1A) inferred by optimizing theMinimum Evolution(ME) criterion from the pairwise
GTR [33,43] and LogDet [26,27] evolutionary distance estimates (see [31] for more details; see also [9] for

Saccharomyces cerevisiae
Saccharomyces paradoxus
Saccharomyces mikatae

Sacchoromyces kudriavzevii
Saccharomyces bayanus
Saccharomyces castelii
Saccharomyces kluyveri

Candida albicans 0.000   0.000   0.000   0.000   0.000   0.000   0.000   
0.000   0.000   0.000   0.000   0.000   0.000               0.234
0.000   0.000   0.000   0.000   0.000               0.815   0.677
0.000   0.000   0.000   0.000               0.502   0.445   0.506
0.000   0.000   0.000               0.901   0.698   0.709   0.431
0.087   0.000               0.830   0.892   0.811   0.573   0.793
0.015               0.826   0.780   0.713   0.880   0.835   0.619
            0.976   0.963   0.867   0.847   0.862   0.737   0.695Saccharomyces cerevisiae

Saccharomyces paradoxus
Saccharomyces mikatae
Sacchoromyces kudriavzevii
Saccharomyces bayanus
Saccharomyces castelii
Saccharomyces kluyveri
Candida albicans

C
A B

Figure 1 . ME trees inferred from a GC-content heterogeneous dataset [34]. Evolutionary distances: GTR
[33,43] and LogDet [26,27]. A: initial data (ℓ =127,026); B: compositionally homogeneous character subset
(ℓ=116,826). For each character set and each evolutionary distance estimate, all branches are 100%-supported
by a bootstrap analysis [14]. C: Stuart testχ2(Xij |νΣ

) values estimated from the character sets A (below the
diagonal) and B (above); ifXij≤XΣ , thenχ2(Xij |νΣ)≥0.1.

Présentation orale Character Trimming Algorithms to Build [· · ·] Sequence Alignment

–149–



Anopheles gambiae           
Drosophila yakuba           
Ostrinia nubilalis          
Antheraea pernyi            
Bombyx mori                 
Chaetosoma scaritides       
Priasilpha obscura          
Crioceris duodecimpunctata  
Chauliognathus opacus       
Rhagophthalmus lufengensis  
Pyrocoelia rufa             
Adelium sp.                 
Tribolium castaneum         
Pyrophorus divergens        
Lucanus mazama              
Acmaedera sp.               
Apatides fortis             
Tetraphalerus bruchi        

            0.875   0.681   0.613   0.405   0.658   0.988   0.895   0.900   0.451   0.626   0.855   0.914   0.902   0.918   0.730   0.843   0.528
0.040               0.711   0.865   0.662   0.688   0.974   0.993   0.655   0.655   0.709   0.795   0.831   0.893   0.758   0.544   0.457   0.373
0.000   0.000               0.510   0.924   0.873   0.868   0.623   0.849   0.903   0.633   0.328   0.277   0.267   0.320   0.122   0.545   0.270
0.000   0.000   0.000               0.646   0.854   0.664   0.838   0.850   0.837   0.945   0.716   0.684   0.620   0.413   0.506   0.559   0.383
0.000   0.000   0.291   0.000               0.986   0.506   0.707   0.891   0.933   0.743   0.433   0.311   0.147   0.204   0.136   0.250   0.127
0.000   0.002   0.000   0.002   0.000               0.494   0.698   0.862   0.987   0.918   0.399   0.313   0.216   0.157   0.132   0.237   0.256
0.000   0.000   0.000   0.000   0.000   0.000               0.885   0.838   0.622   0.656   0.938   0.907   0.826   0.808   0.615   0.943   0.840
0.076   0.000   0.000   0.000   0.000   0.000   0.000               0.415   0.473   0.659   0.813   0.866   0.847   0.696   0.735   0.629   0.736
0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000               0.835   0.779   0.568   0.458   0.365   0.245   0.355   0.498   0.398
0.000   0.000   0.037   0.059   0.001   0.116   0.000   0.000   0.000               0.876   0.408   0.344   0.189   0.135   0.206   0.164   0.250
0.000   0.000   0.000   0.000   0.000   0.004   0.000   0.007   0.275   0.000               0.624   0.660   0.417   0.281   0.571   0.475   0.460

0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.005               0.998   0.985   0.971   0.954   0.922
0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.001               0.973   0.901   0.962   0.943
0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000               0.958   0.974   0.999
0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.011               0.943   0.863
0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.011               0.980
0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.006

0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000               0.999   0.990   0.922   0.964   0.976   0.983
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Figure 2 . ML trees inferred from a GC-content heterogeneous dataset [36]. ML evolutionary model: GTR+
Γ8+I+F [33,43]. A: initial data (ℓ = 11,633,− log lk/ℓ = 11.80, ML parametersΓ8 = 1.030, I = 0.246, base
frequencies A: 0.360, C: 0.123, G: 0.096, T: 0.420); B: compositionally homogeneous character subset (ℓ =
7,975,− log lk/ℓ = 8.02, ML parametersΓ8 = 0.860, I = 0.319, base frequencies A: 0.336, C: 0.113, G: 0.128,
T: 0.422). Confidence values at each branch represent approximate likelihood ratio test values (aLRT [3]) as
estimated by PhyML. No confidence value corresponds to the maximum aLRT value (i.e. 1.0). C: seeFig. 1C.

similar findings). However, numerous phylogenetic analyses of the same dataset (e.g. [2,6,9,10,31,32,34,41])
lead to a different tree (Fig. 1B). It was shown that the incorrect grouping betweenS. bayanusetS. kudriavzevii
is due to the compositional heterogeneity across sequencesthat is sufficiently important to mislead the ME
criterion [31]. This was corroborated by a recent re-analysis [10]: a compositionally homogeneous subset
of 114,105 characters was built with the method SCT from thisdataset, and the likely correct ME yeast tree
(Fig. 1B) was recovered from this character subset. From the same dataset, the Algorithm 2 has allowed
building a compositionally homogeneous subset of 116,825 characters in∼13 minutes with a 2-GHz Intel(R)

Core(TM)2 Duo with 2.0 Gb RAM. In agreement with the previous simulation results (subsection3.1), the
Algorithm 2 allows building larger character subset than SCT. As expected, these 116,825 compositionally
homogeneous characters (Fig. 1C) allow inferring the likely correct ME tree (Fig. 1B).

3.3 The Sheffield, Song, Cameron and Whiting (2009) Dataset o f Beetles

A 13-gene dataset was recently assessed to suffer from a strong compositional bias [36]. This dataset
was built from the coding regions of 18 mitochondrial genomes of beetles (13 coleopterans, as well as 3
lepidopterans and 2 dipterans used as outgroup). The concatenation of the 13 multiple sequence alignments
leads to a supermatrix of 11,655 nucleotide characters. This was analyzed with various phylogenetic tree re-
construction methods, and the inferred trees were evaluated using the three following criteria: (i) the taxon
Tetraphalerus bruchi(suborderArchostemata) must emerge first within coleopterans, and each taxon group(ii)
Cucujiformiaand (iii) Elateroideamust make up a monophyletic subtree (e.g. [22,23]; see [36] for details).
It has been observed [36] that phylogenetic tree reconstruction methods invoking the stationarity assumption
infer incorrect trees (i.e. that do not verify the above three criteria). Moreover, incorrect trees were also inferred
by several methods using non-stationary models of sequenceevolution (i.e. [4,5]). However, several other
non-stationary tree inference approaches (i.e. [15,19]) have led to trees in agreement with the criteria (i-iii).
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A subset of 7,975 characters with homogeneous compositionswas built with the Algorithm 2 in
∼17 minutes with a 2-GHz Intel(R) Core(TM)2 Duo with 2.0 Gb RAM. This character subset as well as the initial
dataset were analyzed with the script morePhyML1 (stationary model; seeFig. 2) to infer ML phylogenetic trees
(Fig. 2). In agreement with previous results (see [36]), the use of an evolutionary model invoking the stationary
assumption leads to a ML phylogenetic tree (Fig. 2A) that does not verify the three previous criteria. Indeed,the
taxonTetraphalerus bruchidoes not emerge first within coleopterans, contrary to the criterion (i). Moreover,
the tree inFig. 2A does not verify the monophyly ofCucujiformia and Elateroidea, contrary to criteria (ii)
and (iii). These errors appear to be due to compositional heterogeneity across sequences in the dataset (Fig. 2C).
Indeed, when applied on the compositionally homogeneous character subset, the same ML approach leads to a
phylogenetic tree (Fig. 2B) verifying the three criteria. Moreover, despite the removal of ∼31% characters, the
criteria (i-iii) are strongly supported (i.e. corresponding confidence value at branches>90%;Fig. 2B).

4 Conclusion

This paper introduces novel polynomial algorithms to buildcompositionally homogeneous character sub-
sets from sequence alignments. When applied on datasets suffering from a strong heterogeneity of character
state composition across sequences, these algorithms build character subsets that allow minimizing composi-
tional biases when analyzed with standard phylogenetic tree inference methods. Therefore, they represent an
alternative approach to other existing methods that reducecompositional biases during phylogenetic inference
(character state recoding, non-stationary models of sequence evolution). These two new algorithms are imple-
mented in the software BMGE2, replacing the less efficient Stationary-based Character Trimming method [10].

These two algorithms can be easily modified to use other statististal tests that assess the marginal symmetry
in a contingency matrix (see e.g. [42]), or other useful symmetry properties (see [1]). It will also be inter-
esting to adapt these algorithms to build compositionally homogeneous datasets by removing character states
inside compositionally biased sequences instead of performing character trimming. Finally, despite evidence of
heterogeneous composition across sequences in several studied amino acid datasets (not shown), the character
subsets selected by the two algorithms do not lead to different phylogenetic trees. Therefore, it would also
be interesting to assess the level of resistance of current phylogenetic tree reconstruction methods against the
biasing effect due to compositional heterogeneity across amino acid sequences.

Acknowledgements

I thank Simonetta Gribaldo and the BMGE team of the French Pasteur Institute for support. Many thanks
to Corrine Maufrais for providing ftp home pages. This research was supported by the PhyloCyano project of
the Agence Nationale de la Recherche (ANR; 07-JCJC-0094-01).

References
[1] F. Ababneh, L.S. Jermiin, C. Ma and J. Robinson, Matched-pairs tests of homogeneity with applications to

homologous nucleotide sequences,Bioinformatics, 22:1225-31, 2006.
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Abstract- Exploring the genetic architecture in biology relies on the accurate identification of 

quantitative trait loci (QTL) and gene expression quantitative loci (eQTL). Currently, as more 

and more eQTL have been mapped in various species, the importance of searching the eQTL 

which co locate with a given QTL is highlighted. A number of statistical approaches are 

proposed to look for the eQTL of interest, in particular test whether a same QTL affects two 

different traits or two different linked QTL affect separately two traits. All the methods were 

useful and widely applied in eQTL studies. However, the required conditions when using these 

methods hinder their applications for all the circumstances. This study firstly discusses the 

suitable conditions for the methods existing in the literature. Then we propose two methods, 

making use of the trait and QTL information, in order to look for the eQTL co located with the 

QTL. In addition, the parameters influencing the power for above eQTL mapping are discussed. 

Finally, through simulated data in an outbreed population, we verify the required conditions for 

the existed method and validate our methods in co location studies.           

Keywords  QTL, eQTL, regression, co location. 

 

1 Introduction 

Since the concept of genetical genomics emerged and the heritability for gene expression is proved [1,2], 

numerous expression quantitative trait loci (eQTL) have been found in different species such as yeast [2], 

mice [3], human [4,5], maize [6], chicken [7], porcine [8], rainbow trout  [9]. In the meantime, the test of the 

co location of these eQTL with quantitative trait loci (QTL) which affect complex traits is likely to be more 

and more important. Indeed, one of the eQTL mapping purposes is to identify the causative mutations (or 

polymorphisms) of QTL effects. The objective is to improve the efficiency of genomic selection [10]. In that 

framework, eQTL detected in the neighborhood of one QTL are used to refine the QTL location.  Moreover, 

exploring causal phenotype networks has become a hot topic in recent years. However, for these both 

purposes, it would be necessary to decide which genes, among those analyzed, have an eQTL co located with 

one given QTL. 

In livestock, the linkage analysis is currently used to detect QTL and several statistical strategies based 

on this technique have been developed for eQTL mapping [11,12,13]. This kind of approaches takes into 

account the huge dimensionality of transcriptomic dataset but, generally, does not provide much attention to 

inaccuracy of the estimated eQTL locations. Indeed, the transcriptome analysis is generally carried out on a 

limited number of animals, i.e. between 50 and 300 animals. In such designs, the wide confidence intervals 

of eQTL locations remain a difficult and challenging problem [14,15]. Consequently, after the eQTL have 

been mapped applying linkage analysis, further investigations are necessary to focus on the eQTL detected 

which are co located with a given QTL.  

Standard scenario to test the eQTL and QTL co location would be the test of the null hypothesis of one 

pleiotropic QTL versus the general hypothesis of two close linked QTL in multitrait analyses 

[13,16,17,18,19,20]. This statistical technique was applied to a broad range of QTL co location studies and it 

is powerful, under some circumstances. In particular, Jiang and Zeng [16] or Gilbert and Le Roy [19] pointed 

out the favorable situation for joint analysis, i.e. when the product of the residual correlation and the effects 

of the two QTL is negative. In that case, the power of the joint analysis is always higher than that of the 

single trait analyses and the accuracy of QTL locations is better. Furthermore, the application of these 
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techniques, especially in outbreed populations, is possible only for some variables jointly analyzed because 

of the CPU time consuming to estimate all the parameters of these multivariate models [19].  

A strategy thus consists to preliminary test, gene by gene, the co location of eQTL and QTL to reduce as 

much as possible the eQTL list. For that purpose, “fast” algorithms are necessary and thus regression models 

appear as good opportunities. To the best of our knowledge, several regression methods have appeared in the 

literature for testing the co location of eQTL and QTL. These linear regression methods are available, and 

easily implemented in practice, whereas little attention was paid to the required conditions which guarantee 

their efficiency.  The goals of this paper are to 1) explore the concrete situations such that the regression 

methods appeared in the literature can be successfully applied; 2) develop new methods to generalize these 

regression methods to any situations; 3) demonstrate the feasibility of the proposed methods in an outbreed 

population context through simulations. In this framework, we will firstly describe the relevant statistical 

model in a backcross population. There, some statistical properties of QTL detection test statistics will be 

discussed. Secondly, the required conditions for the existing methods will be searched. Then, approaches 

will be proposed to overcome the limitations due to the assumptions in regression method for detected eQTL 

co located with QTL. Finally, using simulated data set, we will verify if the analytical results obtained on a 

backcross population are also valuable for an outbreed population. 

 

2 Materials and Methods 

2.1 Model and Notations 

Traditional linkage analysis methodologies for mapping QTL are mainly interval mapping methods 

[23,24]. In a first step, we will consider the statistical model constructed in a backcross population.  

Now let’s assume that a true QTL is located at t0 and a true eQTL at t. Let Ti denotes the trait and Gi the 

gene expression for individual i. Let git0 denotes the genotype of i at the t0 location, i.e. the genotype at the 

QTL, and git the genotype of i at the t location, i.e. the genotype at the eQTL. We will suppose here that g 

can take two values, 1 if i is homozygous qq or -1 if i is heterozygous Qq. Then the relationship among T and 

G and the genotypes at the QTL and eQTL can be explained by the following system of linear equations: 

 
        

 

 
         

        
 

 
          

                                                           (1) 

where   and   are the overall means of the T and G random variables respectively, a and b are 

respectively the allelic substitution effects of the QTL and of the eQTL,         follows a binormal 

distribution with a mean 0 and a covariance matrix  
  
      

       
  . 

It should be noted that the trait and the gene expression may share other loci or be influenced by the same 

environmental factors. This fact implies that the correlation among the residual errors cannot be neglected in 

co location studies. 

We can also define the part of the T variance explained by the QTL (  
 ) and the part of the G variance 

explained by the eQTL (  
 ) as two coefficients of heritability: 

  
   

  

      
                     

   
  

      
                                               (2) 

Naturally, as the heritability increases, the power of QTL detection and the accuracy of QTL location are 

higher [14,15]. 

 

2.2 Regression Methods in the Literature 

Several regression methods have been proposed to test the QTL/eQTL co location. 
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2.2.1 Method I  

One of ideas consists of performing linkage analysis on the residual trait value corrected by the transcript 

expression value [8]. This approach comprises two steps. The first step consists in predicting the trait T using 

the linear regression by expression G,               Next, the residual error,       , is submitted to 

a linkage analysis.  If a QTL is yet detected analyzing the new trait Z, the conclusion is that the eQTL and 

the QTL are not at the same location. 

 Following the model (1), Z may be written: 

    
 

 
    

 

 
          

where m is the overall mean for trait Z,                    ,          
     

 
  
              

Under the null hypothesis (            

     
 

 

   
          

  

     
 

       

Thus, this approach would be efficient only under the condition: 

   
        

   .                                                             (3) 

2.2.2 Method II  

A similar approach is to consider the expression trait as a covariable in QTL detection procedures [21] 

following the linear model:  

      
  

 
          

    

Similarly, if a significant QTL is detected applying this model, the eQTL is not considered as co located 

with the QTL. For simplicity, we use the Haley-Knott regression method to analyze the efficiency of this 

approach. In this case, the genotypes of QTL     will be replaced by their expectation conditional on the 

information of markers, say              . The distribution of      is depicted in the table below. The 

estimated partial regression coefficients can be written as 

      
                   

     
              

               
     

                 

     
              

                        

Thus, it could be demonstrate that this approach had the same condition (3) to be efficient because   should 

be 0 under the null hypothesis (            

In conclusion, these two similar strategies may be not efficient because the statistical tests applied are 

biased, i.e. the null hypothesis is not properly defined. 

2.2.3 Method III  

To avoid this problem, an alternative method was proposed by Li et al. [22]. In this approach, the trait T 

was analyzed two times, i.e. two log of odds ratio (LOD) scores were calculated, taking into account or not 

the gene expression G as a covariable in the model. Then, the difference between these two scores was used 

as test statistics: if the ΔLOD is large in absolute value, the authors suggested that the variable G is causally 

connected to the trait T and, thus, to the QTL. The threshold to determine if ΔLOD is large could be obtained 

by simulation under the null hypothesis, i.e. when the gene expression G was unrelated to the trait. 

So, the QTL was mapped two times successively with the two linear models:  
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and the maximum LOD scores were recorded. Next, the comparison of these two LOD scores was used to 

test whether QTL and eQTL were located at the same location. Comparing to the preceding strategies, the 

power of the ΔLOD test statistics is here the capacity of the test statistics to conclude     . However, when 

    , note that if the estimation of   is 0, then ΔLOD is also small. Hence, we obtain from the expression 

(4) a necessary but not sufficient condition to guarantee the efficiency of this approach, that is 

   .                                                                           (5) 

It means that this method will be efficient when G and T share same loci or when G and T are affected by the 

same environmental factors. 

2.3 New Regression Methods 

As shown above, some restricted conditions hinder the application of the previous methods to all the 

situations. In order to overcome this barrier, we proposed in this section two new methods. If their principle 

remains the same than in the preceding methods, i.e. adjust one trait by the other one, we tried here to 

improve the efficiency exploiting the information available after the QTL and eQTL primo detection, 

respectively on T and G variables. Indeed, several estimates of the parameters influencing the power are 

available after this initial step:    the QTL effect,    the eQTL effect and    the QTL location. Generally, the   
eQTL location is less accurate than    because the eQTL detection was performed on a reduced design 

compared to QTL detection. Consequently, in the following propositions, we chose to rather adjust G by T 

than T by G. 

2.3.1  Method IV  

In this approach, a QTL detection is carried out on the variable Z: 

     
  

  
 .                                                                (6) 

If the LRT score exceeds a rejection threshold, then this suggests that the QTL and the eQTL are not at 

the same location. The rejection threshold can be obtained by simulation under the null hypothesis where the 

trait Z is supposed to be unrelated to any QTL.   

Under the model (6), the part of the Z trait variance due to the QTL is:  

    
 

   
 

     
 
  
 

  
 
  
 

  
 
      

  
 

                                                (7) 

From the expression (7), we can see that the power of QTL detection on Z depends on the following 

parameters: the recombinant rate between the locations of the QTL (  ) and of the eQTL ( ), the part of the T 

variance explained by the QTL, the part of the G variance explained by the eQTL and the correlation 

between the residual errors. In particular, when     , i.e. when        ,    will tend towards 0 as the 

power of QTL detection on Z. In the other cases, when the distance between the QTL and the eQTL 

increases, the power of QTL detection on Z increases.  

2.3.2  Method V  

In this approach, we assume that the QTL position (  ) is known. Then, we build a new trait as: 

     
  

 
                                                                     (8) 

where M denote the genotypes at the two flanking markers of the t0 location,          is the expectation of 

QTL genotype conditional to M for each individual. In a backcross population of               , 

let   and   denote the positions of the left and of the right markers respectively, then the distribution of 

         is:  

         Probability Markers genotype 

                                         AABB 
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                                AABb 

                                          AaBb 

                                 AaBB 

where      denotes the recombination rate between the two locations     using Haldane distance.  

As above, if the LRT score does not exceed the rejection threshold, then the eQTL will be considered to 

be co located with the QTL.  

The part of the Z variance explained by the QTL is:  

    
 

   
 

            
 

 

     
 
  
 

  

                                                         (9)        

where            
  is equal to the variance of the variable          which is a constant when the 

density of markers is fixed and the position t0 is known. According to the expression (9), it can be seen that, 

as in the preceding method, the power of QTL detection is null when       is null and that the power 

increases when the distance between the QTL and the eQTL increases. However, the dependency of the 

power to the QTL effect   or to the residual correlation   is solving with this strategy.  

 

2.4 Application in Outbreed Populations 

We have shown some required conditions, for the existing regression methods or the proposed two new 

methods, to be efficient to declare the QTL/eQTL co location in a backcross population. In this section, we 

will investigate the more complex situation of an outbreed population, through simulated data set using the 

QTLMap software [25,26,27,28,29,30,31,32], to validate or not the preceding results in that other context. 

For the purpose of the comparison of the methods mentioned above, we perform simulations under the one 

situation of population and genetic map. We simulated one QTL and one eQTL in a linkage group of 60cM 

where 13 markers are equally distributed, i.e. with a distance of 5cM between two successive markers. The 

population is composed of 5 independent sire families, with 2 unrelated dams per sire and 30 progeny per 

dam. The location of the QTL is fixed at 7cM and its effect is always assumed to be 1 phenotypic standard 

deviation of the trait T ( ). In order to see if the results obtained in the backcross population are also valid in 

the outbreed population, 2 different values (  and   ) for the eQTL effect and 3 different eQTL locations 

(7cM, 32cM and 57cM) are envisaged. The rejection threshold to QTL detection, which depends on the 

family structure and markers information, is gotten with the help of simulations of the T trait, with a 

polygenic heritability of 0.25, and under the null hypothesis of no QTL on the studied linkage group.  

The boxplots in Figure 1 show the distribution of LRT scores for each method. Because the distribution 

of LRT score for method II is very similar as that for method I, we omitted it here. From these distributions, 

it can be seen that 1) for Method I: only when    
        

  is small, this method is useful, 2) for Method 

III: when    , this method loses efficiency, 3) for Method IV: this method is applicable to any 

circumstance. The power of the QTL detection depends still on the effect of eQTL (b) and the residual 

correlation ( ), 4) for Method V: this method is also applicable to any circumstance. The power of the QTL 

detection does not depend on the sign of the eQTL effect or on the residual correlation ( ). We observe that 

all these results from the simulation studies in an outbreed population are consistent with the analytical 

results in a backcross population. Hence, our propositions for the test of the QTL/eQTL co location in that 

context seem to be also valuable. 
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Figure 1. Boxplots of LRT scores depending on the parameters: the distance between the QTL and the eQTL (d), 

the eQTL effect (b) and the residual correlation ( ). 

3 Discussion 

Understanding the genetic architecture in biology relies on the accurate identification of QTL and 

eQTL. In particular, the eQTL studies have contributed to the identification of causative mutations and the 

inference of the phenotypic networks. These applications highlight the importance of the estimation of eQTL 

location. So far, traditional linkage analysis methodologies were always applied to map eQTL in a broad 

range. Nevertheless, the location confidence intervals given by this kind of methods remains an important 

and challenging problem to find a precise location of eQTL. In this framework, we addressed to search the 

eQTL which co locate with a given QTL in this paper. 

Many research studies have been carried out in the field of testing whether the same QTL could be 

affecting two traits or whether different QTL explain the observations. Generally, the methodologies for the 

statistical hypothesis testing were investigated in two ways: 1) making use of the linear regression between 

the trait and the gene expression, 2) using the multivariate analysis to test the hypothesis of one pleiotropic 

QTL versus two close linked QTL. These methods have been widely applied in practice; however, their 

required assumptions are either not given or ignored. In this context, we attempted to provide the situations 

in which these regression methods are efficient and the analytical results in the backcross population. A 

simulation study in an outbreed population demonstrated that the given circumstances for each method were 

feasible. Next, in order to eliminate the limitations caused by those required conditions, we developed two 

approaches based on the prior information on the traits and QTL. The analytical results and the simulation 
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study demonstrated the feasibility of these proposed methods. In particular, when the location of QTL is 

known, we suggest the last method, i.e. method V, to test whether an eQTL co locates truly at the position of 

the QTL.   

Our studies concentrated on the comparison of regression models for testing QTL/eQTL co location. 

Further research should be investigated to reduce the dimension of eQTL co localizing with QTL by multiple 

testing when we use the method IV and V.  
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Ancestral Mammalian Genome Reconstruction and its Uses Toward Annotating the Human
Genome

With the number of sequenced mammalian genomes rapidly growing, the exciting prospect of being able to accurately
infer ancestral genomes becomes within reach. In this presentation, I will discuss how ancestral DNA sequences can be
inferred and how they can be then used to help addressing some key questions in genomics. Reconstructing ancestral
sequences poses a number of algorithmic challenges. I will first describe some of our work on aligning orthologous sequence
and inferring ancestral sequences, focusing on the accurate identification of insertions and deletions. Next, I will discuss
how one can take advantage of the availability of inferred ancestral sequences to help at three important tasks: (i) identify
non-coding sites under selection in the human genome; (ii) improve the detection of transcription factor binding sites;
and (iii) determine the target gene(s) of long-range enhancers. Evolution has been conducting site-specific functionality
assays for hundreds of millions of years. The ability to decipher the results of these experiments has and will continue to
provide us with a wealth of information about our genome and the impact of mutations.
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1 Introduction

The  mechanisms  underlying evolutionary  genomic  rearrangements  and  their fixation  remain  much 
debated. It is especially unclear if the occurrence of rearrangements is reflected by the current distribution of 
breakpoints in extant genomes, or if the latter is the result of a selective process where only a subset of non-
deleterious  rearrangements  are  maintained,  or  a  combination  of  both.  The  original  model  of  random 
breakage [1] has been  challenged in recent years. Indeed, breakpoints are more clustered [2][3] and occur in 
regions richer in genes, GC, CpG islands, segmental duplications than expected at random [4][5]. Here we 
infer  ancestral  genomic  characteristics  to  model  breakage  occurrence,  and  our  results suggest  that  this 
process is mostly neutral and mechanistic, with a measurable but small contribution from negative selection.

2 Results and Discussion

The Boreoeutheria ancestor is the last common ancestor of primates, rodents and laurasiatherians (e.g. 
dog, cow, horse). Its gene content and gene order was reconstructed using AGORA [6], a new parsimony 
method  relying on protein-coding gene annotations of  its  28 sequenced descendant  species  available  in 
ENSEMBL v.57. We compared this ancestral gene order to the gene orders of human, mouse, dog, horse and 
cow to identify 798 breakpoints (adjacent boreoeutherian genes separated in at least one modern species).

The aim of this work is to model the distribution of breakpoints in intergenes to identify the genomic 
parameters that underlie breakage. Candidate explanatory variables were chosen from parameters previously 
correlated with breakage,  and an estimation of their  ancestral  value (i.e.  before breakage occurred) was 
carried out. Lengths and GC contents of ancestral intergenes were estimated as the median of modern values 
in species where these intergenes still exist. To test for negative selection between genes and their regulatory 
sequences, we used computational predictions of target genes of long-range regulation and differentiated 
intergenes that flank a target gene from those that do not.

Using these three ancestral characteristics,  breakage rates in intergenes were modeled using classical 
multivariate Poisson regression. The random model predicts that breakpoints will be distributed in intergenes 
following a Poisson law (Figure 1a, grey line). The regression equation obtained for observed breakpoints is 
strikingly different from the random expectations, as it involves a root of the intergene length rather than 
intergene length itself (slope < 1 in a log-log plot; Figure 1a, black line). However intergene length is the 
major predictor of breakage, explaining 74% of the observed deviation (McFadden's pseudo R²). Long-range 
regulation also has a small but significant negative effect on breakage (Figure 1b), explaining an additional 
6% of the deviation. GC content, on the other hand, is not significantly contributing to the breakage rate.

To  evaluate if  our new model  based on intergene length and regulatory status  can explain previous 
observations, we simulated breakpoints according to the regression equation obtained above.  Results show 
that simulated breakpoints occur in regions that are significantly richer in GC, genes, CpG islands, SINEs 
and segmental  duplications than expected at  random, and therefore recapitulate observations that  appear 
recurrently  in  the  literature  [5][6].  Although  these  simulations  do  not  strictly  rule  out  that  those 
characteristics  may  be  the  underlying  determinants  of  the  rearrangement  process,  they  show  that  a 
determination of breakpoints  by intergene length might  be sufficient  to yield those previously observed 
correlations. 
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Figure 1.A. Breakage rate as a function of intergene length (Poisson regression). Black dots: observations; grey 
lines: expectations of the random model with confidence interval; black lines: regression model with CI. B. Intergenes 

that flank target genes of long-range regulation (grey) have lower breakage rates than those that do not (black).

While  intergene length appears  as  a  strong predictor  of  breakage,  it  is  legitimate  to  ask if the  true 
determinant of breakpoints might not be another genomic characteristic for which intergene length would be 
a  proxy.  We  therefore  searched  for  candidate  characteristics  that  are  tightly  correlated  with  a  root  of 
intergene length in modern genomes. Transposable elements and conserved non-coding elements were ruled 
out  as  plausible  explanations.  Predicted  replication  origins  [7],  on  the  other  hand,  display  a  genomic 
distribution that makes them good candidates but they are in fact independent of observed breakpoints. This 
suggests that the distributions of both breakpoints and replication origins arise from the same cause. We 
hypothesize that the 3D nuclear organization of the genome may play an important mechanistic role in these 
processes, although the exact mechanism at work remains unknown. 

3 Conclusions

The results presented in this work show that an intergene length alone is highly predictive of its breakage 
probability, suggesting that except for a minority of regions with evolutionarily constrained gene topologies 
due  to  regulatory domains,  breakpoints  occur  mostly  neutrally  and  mechanistically.  This  is  in  apparent 
contradiction with the fact that the distribution of breakpoints is not strictly random, and predicts that an 
unknown property of intergenes, perhaps related to the 3D structure  of chromatin, influences the breakage 
probability. Our model also provides a new framework to investigate evolutionary breakpoints. With more 
breakpoint data available, this model will be able to make fine predictions of expected breakage rates for 
specific intergenes, and to compare them with the observed rates to identify regions under negative selective 
pressure against rearrangements, highlighting functional interactions.
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The genetic variation that occurs naturally in a population represents a unique resource for both studying 

the basis of phenotypic differences between individuals and elucidating the evolutionary history of the 
species. In this context, microbial models such as yeast are of particular interest, as phenotypic diversity 
among isolates is significant and variation is apparent among the natural strains at different levels.  

To date, yeast population genomics focused on two species: Saccharomyces cerevisiae and 
Saccharomyces paradoxus [1,2]. The Saccharomyces genus underwent whole-genome duplication followed 
by a massive loss of genes that may have an important impact on the structure of these genomes and on the 
phenotypic evolution of these species.  

In this context, we launched a comprehensive survey of genomic variations among isolates within a 
protoploid yeast species that did not undergo whole genome duplication, Lachancea kluyveri. Comparative 
population genomics might allow us to assess the influence of genome duplication on genetic and phenotypic 
variation within a species. The L. kluyveri CBS3082 strain has already been fully sequenced and annotated, 
providing access to a high quality reference genome [3]. With the ambition to explore the genetic diversity 
and compare the patterns and levels of DNA sequence variation between L. kluyveri isolates, we sought to 
combine high-throughput sequencing, phenotyping and computational methods. We have consequently 
launched a high-coverage sequencing project of 38 L. kluyveri strains representative of the whole population. 
Based on an approach that combines commonly used software such as SOAP2 [4], SOAPsnp [5], 
STRUCTURE [6] and in-house PYTHON scripts, we are currently generating high coverage SNPs (Single 
Nucleotide Polymorphisms) maps. These data are being exploited to measure the intraspecific diversity as 
well as to assess the population structure, linkage disequilibrium and identify the selection patterns.  

Our results will lay the foundation for phenotype-genotype linkage mapping and will next be recovered 
to compare the genotype-phenotype map of different natural populations of yeast: S. cerevisiae and L. 
kluyveri. 
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Abstract The type III secretion system (T3SS), or "injectisome", is a bacterial machinery that 
allows the injection of protein effectors directly into eukaryotic cells. This system is often used 
in the establishment of pathogenic or symbiotic relationships with both animals and plants. The 
T3SS is related to the bacterial flagellum and some of its core genes are homologous to 
conserved flagellar genes. We present the first systematic search of T3SS in thousands of 
prokaryotic genomes. We identified 203 putative T3SS in 147 complete bacterial genomes. T3SS 
are found in specific clades of alpha-, beta- and gamma- proteobacteria, are present in all 
intracellular pathogens chlamydiales, are rare in deltaproteobacteria and absent from 
epsilonproteobacteria sequenced to date. Among the nine core genes used for the 
characterization of the T3SS, eight are homologous to core genes of the flagellum. We detected 
more than 170 potential flagellar systems in our bacterial genome dataset, and perform 
phylogenetic analyses of the eight genes conserved between the two systems, in order to give 
insights on the evolutionary history of these two bacterial systems. Accordingly with previous 
studies, the taxonomic distribution of the T3SS is patchy and phylogenetic analyses suggest a 
complex evolutionary history of this system, punctuated by lateral gene transfers. 

Keywords Injectisome, Type III secretion system, T3SS evolution, Phylogenetic congruence, 
Lateral gene transfers.  

1 Introduction 
The type III secretory system (T3SS) or "injectisome" is a cellular machinery that spans the inner and 

outer membrane of some groups of diderm (typically gram−) bacteria [1]. The general function of the T3SS 
is the exportation of bacterial proteic effectors to a eukaryotic host. In several pathogens, the T3SS is 
required for virulence, and allows via a molecular syringe the injection of virulence factors directly into 
eukaryotic cells (e.g. in Yersinia pestis). Some T3SS were shown to be necessary to the establishment of 
symbiotic relationships (e.g. in plant symbionts Rhizobiales). Bacteria use T3SS in both plant and animal 
hosts. Some authors proposed the use of this system by Pseudomonas aeruginosa as a weapon to survive 
predation by amoebae in biofilms [2]. T3SS is thus an important player in relationships between bacteria and 
eukaryotes. Several families of T3SS were previously described on phylogenetic grounds, and T3SS scarce 
taxonomic distribution led some authors to invoke lateral gene transfers along its evolution. T3SS is related 
to the bacterial flagellum in two ways. First, advances on the structural characterization of both systems 
demonstrated a similar basal structure. Second, sequence analyses gave evidence on the common origin of 
several components of the T3SS and of the flagellum. T3SS is in average constituted by 20 proteins encoded 
by genes gathered in a genomic cluster (except in chlamydiae). Nine of these genes are conserved among all 
described T3SS. Eight out of nine core genes show a clear homology with core genes of the flagellum. The 
remaining gene, the secretin, has no flagellar homolog, but belongs to a super-family of proteins of the 
general secretion pathway [3]. In this study we propose i) a computational method for T3SS detection in 
bacterial genomes, ii) the study of the taxonomic distribution of T3SS iii) a phylogenetic analysis of the 
T3SS along with the related flagellar system.  

2 Results and Discussion 

2.1 Mining Bacterial Genomes for the T3SS 
We took advantage of the existence of nine conserved core genes in all T3SS described to date, and built 

HMM profiles to search homologs in prokaryotic genomes. 464 replicons (428 genomes) out of 1342 
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analysed presented at least one hit for each of the nine core genes. Another conserved feature is the genome 
architecture of the system since genes encoding proteins of T3SS structure and functioning colocalized in 
one or few gene clusters. We thus searched for clusters of T3SS core genes homologs. A potential source of 
false positives detection is the homology of T3SS core genes with some flagellar core genes. We could sort 
out flagella from T3SS by segregating clusters containing a secretin homolog (no homolog in flagellum), 
from clusters containing conserved flagellar genes with no homolog in T3SS. Finally, 159 bacterial replicons 
distributed in 147 genomes presented at least one T3SS. A total of 203 putative T3SS were detected. 17 
systems, found in the chlamydiales genomes, were situated on several loci on bacterial chromosome, 
whereas other systems clustered at a single genomic location. Most of the systems (180) are on 
chromosomes, but 23 are on plasmids. 173 flagellar clusters were also detected.  

2.2 Taxonomic Distribution of the T3SS 
T3SS are present in gammaproteobacteria (enterobacteriales, pseudomonadales, vibrionales...), 

betaproteobacteria (burkholderiales), alphaproteobacteria (rhizobiales), deltaproteobacteria 
(desulfovibrionales, myxococcales) and chlamydiales. These bacteria are mainly plant and animal pathogens 
or symbionts. Few occurences of T3SS are reported in free-living bacteria. This reinforces the general role of 
T3SS in the establishment of close relationships with eukaryotic hosts.  

2.3 Phylogenetic Analyses of T3SS Core Genes and their Flagellar Homologs 
The experimental and structural characterization of the T3SS in different species gave insight on the 

function, shape and relative positioning of T3SS proteins. For example, the core genes sctR, sctS, sctT, sctU 
and sctV encode for inner-membrane proteins known to be part of the T3SS basal structure and to closely 
interact. SctN is an ATPase suspected to interact with SctQ, whereas the secretin SctC is an outer-membrane 
protein. Moreover, the genomic location of the nine genes suggests that those genes could share a same 
evolutionary history. Based on patchy taxonomic distribution of the T3SS compared to that of the flagellum, 
widespread in bacterial phyla, previous phylogenetic analyses proposed that T3SS derived from a flagellar 
ancestor and spread through lateral gene transfers. We first studied the congruence of phylogenetic signal of 
the nine core genes. Then we could systematically test the hypothesis of en bloc transfers of T3SS using 
more data than previously included in such analysis. Reconstructed core genes phylogenies showed evidence 
of lateral gene transfers. Moreover, plasmidic type III systems alternatively branch with chromosomal 
systems, suggesting that conjugation may be one of the modes of T3SS lateral transmission.  

3 Conclusions 
Our study allowed the systematic search of the T3SS, system crucial in bacteria-plant symbioses, the 

virulence of many well-known pathogens, and also potentially in the emergence of new animal and plant 
pathogens. This search provided the material for a phylogenetic analysis of T3SS core genes, most of them 
being related to flagellar core genes. As suggested by its scarce taxonomic distribution, the T3SS presents a 
complex evolutionary history relying on multiple lateral gene transfers of the whole system.  
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Abstract  Plant-parasitic nematodes (PPN) are microscopic roundworms that  cause disease  
on nearly all economically important crop plants. They are responsible for estimated losses of  
several billion Euros/year. Currently, nematicides are the most important means of controlling  
nematodes. However, current nematicides are non-specific, notoriously toxic and pose a threat  
to soil ecosystem, ground water and human health. Therefore, novel and specific targets are  
needed to develop new strategies directed against plant-parasitic nematode species.
In this  context,  our  project  aims at identifying putative  parasitism genes  in  plant-parasitic  
nematodes. A multi-disciplinary approach combining bioinformatics and functional genomics  
based  on  large-scale  screening  of  genomic  and  proteomic  data  from  nematodes  showing  
different  modes  of  plant  parasitism  is  proposed.  Candidate  targets  are  identified  by  
bioinformatics  methods  and  the  most  promising  candidates  will  be  selected  for  further  
functional analyses.
Here we report  the semi-automated bioinformatics pipeline developed for that  purpose.  We  
have  undertaken  a  comparative  analysis  of  the  sets  of  predicted  proteins in Meloidogyne 
incognita and Meloidogyne hapla (two fully sequenced plant-parasitic nematodes) with a large  
dataset  of  whole  genomes  and  transcriptomes.  As  our  objective  is  to  identify  druggable  
parasitism  genes  we  have  searched  for  proteins  conserved  in  other  parasitic  or  plant-
associated  species,  but  absent  from  species  that  could  be  negatively  affected  by  newly  
developed drugs or  control  means.  We also have undertaken bioinformatics  annotations  of  
these proteins,  including but  not  limited to:  detection of  signal  peptide and Pfam domains,  
assignment of gene ontology terms and identification of specific motifs.

Keywords Plant-parasitic nematodes (PPN),  parasitism genes, in silico screening, automatic 
functional annotation, comparative genomics.

1 Introduction

Plant-parasitic nematodes (PPN) are microscopic roundworms. Their strategy to infest plants and their 
host range depend on the species. Most of them feed on root tissue and damage their host mainly by altering 
root growth (resulting in reduced water uptake), by promoting microbial infections through wound sites or  
by serving as vectors for pathogenic viruses. They cause disease on nearly all economically important crop 
plants,  including corn,  soybean, cotton, rice,  tomato, carrots and tobacco. They are thus  responsible  for 
estimated losses of several billion Euros/year. The most economically impacting plant-parasitic nematodes 
are root-knot nematodes and cyst nematodes that both pertain to the phylum Tylenchida (or clade 12)  [1]. 
During their life cycle,  these plant-parasitic nematodes  penetrate the root and  migrate  within plant tissue. 
They induce the development of a specialized feeding structure from root plant cells and settle sedentary at 
this feeding site. It has been shown that they  secrete proteins called “effectors” in plant tissue. Several of 
these effectors have been shown to be involved in degradation of the plant cell wall or potentially implicated  
in modulation of plant defenses. Many effectors remain uncharacterized and are suspected to be involved in 
the development of feeding structures or other processes related to successful parasitism.
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Measures such as growing resistant crop varieties and the use of nematicides are extensively employed  
to control plant-parasitic nematodes. However, it happens that some nematodes overcome resistance genes 
and become “virulent” (able to infect varieties that were previously resistant to these nematodes). Moreover, 
current nematicides are costly, non-specific, notoriously toxic and pose a threat to the soil ecosystem, ground 
water and human health. This has lead to the banning of the most efficient chemicals that were previously  
commonly used. Therefore, novel and specific targets are needed to develop new strategies directed against 
plant-parasitic nematode species.

In 2008, the careful analysis of the first sequenced genome of a plant-parasitic animal, the root-knot 
nematode  Meloidogyne  incognita [2],  highlighted  new  potential  targets  for  anti-parasitic  strategies.  To 
confirm  the  relevance  of  these  genes  as  good  candidate  targets,  efforts  are  needed  to  produce  high-
throughput data on additional plant-parasitic nematode species. Indeed, very few genomic and transcriptomic 
resources  were  available  so  far:  only  two  genomes  of  plant-parasitic  nematodes  (M.  incognita and 
Meloidogyne hapla [3])  are  fully  sequenced and annotated,  and most  EST come from species  from the 
Meloidogyne genus (preventing comparative studies).

That  is  why  we  propose:  (i)  an  in-depth  search  for  potential  new  targets  by  comparaison  of the 
M. incognita and M. hapla sets of predicted proteins with proteins from other organisms (parasitic or not) ; 
(ii) the generation and analysis of large-scale transcriptomic data (RNA-seq) from four other plant-parasitic 
nematodes  representing  diverse  parasitic  strategies  (Pratylenchus  coffeae,  Ditylenchus  dipsaci, 
Bursaphelencus xylophilus and Xiphinema index). The rationale of our analysis is that the more a protein is 
broadly conserved across parasitic or plant-associated species yet restricted to them, the more it is likely to 
be involved in  the  parasitism process.  Thus,  conservation of a protein in a parasitic or a plant-associated 
species is considered like a “bonus”. In contrast, we call “forbidden species” hereinafter the species that are 
neither plant-parasitic, nor plant-associated, and that could be negatively affected by the development of 
novel  drugs or  control  means.  In  concrete  terms,  by “forbidden species”,  we mean species  like  plants,  
mammals, fishes, pollinating insects… Indeed, the long-term application of our project is to manage parasitic 
nematode infestations,  without  affecting crop plants or  being toxic to ecosystem and human health.  For 
example, a novel chemical developed against nematodes should not kill honeybees. Some species are neither 
“forbidden” nor “bonus” and are therefore  considered as “neutral” (bacteria  and viruses that  are  neither 
plant-parasitic nor plant-associated for example). After identification and annotation of candidate targets by 
bioinformatics methods, the most promising candidates will be selected for further functional analyses.

Here we report the semi-automated bioinformatics pipeline and the data management system developed 
for the identification of genes involved in plant-parasitism. To date, it has not been possible to develop such 
a comparative pipeline in the context of plant-parasitic nematodes because of the scarcity of genomics and 
transcriptomics data available for these species.

2 Material and Methods

The bioinformatics pipeline begins with two steps of screening, based on sequence similarity  (Fig. 1). 
After the screening steps, the remaining proteins from M. incognita and M. hapla are analysed in terms of 
transcription evidence and automatic functional annotation.  Lastly, all the data produced are stored into a 
relational database dedicated to this project.

Throughout the process, all the scripts necessary to parse the results or format the data files have been  
written with the Perl language with use of some BioPerl modules.

2.1 In silico Screenings of Potential Targets

The  first  screening  step  consists  in  a  comparative  analysis  of  the  sets  of  predicted  proteins  from 
M. incognita and M. hapla with sets of predicted proteins from twenty-three other fully sequenced species. 
The dataset includes putative proteomes from 1 human-parasitic nematode, 2 plant-pathogenic fungi and 2 
plant-eating  insects.  They  are  considered  as  “bonus  species”.  In  addition,  the  dataset includes  putative 
proteomes from 3 nematodes,  5 mammals, 1  bird, 1 amphibian, 2 fishes, 3 insects and 1 plant. They  are 
neither  parasitic,  nor  plant-associated,  and  are  considered  as  “forbidden  species”.  To  perform  the 
comparative analysis, the OrthoMCL tool  [4] was run with default parameters. The OrthoMCL procedure 
starts with all-against-all BLASTp comparisons of protein sequences from the submitted genomes. Putative 
orthologous  relationships  are  identified  between  pairs  of  genomes  by  reciprocal  best  similarity  pairs.  
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« Recent »  paralogs  (or  in-paralogs)  are  identified  as  sequences  within  the  same  genome  that  are  
(reciprocally) more similar to each other than to any sequence from other species. Then, putative orthologous 
relationships are converted into a graph, to which the MCL (Markov Clustering) algorithm  [5] is applied. 
The final output consists in clusters of putative orthologs and « recent » paralogs.

Figure 1. Schematic overview of the screening pipeline to identify potential targets in 
Meloidogyne incognita and Meloidogyne hapla whole sets of predicted proteins.

The results were parsed to exclude proteins conserved in forbidden species. The “remaining” proteins 
constitute the set 0. We also assigned a “bonus tag” to proteins passing this filter that presented a potential 
ortholog in a known parasitic or plant-pathogenic species.

The second screening step consists in a BLAST search [6] of the set 0 against GenBank (NR database, 
blastp, evalue max = 0.01, no filter for low complexity regions). This second step is perfectly complementary 
to the first one. Indeed, several proteomes included in the OrthoMCL run are absent from NR. In addition, 
most species in  NR can not be included in  the OrthoMCL run, because we do not have their  complete 
putative proteomes (species not fully sequenced).

For each protein, all BLAST hits were analysed sequentially. We excluded proteins showing significant 
similarity (at least 40 % identity  and 70 % of query length covered by the alignment) with  one  or more 
forbidden species. The remaining proteins presenting a significant similarity (at least 30 % identity and 50 % 
of query length covered by the alignment) with proteins from known plant-parasitic or plant-pathogenic 
species  were  assigned  a  “bonus  tag”.  (Fig.  2)  The  criteria  are  more  stringent  for  exclusion  than  tag 
assignment to avoid considering hits in forbidden species that are not true orthologs, since only one hit in a 
forbidden species lead to the exclusion of the protein (whereas bonus tags are rather informative).
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Figure 2. Schematic overview of the algorithm implemented in the BLAST parser. Remaining proteins after the first 
screening step based on an OrthoMCL run underwent a second screening step based on BLAST searches. All 
BLAST hits were sequentially analysed. When there is an hit in a species that is neither a “bonus” one, nor a 

“forbidden” one, we get the parent node in the taxonomy and test this parent node in the same way (until 
reaching the root if necessary), because the taxonomy identifiers (TaxId) we have listed sometimes correspond 
to clades (a higher level than a species). Moreover, to reduce computations, the parser first sorts the hits on the 

“division” criteria, as a division is assigned to each taxon node by the NCBI taxonomy. Forbidden divisions 
are Mammals, Primates, Rodents and Vertebrates. Neutral divisions are Phages, Synthetic, Unassigned and 

Environmental samples. In the other cases, the parser has to check if the TaxId is in the “bonus” list or in the 
“forbidden” list. On the figure, “% ID” means percent identity and “% QL” means percentage of query length 

covered by the alignment.
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We are aware that this methodology would overlook genes involved in parasitism that are duplicates or 
mutated versions of existing genes shared with forbidden species. As our aim is to identify druggable targets, 
we can not take the risk to select genes that would be too similar to genes conserved in such species.

As  there is  no large-scale database that propose an inventory of plant-associated species, we collected 
information from the bibliography, from plant-pathologists and from two partial databases. The first one is 
the Comprehensive Phytopathogen Genomics Resource (http://cpgr.plantbiology.msu.edu/).  It consists in a 
data warehouse of finished, draft and in progress genome and EST sequencing projects for viral, bacterial,  
oomycete, fungal, and nematode plant pathogens. The second one  is the Pathogen Hosts Interactions base 
(http://www.phi-base.org/,  [7]).  It  contains  expertly  curated  information  on  experimentally  verified 
pathogenicity,  virulence  and  effector  genes  from  fungal,  oomycete  and  bacterial  pathogens.  Moreover, 
according to bibliography, we considered that four clades of nematodes are plant-associated: Tylenchida,  
Nordiidae,  Longidoroidea  and  Trichodoroidea.  In  the  end,  we  derived  a  list  of  834  NCBI's  taxonomy 
identifiers  (TaxId) corresponding to species and clades known to be involved in  parasitic  or  pathogenic 
interactions with plants. This is not an exhaustive list, but it represents more than 28000 species in total (as  
numerous species pertain to a clade) of nematodes, oomycetes, fungi, bacteria, trypanosomes, insects, virus  
and viroids.

To parse the BLAST results, we also needed to download the NCBI taxonomy and to list clades that we 
consider as “forbidden” (four clades: Chordata, Annelida, Mollusca, Viridiplantae).

The proteins kept at the end of the pipeline constitute  set 1.  As computation requires huge memory, 
BLAST  search  and  parsing  have  been  computed  on  a  cloud:  the  ProActive  PACA  Grid 
(http://proactive.inria.fr/pacagrid/).

2.2 Evidence of Expression at the Transcriptional Level

Evidence of  the  transcription  of a  gene coding for  a  putative  protein  supports  the  existence of this 
putatively expressed gene.

We already had accumulated data about EST evidence for the M. incognita set of proteins. They come 
from the NCBI dbEST database and from “in-house” M. incognita-specific EST clusters. The latter provides 
information about the stage(s) of the life cycle during which the gene is  expressed. In our case, we are  
particularly interested in genes expressed during the free-living stage (as nematodes are more reachable by 
control means), but expression during plant-nematode interaction can provide insights into the mechanisms 
of parasitism.

We also downloaded datasets of  protein predictions derived from clustered EST of seventeen plant-
parasitic  nematodes  (including  M. incognita and  M. hapla)  from  the  NEMBASE4  resource  [8].  These 
collections are publicly available from http://nematodes.org/downloads/databases/NEMBASE4/index.shtml. 
We performed BLAST searches of our set 1, using the polypeptides from NEMBASE4 as subject sequences 
(blastp, evalue max = 0.01, no filter for low complexity regions). Data were then parsed and criteria (identity 
and alignment percentages) were fit according to the phylogenetic distance between the subject species and  
the  Meloidogyne  phylum.  Here,  data  provide  not  only  expression  evidence,  but  also information  about  
conservation of the gene in plant-parasitic nematodes (as seen before, the more a gene is conserved in plant-
parasitic species, the more it is likely to be involved in parasitism).

However, the amount of available transcriptomic data for plant-parasitic nematodes is relatively limited 
and most information is restricted to root-knot nematodes and to a lesser extent to cyst nematodes.  This 
limits the possibility of comparing various different plant-parasitic nematodes that have adopted different 
strategies to feed on plant material. Hence,  we have performed the RNA-seq transcriptome sequencing of 
four  plant-parasitic  nematode  species  presenting  diverse  parasitic  strategies  (Pratylenchus  coffeae, 
Ditylenchus dipsaci, Bursaphelencus xylophilus and Xiphinema index). We have also generated the RNA-seq 
of different developmental stages of  M. incognita in order to bring additional transcription support to the 
identified genes. Bioinformatics analyses are currently in progress.

Présentation orale Identification of Putative Parasitism Genes in Plant-Parasitic Nematodes

–175–



2.3 Automatic Functional Annotation

As we are  working on proteins predicted from the genomes,  most  of them have currently unknown  
functions. We have therefore undertaken bioinformatics annotations of these proteins.

• Functional regions (commonly termed domains) have been identified into our proteins, by using 
the PfamScan tool with the Pfam-A database (the part of Pfam containing high quality, manually 
curated families) and default parameters [9].

• “Standard” gene ontology (GO) terms have then been assigned to the proteins, based on the 
correspondence between the Pfam domains and the GO terms. “Slim” terms associated to the 
“standard” terms have also been subsequently assigned to the proteins. GO slims are cut-down 
versions of the GO ontologies containing a subset of the terms in the whole GO. They give a 
broad overview of the ontology content, without the detail of the specific fine grained terms. [10]

• The presence and location of signal peptide cleavage sites have been detected with the SignalP  
v3.0  tool  [11],  using  both available  methods  (artificial  neural  networks  and hidden  Markov 
models).

• Prediction  of  transmembrane  protein  topology  has  been  performed  by  searching  for 
transmembrane helices in protein with the TMHMM v2.0 tool [12].

• Motifs specific to effectors of root-knot nematodes have been identified in the whole proteome 
of M. incognita using the MERCI software [13].

2.4 Database Development

A relational database has been developed using MySQL and phpMyAdmin in order to store all the data 
generated during the project. It allows to make data integration and analyses easier. Complex queries that  
combine results obtained at different steps of the pipeline (screening and/or annotation) can be launched. 
Outputs can be saved as simple tables or spreadsheets that can readily be used by the biologists.

3 Results and Discussion

The relational database contains all the data generated so far: results from the screening steps (which 
proteins have been “excluded” or “kept to go further” at each step, description of the hits) and the different 
types of annotations (as previously described: domains, gene ontology terms, signal peptides, transmembrane 
topology, specific motifs). Some more general information are included too, as the description of each step 
(who carried out this step, when, which tool and parameters have been used, what was the previous step...). 
This database allows us to compute a wide range of queries.

First  of all,  our  set 1 contains 16320 proteins. These root-knot nematode proteins are not present in 
species that could be negatively affected by the development of novel drugs and part of these are conserved 
in other plant-parasites. Among them:

– 5497 proteins (~ 34%) are shared with at least one other parasitic or plant-associated species,

– 3462 proteins (~ 21%) are supported by a transcription evidence from the same species and 4203  
proteins (~ 26 %) are supported by a transcription evidence whatever the species (itself or another plant-
parasitic nematode),

– less  than  a  quarter  of  proteins  have  been  associated with a  functional  annotation.  Indeed,  3835 
proteins (~ 24 % of set 1) are annotated with one Pfam domain or more, and 2255 proteins (~ 14 %) have a 
GO term assigned.

A more detailed analysis of GO slim terms associated with the proteins shows that some terms seem to be  
under-  or  over-represented in  the  set  1 compared to the  whole  putative proteomes of  M. incognita and 
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M.  hapla.  In  particular,  we  notice  that  the  terms  nucleus (GO:0005634  from  the  'cellular  component' 
ontology),  transcription  factor  activity (GO:0003700  from  the  'molecular  function'  ontology)  and 
transcription (GO:0006350 from the 'biological process' ontology) seem to be over-represented ; suggesting 
that  we  may  have  identified  specific  transcription  factors.  By  combining  criteria  on  GO  slim  terms, 
transcription  evidence  and  conservation  in  other  species,  we  observed  that  twelve  proteins  are  shared 
between several parasitic or plant-associated species, are annotated with the three GO slim terms related to 
transcription  mentioned  above and  are  supported  by  a  transcriptional  evidence.  These  proteins  are  of 
particular interest and are currently under experimental investigation.

Moreover, it is possible to identify putative effectors by combining the following criteria: conservation in 
other parasitic or plant-associated species, transcriptional evidence, no transmembrane helix, presence of a  
signal peptide and presence of one of the effector-specific motifs previously identified [13]. We obtain a list 
of  158 proteins.  Among  them,  18  are  known  to  be  carbohydrate-active  enzymes  (CAZymes: 
http://www.cazy.org/)  involved  in  plant  cell  wall  degradation,  which  is one  of  the  known  function  of 
effectors  [2]. They are able to degrade carbohydrates like cellulose, hemicellulose or pectin. Presence of  
known effectors within the reduced set of predicted effectors validates the screening method. Proteins of as 
yet unknown function constitute a set of interest to identify and characterize new effectors.

4 Conclusion and Perspectives

To date, the bioinformatics pipeline has generated a number of data which are all stored in a relational 
database. By combining several criteria, the database allows identification of sets of target genes restricted to  
parasitic or plant-associated  species  (such as putative transcription factors or effectors)  for the design of 
durable new strategies to manage parasitic nematode infestations. As a control, we could align the identified 
genes  back  to  the  genomes of  some  neither  parasitic  nor  plant-associated  species  to  check  that  their 
successful outcome through filters is not due to annotation problems.  But it would be quite surprising that 
these  genes  would  have  been  missed  in  all  the  proteomes  of  the  18  forbidden species  included  in  the 
OrthoMCL run.

In near future, it is planned to implement a graphical user interface, probably by using BioMart [14], as it 
is described as a simple and robust data integration system for large scale data querying. This  interface  
would allow users to query the database more easily (without the need of writing SQL instructions). It is also 
planned to include more data, according to the users needs (such as bibliography or comments).

Furthermore, to partially overcome the scarcity of omics data available for plant-parasitic nematodes, we 
have performed the RNA-seq transcriptome sequencing of four plant-parasitic nematode species presenting 
diverse  parasitic  strategies  as  well  as  the  RNA-seq  of  different  developmental  stages  of M.  incognita. 
Bioinformatics analyses are currently  in progress and will soon provide additional information about the 
transcriptional  support  of  the  identified  genes  and  their  conservation  across  the  four  plant-parasitic 
nematodes sequenced.

In the end, the most promising candidates will be selected for further functional analyses in the plant-
parasitic nematode model  Meloidogyne incognita. This will include expression analysis, tissue localization 
of gene expression and gene inactivation by RNA interference assays.
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The RNA Zoo: Diversity and Complexity of Transcriptomes

ENCODE and FANTOM showed that nearly the mammalian genomes are almost completely described, putting an end
to idea of Junk DNA. Since then, we have learned that transcription is more extensive and more complex also in other
eukaryotes and even in prokaryotes. In contrast to the common organizational principles governing the protein-coding
minority, the collection of transcripts forms a surprisingly heterogenous zoo of RNAs differing in processing, transport,
and function. Complex hierarchical processing pathways, furthermore, generate multiple RNA species from the same
genomic information that can act in ways that are unrelated in both biochemical mechanism and biological function.

For bioinformaticians, new challenges keep popping up, ranging from the technicalities of analysing huge amounts of
high throughput sequencing data to ncRNA annotation and the quest for a sensible taxonomy of ncRNA classes. In the
main part of my presentation I will focus on novel approaches to analysing long ncRNAs and on the relation of short
RNAs to their precursors, including the following topics. Prediction of novel long RNAs from comparative genomics data;
giant transcript triggered in some signal pathways; production of coherent short fragments from well known structured
house-keeping RNAs; unusual processing of 3’ ends; and chemical modifications.
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Abstract  Transcription factors (TFs) direct gene expression by binding to DNA regulatory 
regions. To explore the evolution of gene regulation, we used chromatin immunoprecipitation 
with high-throughput sequencing (ChIP-seq) to determine experimentally the genome-wide 
occupancy of two TFs, CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 
alpha, in the livers of five vertebrates. Although each TF displays highly conserved DNA 
binding preferences, most binding is species-specific, and aligned binding events present in all 
five species are rare. Regions near genes with expression levels that are dependent on a TF are 
often bound by the TF in multiple species yet show no enhanced DNA sequence constraint. 
Binding divergence between species can be largely explained by sequence changes to the bound 
motifs. Among the binding events lost in one lineage, only half are recovered by another binding 
event within 10 kilobases. Our results reveal large interspecies differences in transcriptional 
regulation and provide insight into regulatory evolution. 

Keywords  Transcription Factor Binding, ChIP-seq, Evolution.  

1 Summary 
 The relationship between genetic sequence and transcriptional regulation is central to understanding 

species-specific biology, disease, and evolution. Identifying the divergence and conservation among 
functional regulatory elements is an important goal of comparative genomic research, and this is often done 
via DNA sequence comparisons using distant and closely related species. Although both approaches have 
successfully identified conserved regulatory regions, the majority of transcription factor (TF) binding events 
change rapidly between closely related species, making them difficult to detect using DNA sequence alone.  
For instance, the experimentally-determined binding events for homologous TFs found in mouse and human 
livers are unlikely to align with each other, despite conservation of their functional targets and global liver 
transcription.  The evolution of mammalian transcriptional regulation remains largely unexplored beyond 
limited mouse-human comparisons.  

 We therefore identified the genome-wide binding of two transcription factors: (i) CEBPA, in livers 
of species representing five vertebrate orders: human (primate), mouse (rodent), dog (carnivora), short-tailed 
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opossum (didelphimorphia), and chicken (galliformes), and (ii) HNF4A, in livers from human, mouse, and 
dog.  Chromatin immunoprecipitation experiments were combined with high-throughput sequencing (ChIP-
seq) using healthy, nutritionally unstressed adult liver from the heterogametic sex as a functionally and 
transcriptionally conserved homologous tissue type. 

 For these two liver-specific transcription factors, binding events appear to be shared 10%-22% of the 
time between mammals from any two of the three placental lineages we profiled, separated by approximately 
80 million years of evolution.  This reveals a rapid rate of evolution in transcriptional regulation among 
closely related vertebrates.  Nevertheless, the number of CEBPA and HNF4A transcription factor binding 
events shared between any two of our five study species is far greater than could have occurred by chance.  

 Understanding the evolutionary dynamics of transcription factor binding is essential to 
understanding the evolution of gene regulation. Our analysis of experimentally determined in vivo 
occupancy of two TFs in multiple vertebrates revealed apparent limitations to this model and a number of 
other insights about the complex relationship between genetic sequence, transcription factor binding, and 
genome regulation. 

First, the vast majority of ChIP-identified transcription factor binding events are unique to each 
species; in mammals, the binding events that occur within species-specific, repetitive DNA are more 
common than conserved binding events.  Second, ultrashared TF binding events, which are the functional 
counterpart of ultraconserved sequences, appear rarely in vivo among all five vertebrates. Third, only 
approximately half of binding events that are lost in one placental mammal yet present in at least two others 
are potentially recovered by nearby turnover events. Fourth, neither motif nor strength of TF binding 
correlate with conservation of a transcription factor's genomic occupancy.  Alterations in the DNA binding 
specificity of CEBPA and HNF4A cannot account for rapid binding divergence, nor can species-specific 
environmental differences.  

Nevertheless, comparing binding events within 10 kb of the transcription start site (TSS) of 
experimentally determined target genes of CEBPA and HNF4A has shown that binding events near these 
genes are more likely to be shared with other species, although this does not correspond to an increase in 
sequence constraint.  In fact, the set of the ultra-shared, five-way binding events is entirely disjoint from the 
set of genes directly dependent on CEBPA in adult liver.  For HNF4A, only 6% of binding events shared 
across three placental mammals are near the highest-quality functional target genes, namely, those genes that 
depend on HNF4A for proper expression in both mouse and human.  Given that most TFs are active in 
multiple cell types, it is possible that the remaining shared sites are active in other tissues or other 
developmental stages.  Indeed, the ultra-shared CEBPA binding events are uniformly found near liver-
specific genes that would be expected to be upregulated upon liver organogenesis. Conversely, those binding 
events near functional targets in adult liver that are neither shared nor show signs of sequence constraint may 
represent lineage-specific regulatory interactions. 

The preponderance of specific-specific binding and the rapid lineage-specific loss of binding events 
suggests that a sizeable majority of specific TF-DNA interactions could be evolving neutrally.  Liver-specific 
TFs and subsequent gene expression are both highly conserved, the rapid gain and loss of binding events 
may be indicative of compensatory changes that maintain local concentrations of TF binding near functional 
targets.  Indeed, a recent computational approach which uses a high concentration of TF binding motifs, 
regardless of their alignment, showed improved ability to predict regulatory interactions. 

 Despite the rapid gain and loss of TF binding events in mammals, tissue-specific gene regulation 
seems to be maintained by identifiable regulatory architectures that can be independent of sequence 
constraint. 
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Abstract  Docking techniques on therapeutic targets are widely used for the investigation of  
the  protein-ligand  interaction  and  virtual  screening.  The  very  important  problem  is  to  
distinguish biologically active compounds from inactive ones in the large set of  the docked  
molecules.  AuPosSOM  is  a  new  software  for  the  evaluation  of  the  docking  results.  The  
approach is based on the clustering of the docked molecule by the similarity of their contacts  
with the target.

Keywords  Docking, scoring function, virtual screening, self organizing map, contact, activity, 
clustering.

1 Introduction

Evaluation of the docking results is one of the most important problems of the virtual screening and in  
silico drug design. Modern approaches for the identification of active compounds in the large data set of the 
docked  molecules  are  based  on  the  scoring  functions.  Scoring  function  estimation  is  governed  by  the 
calculation  of  the  ligand  binding  energies.  The  general  and  the  most  significant  limitations  of  scoring 
function methods are dealt with the inaccurate binding energy estimation.

AuPosSOM (Automatic analysis of Poses  using SOM) [1] represents  the  new approach that  utilizes  
contact  fingerprint  similarity  conception  for  the  virtual  screening.  This  tool  is  available  on-line: 
www.aupossom.com.  Kohonen self-organizing maps (SOM) method [2]  is  applied  for  the  unsupervised 
clustering of docked compounds [3]. Ligands and decoys are arranged in the hierarchal tree with respect to 
the similarity of binding modes. The problem of the correct pose selection is solved by the statistical analysis 
of the contact information over all poses for the ligand. The results of the clustering may be presented as a 
tree  where  leaves  contain  compounds  with  the  similar  binding  modes  (Fig.1).  Benchmark  tests  of 
AuPosSOM for the several  targets  have been performed. It  revealed that the approach is as efficient  as  
conventional energy-based scoring functions or gives better results.

AuPosSOM: Nouvelle Approche pour l'Identification de Composés Actifs 
dans un Ensemble de Molécules Dockées

Résumé  Les techniques de Docking sur des cibles thérapeutiques sont largement utilisées pour l'étude  
des  interactions  protéine-ligand  et  pour  le  criblage  virtuel.  Le  plus  gros  problème  concerne  la  
distinction des composés biologiquement actifs de ceux inactifs dans un large ensemble de molécules  
dockées. AuPosSOM est un nouveau programme pour évaluer les résultats de docking. L'approche est  
basée sur le regroupement (clustering) des molécules par leur similarité de contacts avec la cible.

Mots-clés  Docking,  fonction  de  score,  criblage  virtuel,  self  organizing  map.  contact,  activité,  
clustering.
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2 Materials and Methods

In order to evaluate the efficiency of the AuPosSOM approach, docking tests were performed for the 
datasets from the DUD (Database of the Useful Decoys) [4]. 9 targets were selected for the evaluation of the 
AuPosSOM clustering efficiency (CDK2, COX1, DHFR, HIV protease, HIV RT, HSP90, PR, thrombin and 
trypsin). 

Figure 1. Example of the automatic clustering performed with AuPosSOM of ligands and decoys of DHFR (DUD 
database [4]) by the similarity of contacts with the target. 90.5% of active compounds were identified in the data set, 

which contains 201 active and 3318 inactive compounds.

Docking was performed by Surflex-Dock 2.0 from Sybyl 8.1.1 [5] package using mol2 files of targets  
and ligands. Protomol was generated with default parameters (threshold of 0.50 and bloat equal to 0). Each 
docking experiment was performed 20 times yielding 20 docked poses. Ligand energy minimization prior to 
docking  and  all-atom  in-pocket  minimization  after  docking  was  accomplished.  Virtual  screening  with 
docking was performed on one Linux PC (quadricore Intel 2.66 GHz, 2 GB RAM).

The results of the docking were evaluated with AuPosSOM. From docking results mean vectors contacts 
involved in protein/molecule interactions  were computed. Incremental subensemble are then used to train 
random SOM. Clustering was repeated 10 times to obtain representative results. For each trained SOM, all  
vectors were calibrated on it and then clustered according to the SOM. Each clustering can be visualized as a 
tree. 

Four CScore scoring functions were utilized to compare AuPosSOM results with conventional scoring 
function approach: Chem score, PMF, G-score and D-score.  The quality of the docking results evaluation 
was estimated by ROC curves (Receiver Operating Characteristic curves).

3 Results and Discussions

We applied AuPosSOM for the evaluation of nine datasets of the challenging database. Obtained results 
revealed that  AuPosSOM clustering  depends on the given data set  and docking quality.  For 6 out of  9 
datasets clustering method gave better ROC curves than the best scoring functions; for the rest 3 datasets  
efficiency was approximately the same. 

The important difference of the AuPosSOM approach from the scoring one is that it takes information for 
the contacts of all poses of the docked compound simultaneously. This allows to average imperfections of 
the docking and avoid errors related to the best pose search.  The weak point of this approach might be 
inability to evaluate the results correctly when the number of the poses with correct set of contacts is low. In  
this case scoring function based approach might be possible to extract the right pose by energy estimation.  
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Meanwhile, in accordance with our results, scoring functions used in the tests were not better for difficult  
targets. The another important idea is that contact based approach does not take the conformation of the pose 
into consideration. It greatly simplifies analysis as the main requirement for the successful clustering is only 
the presence of the unique set of contacts for the active compounds but not the correct overall conformation  
of the pose. The last one is often hard to obtain especially for the ligands that were not extracted from the  
receptor's crystal structure used for docking.

Our results evidently demonstrate that AuPosSOM contact analysis may be more efficient than classical 
scoring function approach. Moreover, the clustering of compounds according to their contacts with the target 
will give information to identify key contacts which are specific and relevant for active compounds. This  
new approach provides an opportunity for the contact-activity relationship (CAR) analysis for the set of 
docked molecules.
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Profile Hidden Markov Models are popular tools to model a family of aligned sequences. They have a
canonical linear structure, Plan7, e.g. used in HMMER [1] (Fig. 1). These models emit residues onMatch and
Insert states, whileDelete states allow to skip consensus residues ; all emissions and transitions are proba-
bilistic. The score of a sequence through the profile HMM is the product of all the emission and transition
probabilities it triggers along its best-scoring (Viterbi) path in the model. Homologous sequences are expected
to yield high scores, but the standard HMM-based approach often fails to detect remote homologs. Following
Mitchison & Durbin [2] and Qian & Goldstein [3], we propose to build a series of HMMs from a single mul-
tiple alignment, provided that we know the underlying phylogeny. We build one HMM on each of the nodes
of the phylogenetic tree, with all the parameters of the resulting HMMs being the products of an ancestral
reconstruction. As far as we know, our approach is novel regarding steps 1, 4 and 5 described in the following.

1 Method

Throughout this section, we will describe the process of building the HMM for some noden of a phylogeny
T . Obs is the observed data on the leaves ofT .

3 4 5

1
EB

D1 D2 D3 D4

M1 M2 M3 M4

I3 I4I2I12

Figure 1. The traditional Plan7 structure of a profile HMM. Building anHMM for each node of the phylogeny breaks up
in 5 steps, described below. Step 1 refers to the number ofMatch states and their mapping to columns of the alignment.

Step 1 shown inFig. 1 consists inselecting some columns of the alignment to model them afterwardsas
Match states. Such a step is usually done with a heuristic (e.g. select thecolumn iff it displays a fraction of gaps
≤ 50%). Here we proceed as follows: (1) transform the alignment ofamino acids into an alignment on a binary
alphabet, replacing any letter with ‘N’ and any gap with ‘G’ ;(2) learn a General Time-Reversible process on
the resulting alignment ; (3) reconstruct the ancestral distribution on noden, and decide that a column is a
Match iff the ancestral probability for ‘N’ is above a threshold (0.5 here, a value subject to optimisation).

Step 2 consists in determining the probability distributions forresidues emitted by Match states, from the
contentsObs of the relevant column (see [3] for a similar approach). We calculate the ancestral likelihood for
each a.a.α on noden to use it as an emission probability: Pr(α, n) ∝ Pr(α)Lk(n = α,T , Q|Obs). In this
study, we use the LG model forQ.

Step 3 has also been treated by [3]. It concerns the setup ofphylogenetic-based transitions leavingMatch
(M ) or Delete(D) states. Through the alignment of transitions followed by the training sequences in the HMM,
we build a phylogeny upon characters representing these transitions (e.g.M → D stands for a transition from
a Match to a Deletion). It yields, e.g. forMatch states: Pr(X,n) ∝ Pr(X)Lk(n = X,T , QM |Obs), where
X ∈ {M →M,M →D,M →I}. These probabilities are then used to weigh the corresponding transitions.
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Step 4 is a second feature we introduce: while previous authors discarded the phylogenetic information
contained in inserted regions, we choose to build aphylogeny on the insert lengths observed in sequences
passing through any givenInsertstate. Such a phylogeny on characters drawn fromN+ is analysed through an
ad-hoc Birth-and-Death Markovian evolution model. With such a model, an ancestral distribution is calculated
on noden. Identifying its first moment with the one of the geometric law yielded by theI state in the Plan7
architecture (Fig. 1, step 4), we deduce the appropriate value for the looping probability on the considered state.

Step 5 brings phylogeny-based emissions from Insert states. While the contents of insert columns are
commonly disregarded to be replaced by a standard, hydrophilic-biased distribution, we take them into account
by considering phylogenies where leaves do not carry a single residue, but a collection of them: if a certain
sequence insertsAALV between twoMatch states, we consider the corresponding leaf in the phylogenytying
up insert contents to bear acomposite character made out of12 A, 1

4 L and 1
4 V. This requires only a tweak in

Felsenstein’s pruning algorithm to calculate likelihoodsand then deduce emission probabilities.

2 Data and Results
The score of a sequence against the(2N − 2) HMMs obtained from a phylogeny onN taxa is simply the

best of its(2N − 2) scores. We test our approach on the same benchmark as employed by [3]: on each of
39 ASTRAL/SCOP superfamilies [4], we train the models on the sequences from all but one of the families
belonging to the superfamily and test them on the entire database. Sequences from the left-out family form the
set of true positives (214 in total over the 39 cases). The 4383 sequences in the database share≤ 40% sequence
identity, which makes it a difficult issue. Results are shownin the form of a ROC curve inFig. 2. Illustrated
here on proteins, the same methodology should apply to DNA sequences with only minor and straightforward
changes.
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Figure 2. ROC curve showing the benefit of our models on 39 difficult cases of remote homology detection. The method
implementing all the tools described herein is displayed inred. The blue dashed line corresponds to the models in [3].
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1 Introduction

Hidden Markov Models (HMMs) are a powerful tool for protein domain detection. The Pfam database
notably provides a large library of HMMs for the annotation of sequenced organisms. When analyzing a new
protein sequence, each Pfam HMM is used to compute a score that measures the similarity between the se-
quence and the domain family. If this score is above a recommended threshold, provided by Pfam, then the
occurrence of the domain isasserted in the protein. However, when applied to highly divergent organisms, this
strategy can miss numerous domains. For example, no Pfam domain is detected in 50% of the proteins ofPlas-
modium falciparum (the main causal agent of human malaria) and only1 420 distinct families are identified
among the10 340 families defined in Pfam 23.0. In contrast, inSaccharomyces cerevisiae, 76% of all proteins
contain at least one Pfam domain and2 370 distinct Pfam families are involved. Although these observations
can be explained by the existence of domains that are unique to a parasitic life style, it is likely further exac-
erbated by the A+T richness of theP. falciparum genome (76% on average in coding regions). This induces a
compositional bias in the protein contents, as only 3 amino-acids (NIK) account for more than 35% ofP. fal-
ciparum residues. This in turn makes homology detection particularly difficult. Two previous studies address
the issue of HMM correction to enhance domain detection in a target species (hereafter denoteds). First, an
a posteriori correction of domain scores has been proposed [1]. This correction takes the prior probability of
each domain family ins into account. Prior probabilities are estimated using asserted domain occurrences in
the closest relative ofs (this species set, includings, is denotedR). A second approach builds taxon-specific
models that integrate already asserted domain occurrencesfrom R into the alignments used to learn the HMMs
(e.g. [2]). However, these two approaches only allow the discovery of new occurences for the domain families
already asserted inR.

2 Methods

We propose two new approaches to circumvent this limitationby correcting the whole HMM library. These
corrections involve learning general correction rules which are applied to the emission probabilities of the
match states of all HMMs (match states represent the expected probability of observing a given amino acid at
the corresponding position of the multiple sequence alignment defining the family). Our first approach requires
the estimation of a substitution rate matrix fors. This matrix is built by combining the amino-acid frequencies
observed ins, with the exchangeability coefficients of the LG matrix [3]. Using this substitution matrix, we
then simulate the evolutionary drift of match states from standard species towards amino-acid composition ofs.
Our second approach involves partitioning all the match states of the Pfam library into clusters having similar
amino-acid probability distributions,i.e. modeling common physico-chemical constraints. We apply aK-means
procedure using theχ2 distance to partition the match states into 100 clusters. Then, we use the asserted domain
occurrences inR to align these amino-acid sequences with the successive match states of the models using the
Viterbi algorithm. Each match state is thus associated witha set of specific amino-acids from sequences inR.
Since each match state of the Pfam library is assigned to a unique cluster, a probability distribution is computed
for each cluster from the amino-acids associated with all match states of the cluster. This distribution represents
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the expected amino-acid distribution inR (and by extension ins) for this cluster and the corresponding physico-
chemical constraints. Finally, the HMM library is corrected by combining, for each match state, the original
emission probabilities with the computed distribution of the corresponding cluster. To assess the accuracy of
the HMM libraries, we estimate the error rate of thenew domains discovered by each library under various
score thresholds. New domains are all predicted hits that are not asserted by the standard Pfam library. This
error rate is estimated with a resampling procedure that exploits the well known tendency of domains to appear
preferentially in proteins with a small set of favorite domains [4].

3 Results
We apply the four correction methods, takingP. falciparum ass and theAlveolata superphylum asR. Fig-

ure 1(a) shows the number of new domains according to the estimated error rates for each corrected library.
For comparison purpose, we also estimate the error rate of the standard Pfam library when loosening the rec-
ommended threshold. We observe that all correction procedures improve the results achieved by the original
Pfam library at equivalent error rates. The taxon-specific library, with 2 465 reconstructed HMMs, achieves
the best results (green curve). The correction by clusters of states (blue) benefits from the combination of do-
main knowledge inR with the clustering of similar physico-chemical constraints over the whole library. The
correction using the substitution matrix (yellow) may suffer from the employed standard substitution schema;
exchangeability matrices model “universal” evolutionarymechanics, whileP. falciparum is constrained by
more extreme evolutionary circumstances. Finally, the taxonomic correction [1] (black) slightly improves the
results of the original Pfam library (red). We illustrate byVenn diagrams (Fig.1(b)) the common and specific
new domains obtained by the different methods at 20% error rate. Each correction method discovers specific
domains not discovered by the others. Moreover, the corrected libraries include most of the domains found by
the standard Pfam library. To conclude, Figure1(c) shows the new domains previously thought to be absent in
alveolates and discovered by our two methods at 20% error rate. These new families, that cannot be identified
by former approaches [1,2], reveal several new GO annotations that was previously unknown inP. falciparum
and bring new insights into the biology of this complex organism.

(a) (b) (c)

Figure 1. Comparison of the HMM correction procedures. (a): Number of new domains (y-line) according to the
estimated error rate (x-line). (b): Number of common and specific new domains at 20% error rate. (c): Number of new
domains (20% error rate) previously thought to be absent in alveolates.
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1 Introduction 

L’apparition des eucaryotes photosynthétiques constitue un évènement majeur au cours de l’évolution, 
leur émergence ayant significativement modifié l’écologie de la planète. Il est largement reconnu qu’une 
unique endosymbiose entre un eucaryote hétérotrophe et une souche cyanobactérienne est à l’origine des 
plastes primaires. Toutefois, malgré un grand nombre d’analyses phylogénétiques mené depuis 25 ans, la 
lignée cyanobactérienne la plus proche de celle étant à l’origine des plastes primaires reste mal caractérisée. 
Toutefois, ces analyses s’appuient soit sur un large échantillonnage taxonomique mais peu de marqueurs 
phylogénétiques (e.g. [1]), soit sur un grand nombre de marqueurs mais peu de taxons (e.g. [2]). Cette 
question demeure encore ouverte car plusieurs singularités évolutives provoquent de nombreux biais durant 
l’analyse phylogénétique (i.e. transferts horizontaux de gènes entre cyanobactéries, forte hétérogénéité de 
composition entre génomes cyanobactériens et plastidiques, transferts de gènes entre plastes et le noyau de 
leurs hôtes, radiation évolutive importante chez les eucaryotes après l’endosymbiose primaire). Afin de 
minimiser ces sources de biais, un nombre important de marqueurs phylogénétiques et de taxons doit être 
considéré, ainsi que des outils méthodologiques adaptés, pour mener une analyse solide. En s’appuyant sur 
différents jeux de données de grandes tailles, nous avons conduit différentes analyses phylogénomiques afin 
de déterminer avec précision l’origine des eucaryotes photosynthétiques au sein de l’arbre des cyanobactéries.  

2 Réalisations 

Afin de conduire une analyse phylogénomique sur un jeu de données de taille importante, un grand nombre 
de génomes a été collecté : 61 de cyanobactéries, 22 de plastes (i.e. 1 glaucophyte, 5 algues rouges, 11 algues 
vertes, 5 plantes vertes), 11 de noyaux eucaryotes (i.e. 1 algue rouge, 5 algues vertes, 5 plantes vertes), ainsi 
que de nombreuses séquences EST issues de glaucophytes et d’algues rouges. Nous avons sélectionné 250 
gènes cyanobactériens ayant au moins une séquence homologue au sein des eucaryotes considérés (i.e. plastes 
et/ou noyaux). Le développement d’une nouvelle méthode de recherche d’incongruence (basée sur des tests SH 
[3]) a ensuite permis d’identifier 191 marqueurs phylogénétiques orthologues. Quatre sous-ensembles de jeux 
de données ont été étudiés: restriction aux seules séquences de cyanobactéries (cyanobactéries ; 191 marqueurs 
phylogénétiques), séquences de cyanobactéries et leurs seuls homologues plastidiques (cyanobactéries+plastes ; 
127 marqueurs) et nucléaires (cyanobactéries+noyaux ; 134 marqueurs), ainsi que le jeu de données complet 
(cyanobactéries+plastes+noyaux ; 191 marqueurs). Pour chacun de ces 4 jeux de données, les séquences de 
chaque marqueur ont été alignées et les caractères au sein de ces alignements contenant un signal 
phylogénétique pertinent ont été sélectionnés par un nouveau logiciel, BMGE [4]. Ayant montré que ces 
différentes séquences d’acides aminés souffraient d’un fort biais de composition, les états de caractère de ces 4 
jeux de données ont été recodés : recodage en 4 classes d’états de caractère homogènes (‘4-bin recoding’ [5]), 
et recodage en codons dégénérés [4]. Grâce à l’utilisation de ces différentes méthodes, nous avons ainsi 
construit 4 jeux de données (i.e. cyanobactéries, 32193 caractères ; cyanobactéries+plastes, 18934 caractères ; 

Des Analyses Phylogénomiques à Grande Échelle Montr ent une Origine 
Ancienne des Plastes au Sein des Cyanobactéries 
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cyanobactéries+noyaux, 22019 caractères ; cyanobactéries+plastes+noyaux, 30149 caractères), chacun disponi-
ble dans 3 versions différentes (i.e. acides aminés originaux, recodages ‘4-bin’ et codons dégénérés). Les 
différents jeux de données ont été analysés phylogénétiquement en optimisant le critère du maximum de 
vraisemblance (ML). Dans le but d’obtenir les arbres phylogénétiques les plus fiables possibles, nous avons 
développé et utilisé un script informatique, nommé morePhyML, permettant d’améliorer les performances du 
logiciel PhyML [6] en implémentant la technique du ‘ratchet’ (i.e. bruitage des jeux de données afin d’échapper 
aux optima locaux au sein de l’espace de recherche de l’arbre ML [7]). En utilisant morePhyML sur les 
différentes versions de nos 4 jeux de données, nous avons donc inféré des arbres phylogénétiques robustes 
modélisant l’histoire évolutive des cyanobactéries et l’origine des plastes primaires. Les nouveaux résultats 
établis s’appuient sur le plus grand jeu de données cyanobactéries+plastes+noyaux jamais construit (i.e. 83 
taxa, 191 marqueurs, >30000 caractères). De plus, afin d’utiliser la plus grande quantité possible de signal 
phylogénétique, nous n’avons pas restreint nos analyses à un sous-ensemble de séquences eucaryotes d’origines 
cyanobactériennes, contrairement aux approches récentes basées uniquement soit sur les séquences provenant 
des plastes [2], soit sur celles transférées dans le noyau (e.g. [8]). Afin de renforcer nos résultats, nous avons 
utilisé une approche originale consistant à construire la séquence ancestrale aux eucaryotes photosynthétiques 
pour chaque gène de notre jeu de données en utilisant des modèles d’évolution différents selon que les 
séquences sont issues de plastes ou de noyaux. Le taxon artificiel correspondant à ces séquences ancestrales a 
été ensuite inséré sur toutes les branches de l’arbre des cyanobactéries, et la probabilité de chacun de ces 
scénarios évolutifs a été estimée à l’aide de tests AU [9] à partir des différents encodages de séquences. Cette 
approche, minimisant les biais de composition et les artefacts d’attraction de longues branches, confirme le 
point d’émergence des plastes primaires estimé dans nos différentes analyses phylogénomiques. 

3 Conclusion 

Les différents arbres que nous avons inférés (i.e. cyanobactéries, cyanobactéries+plastes, 
cyanobactéries+noyaux, cyanobactéries+plastes+noyaux, chacun sous 3 encodages différents) sont très 
similaires entre eux et montrent donc une information phylogénétique solide. Il ressort de nos analyses que 
l’apparition des plastes est un événement ancien dans l’histoire évolutive des cyanobactéries, juste avant la 
diversification de la plupart des souches séquencées à ce jour. Ce résultat s’oppose à de récentes hypothèses 
[10] énonçant que les plastes primaires sont issus plus tardivement de l’endosymbiose d’une souche 
cyanobactérienne classifiée dans la sous-section IV (i.e. forme filamenteuse hétérocystée [11]). Finalement, 
nos analyses suggèrent qu’un séquençage futur doit cibler les lignées cyanobactériennes basales si l’on 
souhaite déterminer avec précision celle qui a été impliquée dans l’évènement d’endosymbiose primaire.  
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Abstract Studies on ageing have proposed several genes playing a role in prevention of cell de-
generation. Assuming that these genes are subject to a more stringent selective pressure in long-
lived species, our laboratory use Bayesian modeling to infer their involvement in senescence. We
expose here an evolutionary approach for a genome-wide study linking genes and longevity in
mammalian species. We describe a Bayesian phylogenetic model, where we investigate correla-
tions between genes and senescence. Based on the sequences and the phylogeny of on the 36 fully
sequenced mammalian species.

Keywords molecular evolution, phylogeny, bayesian sampling, mammals, ageing.

1 Introduction

Studies on the biology of senescence suggest that it is due to the accumulation of biochemical damage in
DNA, proteins and lipids. Many genes and pathways have been proposed to play a role in prevention of cell
degeneration and premature ageing such as anti-oxidant pathway, DNA reparation or protein recycling system.

Some evolutionary theories of ageing as mutation accumulation theory [1] and disposable soma theory [2],
assume a correlation between selection pressure and longevity. In a population where environmental pressure
down regulates life expectancy, deleterious mutations occurs more frequently in late-acting genes. On the
contrary, the gene will be under a high strength of stabilizing selection when ageing is only the consequence
of somatic damage. According to that, we are assuming in this study that the correlation between gene specific
selection pressure and longevity depend whether or not this gene is late acting.

The estimate of this correlation should be made in a phylogenetic framework, in order to dissociate the
dependencies due to evolutionary inertia. Using a codon substitution model, we are able to estimate the vari-
ations of gene specific selective pressure using ω [3] the ratio of non-synonymous (dN ) to synonymous (dS)
substitution rates over time (ω = dN/dS). Lower values of ω indicate a stronger selective pressure. Therefore,
when ω is negatively correlated with longevity (i.e. this gene has been under more intense purifying selection
in long-living species) the gene is likely involved in the regulation of ageing.

Numerous observations show a negative correlation between population size and longevity. It can be ex-
plained by the neutral theory of evolution [4], which state that the fixation rate of synonymous mutations
strongly vary over time, depending on population size. Therefore, we expect a positive correlation between
the genome wide longevity and ω. Because effective population size is hard esitmate, we decide to build a
single model, computing simultaneously all the correlations (αi) and then an estimate of ᾱ the correlations of
the coding sequences with longevity. Another problem, is that estimations of longevity in different species are
neither accurate or very discussed, consequently we introduce different life traits such as female maturity, mass,
and metabolism. Our model will estimate their history and the correlation between each pair of traits in order
to have a more precise longevity history.

2 Implementation and results

The model is implemented in C++, in the Bayesian Monte Carlo framework from coevol software [5]. We
use Metropolis Hastings algorithm to sample all the parameters from their posterior distribution. The method
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allows then to have a good estimate of the posterior probability of each value according to the data and the
model. Because of the great amount of data needed for a genome wide study in a single model, parallelisation
was added to the framework using a message passing interface. The connected graph structure of the model
made this parallelisation very challenging, but we were able to take advantage of the hierarchical form of our
model. We model all the history of continuous data as a Brownian process. All histories of the life traits and the
genomewide selection pressure have been linked in a covariance matrix. Branch lengths were also estimated
using fossil calibrations. We marginalize the covariance between ω and longevity and compute its gene specific
posterior probability to be greater than the genome wide coupling.

We apply the model to 36 species fully sequenced with multiple alignments from the Orthomam database
[6] and life traits data from AnAge database [7]. Preliminary results showed a good power of the model. This
model can also be used to address further question about interdependence between molecular evolution and
phenotypic continuous values or environmental factors such as temperature or atmospheric oxygen level.
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1 Introduction 
Peptides and their corresponding G protein-coupled receptor (GPCR) genes are essential for the 

physiology and behavior of animals. We have screened the publicly available genomes to ask whether 
invertebrate genomes possess vertebrate-type peptide genes and their associated GPCR genes.  In our 
molecular evolution context we define a peptidergic system (PS) to be the association of a group of related 
peptides with a group of cognate receptors. A vertebrate PS was hypothesized to be present in a given non-
vertebrate genome when either a peptide precursor gene or a GPCR was found that belonged to that class of 
peptide or receptor.  

The main purpose of this study was to clarify the evolutionary link between deutorostomian and 
protostomian peptidergic systems in bilaterians. Recent studies indicate that several vertebrate peptidergic 
systems are present in invertebrates including the CCK/sulfakinin [1] and GNRH/adopokinetic hormone [2] 
signaling systems in C. elegans. However comprehensive characterization of both peptide and GPCR 
repertoires have been restricted to single genomes like C. elegans [3]. 

2 Results 

2.1 Analysis of GPCR Phylogenetic Trees 
To study the origin of peptide GPCRs of subtype Rhodopsin, according to the GRAFS classification [4] 

we adopted a standard phylogenomics pipeline. Briefly it consisted in the following:  

1- All annotated human GPCR protein sequences were downloaded from the Swissprot database.  

2- Protein sequences derived from complete sets of gene models were retrieved from public databases 
from the Joint Genome Institute, Ensembl project and the Baylor Genome Center. The organisms 
that were surveyed are the following: two vertebrates, Homo sapiens and Takifugu rubripes,  two 
non-vertebrate chordates Branchiostoma floridae and Ciona intestinalis, two non chordate 
deuterostomes, the urchin Strongylocentrotus purpuratus and Saccoglossus kowalevskii, two 
lophotrochozoans, Capitella telata and Lottia gigantea, one nematode Caenorhabditis elegans and 
three arthropods Daphnia pulex, Tribolium castaneum and Drosophila melanogaster.  

3- Reciprocal BLAST analysis of human genome vs. genome in consideration was performed to cluster 
large groups of related sequences. 

4- These groups of sequences were aligned to derive phylogenetic trees using PhyML [5], a maximum 
likelihood-based method for gene tree reconstruction. 

5- Presence of ancestral systems and phylum/species-specific history (large-scale duplications, losses) 
were inferred from the analysis of the trees. 

We found several robust subtrees that have a topology congruent with the species tree. The structure of 
these subtrees strongly suggests that these receptors occurred before the split of deuterostomes and 
protostomes.  
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2.2 Analysis of Homologous Peptide Precursors 
Conservation between homologous peptide precursor sequences from different phyla (e.g. nematode vs. 

arthropds) is usually restricted to very few amino acids in the peptide region, that are buried inside larger 
precursors. As a result, standard phylogenomics approaches are not applicable in this case. First we 
established a list of potential peptide precursors using a modified version of the hidden Markov model 
(HMM)-based program described in [6]. These candidates were then screened for the presence of short 
conserved motifs often found at the C-terminal end of peptides (e.g. RF-amides). Often the general structure 
of homologous peptide precursor genes was found to be conserved, including the position of the peptide and 
the overall length of precursor. In most cases the conclusion of our “ligand” and of our “receptor” analysis 
were consistent (e.g. absence of both vasopressin/oxytocin peptides and receptors in flies), indicating that our 
bioinformatics method is relevant for studying the history of this complex gene family.  

2.3 Conclusion 
 Our results lend further support to the theory that urbilateria was an animal with a sophisticated 
physiology and nervous system, capable of integrating complex sensory information. It strengthens the case 
for using alternative models such as lophotrochozoans (e.g. capitella) to study how sensory information is 
integrated in animals.  

 Functional studies to test for the binding of putative peptides to their predicted receptors, as well as 
expression studies of those genes and protein products, are needed to further substantiate the homology 
hypotheses. 

 We believe that some of these newly established homologies will provide the evo-devo community with 
new markers for the study of ancestral cell types [7, 8], yield insights into the fundamental functions of 
vertebrate peptidergic systems and offer new molecular data for computational biologists interested in 
peptide-receptor coevolution studies.  
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A metapopulation can be defined as a population subdivided into several subpopulations. Individuals 
from the same subpopulation are more genetically related to each other than individuals from different 
subpopulations. We apply a statistical permutation test for subdivision to temporal data to assess the genetics 
differences between samples of the same population taken at different time points. A graphical 
implementation of the test is available online at http://wwwabi.snv.jussieu.fr/public/mpweb/. 

We compared all pairs of 18 samples (278 sequences of 991-nt) taken from a single patient shortly before 
and after the start of the anti-retroviral therapy (hereafter ART).  The sequences cover the whole protease 
region and the beginning of reverse-transcriptase. We found that the 10 samples before ART show an excess 
of differences to the 8 samples after ART; excess when compared to the differences we observe within the 
10 samples before ART or within the 8 samples after ART. Importantly, this pattern was also observed, to a 
lesser extent, on another patient we looked at. These results highly suggest that the therapy has changed 
(directly or indirectly) the global composition of the viral population. 

We then characterized the molecular basis of the differences. We found that reducing the 991nt to 2 
selected ones leaves unchanged the observed differences. These 2 sites have a different frequency in the 
samples before or after ART. Further investigations of the phylogeny of the viruses revealed that a whole 
clade of viruses was only present before ART, suggesting that a type of virus has disappeared after the start 
of ART. 

Out of the several interpretations that can be put forward, we favor two: (a) the ART has a different 
action on the different types of virus that inhabit the host or (b) the ART has an identical effect on all types 
of virus (i.e. it stops the viral replication) but the half-life of the infected cells differs from type to type. .  
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1 Introduction

Genome Wide Association studies have uncovered the implication of numerous single nucleotides polymor-
phisms (SNP) in the aetiology of common diseases. Nevertheless, only a small part of the expected heritabiliy
is explained by those variants. A large number of researches that have been lately investigating this missing
heritability have considered interactions between genes and/or environmental factors as a plausible and promis-
ing explanation. Considering all if not a large number (thousands) of variants altogether, as underlain by the
latter hypothesis, stresses the problem of the high dimensionality that most regression-based methods cannot
afford. To solve this problem one either reduces the number of variants to be analyzed (Variable selection,
LASSO or elastic net) or groups them according to a certain similarity (OSCAR [1] or PLS regression). We
introduce here a regression-based method that simultaneously clusterizes the variants sharing close effect size
while selecting the most informative clusters. Our approach differentiates from a method like group LASSO
since no penalization is used and the clusters are not predefined. This method assumes a high level of sparsity
and uses the EM algorithm (see [2]) to conduct maximum likelhood estimation (MLE) in the presence of unob-
served grouping variables. Our approach offers a wider flexibility than preexistent methods since it can account
for supplementary genetic information such as variants position and linkage desequilibrium. The results are
presented in the context of linear regression models.

2 Block Regression Methodology

Notations Consider the usual linear regression model with observed data on n observations and p predictors.
Let y = (y1 . . . yn)

′ to be a vector of responses (say a quantitative phenotypic trait), xj = (x1j . . . xnj)
′

denote the jth predictor (say a SNP), j = 1, . . . , p and εi a vector of independant error terms, each following
a centered normal distribution of variance σ2. The number of predictors being very large with respect to the
number of observations, we cannot uniquely estimate the effect size of each predictor: βj . We therefore assume
the existence of g groups (G1 . . . Gg) of predictors such as all predictors in the group k (k = 1, . . . g) have
exactly the same effect size: bk. We thus define zjk as a random variable that indicates whether the predictor
xj belongs to the group Gk. Z is defined as the set of all the zjk and X is the set of all the predictors.

Model for variables clustering The regression model given by the following equation

yi = β0 +

p∑

j=1

xij

(
g∑

k=1

bkzjk

)
+ εi = β0 +

g∑

k=1

bk




p∑

j=1

zjkxij


+ εi. (1)

defines entirely the law p(y|Z,X). The law p(Z|X) is chosen so as to integrate genetic information that could
help infering the grouping structure. This very critical choice is expected to improve the performance of the
model both in terms of prediction and biological relevance.
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Maximum Likelihood Estimation As Z is totally unobserved, the calculation of the likelihood becomes in-
tractable. MLE can therefore be obtained using the EM algorithm. The complete log-likelihood p(y,Z|X) is
expressed as following:

log p(y,Z|X) = −n
2
log(2πσ2)− 1

2σ2

n∑

i=1

(yi − β0)
2 +

1

2σ2

∑

i,j,k

(
2bkxij(yi − β0)− (bkxij)

2
)
zjk

− 1

2σ2

n∑

i=1

∑

j,k

∑

j 6=j′,k 6=k′
2bkbk′

(
xijxij′

)
zjkzj′k′ + log p(Z|X).

The E-step requires the calculation of the following quantities p(zjk|X,y), p(zjkzj′k′ |X,y) and EZ|X,y[log p(Z|X)],
that are analytically intractable.

Three strategies are then proposed to sidestep this limitation.

– We first suggest to maximize the complete likelihood alternatively with respect to Z and b. This strategy
also referred to as Classication EM (CEM) was already explored by Govaert and Nadif (see [3]).

– The second strategy suggests to approximate numerically the E-step using Markov Chain Monte Carlo
algorithms such as the Gibbs sampling. The performances of this strategy known as Monte Carlo EM
(MCEM) were extensively explored by Levine and Casella (see [4]).

– The third approach consists in the use of a variational approach (see [5]) which no longer maximizes the
likelihood, but a lower bound well chosen so that to be as tight as possible.

Model for variables selection The selection purpose is a achieved by imposing a special class to have an exactly
null coefficent. For instance, such constraint on G1 translates as b1 = 0. The equations underlying the three
approaches presented above can still be easily derived under this constraint.

2.1 Numerical Experiments

The three strategies presented above will be compared in terms of quality of estimation and prediction. An
application to GWA data will subsequently be achieved as well as a comparison to classical approaches. The
influence of different choice of the law p(Z|X), including models published in the literature (for instance [6]),
will also be explored.
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1 Introduction 

Acquired Immunodeficiency Syndrome (AIDS), the disease caused by the progression of HIV (Human 

Immunodeficiency Virus), is one of the most challenging current diseases and does not have any definite 

cure or vaccine yet. The extensive rate of HIV mutation and adaptation makes the design of vaccine difficult, 

as it enables the virus to escape from the immune system (escape mutation) [1]. This HIV adaptation is due 

to its genetic diversity which is the result of its fast replication cycle and large population size, and its high 

mutation rate of 3x10
-5

 per nucleotide per cycle of replication [2]. Frequent recombination and the natural 

selection driven by immune system even intensify this diversity by creating an additional mechanism for 

virions to share beneficial mutations between individuals in a population.  

So the first step for designing efficient vaccine is to identify consistent patterns in viral adaptation, as a 

function of the specific genetic background of the host. It has been shown that polymorphisms in HIV-I are 

associated with particular host HLA (Human Leukocyte Antigen) alleles [3, 4]. For example, HLA-B57 and 

B27 are associated with long-term HIV control and are likely to exert strong selection pressure on the virus. 

This association confirms the effect of HLA-restricted CTL (Cytotoxic T-Lymphocyte) response on HIV 

evolution. 

2 Differential Mutation-Selection Model 

Modeling the interplay between mutation and selection at the molecular level is one of the major goals in 

molecular evolutionary studies. Estimation of evolutionary patterns from homologous sequences is crucial 

for understanding the evolutionary processes like mutation rate and selection pressures. In recent years, 

codon-based evolutionary modeling efforts have increasingly been used to devise more realistic discription 

of the substitution process in protein coding genes [5-7]. 

In this study, a differential mutation-selection model is developed for HIV genes which parameterizes 

mutational and selective effects bearing on the overall substitution process. It is implemented in a 

phylogenetic Bayesian MCMC (Markov Chain Mont Carlo) object-oriented framework which allows us to 

tease out each parameter of the model from their joint posterior distribution and estimate differential 

selection profiles; one distinct selection profile is estimated for each host genetic background and specifies 

which amino acids are selected for or selected against at each position of the viral coding sequences. The 

different conditions are defined as B-57 positive and B-57 negative hosts which show different progression 

of the dissease. 

 This model is used to analyze the data of 445 gag sequences from 124 patients with identified genetic 

immune profile and HLA type. The phylogenetic tree of the sequences is shown in figure 1. The differential 

selection pressure is estimated between sequences in B-57 
+
 and B-57 

-
 hosts. It is also possible to estimate 

the mutation rate and codon usage bias of HIV and compare it with that of human in which the virus 

replicates. 
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By associating specific viral adaptation with specific host genetic background, it is possible to understand 

how HIV escapes from immune system, which in turn provides useful guideline to design an efficient 

vaccine against AIDS. 

 
Figure 1. Phylogenetic tree of 445 HIV gag sequences. 
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1 Introduction 
AP-1 proteins are transcription factors that belong to the basic leucine zipper family [1]. In yeasts, the 

AP-1 transcription factors Yap1p (in Saccharomyces cerevisiae), Cgap1p (in Candida glabrata) and Cap1p 
(in Candida albicans) play a central role in oxidative stress response and multidrug resistance [2,3,4] (Figure 
1A). They are able to recognize DNA motifs (referred as YRE for Yap response element) that are 
palindromic or pseudo-palindromic sequences starting with a TTA or a TGA triplet with one or two central 
(C/G) base pairs [4,5,6]. To better understand the mechanisms that underlines the DNA binding specificity of 
yeast AP-1 transcription factors, we (i) combined transcriptomic and ChIP-chip data to infer species-specific 
transcriptional modules for Yap1p, Cgap1p and Cap1p (i.e. set of target genes) responding to the antifungal 
agent benomyl (Figure 1B), and (ii) performed a cross-species comparison of these modules, accurately 
inspected cis-regulatory motifs in promoter sequences of genes (Figure 1C). 

2 Results 
In each yeast species, cis-regulatory motif analyses revealed the presence of a conserved adenine in 5’ 

position of the canonical YRE sites. Also, an impressive conservation was observed in the YRE consensus 
sequence (5’-MTKASTMA) over-represented in Yap1p (S. cerevisiae) and Cap1p (C. albicans) dependent 
genes. In Cgap1p (C. glabrata) dependant genes, two different YRE consensuses (5’-ATTACHAAW and 5’-
MTTASSTAA) were identified and strongly suggested that Cgap1p, unlike Yap1p and Cap1p, tolerates YRE 
motifs with one or two central (C/G) base pairs. These findings were supported by structural data that show 
the interaction between the Schizosaccharomyces pombe Yap1p orthologue (Pap1p) and a DNA target 
sequence (Figure 1D).  

3 Conclusions 
We inferred condition-specific transcriptional modules associated to orthologous AP-1 proteins in three 

different yeast species, using an integrative framework that combined multiple sources of experimental data 
and multiple bioinformatics approaches. Exploitation of these modules in terms of predictions of the 
protein/DNA regulatory interactions considerably changed our vision of yeast AP-1 transcription factor 
evolution, and illustrated the complexity of the evolutionary pathways that lead to the modern transcriptional 
regulatory network architectures.  
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Figure 1. Global strategy to analyze the evolution of yeast AP-1 proteins.  
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1 Introduction

The advent of next generation sequencing approaches and the drop in the cost of sequencing have led to  
a sudden increase of the number of completely sequenced genomes and unfinished genomes. Consequently  
our ability to annotate genomes - identifies protein-encoding, rRNA and tRNA genes, assigns functions to  
the genes - and methods for data mining need to be adapted to this new volume of data. For this reason, we  
propose an automatic workflow MGCA “Multi-Genome Cluster Analysor”, to integrate in a same resource, 
methods for functional annotation and genomic comparison, to help the researchers in the exploration of  
genomic information.

2 Implementation

MGCA is a package composed of a workflow of four pipelines coded in Perl, a MySQL database where 
all the results are stored and a user-friendly web interface designed with PHP to query and select data of  
interest.

3 Program Description and Potentialities

MGCA permits to compare data from one to about 20 genomes of medical or ecological interest.  The 
workflow was designed to be flexible enough to take in input  ENA-EMBL, Genbank or Tab-delimited  
genome files. In the case of draft genomes still in contigs, we used previously the RAST server, an automatic  
gene calls and annotation service which predicts RNA and CDS and provides DNA and protein sequences  
[3]. 

MGCA makes easier comparisons of gene repertoire and brings new insights on functional evolution of  
related genomes. A multi-genome clustering process using Inparanoid [6] and MultiParanoid [1] is done to 
obtain homologs (orthologs and in-paralogs) from a subset of genomes selected by the users. High-quality 
annotation and updated annotation, essential for understanding a genome, is obtained by using RPS-Blast [2] 
against the CDD database [5].  To make our system user-friendly, we developed a Web-based graphical  
interface  to  retrieve large amount  of  data  by requests  based on annotation  and/or  taxonomy criteria  or  
through a list of gene names. The user can browse through out a refined list of clusters of homologs, retrieve  
all the corresponding annotations and export the corresponding DNA and protein sequences. 

With MGCA, it  is now feasible to analyze genomic data through a phylogenomic approach.  MGCA 
gives the opportunity to compare closely related strains or species within a phylum as well as with bacteria  
from closely related phyla. The classification of CDSs as core genes, dispensable genes (present in some but  
not all compared genomes) and orphan genes (genes specific of one genome) can be obtained. Furthermore, 
MGCA allows to carry out in- depth phylogenetic analysis like detection of horizontal gene transfers (by tree 
topology tests) or measure of selection pressure within selected clusters. 
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MGCA gives the opportunity to compare bacteria from different phyla sharing a same lifestyle and/or 
different  features.  MGCA helps to predict  genes conferring important  phenotypes,  which are  present  or 
absent depending on strains and to retrieve a short list of proteins for laboratory experiments. 

4 Biological Application

To demonstrate a specific application case, we analyzed ten genomes of Chlamydiaceae including human 
pathogens, C. trachomatis & C. pneumoniae, through a comparison of genomes available in the superphylum 
PVC (Planctomycetes – Verrucomicrobia – Chlamydiae). The aim of the comparisons between Chlamydiae,  
obligated intracellular bacteria, infecting animals, humans, as well as Protozoa (amoebae) and closely related 
free-living environmental bacteria is to identify some proteins involved in intracellular survival mechanisms. 
We focused on protein involved in the Type III Secretion System, apparatus and pathways, for which we  
benefit from laboratory experiments [4], to test the efficiency of our workflow. 

5 Conclusion

At end, MGCA would make easier the identification of genes involved in pathogen adaptation and in  
many other processes of biological interest and will be available for distribution on micro computers (Unix  
and Mac OS X). 
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1 Introduction

Vibrionaceae  constitute  a  family  of  Gram-negative  bacteria  which  belong  to  the  -group  of  
proteobacteria and are ubiquitous in marine environments (for a review see [1]). They are coma shaped and  
are highly motile thanks to a polar flagellum appendage. They have two circular chromosomes and present a  
high genomic plasticity, especially at the level of chromosome 2, whereas chromosome 1 carries most of the  
genes involved in house keeping functions [2]. This high plasticity is reflected in the fact that frequently 
there is no good correlation between virulence, host specificity and taxonomy suggesting an evolution of  
virulence traits  mostly through horizontal  gene transfer  [3].  Comparative genome analyses  underscore a 
variety of genomic events such as chromosomal rearrangements, loss of genes by decay and/or deletion and 
gene acquisition through horizontal  transfer as a source of plasticity [4,5].  Such phenomena have likely 
played an important role in the acquisition of virulence traits and pathogen emergence.

Vibrionaceae show a wide range of niche specialization, from estuarine to deep-sea habitats, from free-
living forms to those attached to biotic and abiotic surfaces, and from symbiotic to pathogenic interactions 
[4]. It encompasses the ancient and well-studied human pathogen V. cholera. Perhaps less widely recognized 
are the consequences of vibrio infections in non-human species [6]. Vibrios have indeed been found to be  
pathogens  of  fish,  coral,  shellfish  and  shrimps  and  infections  by  these  organisms  have  profound 
environmental  and  economic  consequences.  For  instance  V.  splendidus  has  been  associated  with  the 
abnormal mortality events that have plagued oysters in France over the last three years [7]. 

As virulence evolves by natural selection in order to increase the pathogen fitness [3], the emergence of 
virulence traits should result from genomic plasticity and adaptation to environmental constraints. Therefore  
evolutionary analysis of the vibrios may highlight adaptive gene reservoirs and identified new virulence  
mechanisms.  Briefly  this  means  finding  correlations  between  the  evolution  of  gene  families  and  the 
evolution of the lifestyles and ecological niches of the different species/strains; and between niche/virulence 
and LGT. The data resources of such analysis are the subset of genes that is found on all the genomes (core  
genome), the set of genes that is found on more than one but not all  genomes (accessory or distributed 
genome), and strain specific genes [8]. The existence of 17 complete genome sequences for closely related  
species from varied aquatic niches makes this group an excellent case study for genome comparison and 
research concerning the evolution-adaptation of  these bacteria  with emphasis  on virulence.  To date  few 
studies on the Vibrio core and accessory genome have been published and they are based mainly on V. 
cholerae intra-specific genome comparison [5,9,10].

Finally sequences are of limited interest if there are no subsequent functional studies. In the last few  
years, new genetic strategies were developed to express or knock out genes in numerous vibrio species  
[13,14] and led us to demonstrate the role of specific genetic element such as plasmids, or genes such as 
metalloprotease genes in Vibrio virulence.
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2 The Project

Our research groups aim at investigating the molecular mechanisms involved in the emergence of Vibrio 
pathogenic for marine invertebrates. This project is based on in silico approaches  (phylogeny, comparative 
genomic analyses) combined to in vivo (functional genomic) and in vivo studies (experimental challenges).

The  evolutionary analysis  of  the  gene  families  amongst  the  vibrio  will  allow an  estimation  of  the 
correlations between the evolution of gene families and the evolution of the lifestyles and ecological niches 
of the different species/strains. We are analyzing the evolution of functions known to be associated with 
pathogenicity  such  as  secreted  metalloproteases  and  secretion  systems  as  well  as  genes  and  regulator  
screened by the comparative genomic.

Be it a gene annotated as a putative virulence gene, a gene of unknown function present in a putative 
pathogenic island or expressed specifically in virulent stage, this element will be subjected to mutagenesis 
for  a  functional  demonstration  of  its  role.  As  an  example,  the  effect  of  metalloprotease (orthologs and 
paralogs) deletion on vibrio virulence will be presented.

The availability of multiple genome sequences, genetic tools and infection experimental systems allows 
us  to  propose  the  Vibrio  genus  as  an  especially  suitable  model  to  be  at  the  interface  of  in  silico  and 
experimental approaches.
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Genomics is the primary driver for unification in biological science, and now genome technologies are 
tools for hypothesis-driven research [1]. However, because of next-generation sequencing technologies and 
reduced costs, new genomes are being sequenced at a faster rate than they are being fully and correctly 
annotated [2]. Indeed, genome annotation is probably one of the most difficult tasks in genome sequencing 
projects [3]. However, structural and functional annotations are essential for connecting genome sequence to 
biology. To achieve a systematic and comprehensive annotation of the bread wheat (Triticum aestivum L.) 
genome (17 Gbp, 2n=6x=42, AABBDD), 45 time the rice genome, a pipeline called TriAnnot has been 
developed under the umbrella of the IWGSC (http://www.wheatgenome.org): 1. to provide the international 
scientific community with an online user-friendly interface; 2. To facilitate large scale analysis such as the 
ANR/FranceAgriMer 3BSEQ French flagship project which aims at annotating ~1 Gb of sequences from the 
wheat chromosome 3B which gene content is estimated to be around 8,000 [4]. At the end of the sequencing 
process 21,000 scaffold sequences should be delivered by the Génoscope. Therefore, a parallelized pipeline 
(V3.0) has been developed and installed on the INRA URGI cluster ‘Sauron’, Versailles. The pipeline has 
potentially access to 700 cores and 50 TB disk storage. The modular architecture of the TriAnnot pipeline 
allows the identification and annotation of repeats and Transposable Elements (TEs), protein-coding genes 
structural and functional annotation, RNA-coding genes and other biological features identifications. The 
pipeline is launched automatically using the FASTA files retrieved from the sequencing performed at 
Genoscope and after annotation, the output files are inserted automatically into a Chado database that is 
connected to an online GBrowse and Artemis graphical viewer to help further manual expertise. EMBL 
output files have been formatted to be used with GenomeView (http://genomeview.org/) as well. The 
manually expertise annotations will be automatically linked to the URGI Information System 
(http://urgi.versailles.inra.fr/gnpis/) that integrates into a single platform many biological data. Compared 
with three international pipelines (MIPS, RiceGAAS, Flowering Plant Gene Picker - FPGP), and based on 18 
Mb of manually annotated wheat BAC sequences (148 genes) [4], the sensitivity (Sn) and specificity (Sp) of 
the TriAnnot pipeline, are suitable, therefore making TriAnnot more adequate for wheat genome annotation. 
TriAnnot can be easily applied to annotation efforts in other plant genomes with minor modifications. Full 
description of the TriAnnot pipeline is available at http://www.clermont.inra.fr/triannot. 
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Abstract  While more and more genome sequencing projects have been initiated, scientists like  
and want to get rapid access to new informations about the sequenced organism. Most of the 
time, data from fresh genomes are first analysed to deliver the genome structure and thus to  
identify genes and their function(s). However, most of such websites don't provide informations  
about annotated genes literature. In order of filling this gap, a new web application has been  
developed : BiblioList. BiblioList helps scientists to enrich genes annotations with literature. To 
do so, first BiblioList uses an internal simple search engine that automatically links  
publications to each genes and reports it to researchers through its web interface. From this  
point, scientists can accurate gene identification with the associated publications. Once the  
literature for the gene annotation is complete, this bunch of publications can be directly  
exported to a remote organism annotation database with a simple click. 

Keywords  Annotation, Organisms, PubMed, Literature, Search engine, Web application.

1 Introduction
In the last ten years, strong efforts have been lead to develop genome automatic annotation tools as well 

as genome assembly. Indeed, with new fast sequencing methods, also known as “next generation 
sequencing”, we can see pop up lots of new softwares to rapidly assemble DNA fragments. In the mean time, 
projects to automatically discover, store and display those genome structure annotations have been 
developed. For example, we can site tools from the GMOD consortium ([1]), such as the “Chado” database 
and the “Gbrowse” genome browser. However, all these development efforts only refer to genome 
annotations. Nothing really cares about genes associated literature. Such a tool might enhance the gene 
definition while referring directly to biological published work or books as a real proof for the gene discover 
and function. This is the idea BiblioList has been designed for.

2 Background

2.1 Functionalities
BiblioList is a web application that allow scientists to curate genome annotation by increasing gene 

informations with literature. This literature comes from the PubMed library[2] and is incorporated into its 
database to be filtered later by hand. For easiness, only title and abstract are fetched from PubMed. 
BiblioList is able to automatically update the associated literature for a particular organism and alert the 
user(s) that some new publications are ready to be curated (added to a gene or not). To do so, BiblioList uses 
a simple internal search engine which is able to link a publication and a gene based on its name and/or its 
description. Then the user is ready to curate associated literature. Validations can be accompanied with 
comments in order to keep track why the user decided to keep or not this link.

Once a gene is curated enough, the publications can be exported to a remote annotation database in a 
simple click.

Like most of other web applications, BiblioList provides an administration interface to manage 
organisms, publications, users, groups and genes. Finally, it is easy to create news feed as well as send email 
infos to users registered to the site.
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2.2 Mapping and Export to Remote Databases
BiblioList is flexible and extensible enough that many remote annotation databases can be plugged with 

it. Indeed, nothing simpler than extending a Perl module and configure its database connection parameters 
and you're done.

2.3 Implementation
In an attempt to provide an intuitive and easy to understand tool, BiblioList has been designed as a web 

application, following the Model View Controller (MVC) architecture.

BiblioList is a pure Perl[3] MVC application. We used the Catalyst[4] framework to get a rapid and well 
structured running application. As a storage, we use the relational database management system (RDBMS) 
Sybase[5] in a first attempt and then switched later to PostGreSQL[6]. So SQL schemas are available for 
these two RDMS. The views are produced by the powerful Template Toolkit[7] and the the AJAX library 
jQuery[8].

2.4 Mechanism

Figure 1. BiblioList data flow.
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Abstract With the continuously increasing amounts of biological data, the need for automated, 
accurate and rapid classification is still challenging, especially when the number of classes is 

large. Here, we describe and compare the alignment-based approach (ABA) and the machine 

learning-based approach (MLBA). Then, we introduce a two-phase approach coupling hidden 

markov models (HMM) with standard classifiers and experimentally validate it. 

Keywords  Protein classification, large scale learning, HMM, sequence alignment. 

1 Alignment-based Classification 

ABA refers just to assign to the query sequence the class of its reference sequence having the best hit 

score. Blast [1] is the most widely used program in bioinformatics. Its popularity is mainly due to its 

algorithm which focuses on sensitivity while being considerably speeder then its previous tools such as 

Fasta. This makes it practical on large scale database analysis. Blat [1] is much faster than Blast with less 

sensitivity. Its rapidity is mainly due to its indexing technique which is memory greedy since it charges all 

data indexes in RAM. ABA is class number independent, which represents its main advantage. Indeed, 

varying the number of classes (while keeping the same number of instances) has no effect on the alignment 

result in terms of speed and scoring. However, this advantage reveals an undeniable drawback i.e., ABA 

depends on the similarity to a unique sequence which yield both poor generalization and discrimination. This 

would lead to classification errors when varying the affiliations of sequences. In fact, a protein may belong to 

several classes of different nature e.g., functional, taxonomic, structural, etc. 

2 Learning-based Classification 

MLBA benefits from the panoply of developed classifiers that have shown high efficiency as decision aid 

tools in several fields such as finance, trade, medicine, etc, due to their strong discrimination and 

generalization. In general, MLBA requires data in relational format i.e., attribute/value table. Thus, two 

elements must be provided: a set of reliable attributes to be used as descriptors, and a reliable function of 

description e.g., frequency, incidence, etc. MLBA faces many problems when dealing with biological data 

classification. On one side, protein sequences are represented by strings of characters, which does not respect 

the format required by MLBA. On another side, the number of classes has an important impact on any 

learning task. Indeed, the discrimination ability of any classifier decreases with increasing number of classes 

especially in the case of unbalanced data. This problem has not been deeply investigated [2] whereas many 

efforts have been devoted to address large scale learning in term of number of instances [2]. 

3 Proposed Approach 

3.1 Training 

For each class we create an HMM profile then we build a binary model using a discriminative classifier. 

This model is trained on a dataset comprising that class and the other classes’ consensuses, after being 
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encoded into relational format using a motif based approach [3]. This model discriminates between each 

class and the rest of the training set. A class consensus is a unique sequence which abstracts its class and is 

generated using the class HMM-profile. This allows us to bypass the unbalanced data and the many-class 

problems. Henceforth, each class is represented by a probabilistic model (its HMM-profile) and a 

discriminative model (its binary classifier model).  

3.2 Prediction 

Each query sequence is scanned against the HMM-profiles. Hence, some classes are suggested as potential 

targets sorted by their scores. The number of suggested classes is considerably below the total number of 

classes. At this level, we use the binary models corresponding to the suggested classes to confirm or refute 

the HMM results. The final sustained class is the one having the best score and confirmed by the binary 

model. The combination of the probabilistic and the discriminative aspects preserves an acceptable rapidity 

while enhancing the sensitivity of the prediction. Furthermore, the memory consumption in our approach is 

moderate compared to Blat since models are processed separately. 

4 Experimental Comparison 

To evaluate the above described methods, we utilized four protein datasets taken from the KEGG [4] 

(Table1). The datasets are characterized by a large number of sequences (from 12192 to 44572) and a large 

number of classes (from 25 to 100). Each class refers to an ortholog (functional) group [4] of less than 45% 

of identity. Experiments were conducted on a PC with a 3 Ghz duo core CPU / 3.25GB RAM. We used the 

hold-out technique to evaluate the classification approaches i.e., a third is reserved to test and the rest is used 

for training (for MLBA) or as reference base (for ABA). For our approach we use HMMER [5] as HMM 

tool, N-grams [3] as encoding method and SVM [3] as classifier. It is noteworthy that the functional groups 

in the KEGG base are built using many techniques including alignment. This explains the full accuracy 

reached by Blast. The experimental results between Blast and Blat confirm what we have mention in section 

1. Blast is much more accurate and Blat is much faster. Our approach represents a tradeoff between Blast and 

Blat i.e., tradeoff between accuracy and speed with the ability to deal with other kinds of classification rather 

than the functional one e.g., taxonomic, structural. 

Dataset Sequence# Classe# 
Accuracy (%) Time (mn) 

Blast Blat Our approach Blast Blat Our approach 

DS1 12192 25 100 79 88 94 4 3 

DS2 24301 50 100 90 92 187 6 8 

DS3 33814 75 100 87 90 267 9 13 

DS4 44572 100 100 87 90 392 15 18 

Table 1. Experimental results. 
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1 Introduction 

The detection of structural variants (SVs) in the human genome plays an important role in the 

understanding of many genetic diseases, including cancer. In cancer, tumor suppressor genes can be deleted 

or mutated, whereas oncogenes can be amplified or mutated with a gain of function. Translocations can 

result in cancer-causing fusion proteins (BCR/ABL fusion in CML, BCL1/IGH in multiple myeloma, 

EWS/FLI1 in Ewing sarcoma, etc.)  

With the arrival of new high-throughput sequencing technologies, our current power to detect SVs has 

significantly improved. Genomic breakpoints of large structural variants (i.e., translocations or large 

duplications and deletions) can be identified using two complementary approaches: calculation of copy 

number profiles (CNPs) and analysis of ‘discordant’ mate-paired/paired-ends mappings (PEMs). 

2 Results 

The investigation of CNPs allows identification of genomic regions of gain and loss. There exist two 

frequent obstacles in the analysis of cancer genomes: absence of an appropriate control sample for normal 

tissue and possible polyploidy. We therefore developed a bioinformatics tool, called FREEC [1], able to 

automatically detect copy number alterations (CNAs) without use of a control dataset. FREEC normalizes 

copy number profiles using read mappability and GC-content and then applies a LASSO-based segmentation 

procedure to the normalized profiles to predict CNAs. 

For PEM data, one can complement the information about CNAs (i.e., output of FREEC) with the 

predictions of structural variants (SVs) made by another tool that we developed, SVDetect [2]. SVDetect 

finds clusters of ‘discordant’ PEMs and uses all the characteristics of reads inside the clusters (orientation, 

order and clone insert size) to identify the SV type. SVDetect allows identification of a large spectrum of 

rearrangements including large insertions-deletions, duplications, inversions, insertions of genomic shards 

and balanced/unbalanced intra/inter-chromosomal translocations. 

Here we present a package for automatic intersection of FREEC and SVDetect outputs that allows one to 

(1) refine coordinates of CNAs using PEM data and (2) improve confidence in calling true positive 

rearrangements (particularly, in ambiguous satellite/repetitive regions). 

Both SVDetect and FREEC are compatible with the SAM alignment format and provide output files for 

graphical visualization of predicted genomic rearrangements. 
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Next-generation  sequencing  technologies  give  the  opportunity  for  genomic  study  of  non-model 
organisms sampled in the wild. The transcriptome is a convenient and popular target for such purposes. 
Assembling gene coding sequences out of short transcriptome reads, however, is a complex task, owing to 
gene duplications, genetic polymorphism, alternative splicing, and transcription noise. Typical assembling 
programs return thousand of predicted contigs, with unclear connection to species true gene content. This is 
especially problematic in taxa lacking a fully-sequenced, closely related genome. Here we use two animal 
species for which a reference genome is available to assess the potential for proper transcriptome assembly 
in  absence  of  a  reference.  The  transcriptome  of  Ciona  intestinalis  (Urochordata),  Lepus  granatensis 
(Mammalia) are assembled from newly-generated 454 and Illumina sequence reads. A new procedure is 
introduced to annotate each predicted contig as full length, partial, chimera, allele, paralogue, DNA or alien, 
based  on  the  number  and  overlap  of/between  BLAST  hits  to  appropriate  reference  transcriptomes  and 
genomes.  Transcriptoms  of  Emys  orbicularis  (Reptilia)  and  Ostrea  edulis  (Mollusca),  from  which  no 
reference genomes are available, where de novo assembled with the same method. Analyses shows that (i) 
optimal assemblies are obtained when 454 and Illumina data are combined, (ii) existing assembling programs 
differ in their ability to correctly split paralogues and group alleles, (iii) typical de novo assemblies include a 
majority  of  irrelevant  cDNA predictions,  and  (iv)  assemblies  can  be  appropriately  cleaned  by  filtering 
contigs based on coverage and length. We conclude that robust, reference-free assembly of thousands of 
genes from transcriptomic next-generation sequence data is possible, which opens promising perspectives for 
transcriptome-based evolutionary genomics in animals.
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1 Introduction 

MicroScope is a well-established web-based platform dedicated to microbial genome (re)annotation and 

comparative genomics [1]. It integrates several databases and software tools allowing advanced automated 

genome annotation to be performed and provides user-friendly web interfaces to query and curate gene 

annotations. Its annotation capabilities are widely used by the scientific community: 82 annotation projects 

including around 1000 organisms and involving more than 800 user accounts have been or are being 

performed since 2002. MicroScope also provides several layers of analytical tools focused on (i) comparative 

genomics, (ii) the reconstruction and analysis of metabolic networks, (iii) the integration of functional 

genomics data (e.g. mutant phenotypes [2],[3]), and, more recently, (iv) the analysis of bacterial 

polymorphism evolution from high-throughput sequencing data.  

Among the applications of high-throughput sequencing (HTS) in functional genomics, RNA sequencing 

(RNA-Seq) is developing fast and offers significant improvements over microarray-based approaches [4]. 

RNA-Seq methods provide direct access to transcript structure, are not limited to a predefined list of 

transcripts, and cover a larger dynamic range of expression levels. As a growing number of MicroScope 

users make use of RNA-Seq data in their project, we recently integrated an RNA-Seq analysis and 

visualization module in the platform.  

The current version of the RNA-Seq analysis module focuses on the analysis of differential expression. It 

is composed of two main components: a HTS data analysis pipeline combined with a dedicated database 

storing results, and a web-based visualization interface allowing MicroScope users to interact with RNA-Seq 

differential expression results.  

2 RNA-Seq Data Analysis and Storage  

Starting from raw sequencing reads, the analysis component processes in four successive steps (see 

Figure 1). First, raw reads are preprocessed by usual HTS tools to assess their quality, remove sequence 

adapters if needed, and prepare proper file formats for the subsequent analyses. Second, all reads are mapped 

to reference genomes. This step is performed using the software SSAHA2 [5] which is already used in 

MicroScope to analyze evolution projects from HTS data. This software provides good alignment results and 

supports small mismatches and insertions/deletions in sequencing reads while maintaining reasonable 

execution times on HTS datasets. Third, the coverage of transcripts is computed along genomes and 

expression levels are evaluated for each annotated genomic object that is stored in MicroScope annotation 

database (e.g. CDS, ncRNA). Expression levels are directly represented by the raw number of reads mapped 

in genomic objects, a representation that is needed by the statistical analysis method used in the following 

step to assess differential expression. Using raw read numbers actually allows the statistical package to better 

model expression variability occurring between experiments [6]. Finally, in a fourth step, differential 
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expression is tested between samples of distinct experimental conditions. This step relies on the 

R/Bioconductor package DESeq which normalizes expression levels across samples (to account for biases in 

sequencing depth) and makes use of an RNA-Seq specific statistical model to test for differential expression 

[6].  

MicroScope RNA-Seq database stores information on experimental conditions, sequencing runs, 

transcript coverage along genomes, expression levels of all genomic objects, and results of statistical tests for 

differential expression. This design allows the analysis pipeline to support the process of several projects in 

parallel and integrates RNA-Seq data with all other MicroScope data. In addition, most parameters used to 

run the pipeline are stored in the database and can be used to run it again if needed (for instance if new 

genomic objects are annotated in the genome or if parameters of a given pipeline step need to be changed). 

 

Figure 1. RNA-Seq data analysis pipeline and database. Relations to 

 MicroScope genome annotation database are depicted on the right. 

3 Visualization of Results 

Similarly to other modules of MicroScope, we developed a web-based visualization component allowing 

users to explore most RNA-Seq results online, combine and analyze them using other tools from MicroScope 

(e.g. explore annotations, highlight metabolic pathways, search for orthologs of differentially expressed 

genes), and download results locally. More specifically, raw and normalized expression levels can be 

displayed for any genomic object on any experimental condition, and all appropriate pairwise comparisons of 

experimental conditions can be directly queried from the interface (see screenshot on Figure 2). In addition, 

transcript coverage over genomes are displayed together with genome annotations using the Integrative 

Genomics Viewer software [7] and expression levels can be automatically loaded into the Multiexperiment 

Viewer software [8] for further data analysis, such as clustering or gene-set enrichment analysis. The RNA-

Seq visualization interface is available at the following URL: 

https://www.genoscope.cns.fr/agc/microscope/expdata/.  
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Figure 2. Screenshot of the web interface retrieving differential expression analysis results. This interface  

is accessible from http://www.genoscope.cns.fr/agc/microscope/expdata/.  

At the end of April 2011, MicroScope RNA-Seq module gathered data from four collaborative projects 

on five organisms and included 43 sequencing runs, mostly originating from Illumina Solexa GAIIx, for a 

total of 1,5.10
9
 reads. Relevant public RNA-Seq datasets are also being integrated. As an internal test case, 

we used the module to analyze RNA-Seq expression data for the bacterium Acinetobacter baylyi ADP1 on 9 

distinct conditions – including pH, temperature and light stress conditions and two distinct carbon sources 

growth media, succinate and quinate – for a total a 17 sequencing runs. From raw expression levels, we 

found that 86% of all genes were expressed in at least one experiment and 47% were expressed in all 

experiments. Tests for differential expression confirmed the functions of several genes known to be involved 

in stress response or in the degradation of the carbon sources but also highlighted genes with unknown 

function. For instance, 65% of the 58 genes shown to be over-expressed at 42°C with respect to 30°C do not 

have any known function. RNA-Seq expression data therefore provides useful information on gene function 

which may prove to be powerful complements to other functional genomics datasets [9]. 

4 Perspectives 

Because of its relative novelty, RNA-Seq data analysis is a rapidly evolving field. Experimental 

protocols are still under optimization and data processing methods are not completely settled. For instance, 

quantification and normalization of expression levels are still a matter of debate and some biases introduced 

by experimental protocols are currently not properly handled [10]. Part of improvements we will implement 

in MicroScope RNA-Seq module will therefore follow the state of the art in this field. In addition, we plan to 

extend the module to include analyses of the structure of transcripts. To this end, we currently design an 

Affiche 116 Analyzing RNA-Seq Data within the MicroScope Web-based Platform

–229–



 

 

analysis pipeline aiming at locating transcription starting sites (TSS) from TSS specific RNA-Seq 

experiments. Results from this pipeline will then be combined with transcript coverage data to build global 

transcription maps.  
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Abstract Microarray technology generates large amounts of expression level of genes to be
analysed simultaneously. The analysis of data crucially depends on the microarray image
segmentation which extracts the quantitative information from spots. Spectral clustering is
one of the most relevant unsupervised method able to gather data without a priori on its
shapes. With a criterion for determining the number of clusters and by exploiting inher-
ent properties of spectral clustering, a parallel strategy based on domain decomposition is
proposed and tested on microarray images.

Keywords Spectral clustering, domain decomposition, microarray image segmentation.

1 Introduction

Image segmentation in microarray analysis is a crucial step to extract quantitative information
from the spots [1],[2]. Spectral methods, and in particular the spectral clustering algorithm introduced
by Ng-Jordan-Weiss [3], are useful when considering no a priori shaped subsets of data. Spectral
clustering uses eigenvectors of a Gaussian affinity matrix in order to define a low-dimensional space
in which data points can be clustered. But when very large data set are considered, the extraction of
the dominant eigenvectors become the most computational task in the algorithm [4],[5].In this paper,
a parallel strategy based on domain decomposition is investigated. Two main problems still arise from
the divide and conquer strategy : the difficulty to choose a Gaussian affinity parameter and the number
of clusters k which may even vary from one subdomain to the other.

2 Parallel Spectral Clustering: justification and implementation

By exploiting the block structure of microarrays, clustering could be made on subdomains by
breaking up the data set into data subsets with respect to their geometrical coordinates in a straight-
forward way. With an appropriate Gaussian affinity parameter and a method to determine the number
of clusters, each processor applies independently the spectral clustering algorithm on subsets of data
points and provide a local partition on these data subsets. Based on these local partitions, a gathering
step ensures the connection between subsets of data and determines a global partition. We experiment
this strategy which principle is represented in Fig. 1 (a) and a clustering result on a 4 × 2 greyscaled
spotted microarray image is plotted in Fig. 1 (c).

2.1 Choice of the affinity parameter

The Gaussian affinity matrix is widely used and depends on a free parameter. It is known that this
parameter affects the results in spectral clustering and spectral embedding. A global heuristic for this
parameter was proposed in [6] in which both the dimension of the problem as well as the density of
points in the given p-th dimensional data set are integrated. By considering an uniform distribution in
which all pair of data points are separated by the same distance, a reference distance is defined. From
this definition, clusters may exist if there are points that are at a distance no more than a fraction of
this reference distance.
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2.2 Choice of the number of clusters

After indexing data points per cluster for a value of k, we define the indexed affinity matrix L
which diagonal affinity block represent the affinity among the cluster and the off-diagonal ones the
affinity between clusters (Fig. 1 (b)). The ratios between the Frobenius norm of the off-diagonal blocks
and that of the diagonal ones could be evaluated. By definition, the appropriate number of clusters,
noted k, corresponds to a situation where points which belong to different clusters have low affinity
between each other whereas points in same clusters have higher affinity. Among various values for k,
the final number of cluster is defined so that the affinity between clusters is the lowest and the affinity
within clusters is the highest. As numerical experiments, the computational cost (the time spent in
the parallel Spectral Clustering part divided by the average number of points on each subdomain) is
plotted in Fig. 1 (d) and shows good performance: this cost decreases drastically when we increase the
number of processors.

Figure 1. (a) Parallel Spectral clustering principle, (b) block structure of the indexed affinity matrix for k = 8,
(c) Clustering on one sub-domain 4 × 2 greyscaled spotted microarray image (3500 pixels) and its clustering
result, (d) Total computational costs.

3 Conclusion
With the domain decomposition strategy and heuristics for determining the choice of the Gaussian

affinity parameter and the number of clusters, the parallel spectral clustering becomes robust for
microarray image segmentation and combines intensity and shape features.
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Abstract One of the major tools of transcriptomics is the biclustering that simultaneously con-
structs a partition of both examples and genes. Several methods have been proposed for microar-
ray data analysis that enables to identify groups of genes with similar expression profiles only
under a subset of examples. We propose to improve the quality of these biclustering methods by
using an ensemble approach. Our bagged biclustering method generates a collection of biclusters
using the bootstrap samples of the original data and aggregate them into new biclusters. We show
that our method improve the performance of biclustering on several public microarray datasets.

Keywords Co-clustering, Biclustering, Microarray data, Gene expression, Bagging.

1 Introduction

The capacity of microarray to measure simultaneously the expression of a whole genome under different
experimental condition, is of great interest for biologists. Biclustering methods allow the identification of rel-
evant groups of genes and conditions that cannot be identified by classic clustering techniques. These kinds of
methods consist in simultaneous clustering on rows and columns, to reorganize the data set into homogeneous
blocks. Several biclustering algorithms have been proposed and used on microarray data [1]. In this paper, we
try to improve the performance of biclustering algorithms in using the ensemble approach. The principle of en-
semble methods is to construct a set of models, then to aggregate them into a single model, by using generally
a voting scheme [2]. We propose in this paper a bagging approach for the biclustering of microarray data [3].
The experiments on public microarray data show that ensemble methods produce biclusters with lower residue
than classic biclusters. Moreover the ensemble biclusters are also biologically more relevant with respect to the
prior knowledge of data.

2 Methods

The principle of bagged biclustering consists in applying a biclustering method on multiple bootstrapped
datasets and aggregate the results. Our method can be divided into 3 steps: construction of a collection of
biclusters, identification of the meta-cluster, computation of the biclusters. In the first step we generate a high
number of different biclusters. To do so, we generate bootstrap samples of the original data. We apply the
bootstrap sampling only on the genes. On each of the R bootstrapped datasets, a biclustering algorithm,with
the same parameters, is applied to produce K biclusters. We obtain a collection of KR biclusters noted Bb that
are used to identify meta-clusters.The aim of the second step is to identify K meta-clusters merging the similar
biclusters. The idea is that if two biclusters, generated from different bootstrapped data, are similar, it is likely
that they represent the same bicluster. All bootstrapped biclusters representing the same bicluster should be
grouped into a meta-cluster. The notion of similarity between two biclusters depends on the number of elements
(genes and examples) they have in common. Here we use the Jaccard index to evaluate this similarity. From this
similary we compute a distance matrix and a hierarchical clustering of the biclusters using the average linkage.
From the obtained dendrogram we can identify K meta-clusters in cutting the dendrogram. Before deducing
these meta-clusters in the third step, we estimate the probability of each gene and example to belong to the
meta-clusters. The last step consists in computing the final biclusters of the original data. Each meta-cluster is
assigned to a bicluster. Then each element can be assigned to biclusters depending on computed probabilities.
We define a threshold t, if the probability is higher than t then the gene or example is associated to the bicluster.
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brain1 brain2 lung multi

Figure 1. The results of single and bagged biclustering on four real datasets with the Cheng and Church algorithm.

3 Results and Discussion
In our simulation study, we evaluate the performance of bagged biclustering and compare it to single bi-

clustering. We performed our experiments on four microarray datasets with five algorithms: Bimax, Cheng &
Church, plaid model, spectral biclustering and Xmotifs. Because of the limitation of space we present here on
ly the results with the Cheng and Church algorithm. Figure 1 shows the mean square residue (MSR) of the
single (dot lines) and bagged (triangle lines) biclustering in function of the number of biclusters K on the four
microarray datasets. We see that at a given number of biclusters the MSR of ensemble biclustering is much
smaller than the MSR of single biclustering. These results show that the bagged biclusters is significantly better
than single biclusters. We also compared single and bagged biclustering based on the biological coherence of
the obtained gene partition. A good tool to check if there is an identified relation between two genes, is the
pathway database of the Kyoto Encyclopedia of Genes and Genomes (KEGG). In the table 1, we report the
average of the number of over-expressed pathways contained in the identified biclusters. It appears clearly that
bagged biclusters contains much more over-expressed pathways and can be consider more biologically relevant
than single biclusters.

Brain1 Brain2 Lung Multi
single 8 10 12 4

Bagged 18 26 20 15

Table 1. Number of over-represented pathways in the biclusters.

4 Conclusion
In this paper we have introduced the concept of ensemble methods for biclustering in the context of microar-

ray data. On artificial data, we have shown that ensemble method enables to strongly decrease the biclustering
error compared to classic methods. On real data, bagged biclustering provides biclusters more relevant than sin-
gle biclustering according to their MSR value. The use of our approach is a new powerful tool for microarray
analysis and should allow biologists to identify new relevant patterns in gene expression data.
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Abstract 

For more than a decade, the microarray technology is a powerful and widely used tool to explore the 

biological systems and is commonly based on the hybridization of fixed oligonucleotides (probes) with 

mRNA (or similar) in solution (targets) [1-4]. Probe sequences are designed to correspond to all or part of 

expressed genes in the cell to collect expression profiles at the gene, gene family, transcript or exon level. 

Each probe is linked to an annotation file to identify the corresponding gene at the analysis step.  Using this 

technology, a large number of data are collected and the downstream processes developed to analyze the 

expression profiles are complex [5]. In this context it is crucial to have access to validated annotations for all 

interrogated genes in order to collect biologically relevant data. 

Recent publications investigate microarray annotation based on updated probes alignment using available 

public sequence databank and show the relevance of well-annotated microarray data [6-10]. As an example, 

Dai et al. (BrainArray,[7]) and Liu et al. (AffyProbeMiner,[9]) purpose systematic solutions for Affymetrix 

microarray annotation building new Chip Definition Files (CDF) using RefSeq or EntrezGene NCBI 

databank. Ballester et al. [10] have recently developed a different approach where “original” probeset 

structure provided by Affymetrix is kept and the annotations are checked with updated probe alignment 

using ENSEMBL genome build. 

According to these approaches, we have created a new microarray re-annotation protocol called 

Validated Chip Annotation (VCA) developed for all microarray technologies such as Affymetrix, Agilent, 

Illumina or Nimblegen. For each microarray, we have produced a specificity score in order to control which 

gene, transcript(s), exon(s) and CDS are targeted by the probeset. As a result, native Affymetrix CDF and 

custom CDF have been re-annotated including a quality score. 

Thus, we propose a user-friendly annotation which is a common system allowing heterogeneous datasets 

comparison (intra- and inter-technologies; intra- and inter-species) by considering genes instead of probes or 

probe sets. This new microarray annotation tool gives the possibility to improve the quality of the data 

analysis and to explore the biology of the cell using the large number of available bioinformatics tools as 

IPA (Ingenuity), dedicated R packages, GO, Kegg, …  
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1 Centre de Recherche en Cancérologie de Marseille, UMR891 INSERM, 13009 MARSEILLE, France
2 Institut Paoli-Calmettes, 13009 MARSEILLE , France
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1 Introduction

High-throughput gene-expression profiling technologies yield several genomic signatures to predict clinical
condition or patient outcome. However, such signatures show dependency on training set, lack of generaliza-
tion and instability. We are proposing an interactome-based algorithm ITI [1] to find a generalizable signature
for prediction of breast cancer relapse by superimposition of a large scale protein-protein interaction data (hu-
man interactome) over several gene expression datasets. The algorithm extracts discriminative regions in the
interactome (subnetworks) predicting 5 years relapse free survival in breast cancer. This method expands the
algorithm proposed by Chuang et al [2] with the added capability to extract a genomic signature from several
gene-expression data sets simultaneously. It was trained with four breast cancer DNA microarray data sets and
allowed the discovery of a breast cancer relapse signature constituted by 58 subnetworks that was generalizable
over independent data. Exploration of annotations has shown that this set of subnetworks reflects several bio-
logical processes linked to cancer and is a good candidate for establishing a subnetworks-based signature for
prediction of 5 years relapse free survival in breast cancer.

2 Methods

Two data types are fed to the algorithm, large scale interaction data and gene expression profiles (GEP).
To build our set of interaction data, we integrated five existing human protein-protein interaction (PPI) maps
(HPRD[3], Ramani[4], MINT[5], IntAct[6] and DIP[7]). All PPI sets were integrated by uniqueness of NCBI
EntrezGene identifiers, leading to a final set of 70,530 interactions among 13,202 proteins. We built a com-
pendium of breast cancer tumors profiles by examining datasets available with clinical information on the
NCBI GEO database. Each dataset was downloaded from GEO as raw data and normalized within Biocon-
ductor using affy and gcrma packages. Tumors without relapse information were removed, leading to a final
compendium of 5 datasets containing 787 tumors [8,9,10,11,12].

One dataset was left out for cross-validation purpose with independent testing. Pearson correlation is
computed between GEPs and clinical information (Distant Metastasis Free Survival [DMFS] status) for each
dataset. Interactome regions whose gene expression is highly correlated with DMFS status are then detected.
Random distributions of score are drawn to assign p-values to the subnetworks and perform a statistical valida-
tion. Finally, the discriminative power of statistically significant subnetworks is tested against an independent
dataset. We found a set of 58 subnetworks linked to 5 years relapse free survival in breast cancer. These were
stored in our local resource, available from the ITI web site (http://bioinformatique.marseille.inserm.fr/iti).

Intrinsic biology of the 58 extracted subnetworks was examined using annotation information from the
NCBI EntrezGene database and the Gene Ontology Consortium. We found that subnetworks formed complexes
functionally supporting the studied disease for metabolism, cell cycle control, proliferation, cell-cell adhesion
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and immunological response, which are known mechanisms of cancer and metastatic process. Several drivers
genes were detected, including CDK1, NCK1 and PDGFB, some not previously linked to breast cancer relapse.
Classification in Wang experiment [12] showed an accuracy of 0.59 over independent data within the same
dataset. SVM classification based on a set of 85 subnetworks showed an accuracy of 0.78 (sensitivity of 0.25
and specificity of 0.88) over an independent dataset of 182 tumors [11].

3 Conclusion

We present an Interactome-Transcriptome Integration algorithm (ITI) to identify subnetwork-based prog-
nostic signatures generalizable over multiple datasets of breast cancer. We performed large scale integration
of 5 DNA microarray datasets to create a breast cancer compendium and constructed a large coverage human
interactome by integrating 5 existing human protein-protein interaction datasets. These data, used conjointly
with a discriminative subnetwork detection algorithm and significance scoring, allowed the identification of
interactome regions linked with 5 years relapse free survival in breast cancer. Subnetworks found have been
linked to biological functions related to metastasis and breast cancer, such as cell differentiation, cell cycle
signaling, cell adhesion and proliferation, as well as functional links to immune response. This resource is the
first of its kind to allow linking a human interactome to diseases or clinical situations. This resource can be
mined for identification of potential drug targets to establish finer disease models.
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Médicale (INSERM). Our Beowulf cluster was funded by a Fondation pour la Recherche Médicale grant.
Maxime Garcia is funded by a fellowship from INSERM and the Provence-Alpes-Côte d’Azur Region.
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Abstract  RNAspace is  an  environment  that  allows  to  create  web sites  dedicated to  non-
protein-coding RNA (ncRNA) prediction, annotation and analysis. The web sites allow users to  
run a variety of tools in an integrated and flexible way. RNAspace is focused on the integration  
of  complementary  ncRNA  gene  finders.  It  also  offers  a  set  of  tools  for  the  comparison,  
visualization, edition and export of ncRNAs candidates. Predictions can be filtered according to  
a large set of characteristics.
A public web site  http://rnaspace.org has been created that allows for on line annotation of a  
complete bacterial genome or a small eukaryotic chromosome. 

Keywords  non-protein-coding RNA, genome annotation, ncRNA gene finder.

The availability of complete genome sequences and the development of high throughput technologies 
have led to  the  accumulation of  raw biological  data  at  an unprecedented scale.  Whereas  structural  and 
functional protein annotation is now considered as a task which is relatively well solved, ncRNA genes are  
not (or at a weak level) integrated in these environments. This fact can be explained by a few reasons which  
are respectively a recent interest for ncRNA, the absence of general ncRNA prediction methods and the  
difficulty to analyze these molecules with regard to their sequence and structure conservation. The latter task  
generally requires an expertise level not widespread and the need to use analysis and edition tools more  
sophisticated than pure similarity search. The increasing number of ncRNA discovered and the lack of user  
friendly tools for  finding and annotating them,  led us  to  propose to  biologists  an  in  silico environment 
allowing structural and functional annotations of these molecules. For this purpose, an environment called  
RNAspace  was  developed  that  allows  to  install  dedicated  web  sites  just  by  adjusting  various  global 
parameters (gene finders to consider, maximal size for input genomic sequences ...).

A web site allows to (i) run a variety of ncRNA gene finders in an integrated environment, (ii)  explore 
computed results with dedicated tools for comparison, visualization, alignment and edition and (iii) export  
them in various formats (FASTA, GFF, RNAML). 
Gene finders are organized into three categories containing respectively:

1] known ncRNA based gene finders including (i) sequence homology search tools: BLAST [1], YASS 
[2] on ncRNA databases: Rfam [3], fRNAdb [4], miRBase [5], (ii) general purpose ncRNA motif 
search tools:  Infernal  [6],  Darn  [7],  Erpin  [8],  (iii)  specialized search tools:  RNAmmer [9]  for 
ribosomal RNAs, tRNAscan_SE [10] for transfer RNAs;

2] a comparative analysis gene finder: an ad hoc pipeline [11] has been implemented based on BLAST 
or YASS for similarities search and caRNAc [12] or RNAz [13] for consensus structure inference;

3] an ab initio gene finder based on detection of atypical GC% regions.
All gene finders can be run with default parameters values. However it is also possible for users, through a 
dedicated interface, to set some of these parameters to specific values according to the level of knowledge of 
biological data and user expertize. Once the execution of selected gene finders is achieved, combination of  
predictions is possible on demand. For example, predictions that have only tiny differences in positions on 
the input  genomic sequence  are merged into a  single  prediction.  This avoids  having a lot  of  redundant 
predictions for ncRNA families (e.g. tRNA) predicted by several gene finders. An overview of all putative 
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ncRNAs found on the genomic sequence is provided. Their main characteristics are displayed in a list that  
can be dynamically explored by sorting and filtering its content. For each putative ncRNA or a selection of  
them, more details are computed on line (e.g., compute and visualize a secondary structure, align a selection 
of predictions ...). Any putative ncRNA can be edited and deleted. It is also possible to visualize putative 
ncRNAs on the input genomic sequence with several genome browsers: JBrowse, CGview, ApolloRNA.  
Finally, a functionality allows the export of candidate ncRNAs in several formats for a future usage.

The environment  relies  on collaboratively-developed code using the Python language and the HTTP 
framework CherryPy (see http://cherrypy.org for more detail). The code is open source under GPL license 
and is available on Source Forge (https://sourceforge.net/projects/rnaspace/). It has been conceived to be as 
parameterizable  and  extensible  as  possible.  This  allows  to  configure  web  sites  for  special  uses.  
Parametrization of a site includes declaration of available gene-finders, limits for process time execution,  
disk space, storage duration, execution on a connected computer cluster via a job scheduler. It is also worth 
to  note  that  the  environment  can  be  used  in  command line  and thus  inserted  in  a  pipeline.  Using  the 
RNAspace environment, a public site http://rnaspace.org has been created. It accepts genomic sequences up 
to 5Mb. Computations are executed on the computer cluster of the Genotoul bioinformatic platform. For 
example, it is possible to get an annotation for the E. coli genome (4.9M nucleotides) using a wide selection 
of gene finders and recovering the majority of known RNA genes in less than one hour.

In the near future, we plan to incorporate supplementary prediction approaches, to provide more advanced 
methods  to  eliminate  redundant  results,  to  include  information  on  the  genomic  context, to  define  and 
compute a common normalized prediction score (indeed some gene finders now provide a score but these 
scores are not comparable). Furthermore with the huge quantity of high-throughput sequencing data obtained 
by transcriptome studies, it is also highly desirable to consider RNAseq and sRNAseq data for the annotation  
and the search for potential targets of regulatory RNA acting through RNA-RNA interactions.
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Abstract Small RNAs (sRNAs) are involved in the transcriptional and post-transcriptional control
of gene expression. Whereas these small regulatory RNAs were originally characterized in plant
and animal development they have recently emerged as key components of the innate immune
response [1,2,3,4]. For example, the team has recently implicated the Arabidopsis small RNA-
directed DNA methylation pathway in antibacterial resistance. However, the dynamic of DNA
methylation mediated by short interfering RNA (siRNA) following bacterial detection remains elu-
sive. In the present work, we will report the profiling of small RNAs and DNA methylation in the
course of the Arabidopsis thaliana antibacterial defence response. We will also present the extent
to which these siRNA-directed DNA methylation changes contribute to the regulation of immune-
responsive gene expression.

Keywords non-coding RNA, epigenetics and epigenomics, high throughput sequencing data anal-
ysis.

1 Introduction
In higher eukaryotes, the vast majority of the genome appears to be transcribed, leading to an extraordi-

nary diversity of non-coding RNAs (ncRNAs). Whereas the functional significance of these ncRNAs is mostly
unknown, increasing evidence suggests a role for these molecules in guiding chromatin modifications [5]. In
plants, a large proportion of ncRNAs is processed by the RNA silencing machinery to produce short inter-
fering RNAs. Some of them guide sequence specific DNA methylation through a phenomenon referred to as
RNA-directed DNA methylation (RdDM) [6]. RdDM is usually associated with transcriptional silencing of
transposons, retrotransposons and repeated sequences. By using a reverse genetic approach the team found that
RdDM negatively regulates antimicrobial defence. Consistent with these findings, they found that the bacterial-
derived elicitor flg22, a 22 amino acid peptide derived from the N-terminal part of bacterial flagellin, down-
regulates the RdDM pathway in the course of the elicitation. The present study aims to unravel (1) the dynamics
of Arabidopsis siRNA-directed methylation changes during the course of flg22 elicitation (2) the contribution
of these changes in the control of immune-responsive gene expression.

2 Methods
Using Illumina sequencing we have deep sequenced sRNA libraries derived from Arabidopsis thaliana WT

leaves treated for 3, 6 and 9 hours with active or inactive forms of flg22. We have introduced a spike internal
control (artificial sRNA) in each library in order to normalize the data before sRNA mapping and data mining
[7]. We will identify sRNAs that are differentially expressed in the course of the elicitation and retrieve their
cognate targets. In parallel, we have deep sequenced mRNAs using Illumina sequencing technology to identify
mRNAs differentially expressed in response to flg22. Finally, we have used bisulfite sequencing approach to
determine the DNA methylation status of specific immune responsive genes in the course of flg22 elicitation.
This method consists in converting unmethylated cytosine to thymine by bisulfite treatment followed by se-
quencing. We will compare changes in siRNA and DNA methylation levels and assess the contribution of such
siRNA-mediated epigenetic modifications in the regulation of immune-responsive gene expression. Overall,
these approaches will give us insights into the siRNA-directed transcriptional regulation of defence genes in
the course of the elicitation.
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Abstract MicroRNAs and transposable elements (TEs) share numerous characteristics: size, sta-
ble secondary structure, maturation into shorter sequence. TE-derived pre-miRNAs are microR-
NAs that are generated from transposable elements. TE-derived miRNAs and TEs have a similar
distribution of their occurrences that is distinct from ’classical’ pre-miRNAs: a TE-derived pre-
miRNA have many occurrences spread in many chromosomes, and a ’classical’ pre-miRNA has
generally one occurrence or few ones appearing in a cluster.
We developed an automatic method called miRNAcheck to distinguish a TE-derived pre-miRNA
from a ’classical’ pre-miRNA. Given a pre-miRNA candidate, miRNAcheck calculates in a first
step the number of occurrences of the candidate in the genome. The ten occurrences the most
similar to the candidate sequence are then extended and a consensus sequence is created. Finally,
the consensus sequence is compared to TE sequences in RepBase, a database of TEs.
From the 1048 human and 672 mouse pre-miRNAs of miRBase, we selected the pre-miRNAs that
have at least 10 similar occurrences in the genome. We get 83 human and 84 mouse candidates.
Among them, 60 human and 69 mouse pre-miRNAs are identified by miRNAcheck as TE-derived
pre-miRNAs.
miRNAcheck is available at the Web site: http://EvryRNA.ibisc.univ-evry.fr/

Keywords pre-miRNA, Transposable Element, TE-derived pre-miRNA.

1 Introduction

Recent studies show the whole genomes of higher eukaryotes are transcribed [1] while the genes represent
only few percentages of these genomes. Non-genic regions are mainly composed by non-coding RNAs (ncR-
NAs) and transposable elements (TEs) that represent a substantial fraction of many eukaryotic genomes. For
example, about 50% of the human genome is derived from transposable element sequences [2].

Transposable elements (TE) are present in nearly all genomes that have been studied to date and in some
cases represent most of the genome [3]. They move or are copied from one genomic location to another [4].
TEs are characterized and classified on the basis of terminal or sub-terminal remarkable structures or of their
protein-coding capacity. TEs are conventionally divided into two classes [5]: Class I and Class II. Class I is
represented by retrotransposons Long INterspersed Elements (LINEs), Short INterspersed Elements (SINEs),
Long Terminal Retrotransposons (LTRs), and Endogenous RetroViruses (ERVs), all requiring reverse transcrip-
tion from an RNA intermediate. Class II includes ”cut-and-paste” DNA transposons, which are characterized
by terminal inverted repeats (TIRs) and are mobilized by a transposase [4]. Many families of both classes do
not show any coding capacity and are called non-autonomous transposable elements. They have cumulated so
many mutations, insertions or deletions so they are generally solely defined by their extremities [6,7]. In Class I,
SINEs are short sequences (100 to 500 nt) and present a stable secondary structure similar to the fusion of tRNA
structure and hairpin structure [8,9]. In Class II, Miniature Inverted-repeat Transposable Elements (MITEs) are
non-autonomous transposable elements characterized by a small size (80-500 nt), a stable secondary structure,
generally an hairpin structure, and an insertion into A + T-rich regions [10]. MITEs could generate small inter-
fering RNAs (22-24 nt) by a pathway similar to that required for TE-derived small interfering RNA (siRNA)
biogenesis and by DICER-like proteins [11].
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siRNAs are non-coding RNAs generated from a biological response to double-stranded RNAs (dsRNAs)
called RNA interferences (RNAi) [12,13]. Long dsRNA molecules (for example TEs) initiate RNAi by being
converted to smaller 21-23 nt siRNAs by the Dicer enzyme. Therefore, hairpin RNAs have been commonly
used to induce RNAi [12].

MicroRNAs (miRNAs) are non-coding RNAs with only 21-25 nt in sequence length that are present in all
sequenced higher eukaryotes [14,15]. They are involved as negative regulators of gene expression at the post-
transcriptional level by binding to specific mRNA targets whose translations are inhibited or down-regulated
[15,16]. According to the current understanding of miRNA biogenesis, miRNA genes are transcribed and then
are cleaved into a 39-938 nt long precursor of miRNA sequences (pre-miRNAs) by the Drosha/Pasha complex.
Pre-miRNAs, structured as hairpins, are transported into the cytoplasm by Exportin5 and cleaved by Dicer into
mature miRNAs [14]. In the RISC complex, a miRNA binds with a specific mRNA transcript and leads to the
cleavage or the degradation of the mRNA.

Non-autonomous TEs like SINEs and MITEs and pre-miRNAs share some characteristics (Fig. 1), espe-
cially the similarity of their biogenesis [17,18]. Moreover, some recent bioinformatic studies show that some
pre-miRNAs share their sequences or an important part of their sequences with TEs [17,18,19]. These pre-
miRNAs, annotated in miRBase [20], are called TE-derived pre-miRNAs and present a high number of occur-
rences in the genome [18]. Both classes of TEs could be involved in TE-derived pre-miRNAs [21].

Figure 1. Bioinformatic characteristics of pre-miRNAs and transposable elements. The size and the secondary structure
of pre-miRNAs and non-autonomous TEs (MITEs and SINEs) are similar. Mature miRNAs down regulate target binding
genes [14] and siRNAs generated from TE regulate TE-genes [11].

In this article, we present an automatic method, called miRNAcheck, for identifying TE-derived pre-
miRNAs.

2 Our approach

2.1 How to identify TE-derived pre-miRNAs

The main criteria that identifies TE-derived pre-miRNA candidates from other pre-miRNAs is the number
and the distribution of the candidate occurrences. Pre-miRNAs do not have a transposition mechanism like TEs,
and are not widespread in all chromosomes, not even widespread in one chromosome [22,23]. A mechanism
that can copy pre-miRNAs is an error of chromosome replication that can give a cluster of miRNA genes [24].
We consider that a pre-miRNA candidate that has 10 or more copies in the genome has a strong probability to
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be a TE-derived pre-miRNA. This difference in the copy mechanism changes the localization of occurrences
and allows to distinguish TEs from satellites (tandem repeats) [4]. The part of TE sequences in pre-miRNAs
are often too short (about 10 bp [19]) to be used directly as query with repeat identifier tools like Censor [25],
RepeatMasker (www.repeatmasker.org) or Repet [26].

The study of a pre-miRNA occurrences distribution depends on:

1. The number of occurrences in the whole genome: excepted TE-derived pre-miRNAs, a pre-miRNA has
few occurrences in the whole genome [22,23]; therefore, we can consider that a pre-miRNA candidate that
occurs several times in the genome has a strong probability to be a TE-derived pre-miRNA.

2. The number of distinct chromosomes where appear the occurrences: the tandem repeat mechanism does
not allow a sequence to jump to another chromosome [4]. Then, very few pre-miRNAs are found in two
chromosomes. The presence on a second chromosome could be explained by chromosomic rearrangement
during the evolution. Therefore, we can consider that a pre-miRNA candidate present in several chromo-
somes has a strong probability to be a TE-derived pre-miRNA.

3. The distance between the occurrences: some recent studies show that some similar miRNA genes are clus-
tered in a small distance [24] and that the tandem repeat mechanism creates copies close to the original
sequence [4]. For example, there is a cluster of 49 miRNA genes in human chromosome 19 spread on only
150 kb. Sewer et al. approximated the maximal distance of a miRNA gene cluster to 20kb [24]. Therefore,
we can consider that if two or more similar occurrences are distant of more than 20 kb, there is a strong
probability that the candidate is a TE-derived pre-miRNA.

2.2 Description of miRNAcheck method

In order to identify TE-derived pre-miRNAs, we developed an automatic method called miRNAcheck that
works as follows.

Given a pre-miRNA candidate, the first step of our method consists in a study of the candidate occurrence
distribution, using BLAT [27] of UCSC Genome Browser [28]. We chose BLAT instead of BLAST on NCBI
or EBI because the results do not correspond to the chromosomes but to the scaffolds that do not allow a
distribution study of the occurrences. We assume that two occurrences are in a same cluster if they are on two
distinct chromosomes or are distant at least of 100000 nt. We calculate the number of occurrences, named
”hits”, of the candidate in the genome, and more particularly the number of ”similar hits”. Similar hits are
hits whose similarity with the candidate is greater than 80% and whose size is between 80% and 120% of
the candidate size. This definition is similar to the identification definition of transposable elements [21]. We
calculate also the number of chromosomes containing the different similar hits.

After the study of the occurrences distribution, the second step of our method looks for a possible similarity
with transposable elements. However, the size of human pre-miRNA candidates (11-186 nt in the last version
of miRBase [20]) could be too short for an identification by Censor [25]. To extend the candidate sequence, our
method extracts the ten best similar hits (or all similar hits if there is less than ten hits). Using UCSC genome
browser [28], we get the surrounding sequence around each hit: 100 nt left to the hit and 100 nt right to the
hit. These sequences are then aligned with ClustalW [29] and a consensus sequence is created. The nucleotide
consensus at position i corresponds to the nucleotide present at least 5 times in the alignment at same position;
otherwise there is the character N. We assume that ten hits are sufficient to create a consensus sequence since
the hits have a similarity with the candidate greater than 80%.

Finally, we compare the consensus sequence to a TE database: RepBase [30]. For performing this compari-
son, we used Censor [25] (we choose Censor instead of Repet [26] and RepeatMasker (www.repeatmasker.org)
because to our knowledge there is no Repet webserver; and we preferred Censor to RepeatMasker because
it was easier to extract the data from Censor webserver). The candidate is a TE-derived pre-miRNA if the
consensus is similar to a TE in RepBase.
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2.3 miRNAcheck tool

Our method was implemented in JAVA. The obtained tool, called miRNACheck, is available on the Web
site : http://EvryRNA.ibisc.univ-evry.fr.

Figure 2. JAVA interface of miRNAcheck. It shows here the results obtained for the human pre-miRNA HAS-MIR-1273e.

The interface of miRNAcheck (Fig. 2) works as follows: the user enters the sequence of a pre-miRNA
candidate in STADEN format, enters a name and chooses the corresponding genome. miRNAcheck sends a
request to BLAT at the UCSC Genome Browser and gets the hits of the sequence in the genome (2 in Fig. 2).
The line above the hits table summarizes the BLAT result (the number of hits returned by BLAT, the number
of chromosomes where appear the hits, and the number of similar hits, i.e. hits that have a size between 80%
and 120% of the pre-miRNA size and that have a similarity greater than 80% with the candidate sequence).
The user can check the hits obtained from BLAT with a link to the BLAT webpage that stored the results.
miRNAcheck selects then the 10 most similar hits (or all if there are less than 10 similar hits) and extends
the hits in the genome sequence. The extended hit sequences are then aligned by ClustalW and a consensus
sequence is generated (3 in Fig. 2). Finally, the consensus is sent to RepBase database [30] in order to identify a
TE candidate associated to the consensus sequence. The alignment between the consensus and the most similar
TE is then shown (4 in Fig. 2). A pop-up summarizes the results and specifies if the candidate is a TE-derived
pre-miRNA (5 in Fig. 2).
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3 Results and discussion

For our tests, we considered the 1048 human pre-miRNAs and the 672 mouse pre-miRNAs present in
MiRBase version 16 [20]. The first step was to calculate the number of hits of each pre-miRNA. Only 83
human pre-miRNAs and 84 mouse pre-miRNAs have more than 10 similar hits in the genome. These pre-
miRNAs are listed in Fig. 3 and Fig. 4. Thanks to miRNAcheck, we found that among these 83 (84) human
(mouse) pre-miRNAs, 60 (69) are TE-derived pre-miRNAs (see Fig. 3 and Fig. 4).

Figure 3. Human pre-miRNAs that have at least 10 similar hits in the genome. Pre-miRNAs that have ”???” in ’TE name’
column are not similar to known TEs listed in Repbase. The columns ’Hits’ and ’Chrom’ correspond respectively to the
number of similar hits and to the number of chromosomes where appear these hits. There are 24 genomic chromosomes
and 9 haplotype chromosomes in UCSC Genome Browser [27].

As shown in Fig. 3, 23 human and 15 mouse pre-miRNAs (that have more than 10 similar hits) do not
correspond to a RepBase TE. Respectively, only 10 and 4 of these human and mouse pre-miRNAs (for example
HSA-MIR-518c) occur in one chromosome. However, the hits of these pre-miRNAs are not close to each
other (some of them are distant to more than two million nt from other hits). These 23 human and 15 mouse
pre-miRNAs require therefore more study in order to know if they are TE-derived or not.

Fig. 3 and Fig. 4 show also that pre-miRNAs having a same name prefix (e.g. HSA-MIR-548A-1, HSA-
MIR-548A-2, HSA-MIR-548B, etc.) correspond to a same TE, which is not surprising since these pre-miRNAs
have similar sequences.
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Figure 4. Mouse pre-miRNAs that have at least 10 similar hits in the genome. Pre-miRNAs that have ”???” in ’TE name’
column are not similar to known TEs listed in Repbase. The columns ’Hits’ and ’Chrom’ correspond respectively to the
number of similar hits and to the number of chromosomes where appear these hits. There are 22 genomic chromosomes
in UCSC Genome Browser [27].

One important remark is that very few pre-miRNAs have several similar hits; only 83 (85) among 1048
human (mouse) pre-miRNAs have more than 10 similar hits. This observation confirms the fact that a pre-
miRNA is normally unique or with very few and close similar hits.

King Jordan et al. have previously discussed the origin of pre-miRNAs and the possibility that they come
from the evolution of MITEs [18,17]. Their hypothesis is supported by the similarity between their secondary
structures and by the similarity between their targeting mechanism. Moreover, Smalheiser et al. shown that
some mammal pre-miRNAs have a small fragment of L2 transposable element in their sequence [19]. If the
hypothesis of pre-miRNAs with a TE-derived origin seems possible, some studies stipulate that pre-miRNAs
derive from genomic loci distinct from any other recognized elements [14,31] and Yan et al. think for instance
that mir4441 and mir4446 are misannotated as pre-miRNAs but are pre-siRNAs [32].

Our automatic method confirmed the previously result obtained manually by Jordan et al. which shown that
6 human pre-miRNAs ’HSA-MIR-548’ are TE-derived [18]. Thanks to our tool miRNAcheck, we identified 64
new TE-derived human pre-miRNAs.

We planned to add somes features to the next version of miRNAcheck. One of them should be to choose the
tools for identifying TE-derived pre-miRNAs. For example, RepeatMasker and Censor do not give always the
same result and it is possible that Censor does not recognize a TE sequence in few cases while RepeatMasker
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can do it. For the identification of the pre-miRNAs, we can also use the genome annotations, they could avoid
to search for the similar hits of the pre-miRNA candidate obtained by Censor when the candidate corresponds
already to known pre-miRNA or a TE.

4 Conclusion

In this paper, we present an automatic method called miRNAcheck for identifying TE-derived pre-miRNAs.
TE-derived pre-miRNAs are pre-miRNAs that are derived from transposable elements (TEs).

Our method is based on the hypothesis that a pre-miRNA that has several occurrences widespread in the
genome has a high probability to be TE-derived. The first step of miRNAcheck is to calculate the number of
occurrences of the pre-miRNA candidate, the number of chromosomes where appear the different occurrences
and the distance between the occurrences. The second step is then to calculate a consensus sequence to the ten
occurrence sequences the more similar to the pre-miRNA sequence. Finally, the last step consists to check if
the consensus sequence corresponds to a TE in RepBase database.

We tested our method on human and mouse pre-miRNAs of miRBase. There are a total of 1048 human
and 672 mouse pre-miRNAs, and only 83 human and 84 mouse pre-miRNAs have more than 10 occurrences
(with high similarity). Almost all these 83 human and 84 mouse pre-miRNAs are identified by miRNAcheck as
TE-derived, i.e. corresponding to TEs in RepBase.

Thanks to miRNAcheck, one could check very quickly if a pre-miRNA candidate is a TE-derived pre-
miRNA. It requires between 30 seconds to 1 minute to treat a pre-miRNA sequence (depending on the number
of occurrences in UCSC and on the access to RepBase).

miRNAcheck is available at the Web site: http://EvryRNA.ibisc.univ-evry.fr/
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1 Introduction 
Intrinsically disordered regions are widespread, especially in proteomes of higher eukaryotes. Recently, 

protein disorder has been associated with a wide variety of cellular processes and has been implicated in 
several human diseases [1]. Despite its apparent functional importance, the sheer range of different roles 
played by protein disorder often makes its exact contribution difficult to interpret. 

Recently we introduced a novel comparative genomics analysis to uncover that protein disorder can be 
split into biologically and biophysically distinct phenomena in the yeast S. cerevisiae. Even if the amino acid 
sequence evolves, the fact to be disordered for a residue can sometimes be conserved across species. We 
defined disorder conservation using disorder predictions (DISOPRED2) in ~23 species of the yeast clade. 
This conserved disorder is further split into constrained disorder where the amino acid sequence itself is 
conserved and flexible disorder where the amino acid sequence is not conserved [2]. 

In this work, we explore the characteristics of conserved disorder in human (flexible and constrained) 
and in particular its relationship to cancer and disease mutations. We find that conserved disorder plays a 
specific role in biological processes and that phosphorylation sites (or phosphosites) are enriched in 
constrained disorder but surrounded by regions of flexible disorder. In addition mutations show conserved 
disorder specificity leading to possible improvement in disease and cancer mutation prediction.  

2 Results 

2.1 Conserved Disorder Plays a Specific Role 
We previously found in yeast that flexible disorder bears many of the characteristics commonly 

attributed to disorder and is associated with signaling pathways and multi-functionality whereas constrained 
disorder has markedly different functional attributes and is involved in RNA binding and protein chaperones 
[2]. Investigating protein disorder in higher eukaryotes, we find that constrained disorder is specifically 
associated to development and related biological processes. Conversely, flexible disorder is enriched in 
repair mechanisms and immune system. In addition, proteins enriched in conserved disorder are more multi-
functional than the average on the whole proteome and expressed in fewer tissues. Together those results 
suggest that conserved disorder plays specific role in biological processes. 

2.2 Phosphosites are Conserved but Positioned in Flexible Regions 
Phosphosites often appear in disordered regions of proteins [3]. In a detailed analysis at the residue level, 

we find that disorder conservation is strongly correlated with the placement of phosphosites (Fig. 1A). In 
particular, we find that the relative density of phosphosites increases dramatically for residues with higher 
disorder conservation. In fact phosphosites are specifically enriched in constrained disorder, which is 
coherent with the sequence conservation of those specific residues. Nevertheless, when considering 
continuous regions of conserved disorder (a sequence of at least 10 continuous positions of conserved 
disorder with maximum 3 gaps), we find that regions harboring at least a phosphosite have a higher 
percentage of flexible over constrained disorder. This suggests that the residues being phosphorylated are 
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rather conserved and thus found in constrained disorder positions but surrounded by flexible disorder 
regions. These results highlight the functional importance of conserved disorder in signaling. 

 

Figure 1. A) The heatmap illustrates the relative density of phosphosites in positions with various levels of 
disorder and amino acid conservation. The relative density of conserved disorder is represented for B) two 

classes of cancer mutations. C) three classes of disease mutations and compared to genome wide. All relative 
density values (passenger, driver, OMIM, PMD, SwissProt) are significantly different from genome-wide for 

both constrained and flexible disorder (Chi-square p-value < 0.05). 

2.3 Mutations Show Conserved Disorder Specificity 
Since various diseases are associated to dysfunction in signaling, we investigate next the relation of 

conserved disorder to mutations. One of the challenges in cancer genomics is to distinguish between 
mutations that confer a selective growth advantage (driver) and mutations happening coincidentally 
(passenger) [4]. We find that driver mutations are enriched in constrained disorder and depleted in flexible 
disorder (Fig. 1B), which could help distinguish driver/passenger mutations. In addition, disease mutations 
are depleted in conserved disorder (flexible and constrained) as compared to non disease mutations (Fig. 1C). 

3 Conclusions 
We show here that conserved disorder has a specific and important role in biological processes in human 

and that phosphosites are enriched in constrained disorder but surrounded by regions of flexible disorder. In 
addition, disease/cancer mutations show conserved disorder specificity. We are now investigating to which 
extent this information could improve the prediction of those mutations and help distinguish driver/passenger 
and disease/non disease mutations. 
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1     Introduction 

The genetic code is quasi-universal among living organisms. 

The question “Why is the genetic code the way it is?” remains open. In particular, models considering 
the genetic code as a product of biochemical evolution describe successfully a few properties of the genetic 
code [1]. 

2     Results 

Here, we describe the set of symmetries by base substitutions for two essential properties of the 
genetic code: codon degeneracy [2,3] and 2’ or 3’ tRNA-aminoacylation [3].  

The genetic code’s sets of 64 codons can be dissected into two groups of 32 codons depending on 
whether or not the third codon base is required to define unambiguously the amino acid. Rumer identified 
the symmetry applied to the three codon bases and substituting G and T as well as A and C, which 
exchanges both groups [4]. The symmetry applied to the first codon base and substituting G and C as well 
as A and T leaves each group unchanged [2]. The proof that no further symmetries of degeneracy in the 
genetic code exist, apart from the combination of these symmetries, will be given [3]. 

Concerning tRNA-aminoacylation by aminoacyl-tRNA-synthetases, two classes can be defined 
depending on whether aminoacylation occurs on the 2’ or on the 3’ hydroxyl group of the last tRNA 
nucleotide. The two symmetries substituting G and T as well as A and C for the first codon base, 
substituting A and G as well as C and T for the second codon base and exchanging purines and pyrimidines 
for the third codon base (i.e. G and T as well as A and C or G and C as well as A and T) exchange the two 
classes [3]. No further symmetry exchanges both classes.  

The observations are discussed within the context of the known minor changes found among different 
genetic codes and using available biochemical data on aminoacyl-tRNA synthetases. 
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Abstract  Primers and probes design is an important step of molecular diagnostics (MDx) 
reagents conception. Bioinformatics is very helpful for the design of these oligonucleotides, but 
also to validate candidates in silico before in vitro tests, an expensive and time-consuming task. 
ALDO is a bioinformatics pipeline dedicated to the conception of MDx qPCR primers and 

probes. ALDO was applied to Influenza primers and probes design and validation. 
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1  Introduction 

Primers and probes are used in MDx reagents, with different technologies such as qPCR, to detect 
microorganisms by targeting taxon-specific genomic sequences. Some existing bioinformatics programs 
were developed for identifying taxon-specific regions (Insignia [1]) and designing candidate primers and 
probes. Others were defined to test these oligonucleotides with in silico amplification reaction simulations 
(isPCR [2]), but without any assay scoring function quantifying their in silico performance.  

2   Objective 

ALDO is a workflow dedicated to the conception of primers and probes, integrating both the steps of  
assay design and validation. Moreover, validated assays shall be ranked according to a performance score. 

3   Principle 

Three main parts compose ALDO: (i) integration of public and internal data, (ii) design of primers and 
probes and (iii) their in silico validation. ALDO relies both on internally-developed programs as well as 
public programs such as Blast [3], Primer3 [4], EMBOSS utilities [5] and NCBI eUtils programs [6]. 

3.1   Data Integration 

The first step of the pipeline consists in collecting all targeted sequences of the studied organism or taxon. 
To this aim, a project sequence databank is created by the PePI builder program. Entries are selected from 
internal sequence collections (obtained from targeted sequencing campaigns) and from public sequence 
databases (obtained via Blackcell). Blackcell is a surveillance tool watching out for new sequences on public 
databases. It is based on NCBI eUtils programs and contributes to update ALDO’s sequence collections. 
Using this sequence collection, a multiple sequence alignment (MSA) is constructed. 

Polymorphism Diversity Estimator (PoDE), a program implemented in ALDO, was developed with the 
aim of estimating the diversity of a target sequence. It checks if the total number of sequences in the MSA is 
representative of the natural diversity, and if not, estimates the sequencing effort still needed. The method 
uses the chao2 non-parametric estimator of asymptotic SNPs richness [7]. 

3.2   Design of Oligonucleotides 

The second part of the pipeline actually designs qPCR assays (combination of PCR primers and TaqMan® 
probe) using the reference MSA. The SLv8 program encapsulates Primer3 for this design step. Candidates 
are selected in accordance with more than 20 qPCR-specific design rules. Each qPCR assay is then a 
candidate assay whose in silico performance is computed. 
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3.3   Candidate Assay Validation 

Third and final part is assay validation. Candidate assays are validated by simulating a qPCR reaction 
against each individual sequence of a particular databank (such as Genbank bacterial division). To do so, 
eNv3 model simulates the amplification/detection qPCR reaction by computing thermodynamic affinities of 
each individual oligonucleotide both for hybridization and primer extension step. Finally, all assays are 
ranked according to a global performance score integrating both a positive term (completeness of targeted 
species detection) and a negative term (unwanted cross-detection). 

Mismatches between oligonucleotides and target sites impact the qPCR reaction efficiency in a nature and 

oligonucleotide position-dependent way. The Assay Mismatch Table (AMT) permits to locate positions of 
mismatches or deletions between oligonucleotides and target sequences. This table is performed to double-
check both oligonucleotides’ sensitivity and cross-validate eNv3 results. Moreover, the AMT allow to rank 
hybridization sites according to their frequency in sequence databases and shows the most suitable 
oligonucleotide sequences to target in order to insure the highest performance.  

4   Results and Conclusion 

ALDO was applied to design and validation of primers and probes targeting Influenza A segment 8. 
Briefly, we extracted 6442 sequences for Influenza segment 8 (average sequence size : 844nt, 43% GC) from 
IPDR Flu database. MSA was built using MUSCLE v3.6, and provided an alignment of 977nt and average 
pairwise sequence identity of 88%.  PoDE estimated an overall of 284 polymorphic positions on this MSA 
but only 240 were observed. PoDE estimated we need 4831 additional sequences to be able to observe the 
unseen polymorphism positions (at the sampling risk level 5%). Assuming this non-completeness risk, assay 

design step can be performed but with significant risks to have oligonucleotides targeting a polymorphic site. 
Thus, a regular update of the MSA with new sequences is required to check validity of designed assays. 
Based on this MSA, SLv8 designed 196 candidates qPCR assays for an average amplicon length of 143nt.  

To test AMT and eNv3 programs, an existing qPCR assay was tested against a collection of 2409 
sequences of Influenza segment 8. Overall detection rate for this triplet was estimated to 87% according to 
AMT. Cross-reactivity risk was assessed using eNv3: only 14 entries out of 10’572’835 sequences (custom 
databank composed of bacteria, fungi, viruses and homo sapiens sequences) were reported as potentially 
cross-reactive at least for one of the oligonucleotides. Manual analysis revealed no major cross-reactivity risk 
because either these entries are in fact Influenza entries badly annotated or non-Influenza entries but without 
both primers hybridization sites being presents on the same sequence.  

Each part of the workflow was validated individually but the validation of the whole process is on-going. 

Acknowledgements 

This work was supported both by bioMérieux and the University of Rouen. We thank Dr. Fritz 
Schwarzmann and Dr. Andrew Derome for reviewing this paper. 

References 

[1] A. M. Phillippy, K. Ayanbule, N. J. Edwards, and S. L. Salzberg, Insignia: a DNA signature search web server for 

diagnostic assay development, Nucleic Acids Res., 37: W229-W234, 2009 July.  

[2] J. Kent, UCSC In silico PCR, http://genome.ucsc.edu/cgi-bin/hgPcr?command=start  

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment search tool. Jmol. Biol. 

215(3): 403–410, 1990. 

[4] S. Rozen, H. J. Skaletsky, Primer3 on the WWW for general users and for biologist programmers. In: S. Krawetz, S. 

Misener, Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp. 
365-386, 2000. 

[5] P. Rice, I. Longden, and A. Bleasby, EMBOSS: The European Molecular Biology Open Software Suite, Trends in 

Genetics 16(6): 276-277, 2000. 

[6] E. Sayers, D. Wheeler, Building Customized Data Pipelines Using the Entrez Programming Utilities (eUtils), NCBI 

eUtils  http://eutils.ncbi.nlm.nih.gov/  

[7] A. Chao, R. K. Colwell, C-W. Lin, N. J. Gotelli, Sufficient sampling for asymptotic minimum species richness 

estimators, Ecology, 90(4): 1125-1133, 2009. 

I. Rabearivelo and F. Paillier Affiche 127

–258–



Bioinformatics Tools to Decrypt Pyoverdine Biosynthesis in 
Pseudomonas sp. 

Aurélien VANVLASSENBROECK1, Valérie LECLERE1, Maude PUPIN2, Bernard WATHELET3 and Philippe 
JACQUES1 

1 ProBioGEM, UPRES EA 1026, Polytech’Lille/IUT A, Av P Langevin, Univ Lille Nord de France, Sciences et 
Technologies, 59655 Villeneuve d’Ascq cedex, 

vanvlas008@hotmail.fr, {valerie.leclere, philippe.jacques}@univ-lille1.f 
2 LIFL, UMR8020 CNRS, INRIA, Bat M3, Univ Lille Nord de France, Sciences et Technologies, 59655 Villeneuve 

d’Ascq cedex, France 
maude.pupin@lifl.fr 

3 Unity of Industrial Biological Chemistry, Pass des déportés, Gembloux Agricultural Univ, 5030 Gembloux, Belgium 
bwathelet@ulg.ac.be 

 

Keywords Protein annotation, sequence comparison, evolution, non-ribosomal peptide. 
 

1 Introduction 

Pyoverdines are chromopeptides produced by fluorescent Pseudomonas sp. during growth under iron-
limiting conditions. More than fifty different structures of these siderophores have been elucidated so far. 
The biosynthesis follows a non ribosomal mechanism carried out by Non Ribosomal Peptide Synthetases 
(NRPS).These synthetases are multifunctional enzymes organized in sets of catalytic domains which 
constitute modules containing the information needed to complete an elongation step in peptide biosynthesis. 
The main catalytic functions are responsible for the activation of an amino acid residue (adenylation domain, 
called A-domain), the transfer of the corresponding adenylate to the enzyme-bound 4’-phosphopantetheinyl 
cofactor (peptidyl carrier protein domain) and the peptide bond formation (condensation domain). Additional 
domains can lead to modification of the substrates if required in the peptide synthesis. A thioesterase (Te) 
domain is usually present in final position to ensure the cleavage of the thioester bond between the nascent 
peptide and the last PCP-domain and, in several cases, to cyclise the peptide. The specificity of the selection 
of the amino acid residue is mostly conditioned by the A- domain. The aim of this work is to study the 
specificity/permissivity of the adenylation domains involved in the biosynthesis of pyoverdines and to study 
their capacity to recognize several (at least 2) amino acids. Those molecules are an appropriate model for this 
study because of their diversity. 

2 Methods 

Bioinformatics analysis was first performed on the seventeen Pseudomonas sp. genomes available 
following the process described in figure 1. The research of genes coding for NRPS in the genomes was 
performed through two different approaches, first by key words research in the MBGD databank [1] and by 
querying the complete genome sequences with a known NRPS given to tBLASTn. 

 

Figure 1. General strategy of genome analysis used in this work. 
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Potential NRPS extracted by this process are analyzed by prediction tools available on the web [2, 3, 4]. 
The first two tools predict the modular organization of the synthetases and the all three predict the amino 
acids incorporated by the A-domains. As pyoverdines are linear or partially cyclic peptides, the order of the 
A-domains coupled with the prediction of the selected amino acid allowed us to construct the potential 
product of the synthetases. To identify the predicted peptides, the structure search tools of Norine database 
[5, 6] and bibliography research were used. This analysis also allowed extracting the sequence of A-domains. 

A high throughput technique was set up to detect less specific A-domains, using a feeding approach 
consisting in modifying the composition of the culture medium with different amino acid residues combined 
to whole cells MALDI-TOF mass spectrometry analysis. If the amino acid used in the feeding is 
incorporated by A-domain instead of the commonly accepted one, we detect the change of the peptide mass. 

3 Results 

Genes involved in the pyoverdine biosynthesis were for the first time identified for eight strains. For 
fifteen of the seventeen Pseudomonas sp. genomes studied a correlation between the NRPS sequences and 
the produced siderophores was established. Only the predicted sequence of the pyoverdine produced by one 
of these strains did not match with other known pyoverdine sequences. This sequence appeared to be a new 
form of pyoverdine. In the three strains of Pseudomonas syringae sequenced, the sequence predicted for the 
pyoverdine and the organization of the synthetase are strictly co-linear. Furthermore, seven cyclic 
lipopeptide synthetases recognizable by two Te-domains in tandem at the end of the synthetase and nine 
PKS/NRPS hybrid synthetases were identified in the genomes. In a second part, an alignment and a tree of 
the sequence of A-domains with known specificity was performed. We observed that few A-domain 
sequences are similar despite a different substrate activated. This observation can support the idea that some 
A-domains have a low specificity. The specificity/permissivity of A-domains was studied by amino acids 
feeding experiments. Amino acid substitutions were observed by this method, especially the substitution of a 
threonine by a serine occurred in the pyoverdines produced by several strains. 

4 Conclusion 

Using bioinformatics tools, we have predicted the production of 41 non-ribosomal peptides by seventeen 
Pseudomonas sp. species. Diversity of the peptides produced depended on species, pointing out a specific 
evolution. To further study one aspect of this evolution, we are now investigating the permissivity of the A-
domains showing that they can select one or two amino acids, depending on their intracellular pool. 
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Abstract Protein structures are valuable tools for understanding protein function. However, 

protein dynamics is also considered a key element in protein function. For fully understanding 

protein function at the molecular level now requires accounting for flexibility. 

Protein structure can be described by a limited set of recurring local structures. We established 

a library composed of 120 overlapping long structural prototypes (LSPs) representing 

fragments of 11 residues in length and covering all known local protein structures. A novel 

prediction method that proposes structural candidates in terms of LSPs along a given sequence 

was proposed. In this study, we utilise this methodology to predict protein flexibility. We first 

examine flexibility according two different descriptors, the B-factor and root mean square 

fluctuations from molecular dynamics simulations. We define three flexibility classes and 

propose a method based on the LSP prediction method for predicting flexibility along the 

sequence. This method competes rather efficiently with the most recent, cutting-edge methods 

based on true flexibility data learning with sophisticated algorithms. 

Keywords Bioinformatics, protein structure, flexibility, protein dynamics, structural alphabet. 

1 Introduction 

Knowledge on protein 3D structures is essential for better understanding protein functions. In the case of 

enzymes, determination of 3D structures has helped elucidate why residues far apart in the sequence are 

involved in a given catalytic reaction. We have described global protein structures using a limited set of 

recurring local structures [1]. We have defined a library of 120 overlapping representative fragments of 11 

amino acids in length named long structural prototypes (LSP). They encompass all known local protein 

structures and ensure good quality 3D local approximation [2]. The length of representative fragments makes 

it possible to account for long-range interactions and correlations. Using the sequence-structure relationships 

deduced from this library, prediction methods in terms of LSPs have been elaborated [3]. The prediction 

method is based on evolutionary information coupled with an efficient learning method called support vector 

machines (SVM) [3]. We have examined protein flexibility of fragments in representative datasets using two 

different approaches, X-ray experiments and in silico simulations [4]. 

2 Material and Methods 

A dataset of X-ray high-resolution (≤ 1.5 Å) globular protein structures was extracted from the Protein 

Data Bank (PDB). In this dataset, the proteins shared less than 10% sequence identity and differed by at least 

10 Å C root mean square deviations (C RMSD). Selected protein structures were 70 to 200 residues long, 

composed of a single domain and were not involved in a protein complex, and did not have extensive 

number of contacts with ligands. A final dataset of 43 protein structures was obtained. We extracted 

normalized C  B-factors from the PDB files of the protein structures dataset. 

Predictions of flexibility were performed using the results of LSP prediction [3] treated with Support 

Vector Machines (SVMs). LSP prediction is based also on SVMs with the help of PSI-BLAST. 

3 Results 

We chose to define three flexibility classes from the most rigid to the most flexible using both two 

descriptors of protein dynamics, i.e., normalized B-factor and normalized RMSF values. The 4 thresholds 

used to define the three classes were optimized to obtain the best prediction rate and equilibrated classes. 
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Figure 1. Distribution of the three classes of flexibility. Examples of flexible and rigid LSPs are shown. 

Figure 1 shows the repartition of the three classes of flexibility with corresponding distributions. The 

rigid and intermediate flexibility classes were similarly populated with 40.4% and 36.7% of protein 

fragments, respectively, whereas only 22.9% were classified in the most flexible class. Interestingly all 

extended LSPs are in rigid class (e.g., LSP 9) while no connection LSP is found rigid and helices are found 

in all classes (e.g., LSP 43 in flexible class). 

The prediction method led to an average, very well-balanced prediction rate of 49.4% for the three 

defined flexibility classes. Significant confusion with Class 2 (intermediate) is observed in the predicted 

states. Indeed, 86.5% of rigid protein fragments were predicted to be rigid or intermediate. Likewise, 94.2% 

of flexible fragments were predicted to belong to an intermediate or flexible class. In contrast, confusion 

between flexible and rigid classes was very low. Less than 13.5% of fragments observed in the rigid class 

were predicted to be flexible, whereas only 6.0% of fragments observed in the flexible class were predicted 

to be rigid. More importantly, this prediction rate was considerably higher than a random prediction rate. A 

random prediction rate would give 36.0%, with only 8.5 and 13.8% of rigid and flexible fragments correctly 

predicted. 

Comparison with prediction methods based on two flexibility classes shows that our approach is 

similarly powerful when the three flexibilities are regrouped into two classes. A confidence index of the 

prediction has been also proposed. 
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Abstract Protein Structure Comparison is a useful method for function characterization and 

evolutionary studies. We propose a method for three dimensional (3D) protein structure 

comparison based on similarities in local backbone conformation. A library of 16 frequently 

occurring penta-peptide backbone conformations, namely Protein Blocks, was used to 

transform 3D information as a sequence. This reduces the problem of structural comparison to 

a more classical sequence alignment. The use of an anchor based dynamic programming 

algorithm with specialized gap penalties resulted in a significant improvement over earlier 

studies based on simple global alignments. The alignment quality improved by about 82% and 

the efficiency in searching a structure databank for related folds was also enhanced by 

6.2%.Comparison with other popular methods suggest that iPBA is one among the top two best 

approaches. 

Keywords. Protein Structure Comparison, Protein Blocks, Dynamic Programming. 

 

1 Introduction 

A large majority of structure alignment tools optimize regions of local structural similarities followed by 

global refinement. We had also developed an approach for structure comparison based on the use of a widely 

used library of local backbone conformations, a Structural Alphabet, i.e., Protein Blocks (PBs) [1, 2]. PBs 

consists of a set of 16 penta-peptide backbone conformations described in terms of φ/ψ dihedral angles. A 

complete protein backbone can be approximated with an average (Root Mean Square Deviation) RMSD of 

0.42 Å, using the prototypes from this library. As each of the PBs is represented by a letter (from a-p), then 

the 3D structure information can be converted to a one dimensional sequence. Hence two protein structures 

can be compared by the alignment of PB sequences [3]. In this study we try to improve the PB based 

structure comparison using an anchor-based alignment methodology and refined PB substitution matrices. 

2 Methods 

A database of structural alignments was used to generate a PB substitution matrix based on the preference 

for PB changes. The substitution data was normalized based on sequence and structural similarity to refine 

the scores of the matrix. The substitution scores guide the alignment of PB sequences based on dynamic 

programming. An anchor-based alignment methodology was designed, where the structurally similar 

stretches are first identified as local alignments and the intervening segments are then aligned with lower gap 

penalties (Figure 1A) [4]. The local alignments were obtained using a linear space dynamic programming 

algorithm [5]. The alignment quality was quantified using classical RMSD, GDT_TS [4] or similar scores.  

3 Results 

The use of anchor based dynamic programming algorithm with optimized gap penalties resulted in a 

significant improvement over the earlier approach (PBALIGN) (Figure 1A). The alignment was scored based 

on refined PB substitution matrices coupled with amino acid substitution weights. 

Communications affichées revues Affiche 130

–263–



 

Figure 1. (A) Improvement in protein structure comparison using anchor based PB alignment (iPBA) (B) Comparison 

of iPBA with DALI, MUSTANG, GANGSTA+ and TMALIGN for alignment of 100 domain pairs. 

With the new developments, about 82% of the alignments had better RMSD and the efficiency in finding 

homologues (from the same structural super-family), improved by 6.2%. The alignment quality (GDT_TS 

score) was better than DALI and MUSTANG in about 93.2% and 95.1% of the cases respectively [4]. 

Significant improvement was also achieved with respect to GANGSTA+ (81%), while comparable 

performance was obtained with TMALIGN (Figure 1B). A web server on this approach is also available: 

http://www.dsimb.inserm.fr/dsimb_tools/ipba [6]. 
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Abstract  DOMIRE (DOMain Identification from REcurrence) is a web server using VAST to 

define the domain boundaries in proteins from their 3 D structure recurrences with a list of 

structural neighbours in the Protein Data Bank. 

Keywords  structural domains, protein structure evolution, protein modelling. 

1 Introduction 

Domains play an essential role in our understanding of protein evolution and function either because they 

appear as substructures of a protein or correspond to individual three-dimensional (3D) structures in their 

own right. The characteristic property of compactness of their structures have been extensively used to 

define the domains from their atomic coordinates, a comprehensive list of these methods is given in Tai et 

al
1
. Domains are currently forming the basis of the CATH (http://www.cathdb.info/) or SCOP 

(http://scop.mrc-lmb.cam.ac.uk) protein structures classifications.  

Another definition of a domain is an exchangeable segment of amino acid sequence, that retains its 3D 

structure and its molecular function. The servers Prodom (http://prodom.prabi.fr) and Pfam 

(http://pfam.sanger.ac.uk/) apply this definition to identify the domains by comparing the protein amino acid 

sequences and their degree of conservation. 

The two definitions, compactness and sequence conservation should converge notwithstanding some 

intrinsic limitations, there are considerably less determined protein structures than amino acid sequences and 

the sequence is less conserved than the structure and the function.   

Using the VAST algorithm (Gibrat et al. [2], Madej et al. [3]) we observed that protein domains could be 

also assigned from the recurrence of small 3D common substructures found in proteins of the PDB. (Tai et 

al. [1]). Following this work we designed DOMIRE for DOMain Identification from REcurrence 

(http://genome.jouy.inra.fr/domire/). 

2 Methods 

In the VAST algorithm, proteins are represented by their secondary structure elements (SSEs), more 

specifically by the endpoints of vectors going through these SSEs. The basic task of VAST is to find the best 

3D common substructures between a query and a target. A 3D common substructure is formally defined as a 

one-to-one correspondence between a subset of SSE vectors in the query and a subset of the SSE vectors in 

the target. This correspondence respects the type of SSE (i.e., helices are only paired with helices and strands 

with strands) and the topology. This ensemble is named a clique an example of which is given in fig 1. For 

further details about VAST see Methods and Appendix in Sam et al [4]. The secondary structures of the 

query and the target are determined with the program KAKSI (Martin et al [5]) from the atomic coordinates.  

The server collects all the cliques having a Pcli > -10 and a rmsd < 5 Å that are found by comparing a 

query protein with a representative set of protein chains of the PDB. These cliques are listed in the file 

*.mathlab. Then the cliques are extended by including the residues between two secondary structural 

elements of the clique if they are less than 40 (fig.1b, query pLSSP (for padded Locally Similar Structural 

Piece) and target pLSSP) and all the query pLSSP are clustered as a binary matrix A along the query length. 

This matrix A is transformed into a co-occurrence N matrix presented as a heat-map/contour map (file 

*_Nmatrix.png/*_Nmatrix_contour.png) from which the domains are parsed by three different methods: 

PCM, SMF and SVD (Tai et al. [1]) in the file *_Domains.txt. 
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Figure 1. Example of one of the 12,282 cliques for the query protein 1jjcB:  

 Panel (a) the query protein 1jjcB (residues 475-674) on the left and a target protein 2hrvA on the right. The 

structural similarity found by VAST for this clique corresponds to 4 anti-parallel strands of a sheet. Aligned 

segments of secondary structures are shown in red in both structures, and the gaps less than 40 residues in 

blue. The target protein 2hrvA is not a structural neighbour considering its low percent of aligned residues. 

 Panel (b) The same clique, with (blue lines) and without (red lines) gaps included is "projected" along the 

query sequences (blue: pLSSP, red: LSSP) and the target. The red boxes correspond to the VAST clique 

segments of secondary structures with their numbering along the sequence. Arrows indicate the structural 

correspondence between the segments of secondary structures. Taken with permission from Tai et al [1].  

 

The server introduces a concept of structural neighbours by selecting the targets according two criteria: 

the length of the target clique, gaps included, amounts to at least 80% of the target total number of residues 

and the quality of the alignments with 40% at least of the target CA (carbon alpha) aligned by VAST with 

the query. In other words, the domain in the query protein exists as an individual 3D structure in the PDB. 

The server provides a list, and a graphic representation of these neighbours. Inputs are a PDB accession code 

or a file of coordinates (PDB format) and the results are sent by email with an access to a web page. 

3 Results and Discussion 

From our studies in Tai et al. [1], the domain assignments by the algorithms SMF and SVD perform as 

well as the server PUU (87.5%, 87.3 and 86.7% respectively) but less than Domain Parser and PDP (92.9% 

and 93.1% respectively) in their agreement with CATH or SCOP classifications. Considering that the 

domain assignments by the algorithm PCM are closer to those of CATH or SCOP than SMF and SVD for 

chains having three or more domains. The web site presents a 3D model of the domain assignments. 

The non redundant data base used for the VAST comparison are proteins of the PDB 

(http://www.pdb.org) having less or equal to 40% of identical residues. It is periodically updated taking 

advantage of the normal evolution of the PDB content. 

4 Conclusion 

The present server offers the possibility to determine the domain boundaries with a comparable accuracy 

with other servers of this type. It offers also a list of structural neighbours useful to detect remote 

homologues. The collection of small 3D common substructures (3 to 5 secondary structures, 4 in average) 

represents a global vision of the domain structure that we consider as reflecting its formation during 

evolution. The introduction of the notion of structural neighbours allows defining the structural domains as 

individual structures already existing in the Protein Data Base. They can differ in some cases from the 

assigned boundaries of the domain by the server, this suggests future works. 
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Abstract Fetal / Neonatal alloimmune thrombocytopenia (FNAIT) is a severe bleeding syndrome
in which fetal / neonatal platelet destruction is mediated by maternal antibodies directed to spe-
cific antigens (or alloantigens) inherited from the father. The integrin complex αIIbβ3 is highly
immunogenic and is responsible for most FNAIT. We used state-of-the-art molecular modelling
techniques to study the impact of Human Platelet Alloantigen (HPA) polymorphisms on the com-
plex structure, and their role in antigenicity. We showed that accessibility is a key element in the
immune response.

Keywords αIIbβ3, HPA polymorphisms, molecular modelling, antigenicity.

Fetal / Neonatal alloimmune thrombocytopenia (FNAIT) is a severe bleeding syndrome in which fetal /
neonatal platelet destruction is mediated by maternal antibodies directed to specific antigens (or alloantigens)
inherited from the father. These antigens depend on polymorphisms of genes coding for several membrane
glycoproteins (GPIb-IX-V, GPIIbIIIa, and GPIaIIa) or lipo-protein (CD109) receptors expressed at the platelet
surface. These polymorphisms are classified in the Human Platelet Alloantige (HPA) nomenclature. αIIbβ3 (or
GPIIbIIIa) carries the majority of the HPA systems described to date. This complex is highly immunogenic and
is responsible for most FNAIT.

αIIbβ3 belongs to the large family of the integrins that is composed of heterodimeric membrane receptors
involved in cell-cell or cell-matrix interactions. It mediates platelet aggregation as a receptor for fibrinogen, a
major plasmatic adhesion molecule. Resting platelets express on their surface about 50 000 copies of αIIbβ3
and 30 000 additional copies when activated.

Protein 3D structures (or structural models) help to understand relationships between the protein dynamics
and their biological functions. They provide new insights into atomic mechanisms of macromolecular recog-
nition and conformational changes. We have rencently used a 3D structure of αIIbβ3 (PDB code 3FCS) to
propose an explanation for the structure effect of the β3 Lys253Met substitution indentified in a Glanzmann
patient, a mutation impairing αIIbβ3 expression [1].

Immune response relies on both immunogenicity and antigenicity. Antigenicity can depend on the 3D
molecular structure surrounding the polymorphic site. We have used a 3D structure of αIIbβ3 and modelling
experiments to study the impact of HPA polymorphisms on the complex structure, and their role in antigenicity.
Different HPA allelic forms of αIIb and β3 were modeled and resulting structure characteristics of residue
accessibility, mobility, and electrostatic change were analyzed [2].

β3 HPA polymorphisms 1a, 1b, 4a, 4b, 6a, 7a, 10a, 11a, 14a, 16a, 17a, 19a and 21a have been studied
and reported in Fig. 1(a). The β3 backbone structure is represented as ribbon and HPA polymorphic amino
acids are represented as spheres. Multiple glycosylation sites seem to not overlap with HPA polymorphism
sites. Alloantibodies rely on the residue presence at the surface of the structure (accessibility) but do not tightly
depend on its mobility or its electrostatic charge.

We focused our work on the the HPA-1 system of β3 that is the most frequent HPA system involved in
FNAIT in Caucasian population in term of frequency and pathology severity. In the β3 structure, the HPA 1a
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(a) (b)
Figure 1. (a, left panel) β3 HPA polymorphisms. The β3 backbone structure is represented as ribbon and HPA poly-
morphic amino acids as spheres. (b, right panel) HPA 1a polymorphism localisation on β3 with neighboring domains
labeled.

polymorphism is characteristed by a leucine residue and a proline for HPA 1b. The residue of interest is located
in a loop in the PSI domain of β3 (illustrated in Fig. 1(b)). This loop is also in close vicinity of the I-EGF1
and I-EGF2 domains that are strongly involved in the activation of αIIbβ3. Molecular dynamics studies were
performed on HPA 1a and 1b structures showing a high flexibility of the I-EGF1 and I-EGF2 domains while
retaining a similar local structure of the mutated loop. The antigenicity of HPA 1a and 1b seems preserved
although a difference in the accessibility of both polymorphisms is observed.

Structural modelling of the different HPA forms of αIIbβ3 and comparative analyses of the structure char-
acteristics suggest that, as expected, antigenicity mainly depends on residue accessibility. The other structure
features such as residue mobility and electrostatic do not appear critical for the presence of an alloantibody
although they can modulate its binding affinity. These analyses are performed on static structures obtained di-
rectly from the Protein Data Bank, or after modelling of a specific allele. However, αIIbβ3 protein chains are
highly dynamic. We have performed dynamic analyses to go deeper in the understanding of polymorphisms
structural properties.
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Abstract Transmembrane proteins (TMP) are known to play essential roles in all living cells,  
like bacteria and eucaryota.  They are involved in numerous major and essential  biological  
processes, e.g., ion and small molecule transport and signal transduction. This kind of proteins  
is also the target of most of manufactured drugs. Although they account for about 20-30% of  
coding genome, they represent only less than 2% of structures available in the Protein Data  
Bank (PDB). This low number is due to the difficulty to obtain high-resolution structures of  
transmembrane proteins as they are embedded into lipid bilayers.
To overcome the limitations in the number of available structures, comparative modeling is an  
interesting tool, but is also limited by the lack of structures usable as templates. We propose to  
study the sequence-structure relationship of TMP and to extract general features from various  
proteins. To perform our work, we use the Hybrid Protein Model (HPM), a learning approach  
able to compact protein 3D-structure and physico-chemical information. This methodology has  
already been successfully used for globular protein studies.

Keywords α-helical  transmembrane  protein,  protein  structures,  protein  blocks,  sequence-
structure relationship.

1 Introduction

Transmembrane proteins (TPMs) are involved in many essential functions. They are also linked to, many 
diseases and pathologies due to mutations, leading to misfolds or missassembly of TMPs, or the binding of 
unwanted partners, e.g., Duffy Binding Protein of Plasmodium vivax [1]. So, understanding better the TPMs 
is an important research field especially for drug design strategies [2]. These last years, many researches  
have been led in the area of TPMs and their functions, particularly in analyzing the sequences, the topology 
and the mutation effects [3].

Even though the number of membrane protein structures is limited, the uniformity of their structures and 
interactions allow them to investigate computationally. Integral α-helical membrane proteins are composed 
of  a  bundle  of  helices  crossing  completely  the  membrane.  So,  α-helical  membrane proteins  are  rich  in 
reentrant regions, interfacial helices, structured extracellular or cytoplasmic loops. An exhaustive analysis of  
these  structural  features  related  to  the  sequence  would  be  needed  for  enhancing  the  understanding  of  
functions, modeling and drug design [4].

To study the sequence-structure relationship in transmembrane proteins, we use an adapted and original 
methodology,  named Hybrid Protein Model  (HPM).  The power  of  HPM is  to  compact the  information 
contained in a structural protein databank to analyze the relationship between sequence and structures. The  
advantage of this clustering method is that it can take into account the sequentiality of the protein without  
any  a priori.  The latter  is an important  point in proteins as they are polymer chains. It  allows creating 
clusters  which  are  learnt  independently  but  having  a  sequentiality,  i.e.,  a  cluster  i overlaps  with  their 
neighbors i+1, i-1, … . It has been used to compact protein 3D-structures information and physicochemical 
properties of globular proteins [5].  As 3D local folds are clustered using HPM, the informativity on their 
sequence is an interesting analysis to study the sequence-structure relationship. 
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2 Material and Methods

From membrane protein databanks (OPM, TMPDB, PDB-TM ...),  a  non-redundant  dataset  of  X-ray 
TMPα structures (<2.5 Å) was extracted. The pairwise identity percent was 40%, and no backbone atom was 
missing. The sequence-structure relationship was performed using HPM method [6] (see Figure 1).

Figure 1. HPM method. 1) A databank of protein fragments is built. Each protein fragment is encoded into a vector 
encompassing physico-chemical properties and angles information. 2) Each fragment F with its environment 

(X=13) forms a sub-matrix. A compatibility score is computed at every positions of HP matrix. 3) The minimal 
score implies the best matching position. 4) A local modification at this position is performed to learn the 

fragment F. Process is reiterated through stabilization.

3 Results

After  checking  important  parameters,  as  the  HP  length,  the  number  of  learning  cycles,  the  most  
representative HP matrix is selected. Two major criteria to select the HP are: 1) a high continuity between 
consecutive  hybrid  positions,  2)  a  low  redundancy  within  the  HP. Analyses  are  performed,  like  the 
distribution of protein blocks (PBs) and their amino acid distribution, to underline interesting sequence –  
structure relationship. The main results will be presented, e.g., the different kinds of helical regions defined 
by HPM.  For example,  after  clustering analysis,  two kinds of helices have been detected with different  
physico-chemical properties due to the composition in amino acids.
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1 Introduction

The  protein  CyaA  is  an  important  virulence  factor  of  Bordetella  pertussis,  the  causative  agent  of 
whooping cough disease. The AC domain of CyaA is translocated into eukaryotic cells, and is activated as 
adenyl-cyclase to produce cAMP in an uncontrolled way leading to an alteration of the immune system, by 
interaction with the ubiquitous protein calmodulin (CaM).

CaM is a protein including two lobes, N-CaM and C-CaM, connected by a flexible linker. The structure 
of the AC bound to C-CaM was recently  resolved by Guo et  al,  2005 [1],  by X-ray diffraction.  In this 
crystallographic  structure,  the  lobe  N-CaM  could  not  be  determined.  The  AC  domain  includes  three 
subdomains, named CA, CB, and Switch A (SA). The catalytic loop and the C terminal regions are included 
in the CA domain. 

In a previous work on the homologous protein EF of  Bacillus anthracis (Laine et al,  2008 [2]),  MD 
simulations showed that the removal of Ca2+ from C-CaM induces a tension toward EF, and deformations in 
apo-EF which bring domains closer and induce a collapse catalytic site.

In order to get more information on the conformational behavior of AC domain in the absence of CaM 
and on the role of the Ca2+ ions in the interaction and to get an energy dependency map between subdomains, 
we performed molecular dynamics (MD) simulations of three systems : AC-(2Ca-C-CaM) corresponding to 
the PDB structure 1YRT [1], AC-(0Ca-C-CaM) where the calcium ions were removed from the structure, 
and the free AC domain where calmodulin was removed. This simulations showed that the removal of Ca2+ 

ions and C-CaM induced a large conformational variability of AC, possibly leading to a protein compaction. 
Energy dependency analyzes revealed a very simple energetic influence of C-CaM on CA, which disappears 
with the removal of Ca2+.

2 Results

It's important to analyze the degree of convergence of a trajectory to check the stability of a simulation. 
This was evaluated by calculating the standard deviation (RMSD) of Cα positions with regard to the first 
structure of the trajectory. The global conformational drifts of the solute is the smallest in the presence of C-
CaM with a plateau around 3  Å.  The deletion of CaM make the Cα RMSD drop to 6  Å,  after 12ns of 
trajectory.  Thus,  C-CaM seems  to  be  essential  for  stabilizing  AC.  The  conformational  drift  of  C-CaM 
corresponds to a quite limited reorganization of the calmodulin lobe.

The global motions of the solute were analyzed by principal component analysis (PCA) of the covariance 
matrix of atomic coordinates. For AC, there is one dominant eigenvalue, while there are several ones for the 
complexes. 90% of the protein internal motion are explained by 10, 19, 30 eigenvectors in free AC, AC-
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(0Ca-C-CaM) and AC-(2Ca-C-CaM) respectively. In all trajectories, the Switch A (SA) and the domain CB 
display the largest projections of PCA eigenvectors (Figure 1). A tendency of AC to become more compact 
by moving closer SA and CB can be noticed in free AC.  The presence of C-CaM reduces the SA rotation.

The energetic influences between the Switch A, CA, CB and C-CaM in the three molecular systems were 
determined by MMPBSA  ΔG [3] binding energies calculation,  which was proposed by Laine [4] on the 
homologous complex EF-CaM. No energetic influence was observed between domains for free AC and AC-
(0Ca-C-CaM) trajectories. During the trajectory AC-(2Ca-C-CaM), only one influence was observed from 
C-CaM on CA. The interaction network is more simple than in the complex EF-CaM, in which CaM is 
captured between the domains Hel and CA.

3 Conclusion

The global motion observed  for the AC domain during the trajectory AC-free shows a tendency of the 
protein to become more globular. This agrees with the hydrodynamics measurements performed by Karst 
and coworkers [5] on AC domain isolated in solution. The simplicity of the architecture of the complex 
revealed by energy dependency analyses allows us to imagine a synthetic biology approach, in which AC 
will be engineered so as to modify the control by calmodulin of the production of cAMP.
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Figure 1. Projection of the first mode PCA on the backbone of free AC.
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1 Introduction

The peptidoglycan layer is a key component of the bacteria cell wall to keep its shape and to prevent it  
from osmotic lysis.  The peptidoglycan is  a polymer resulting of the cross linking of identical  chains of 
monomers, each of them made of two joined amino sugars with a pentapeptide tail. D-Ala:D-Ala ligase is  
involved in the first steps of the synthesis of the cell wall. It catalyzes the formation of the dipeptide D-Ala-
D-Ala before  its  incorporation in  peptidoglycan synthesis.  Glycopeptide antibiotics,  like  vancomycin or  
teicoplanin, selectively bind to the D-Ala-D-Ala termini of the peptidoglycan precusors preventing them 
from crosslinking. In glycopeptide-resistant bacteria, an additional ligase, vanA, forms the depsipeptide D-
Ala:D-Lac instead of  the  expected dipeptide D-Ala:D-Ala,  preventing the binding of vancomycin.  Such 
bacteria are still able to build an effective cell wall in the presence of the antibiotic.

Indeed,  D-Ala:D-Lac  ligase  and  D-Ala:D-Ala  ligase  share  very  close  functions.  Their  amino  acids 
involved in the binding of their ligands are mainly conserved, except for the ones involved in the selectivity 
of the second ligand and their structures show the same folding. D-Ala:D-Ala ligase has been crystallised in  
several configurations [1]. The empty form of the protein is open and exhibits an extended omega loop while  
the protein with its binding site filled with ADP, 2 Mg2+ and a ligand is much more compact. In the co-
crystals, the omega loop closes the binding pocket through an H-bonds network constituted by a triad of  
amino acids connecting three loops. This lock keeps the binding cavity closed protecting the ligands bonding 
from hydrolysis. Up to now, the D-Ala:D-Lac ligase vanA was only co-crystallised with ADP, 2 Mg2+ and a 
phosphinate inhibitor in its binding cavity (PDB code : 1E4E). 

We  have  investigated  the  molecular  dynamics  of  the  vanA  D-Ala:D-Lac  ligase  [2],  from  resistant 
Enterococcus  faecium  in  order  to  compare  it  to  the  published  crystallographic  conformations  of  the 
structures of  D-Ala:D-Ala ligases.

2 Materials and Methods

Molecular dynamics (MD) trajectories were recorded over 30 ns using AMBER 10 in explicit solvent with 
TIP3P water parameters under periodic conditions at a constant pressure of 1 atmosphere regulated with  
isotropic position scaling and a relaxation time of 1 ps. The force field was FF99SB. A cutoff of 10 Å was 
used  for  Lennard-Jones  interactions,  and  long-range  electrostatic  interactions  were  calculated  with  the  
Particule Mesh Ewald (PME) protocol. The system was neutralized using 4 Na+ counterions. The simulations 
were performed at 300 K, using a Berendsen thermostat to control it. The Shake algorithm kept rigid all  
covalent bonds involving hydrogens, with a time step of 2 fs.

The protein vanA (1E4E) was simulated independently 9 times with ATP, 2 Mg2+ and a phosphinate 
inhibitor in its binding pocket. The empty protein was obtained by removing the ligands from the same initial  
structure and 8 trajectories were run. The proteins were simulated in the presence (= vanA-ss) or in the  
absence (= vanA) of a disulphide bridge formed between C52 and C64 in the N-terminus, far away from the  
binding site. At least, 7 trajectories were run for VanA-ss empty and 9 for vanA-ss with its ligands.
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3 Results

In the absence of ligands, vanA does not display conformational drift. On the contrary, vanA-ss shows an 
increase of its radius of gyration in 5 out of 9 cases. This expansion is due to the beginning of the opening of  
the omega loop involved in the closure of the binding site. Indeed, a principal component analysis (PCA) 
(Figure 1) of  the dynamics covariance of vanA-ss underline the omega loop and the part of the central  
domain facing it in the structure. These two regions build up the ligands binding site.

An opening of the structures was also observed for the vanA and vanA-ss simulated with their ligands. In  
all cases, the most mobile parts of the protein were restricted to the omega loop and to its counterpart central  
domain. The binding mode of the ligands is an ordered Ter Ter mechanism with ATP binding first prior to 
the D-Ala followed by the D-Lac. The obtained motions can be compared to the structural variations [1] 
observed by superimposing different crystal structures of the D-Ala:D-Ala ligases.

Figure 1. The first PCA mode projected on the trajectory structures of vanA and vanA-ss.  

4 Conclusion

The MD simulations performed on the protein vanA allowed us to relate its internal dynamics to the  
ligand interactions. As the same relations were observed on several D-Ala:D-Ala ligase structures [1], D-
Ala:D-Lac ligase internal  dynamics  should aim at  the  same characteristics.  These observations  allow to 
speculate  that  the  two  families  D-Ala:D-Ala  and  D-Ala:D-Lac  ligases  have  a  similar  opening  pocket 
mechanism.
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Abstract The binding mode of agonist and antagonist on the AChBP structures is usually consid-
ered as being determined by the C-loop position. We are proposing a new geometric parameter to
discriminate the ligand type: the full orthosteric cavity located at the interface between the two
subunits in ECD. Indeed, the spherical harmonics decomposition of this cavity allows to discrim-
inate between agonist and antagonist binding mode.
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1 Introduction
The acetylcholine nicotinic receptors (nAChR) are homo- or hetero- transmembrane pentamers, which

belong to the Cys-loop receptors family. Each subunit contains two domains: the extra-cellular domain (ECD)
forms the ligand orthosteric site at the interface between two subunits and the transmembrane domain forms
the ionic channel. The agonist acetylcholine is the natural ligand of nAChR but other molecules can bind to the
receptor, displaying an agonist (stabilizing the open channel) or an antagonist (stabilizing the closed channel)
effect. Up to now, only one structure of nAChR is available at a resolution of 4Å [1]. Nevertheless, numerous
high resolution crystallographic structures involving agonist and antagonist ligands are available for the soluble
acetylcholine binding protein (AChBP), which is homologuous to the nAChR ECD.

The binding mode of agonist and antagonist was previously analyzed on the AChBP structures [2] and the
position of the C-loop over the binding pocket is usually considered as a discriminated factor. Herein we are
proposing a new geometric parameter to discriminate the ligand type: the full orthosteric cavity located at the
interface between the two subunits in ECD.

2 Materials and Methods
32 PDB structures: 1I9B, 1UV6, 1UW6, 1UX2, 1YI5, 2ZJU, 2ZJV (Lymnaea stagnalis), 2BG9 (Tor-

pedo marmorata), 2BJ0 (Bulinus truncatus) et 2BR7, 2BR8, 2BYN, 2BYP, 2BYQ, 2BYR, 2BYS, 2C9T,
2PGZ, 2PH9, 2UZ6, 2W8E, 2W8F, 2W8G, 2WN9, 2WNC, 2WNJ, 2WNL, 2WZY, 2X00, 3C79, 3C84, 3GUA
(Aplysia californica) were included in the analysis. The 220 subunit dimers, extracted from these PDB struc-
tures, were superimposed to the dimer AB of 2BYP using ProFit [3].

The orthosteric cavities are detected by the software mkgrid (A. Blondel, unpublished result) by rolling a
variable sized probe on the structures. The solvent accessible surface of the cavity is determined using a 10Å
probe, whereas the surface accessible to the protein is determined using a 1.4Å probe. The atoms N, H, O, C, S,
P of the protein are represented by spheres with van der Waals radii of 1.6, 0.6, 1.6, 2.3, 1.9 et 2Å respectively.
We obtain on the overall structure cavities represented by 3D grids of 0.5Å resolution. The orthosteric grid is
manually selected as the grid located at the interface of the two subunits and lying behind the C-loop.

The spherical harmonics development of the orthosteric cavity is obtained using SpharmonicKit/s2kit [4,5].
The distance of the surface of the orthosteric cavity to the origin of the axes, can be expressed as a scalar
function f(θ, ϕ), θ and ϕ being the angular spherical coordinates. f is developed in spherical harmonics:

f(θ, ϕ) =
∞∑

l=0

+l∑

m=−l

Cm
l Y

m
l (θ, ϕ) (1)
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where Cm
l are the development coefficients, and Y m

l (θ, ϕ) are the spherical harmonics:

Y m
l (θ, ϕ) =

√
2 · (l −m)!

(l +m)!
Pm
l (cos θ)e+ imϕ (2)

where Pm
l (cos θ) is the Legendre polynomial. Using the previously determined Cm

l coefficients, a principal
component analysis (PCA) is realized with R [6] and the package FactoMineR [7]. The PCA is centered but
not unit-scaled in order to take into account the large coefficients variability.

3 Results and Discussion
The projection of the dimers on the two first PCA modes (Fig. 1) seems to well discriminate between

agonist and antagonist ligands. The apo dimers, as well as the dimers containing crystallographic co-factors
(not shown in the figure) can have variable configuration. Hence, their scattering over the whole projection is
not surprising, which agrees with the non-specific effect of these ligands.
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Figure 1. Projection of the subunits dimers on the two first modes of the PCA, based on spherical harmonics development.

4 Conclusion
The PCA projection based on spherical harmonics development of the full orthosteric cavity shows a good

discriminative power, according to the agonist and antagonist ligand effect. This projection can be used as a
reference to classify crystallographic structures of conformation produced by molecular dynamic simulation.
The selection rules derived from the projection could be used during molecular docking approach in order to
orient the search towards agonist or antagonist ligands.
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1 Introduction

Ambiguous  Restraints  for  Iterative  Assignment  (ARIA)  is  a  software  for  efficient  NMR  structure 
determination of proteins by automated assignment of the nuclear Overhauser effects (NOEs) measured on 
the NOESY spectra. ARIA follows an iterative protocol. In each iteration, the NOEs determined from the 
previous iteration conformations, and the data points most inconsistent with the conformations are removed 
with a simple statistical analysis [1,2]. Protein conformations are then calculated with distance restraints, 
which are based on the current set of assignments but usually retain a large level of ambiguity. Convergence 
of the structures improve from iteration to iteration, and the calculation is terminated when a converged set 
of conformations is obtained with good restraints fit. 

The  automated  NOE  assignment  and  the  structures  determinations  are  hampered  by  low  spectral 
resolution or missing structural data. The NMR restraints are usually applied through an harmonic restraint 
potential, but a log-harmonic potential has been recently developed from the observation of the distribution 
of distances and NOE intensities [3]. The advantage of this log-harmonic potential is twofold: it has a single 
minimum  and  it  is  more  tolerant  for  large  violation  [4].  Nevertheless,  some  difficulties  in  structure 
calculation have  been  encountered  with  log-harmonic  potential.  They  may  be  detected  as  bad  quality 
Molprobity scores [5], or as a lack of structure convergence.

2 ARIA Developments

The developments realized in ARIA concern three aspects: (a) the implementation of ARIA to the grid 
computing,  (b)  the  modification  of  the  force  field  used  during  the  conformers  generation,  (c)  the 
determination of the violation tolerance from the current set of protein conformations.

The iterative  ARIA cycle  is  based  on three  major steps:  (i)  input  preparation for the  generation  of 
conformations, (ii) generation of conformations by a simulated annealing procedure using the software CNS 
[6], (iii) generation of conformations to generate a new set of NOE assignments and restraints. ARIA is 
straightforwardly parallelized by distributing the step (ii) over a few or many CPU units. To offer to the 
greatest number of people the opportunity to use ARIA with powerful CPU, a new version of ARIA have 
been developed that can run on a grid computing. This development has been realized in the frame GRISBI 
(Grid Support to Bioinformatics: www.grisbio.fr) [7]. 

Low Molprobity score have been observed when using the log-harmonic potential. The force field used 
during the conformer generation displays high force constants and small Van der Waal radii that are not 
compatible with the single minimum of the log-harmonic potential. A new force field have been developed, 
the energy constants for covalent angles and improper dihedrals have been decreased (by factor 10) and the 
Van der Waals radii for hydrogen have been increased, to soften the force field. The softer force field has 
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been tested on several proteins, which were proposed as targets  in the  Critical  Assessment of  Automated 
Structure Determination of Proteins from NMR data (CASD-NMR: http://www.e-nmr.eu/CASD-NMR) [8]. 
These modifications significantly improved the Molprobity scores without affecting the coordinates RMSD 
difference to the target.

An additional feature of the calculations (with the log-harmonic potential) is the lack of convergence. 
The CASD target  VpR247 displays a high level  of restraints  rejection producing an unconverged set  of 
conformers  (Figure 1a).  To overcome this  problem,  the violation tolerance was calculated as root  mean 
square deviation between the distances obtained from the restraints and from the best conformers, adapting 
automatically the tolerance value to the data quality. A good convergence of VpR was thus obtained (Figure 
1c) without having to increase the number of conformers calculated by iteration and/or to manually adjust 
the violation tolerance (Figure 1b).

a)  50  conformers  and  no  automatic 
monitoring of the violation tolerance. 
Average  RMSD convergence:  6.7  Å. 
Average RMSD with the PDB 5.22 Å.

b)  200  conformers  and  manual 
monitoring of the violation tolerance. 
Average RMSD convergence:  1.54  Å 
Average RMSD with the PDB 1.57 Å.

c)  50  conformers  and  automatic 
monitoring of the violation tolerance.
Average  RMSD convergence:  1.6  Å, 
Average RMSD with the PDB 1.69 Å.

Figure 1.  ARIA VpR247 calculations using log-harmonic potential.
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1 Background and Aims

The beta- and gamma-crystallins are the major components of the vertebrate eye lens; these long-life and
unusually stable proteins account for the lens transparency [1].

These proteins share two conserved structural domains, generated by duplication. Each domain comprises
two Greek key motifs, and belongs to the same structural family. However, these proteins differ by their
structural assembly: the gamma-crystallins are monomers, whereas the beta-crystallins are oligomers.

Structural homologues of this family were identified in all life kingdoms. These non-lens proteins share a
various number of beta/gamma-like domains (at least one), which probably arose from a common ancestor, by
multiple duplication events [2].

These proteins together form the beta/gamma-crystallin superfamily. Only few information about their
assembly state is available. Moreover, these proteins are involved in a wide variety of functions, which remain
mainly unclear. Some members of this superfamily (bacteria and lower eukaryotes) are stress-related proteins,
and main members share a calcium-binding site [3].

In this context, we aim to understand the evolution history of these proteins, and identify the determinants
of their sequence-structure-function relationships. We present an explicative approach to detect sites and their
physicochemical properties critical for beta- and gamma-crystallin assembly and domain evolution, based on
aligned sequences.

This in silico approach provides prediction of interactions and deleterious mutations for new proteins of the
superfamily, according to these critical features.

2 Methods

The beta/gamma-crystallin homologous protein sequences were retrieved from Uniprot (http://www.uniprot.
org) by a similarity search approach based on the HMMER suite [4]. A profile Hidden Markov Model (HMM-
profile) is built from an initial multiple sequence alignment (obtained by combination of sequence and 3D
structure data), calibrated, and further used to detect similar sequences, split them into regions (N-ter, linker,
C-ter, and homologous domains), and add their domain sequences to the initial multiple sequence alignment.

We detect 256 complete protein sequences which belong to the beta/gamma-crystallin superfamily (94 beta-
crystallins, 112 gamma-crystallins, 50 non-lens proteins), corresponding to 527 domains. We then use PhyML
[5] to reconstruct the phylogenetic tree of these domains, and the one of the two-domain superfamily members.

We apply a supervised clustering method (based on [6]) on these aligned sequences; this method includes
two steps: (1) selection of discriminant binary features according to the mutual information criteria [7], each
feature associating an alignment position with an amino acid group, and (2) learning of the classifier by es-
timating the frequencies of selected features, conditionally to the assembly state (monomer or oligomer) or
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the domain orthologous group. The most relevant features are predicted to be the structural determinants of
assembly or function.

We analyze the available 3D structures of beta- and gamma-crystallins (8 beta, 25 gamma) in order to
determine the atomic contacts between the two homologous domains (D1 and D2), and the solvent accessible
surface (SAS) of each domain residue. The package CCP4 [8] was used to detect the atomic contacts; the
distance cut-off was set to 3.65 Å for all contacts, and the hydrogen bonds were detected according to angle
and atom type. The residue SAS was computed by NACCESS [9].

3 Results

We identify 32 sites (15 beta-specific, 17 gamma-specific), whose amino acid composition determines the
protein assembly (monomer or oligomer). We also identify 6 specific sites and physicochemical properties
determining the domain orthologous group.

These sites are mainly located out of the domain interface. For most of these amino acid sites, their SAS
significantly differs between beta- and gamma-crystallins, or between D1 and D2 domains. These features
are useful to understand and predict the sequence-structure-function relationships of the beta/gamma-crystallin
superfamily members.
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Abstract This article presents a structural approach to reveal similarities between 
evolutionary distant enzymes. As 3D shape of enzyme’s binding site is more closely related to 
function than sequences, we describe the shape of the binding site using chemical structural 
features (SCF) surrounding the ligand. Pairwise structural alignment of these SCF using graph 
matching algorithm can be used to compare proteins. Classification and structural phylogeny 
reconstruction using the enzyme distance matrix can reveal similarity that could not be seen 
from sequence alignment. A proof of concept of the approach is presented in this paper using 16 
kinases selected from different branches of the human kinome phylogenic tree plus 2 
plasmodium kinases. The scope of this study is to identify chemical class of human kinases 
inhibitors to discover new anti-malarial kinases inhibitors. 

Keywords Enzyme classification, structural chemical features, kinase, plasmodium, MedSUMO. 

1 Introduction 

In this paper, we present a proof of concept to classify enzymes of a given family based on the 3D shape 
of their binding site. The 3D shape signature is captured by Structural Chemical Features (SCF) of the 
protein atoms around the ligand [1]. Common SCF between two proteins are used to make a 3D 
superimposition of enzyme binding sites. Quality of alignment is measured by the percentage of common 
SCF between the two proteins, similarly to sequence alignment approach. Such structural comparison reveals 
similarities between evolutionary distant enzymes that remain unseen from protein sequence alignment 
approach.  

This classification will be useful in the scope of studying cross-reactivity of a given class of inhibitors 
within the members of a protein target family or to cluster enzymes according to their “similarity” of 
functions. As a case study, we use a small set of 16 human kinases cherry picked from each of the main 
branches of the human kinome phylogenic tree. Two additional kinases from Plasmodium falciparum were 
included to investigate relationship with human kinome. We used the Med-SuMo protein surface comparison 
software to make a pairwise structure alignment of this set of kinase. The resulting distance matrices from 
both the ClustalW multi- sequence alignment and the SCF Med-SuMo SCF alignment are processed for 
cluster distance analysis [2,3]. 

We show that the enzyme classification based on structural shape of the binding site reveal different 
neighborhood profile as the one deduced from sequence similarity.  

2 Materiel and Methods  

Med-SuMo Structural alignment of the 18 kinases was carried out using the MED-SMA server 
structures. This was compared with the ClustalW sequence alignment from Pipeline Pilot (Accelrys). 
Distance matrices from both approaches, were analyzed using the statistical R package. 
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3 Results  

The comparison between the protein sequence and SCF Med-SuMo alignment is presented in Figures 1 
and 2.  

 

 

 

 

 

 

 

Figure 1. Dendogram of 18 kinases. ClustalW sequence alignment (left). Med-SuMo structural chemical features 
alignment (right). 

 

 

 

 

 

 

 

 

Figure 2. Distance scaling  clusters of 18 kinases. ClustalW sequence alignment (left). Med-SuMo structural 
chemical features alignment (right).  

4 Conclusion 

This paper shows a proof of concept to use the SCF Med-SuMo features to classify enzyme based on the 
3D shape of the binding site. This gives a similarity landscape different from the one derived from sequences 
only. This approach is currently used to select chemical classes from human anti-kinase inhibitors that are 
potential candidates for related plasmodium kinase as structural 3D shape binding site is concerned.  
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1 Introduction
Ab initio protein structure prediction is one of the main approach to protein prediction. Ab initio methods

consist of a protein model, an energy function, and an algorithm for searching the conformational space. In
particular, these methods do not use sequence comparison information.

The energy function applied to all the possible conformations given by a protein model defines the potential
energy surface (PES). The goal of ab initio structure prediction is to find, with an appropriate algorithm, the
most statistically probable conformation of a query molecule in the PES.

In this paper, we present an ab initio methodology based on a new coarse grained model, an empirical
energy function, and a simulated annealing algorithm for exploring the conformational space.

2 Protein Model
The choice of a protein model has a direct incidence upon the number of variables, the energy function and,

thus, the running time of the prediction algorithm. In the literature, many coarse grained models have been
proposed, more or less representative of the physico-chemical properties of the residues. We developed a new
coarse grained model with an all atomic description of the protein backbone and a coarse grained simplification
of the amino acid side chain for non aromatic residues. For the latter, an all atomic description is used to enforce
planarity.

Our model uses internal variables, i.e. valence angles, dihedral angles and bond lengths to describe the
protein conformation. Bond lengths and valence angles are kept constant, and therefore, the only variables are
the dihedral angles. A protein conformation Ci is thus defined by a sequence of dihedral angles :

Ci = ((φ1 . . . φn)i , (ψ1 . . . ψn)i , (χ1 . . . χm)i) .

A difficulty with internal variables is to perform appropriate moves to explore the PES: a small variation in a
dihedral angle may change the whole conformation dramatically.

3 Empirical Energy Function
The energy function is a critical step to define the PES and the sets of solutions corresponding to local

or/and global minima. We defined a simple and realistic energy function using five terms: a solvent accessible
surface area (SASA) term for hydrophobic and hydrophilic atoms, a contact term to avoid steric clashes and to
favor contact between atoms, a torsion term to mimic the Ramachandran distribution, and a term for secondary
structure elements (SSE) so as to favor their construction:

E(Ci) = Esasa(Ci) + EsasaH2O
+ (Ci) + Econtact(Ci) + Etorsion(Ci) + ESSE(Ci) (1)
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SASA Potential
We approximate spherical atoms by geodesic domes. Each geodesic dome has a fixed number of vertices.
Estimating the accessible surface of an atom reduces to counting the number of its vertices of that are not
covered by any other atom. The SASA score is the sum of the surface areas of all the atoms. We defined two
scores, one for hydrophobic atoms and another one for hydrophilic atoms. The SASA of hydrophobic atoms has
to be minimized since hydrophobic atoms are supposed to be buried inside the proteins. By contrast, the SASA
of hydrophilic atoms has to be maximized, so as to increase the surface of interaction with water molecules.

Contact Potential
We implemented a pseudo van der Waals potential based on distances observed in real three-dimensional struc-
tures.

Torsional Potential
It is well known that dihedral angles φ and ψ are not uniformly distributed between −π and π: the residue angle
pairs (φ, ψ) have preferred locations in the Ramachandran plot. To take this into account, we compute for each
residue a torsional potential that depends on its location in the Ramachandran plot, based on two-dimensional
Gaussian distributions.

SSE Potential
In order to favor the formation of SSEs, we used two terms in our function, one for α-helixes and the other
for β-sheets formation. Each term consists of a sum of Gaussian scores based on atomics distances [1] and/or
angles. For the α-helixes, we use local Cα distances and for β-sheets, we use the H-bond distances, and angles
involving the CO groups and the N atoms on opposite strands.

4 Conformational Space Search
The exploration of the PES is the third crucial element for protein structure prediction. Our method uses a

simulated annealing algorithm to locate the most probable structure corresponding to a sequence query. Two
types of moves are allowed : global and local moves.

Global Move. This procedure updates a (φ, ψ) pair from a randomly chosen amino acid. The update can be
an addition or subtraction of ∆dihedral, or it can be a (φ, ψ) pair drawn at random from a residue-dependent
representative distribution. As a result, all the positions in the chain after the selected amino acid will be
modified.

Local Move. We use a concerted rotation algorithm [2] to locally update the dihedral angles of four successive
residues. Atomics positions before and after these residues do not change.

5 Discussion
Our first results regarding the prediction of small α-protein (1LP1, 1GYZ) 3D-structure are encouraging.

We obtain topologically similar structures with an RMSD around 5 Å. We must now carry out simulation of
proteins containing β strands.
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1 Introduction

We are interested in the prediction of binding sites from the structures. A previous study of cross-docking
using 6 protein-protein complexes revealed a clear tendency of (presumably) not interacting proteins to use
their native binding sites to form the complexes [1]. In this contribution, we further investigate the capability of
aspecific docking, i.e., docking of a candidate protein with random partners, to predict the residues involved in
the binding site.

2 Material and methods

2.1 Data Sets

We use the version 4.0 of the docking benchmark data set assembled by Hwang et al [2]. This set consists
of 176 protein-protein complexes, for which structures are available in both bound and unbound forms. After
removal of antibody-antigen complexes, our benchmark data set encompass 299 proteins. Only the unbound
forms of the proteins are used in this study.

Random partners are taken from Nh3D [3], a data set of representative structures of each topology of
the CATH structural classification database. We removed structures with gaps, high radius of gyration, and
structures classified in the same CATH topology as the benchmark proteins.

2.2 Docking

We used the Hex software [4], version 6.3, accelerated on GPU, with following parameters: grid size=0.6Å
13 and 25 correlations used in thescan andsearch steps respectively. Each docking experiment takes between
20s to 1 minute.

2.3 Prediction Assessment

A residue belongs to the binding site if it is less than 5Å away from the interacting chain. Prediction is
assessed on a per-residue basis using :

– sensibility, i.e., the fraction of the real binding that is recovered by the prediction,
– specificity, i.e., the fraction of the predicted binding site that is correctly predicted
– the F1 measure, given by

2 × sensibility × specificity

sensibility + specificity

Communications affichées revues Affiche 141

–285–



3 Results

We present here preliminary results obtained by docking each benchmarkprotein to 10 random partners
with length between 25 and 75 residues. For each docking experiment, we extract a predicted binding site.
For a given benchmark protein, we then compute a “naive” consensus by majority voting. The size is chosen
according to the mean predicted size in the 10 experiments. We compare our results to the prediction given by
Meta-PPISP, a meta-server making a consensus prediction from three other predictors. It is currently one of the
top-performing methods for binding site prediction [5]. Results are presented in Figure 1, for the 56 proteins
for which Meta-PPISP returned a prediction at the time of the submission. Overall, the consensus prediction
by aspecific docking yields higher or F1 measure for 25 out of 56 proteins when compared to Meta-PPISP. It is
worth to note that the apparent difficulty of the prediction differs between the two methods: some binding sites
are well predicted by aspecific docking and not by meta-PPISP, and inversely.
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Figure 1 . F1 measures on 56 proteins from the benchmark data set. Circles denote the prediction using aspecific docking
(consensus from 10 docking experiments using random partners in the length range 25-75) , and crosses, results obtained
using Meta-PPISP.

4 Conclusion

These preliminary results show that aspecific docking can be used as a predictive tool for protein binding
site from unbound structures We plan to improve the prediction using two directions: (i) the choice of random
partners and (ii) a more sophisticated way to build consensus prediction from the set of aspecific docking
experiments.
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Abstract  Globular proteins can be decomposed into subdomain structural fragments with 
tight ends. These “tightened end fragments (TEF)” play an important role for the fold of a 
protein. We propose here an alternative approach for the TEF decomposition of a protein 
structure aiming at a better cover of the chain. We further investigate the role of the TEFs in 
protein-protein interactions and their use for binding site prediction. 

Keywords  Structural bioinformatics, protein-protein complexes, closed loops, tightened end 
fragments, TEF. 
 

The compactness of common globular protein folds requires that the amino acid polymer chain returns 
back to itself, forming “closed loops” [1], also named “tightened end fragments (TEF)” [2]. The two ends of 
a TEF are structurally nearby, typically less than 10 Å between Cα-atoms. These structural fragments have 
two remarkable properties: their length distribution shows a peak at about 25 amino acids [1] and their ends 
are mainly in the hydrophobic core [3] at highly conserved hydrophobic [4] sequence positions [2]. The 
TEFs that are “locked” by tight van der Waals interactions are also identified as “loop-n-lock” structures [5] 
which have been shown to be a universal basic unit of protein folds [6]. Globular proteins can therefore be 
considered as an assembly of these subdomain structural fragments. 

Our current research explores the putative role of the “tightened end fragments (TEF)” in protein-protein 
interactions. Interactions between two globular proteins can often be reduced to a few “hot spots” or “core” 
residues [7]. The spatial arrangements of the hot spot residues, and their surrounding binding surface formed 
by the “rim” residues, are maintained by the global fold of the globular domain. Drugs, in form of small 
molecules, that can inhibit protein-protein interactions, are difficult to find, as they have to target the hot spot 
residues in the absence of a well-defined binding pocket [8]. In the search for new drugs, cyclized stable 
peptides are quite promising [9-11], as they can mimic the spatial arrangement of the important part of the 
binding site [12]. The decomposition of a protein into TEFs may help to identify a candidate peptide that can 
be stabilized by tight van der Waals interactions at its close ends. Beside this pharmaceutical application of 
TEF-decomposition, TEFs may also help to identify the binding sites in protein-protein interactions. To 
identify the role of TEFs in protein-protein interactions, we assembled a database of interacting TEF-pairs 
starting from dimer structures of the PDB [13]. A non-redundant set of homo-dimers was taken from the 
PiQSi database, where biological and crystallographic contacts have been differentiated by manual curation 
[14]. For hetero-dimers, we used the « Protein-protein docking benchmark 4.0 » [15] and assembled our own 
database starting from a list of hetero-dimers obtained by PISA [16]. We chose a non-redundant subset of the 
PISA-list and removed the special case [17] of antibody/antigen complexes. PDB structures with holes in the 
backbone coordinates were excluded from all databases used.  

The decomposition of a protein structure into TEFs can be done in different ways. Our in-house 
decomposition program, available at the RPBS server [18], selects the TEFs with the tightest ends in terms of 
distance between Cα-atoms. This approach is also used by the DHcL server from Berezovsky et al. [19]. 
Some redundancy exists since one can find a TEF fully included in a longer one, and the best coverage is not 
taken into account in the algorithms. In order to improve the splitting of a domain into its constituting TEFs, 
we present here an alternative approach. It selects a distribution of TEFs that minimizes the number of 
residues unassigned to any TEF. For this task, we developed a complete search algorithm testing all 
combinations of TEFs yielding a decomposition of the protein structure, within limits in the amino acid 
length (between 15 and 50 by default).  
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Once the TEF decomposition is obtained on each chain of the dimer, we further classify the TEF pairs 
according to various structural and functional characteristics. The structural classification cannot be done on 
simple RMSD based calculations, as the lengths of the TEFs are in general different. Therefore, we 
developed topological descriptors of TEF conformations. A coarse-grained description of a TEF 
conformation is the height and the radius of its enveloping cylinder. It allows the comparison of TEF of 
various lengths and has proven to be successful in the structural classification of loops [20]. We are currently 
testing these and other descriptors. As this work is still in progress, the latest results from the classification of 
the TEF pairs will be shown at the conference as well as its use for binding site prediction. 
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France

neri@ijm.univ-paris-diderot.fr

Keywords Graphs clustering, stochastic boolean networks, iron, homeostasis.

Analyse d’un Modèle Booléen par Classification de Graphe
Cas de l’Homéostasie du Fer chez Saccharomyces cerevisiae

Mots-clés Classification de graphes, réseaux booléens stochastiques, fer, homéostasie.

Le fer est un élément essentiel à l’Homme. C’est un co-facteur de certaines enzymes métaboliques et il
est impliqué dans de nombreuses voies essentielles, telles que la respiration cellulaire, la synthèse d’ADN, le
cycle de Krebs, le transport du dioxygène ou la protection contre le stress oxidatif [1,2,3,4,5]. Cependant, bien
qu’étant nécessaire, le fer est également toxique pour l’organisme. En effet, le fer ferreux (Fe2+) est capable de
réagir avec l’eau oxygénée (également produite par le fer en présence de dioxygène) pour produire un radical
hydroxyle, une espèce réactive de l’oxygène très toxique. De plus, le fer ferrique (Fe3+) peut avoir tendance
à s’accumuler. Pour ces raisons et son implication dans un grand nombre de voies métaboliques, le fer est im-
pliqué dans de nombreuses maladies : anémies [6], hémochromatoses [1,5] ou des maladies neurodégénératives
telles qu’Alzheimer, Parkinson et l’ataxie de Friedreich [7].

Cette dernière maladie est causée par le dysfonctionnement d’une petite protéine de la matrice mitochon-
driale, la frataxine, qui intervient de manière directe ou indirecte dans l’assemblage des centres Fer-Soufre, la
résistance des cellules au stress oxydant, la synthèse d’hème et l’homéostasie mitochondriale du fer. Le rôle
précis de cette protéine est encore controversé, et, dans ce contexte, un modèle de l’homéostasie du fer permet
alors d’étudier les conséquences sur la physiologie cellulaire d’une dérégulation de cette protéine.

L’équipe � Modelisation en Biologie Intégrative � de l’Institut Jacques Monod, a développé un modèle
Booléen stochastique de l’homéostasie du Fer chez la levure Saccharomyces cerevisiae [8]. Ce modèle, com-
posé de 643 éléments et 1029 règles, a été validé par simulations et confrontation avec 147 mutants phénotypiques
(91% de consistence) et 11 expériences de flux métaboliques (10/11 des résultats d’expériences sont reproduits
avec le modèle).

Dans ce travail, nous étudions le réseau d’intéractions du modèle sous l’angle d’un graphe, où les noeuds
correspondent à des espèces ou à des règles (graphe bi-parti) et les arêtes représentent les liens entre ces espèces
et règles. Le graphe comporte 1672 noeuds et 3369 arêtes. Cependant, sa grande taille rend son analyse difficile.

Nous proposons d’analyser le graphe en utilisant une approche récente de classification de graphe (MCL,
Markov Cluster Algorithm [9]), qui permet de découper un graphe en modules, qui sont des sous-parties plus
facilement analysables. Cet algorithme a été utilisé dans plusieurs situations d’analyse de graphes [10,11],
d’identification de modules fonctionnels dans des réseaux d’interactions de protéines [12] ou encore pour la
classification de documents dans PubMed [13].

Nous avons utilisé MCL dans une nouvelle configuration peu exploitée dans les travaux précédemment
mentionnés. En effet, MCL peut utiliser un poids sur chacune des arêtes du graphe lorsqu’il découpe le graphe.
Nous avons déterminé les poids des arêtes par simulation du modèle booléen stochastique en estimant la
fréquence d’occurence des règles durant la simulation. En modifiant un paramètre du modèle, nous pouvons mi-
mer une dépletion jusqu’à l’excès en frataxine, et obtenir différents jeux de poids des arêtes. Il s’agit donc d’une
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situation où l’on dispose d’un graphe d’interaction, statique, sur lequel on rajoute une information caractérisant
la dynamique du réseau correspondant.

L’ajout de poids obtenus par simulation fait passer le nombre de modules obtenus après classification de
388 à 221, dont 106 d’au moins 5 composants. Ces modules peuvent être représentés comme des sous-graphes
de celui du modèle, et apparentés à des motifs, reconnaissables.

Nous avons ainsi modélisé des déficiences graduelles en frataxine, et montré qu’il existe un seuil à par-
tir duquel la production de cette protéine perturbe l’organisation du graphe. Les modules ainsi affectés nous
permettent d’identifier des mécanimes de régulation cellulaire qui seraient impliqués dans la réponse à une
déficience en frataxine.
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1 Background 

The longitudinal endocrine follow-up of sportsmen achieved by conventional methods allows detection 
of clinical abnormalities that may be related to some prohibited doping practices. Indeed, some disturbed 
physical performance can be explained by atypical physiological deviations. However, recent events 
revealing doping cases have shown some limitations of the principles of anti-doping control currently 
prevailing in the establishment of doping practices.  

Screening of pharmacological substances, which use is prohibited (and some of them are often designed 
to improve athletic performance), basically consists in detecting presence in urine or blood of these 
compounds or their metabolites. To do so, the direct detection of doping involves very sophisticated 
physicochemical methods. Nevertheless, these methods are expensive. In addition, they specifically target 
known molecules. 

Yet, an alternative to this direct strategy is to measure in the serum concentration of circulating 
endogenous hormones or their metabolites in order to get a hormonal fingerprint of subjects that may give 
indirect proofs of doping practices. 

In the case of endogenous hormones is raised the problem of definition of what are normal 
concentrations and how to define clinical thresholds. Indeed, when a hormonal doping practice is used, 
homeostatic regulation may have some repercussion on the hormonal fingerprint. Observation of this 
hormonal anomaly is the first step in indirect detection of doping practice. In France, it is currently done in 
the frame of the medical longitudinal follow-up. Besides, these hormonal variations may induce some 
metabolic adjustments which can be detected in a global metabolic assessment in biofluids. This metabolic 
fingerprinting is called metabonomics. 

In this context, statistical and computational approaches used by metabonomics may be helpful to solve 
such a problem designed as a numerical analysis of the multidimensional metabolic response when metabolic 
fingerprints, which correspond to the large quantification of the general metabolism of an organism, are used 
in complement of hormonal fingerprints. Since the last decade, metabonomics has been efficiently applied 
and developed in various biological domains including plant genotype discrimination, toxicological 
mechanisms, disease aetiology, and drug discovery among others. In our context, we aim at improving the 
ability to predict the endocrine phenotype of any individual based on metabolic fingerprints with the 
constraint of avoiding the risk of false-negative. This requires fine modelling of the relationship between 
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metabolic profiles and the endocrine status given by the determination of the hormonal concentration class 
for three hormones, i.e. cortisol, IGF-1 and testosterone. 

2 Results 

We have studied a cohort of 655 individuals described with 419 metabolites (variables) obtained by 1H 
NMR (Nuclear Magnetic Resonance) spectrometry from a fingerprinting of serum. For the whole cohort, we 
also get in parallel three endocrine phenotypes (cortisol, IGF-1 and testosterone), for which 3 classes have 
been defined a priori for “low”, “normal” and “high” concentrations. In the procedure presented here, we 
consider a classification method of any of these classes, which relies to the metabolic fingerprints. 

The core method combines a data regularization step based on orthogonal signal correction to a 
shrinkage discriminant analysis (SDA) [1], which is well suited to deal with the multicollinearity carried out 
by the metabolites. Thus, in our situation, SDA outperforms other usual discriminant methods such as LDA, 
QDA and PLS-DA. However, for all these methods, it is noteworthy that classification is substantially 
improved when data are pre-processed using orthogonal signal correction based on partial least squares 
regression [2]. To improve the level of confidence on the prediction, assignment to a given class is then 
obtained using bootstrap techniques. Using bootstrap, we have also studied how the prediction rates vary 
depending on cohort size, choice of metabolites (variables) and phenotypes.  

With the same protocol, we have displayed in abacus the prediction rates obtained with different sizes 
for the cohort together with increasing the number of selected metabolites. Thus, it can be observed that, for 
each phenotype, a well suited choice in parameter modelling is achievable to expect the highest rates of 
prediction for each given hormonal phenotype.  

Extensive calculus in the resampling step also revealed special classes of individuals for which the 
classification systematically failed. Identification of such classes may indicate new further and distinct 
investigations to improve their hormonal characterization. 

3 Conclusion 

The procedure combining the orthogonal signal correction based on PLS regression and the shrinkage 
discriminant analysis is very promising to better detect endocrine disruptions from a metabolomic 
fingerprint. Abacus appear instructive to decide of how many statistical units we need to consider and 
therefore to control the cost of such experiments. It is also important to build decision rules from a cohort 
which is large enough with a selected set of metabolites. A quantitative analysis of changes in general 
metabolism performed in this physiological context may indirectly provide some tangible biochemical 
suspicion of doping. In other words, use of indirect methods to routinely phenotype the endocrine status of 
sportsmen from their metabolomic fingerprints is very promising to better detect endocrine disruptions.  
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Abstract	   The development of –omics methods has been followed by an explosion of the 
amount of data produced in functional genomics research projects. Retrieving biologically 
relevant information and knowledge on molecular regulations from such massive amount of 
data is therefore an important challenge. The work presented herein aims at elucidating gene 
regulatory networks from quantitative –omic data using rules discovery algorithms. This 
approach grants users the possibility to specify genes of interest and the rule discovery 
algorithm discovers interactions implying these genes. The user can choose between different 
semantics for the rules. Each semantics is relevant and has its own biological meaning, thus 
providing the user with global information. This work has led to the development of an efficient 
web-oriented platform. Eventually, the application was evaluated with the reconstruction of 
transcriptional networks involved in the regulation of seed storage protein genes for wheat. 

Keywords Gene regulatory networks, network inference, rules discovery algorithm, wheat 
seed storage proteins, transcription factors, transcriptional network. 

1 Introduction 
Several tools are now available to infer regulatory networks from transcriptomic data. Most of them are 

based on Boolean, relevance, or Bayesian networks or association rules [1]. Knowledge database such as 
String (string-db.org/) allowing the manipulation of gene networks have also been developed. However, 
most of these approaches do not take into account the quantitative nature of –omic data. Moreover, 
considering the complexity of eukaryotic organisms, it is essential to take into account more than one type of 
interaction, which is not the case in most of the available tools. 

Wheat grain end-use value is mainly determined by its storage protein (SSP) composition [2]. SSP 
accumulate in grains from ca. 14 to 42 days after flowering. SSP genes are essentially regulated at the 
transcriptional level [3] and several transcription factors involved in this regulation have been identified [4]. 

In this work a web-based platform for regulatory network inference based on semantic rules [5] has been 
developed. The platform was evaluated with the reconstruction of transcriptional networks for the regulation 
of SSPs expression using temporal transcriptomic data. 

2 Gene Regulatory Networks Inference Method 
The approach consists in interacting with biologists in order to establish rule semantics that meets their 

research objectives and are adapted to their data. Currently, three semantics for gene expression data are 
available [5]. The first one generates rules between genes according to their expression levels. The second 
one generates rules between genes according to the variation of their expression levels. The third semantics 
generates rules between genes according to the evolution of their expression levels over time. Through this 
approach, it becomes possible to have a global view of interactions inferred from a dataset. 

In this work, the method was implemented as a web-oriented platform. A simple process allows the user to 
load his own dataset onto the server and then to choose among the different semantics, according to the type 
of data. The dataset is then processed on the server’s side and the results are loaded into a visualization 
platform (Fig. 1). 
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Figure 1. Screen capture of the application showing interactions between transcription factors putatively involved in 
the regulation of SSP expression for wheat. Different interaction colors correspond to different semantics. 

3 Application to Seed Storage Proteins Transcriptional Network in Wheat 
We used a temporal dataset comprising 11 data points covering the period of SSPs accumulation [6]. This 

allowed partially reconstructing a transcriptional network previously established for barley based on direct 
experimental evidences [4]. Based on this work several new putative interactions can be proposed. 

4 Discussion 
This work led to the integration of an existing method into a web oriented platform. Despite the low 

quantity of gene expression data used in this study, the method allowed reconstructing a well-characterized 
model of interactions implying nine transcription factors [4]. It also allowed us to propose new putative 
interactions between these genes. The results also highlighted two NAC transcription factors, not previously 
shown to participate in the regulation of SSP in cereals. Transcriptomic analysis has shown that the level of 
expression of one of these transcription factors is strongly influenced by sulfur supply, which is a major 
determinant of SSPs composition [7].  
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1 Introduction

Understanding the regulatory networks in cells to explain or even predict phenotypical effects has been
one of the key goals of systems biology. Although extensive information is available for specific, well un-
derstood systems, that knowledge still covers only a fraction of the expected global regulatory interactions.
Unfortunately, the huge number of potential regulatory structures limits purely computational approaches to
the network learning task, as even significant numbers of large-scale transcriptomics experiments do not supply
sufficient data to discriminate between all alternative solutions.

Here we present a modular architecture for the induction of biologically meaningful regulatory networks
from quantitative data and their iterative refinement by new experiments (Section 2). By integrating the exper-
iment selection with the computional framework we aim to maximize the benefits of conducted experiments
with respect to their impact on searching the space of regulatory hypotheses. The approach is supported by
tools that identify hypotheses consistent with observed data and propose experiments to further assess them.

An application of the proposed approach is presented in Section 3. In that application we use a set genes
with potential regulatory function as identified by existing annotations. Similar annotations, such as those using
the Gene Ontology standard [1], are now available for an increasing number of model organisms.

2 Global Search Strategy

The proposed strategy (Fig. 1) iterates between three phases: the induction of connectivity scores for indi-
vidual edges from data (I), a search for likely regulatory hypotheses and the selection of suitable experiments
(II), and the assessment of these hypotheses in direct experiments (III). During the first phase pairwise inter-
action measures are used to compute a connectivity score that assesses the plausibility of pertubations being
transmitted along edges between pairs of regulators and targets. The second phase integrates these local eval-
uations into a global hypotheses of regulatory paths form the origin of a pertubation to the effectors. From
superpositions of high scoring pathway hypotheses it is then possible to identify critical experiments that allow
to distinguish between large subsets of hypotheses and test important putative links. Both phase (I) and phase
(II) allow for the integration of external data via the selected connectivity measures and scoring functions. Re-
sults of phase (III) are fed back to the next interation, e.g. by penalizing links that failed validation. The same
method can used to draw on prior knowledge from public databases if so desired.

3 Application Example and Software

We applied our approach to transcriptome data collected from bacillus subtilis grown in liquid culture. In
these experiments a pertubation was caused by the addition of malate to a glucose-based medium. Expression
change was subsequently detected in pathways previously thought to be unconnected to carbon metabolism.

First we identified genes involved in carbon metabolism, genetic regulation and affected pathways using a
recently released functional annotations available via http://www.subtiwiki.uni-goettingen.de
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II: pathway
search
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Figure 1. Three phase architecture for regu-
latory network induction

gene score
glcR 0.006311
comGA 0.006311
cggR 0.006311
kinD 0.006294
ccpA 0.006294

gene score
hxlR 0.006262
manP 0.006229
yydG 0.006147
yydF 0.006147
phoR 0.006147

gene score
rapH 0.006081
ybdK 0.005989
phrH 0.005803
yydI 0.005739
comK 0.005711

ccpAkinD
0.0087

comGA

0.0221

phoRyydF
0.0107

yydG
0.0431

cggR

glcR

0.0123

manP

0.0342

0.0128

hxlR
0.0180

0.0408

ybdK
0.0485

0.0181

0.0208

0.0278

rapH
0.0385

0.0574

phrH

0.0350

0.0401

Figure 2. 15 highest scoring nodes and superposition of top 10 path-
ways for nutrient shift problem (extracted from 409 genes)

For the assessment of link connectivity (phase I) we use the GENIE3 algorithm [2] to induce edge weights from
transcriptome data. For the second phase we implemented a path search strategy in the scoreKO command
line tool. ScoreKO reads a list of weighted edges in a table format and can be configured to either directly
report node assessments or to produce pathway reconstructions. The latter mode reports superpositions of
all regulatory pathways up to a specified quality rank allowing to visualize critical players in the selection of
regulatory hypotheses. Supplementary scripts that convert the program output for visualization and further
processing in Cytoscape [3] are included in the source code archive.

The edge weights induced by GENIE3 were aggregated into pathway scores using the Hamacher product.
Our implementation draws on the monotonicity property of that operator for efficient search. This monotonicity
property is a natural requirement for any conjunctive aggregation function. Depending on the interpretation of
edge weights the operator can be replaced, e.g. by other t-norms. As of version 1.2 our tool also supports the
minimum and product as pathway scoring operators.

Results of the second phase (Figure 2) including proposed experiments are assessed in an ongoing collab-
oration with the Medical Microbiology group at the University of Groningen.

The command line-based pathway search and network induction program we developed has been made
available via the the website http://www.ruegheimer.org/scoreKO. A complementary tool named
findGenes (available from our software website http://proteomics.fr/Sysbio/Software) calcu-
lates interaction measures, which serve as input for scoreKO, from expression data. We are planning to provide
plug-in versions of both tools for the upcoming version 3.0 of the Cytoscape software.
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Abstract Modeling physycal and biological dynamic systems needs to combine different types
of models in a non-ambiguous way. We present an approach to integrate continuous, discrete,
stochastic, deterministic and non-deterministic elements by using Transition Systems theory, reuse,
composition of models, and the framework BioRica. The systems are described by interacting con-
tinuous and discrete models, and in addition continuous models are decomposed into two compo-
nents: controlled and controller model. We define Stochastic Switched Systems whose continuous
dynamics is modeled by differential equations and its discrete dynamics by transition systems, al-
lowing stochastic and non-deterministic behaviours. We illustrated the use of our approach with
examples of intrinsically and approximated hybrid systems. Our approach allows us to give a first
step to integrate and to extend models of complex systems, such as cell differentiation.

Keywords Hybrid Systems, Transition Systems, Switched Systems, Cell differentiation.

1 Introduction
1 Physical phenomena often are described by combinations of different types of equations. These systems

are called Hybrid systems ([1], [2]) due to the use of continuous and discrete features or Switched systems
because they switch its equations over time ([3], [4], [5]). Switched systems are a way to introduce discrete
behavior into continuous models. They are Hybrid systems with discipline.

In dynamic models, one considers two groups of variables: dependent and factors. Models give the dynam-
ics of the dependent variables, considering factors affecting it. One talks of continuous model if the variables
change continuously over time and it is relevant to know the behaviour at any time. Continuous models use
functional relations between the variables, being a common type the differential equations. On the other hand,
if the variables make discrete changes at instantaneous points in time, the model is discrete. Hybrid models
join both types of models: some variables have continuous dynamics while other ones have discrete dynamics.
These models allow the interaction of diverse components of a system to contribute to complete descriptions
of the behaviour. Switched systems are one kind of Hybrid system that restricts way discreteness is added.
Discrete variables modify the behaviour of the continuous model by controlling its coefficients.

Models try to accurately represent the reality, by using empirical observations and knowledge. With limited
observations one wants to build models that are valid to explain the system in general conditions without testing
it on all the conditions. As result, models are strongly dependent of the studied conditions. In order to get
most valued out of existing models and to refine models to include more complex behaviours, it is necessary
to define how to compose models. A system is built in a hierarchical way, composed of subsystems, where
behaviours emerge from the association of components and its diversity ([6]). Complex biological processes
can, in this way, be defined by interactions between basic functional entities called modules ([7]) and, to explain
its behaviour, to each module is associated a model that represents it.

The existence of different types of models to explain connected processes makes it necessary to define
theory and tools to integrate them. Such theory must be able to unify processes with different timescales and
whose models have different stiffness levels. Sometimes, to see the changes in the behaviour it is necessary to
compare nearby times, but other times the changes happen in distant times. Equations with high stiffness require

1 Project-team (EPC) MAGNOME common to INRIA, CNRS, and U. Bordeaux 1, an EMR of UMR 5800 LaBRI
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a superior level of discretization to obtain good approximations. Both characteristics, different timescales and
stiffness affect computation times and accuracy. To compose models one must consider these characteristics,
and be capable of giving an unique and non-ambiguous semantics to the composition. Modeling biological
dynamic systems by composition requires a framework in which existing models of different types can be
combined without need of rewriting them.

Many dynamic biological systems, such as physiological processes ([8]), are represented by ordinary dif-
ferential equations ([9]). Changes in the environmental conditions modify the development of the processes,
switching coefficients in its continuous dynamics. In Gene Regulatory Networks, some biological facts such as
a gene is activated by a transcription factor or regulator give power to the idea of using switched models.

We can group the different approaches of Hybrid Systems in two kinds: function and implementation ori-
ented. Function oriented approaches favor human comprehension of models, while implementation orientation
focuses in descriptions easy to interpret by machines. In the first orientation, the dynamics of systems are de-
fined by functions. Continuous dynamics is commonly represented by differential equations, and the discrete
dynamics affects it by switching its equations ([3], [4], [5]). Systems are called Switched System. The models
are easy to understand, but too restrictive with respect to the dynamics. Implementations oriented approaches
present more general descriptions of Hybrid systems, by using an abstract representation to implement the
model ([1], [2]). Models describe the rules of the dynamics allowing many types of continuous dynamics.

Here, we relax the concept of Switched Systems to allow possible stochastic or non-deterministic changes
in the continuous dynamics. Such systems, called Stochastic Switched Systems, are described from function
and implementation orientations using Transition Systems ([10], [11]). We analize Gene Regulatory Networks
([12]), by approximating them by Switched Systems. Our representation of the recent osteo-chondro differ-
entiation model ([13]), as Stochastic Switched System composed by two interacting components, allows us to
improve the differentiation stimuli models separately and so improve the complete model. We suggest some
experiments to model the effect of the Wnt pathway on the bone formation (osteogenic lineage) and include it
as stimulus.

To simulate Hybrid models we use BioRica, available in BioRica. It is a high-level modeling framework
that integrates discrete, continuous, stochastic, non-deterministic and timed behaviors in a non-ambiguous way
allowing multi-scale dynamics, composition of models and hierarchical relations. The modeling language is an
extension of the AltaRica Dataflow language ([14]), allowing hybrid systems and stochastic behaviors.

2 Approach
2.1 Modeling

The dependent variables are called state variables (in analogy with Transition Systems), while continuous
and discrete factors are considered controllers. These systems are described using a mixture of continuous,
discrete dynamics and logical relations to allow multiple interacting components.

DISCRETE MODEL

CONTINUOUS MODEL

x mod

RESIDUAL
MODEL

Hybrid approach

Separating the 
continuous model

X MODEL x

u

x mod

DISCRETE MODEL

x modx mod

Modeling

Input/Output

Internal connections

Figure 1. Modeling schema of Complex Biological Systems by Hybrid models. First it is identified the discrete and
continuous interacting dynamics, then the continuous dynamics is separated into two interacting models: the X MODEL
that describes the dynamics of X , and the residual model.

Let x = (x1, . . . , xn) ∈ Rn be the state variables of the model. The variables u = (u1, . . . , uk) ∈ Rk
are the continuous control variables, and mod are the discrete controllers (Figure Fig. 1). We consider that the
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dynamics of state variables is modeled by ordinary differential equations (explicit representation, equation 1)
including continuous and discrete variables.

ẋ(t) = F (x(t), u(t),mod(t)) (1)

The continuous dynamics is given by the changes in x over time, with F a function from Rn ×Rk ×M to Rn.
The discrete dynamics is given by the evolution of the mode variable denoted mod ∈ M , where M is a finite
or enumerable set and we denote M = {1, . . . ,M} by identification of its elements.

The next step is to define how the discrete variables mod evolve over time. By considering hybrid systems
as switches between continuous systems, represented by sets of differential equations, one talks of Switched
systems and Switched models ([3], [4], [5]). Independent of x, the value of the right hand side function F
changes as a function of the value of discrete variable mod (equation 1) that affects the form of the equations.
We will say that changes in discrete variables values carry switches between model configurations.

(A)

(D)(C)

(B) node RADIATOR
state T:FLOAT;K:{15,25};
event turn_on,turn_off;
eq:diff

dT=-T+K;
trans

  #B.1: deterministic 
  T<=18 |- turn_on -> K:=25;

       T>=20 |- turn_off -> K:=15;
  #B.2: non-deterministic

T>=18 & T<=20 |- turn_on->K:=25;
T>=18 & T<=20 |- turn_off->K:=15;

   init
     T:=15,K:=25;

  #B.3: stochastic
extern

choice<turn_on>:2;
edon

dT/dt=-T+15

off

dT/dt=-T+25

on

Turn on

Turn off

Time

Temp. Temp.

Time

Figure 2. The radiator. (A)Schema of the Switched system. (B)Three models. (B.1) deterministic: it is turned on if
T ≤ 18◦C and turned off if T ≥ 20◦C, (B.2) non-deterministic: both events can happen if 18 ≤ T ≤ 20, and (B.3)
stochastic: turn on with probability 2

3 . (C)Temperature dynamics for (B.1), (D) For (B.3).

An example of Switched System is the behaviour of a radiator that controls the temperature (T ) of a room
(Fig. 2). A thermostat is activated when the temperature is detected to be low and it is regulated, if the tem-
perature is high the system is turned off. This behaviour can be modeled in different ways: deterministic,
non-deterministic or stochastic.

2.2 Composing Models

The act of building a model that is made of two or more modules is called Composition. The composition
of two models is the model that explains the behaviour of both interacting modules. This allows us to the model
to learn and to integrate knowledge of diverse types. The model can be extended and improved by introducing
new modules that relate different functions. To be capable of describing the behaviour of a biological system
over time, one needs to combine different types of models in a non-ambiguous way. A good implementation
of this concept is essential to take advantage of the modularity of biological systems to build accurate and
complete models. It must be sufficiently flexible to be capable of joining modules defined with different types
of models, and reuse modules that have been a priori defined.
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Our approach is based on the use of a global semantics to compose interacting modules. Flow conections
and synchronizations allow to connect modules. Local clocks and solvers allow us to consider diverse types of
dynamics.

The BioRica semantics is based on the automata semantics of AltaRica ([10], [14]), and Stochastic Transi-
tion Systems ([11]) that allow the inclusion of randomness and non-determinism. Given a BioRica node, one
computes the probability of the state dynamics and considers non-deterministic decisions solved by random
schedulers. The resulting semantics it is preserved with respect to flow relations and event syncronizations.

An important fact we approach here is that different processes have different timescales and stiffness levels.
The use of modules solves in part this problem: each module has an specific timescale and discretization level.
With this strategy, we improve the precision and the cumputation time. The processes with small timescales are
observed at small time steps, while in case of long timescales we use longer time steps to reduce the number of
simulations. So, if the equations solved by a module are stiff one uses small time intervals only at that module.

We implement models with these considerations in BioRica. A common specification of Systems Biology
models is SBML ([15]), maybe the most popular abstraction for biochemical reactions models governed by
temporal differential equations. Our framework includes a SBML parser that translates SBML models into
BioRica models. So, it is possible to reuse and compose models previously specified in SBML to obtain more
general models.

2.3 Stochastic Switched Systems

Our approach mixes both point of view of Hybrid Systems: function and implementation oriented. It is
adapted to Hybrid models whose continuous dynamics is represented by differential equation systems, but we
give more flexibility to the discrete dynamics allowing not only deterministic behaviours. We give function and
implementation oriented descriptions of such systems.

The system dynamics is represented by transitions between different states. The interpretation of a model
as dynamic entity, with possible changes on its form, turns it into a Transition Systems ([10]) with two types
of transitions: state transitions and mode transitions. The state transitions are internal and controlled by the
continuous dynamics of the model. The mode transitions are transitions in the sense of Transition Systems
theory and they can be deterministic, non-deterministic or stochastic. The transitions can be modeled with
stochastic components or including non-determinism to allow different behaviours (Fig. 2).

In the general theory of Stochastic Transition Systems ([11]) the transitions have possible stochastic be-
haviours. Given an action producing a transition, in this case a mode change, the next mode is randomly chosen
according to transition probabilities if they exist. We will call Stochastic Switched Systems the extension of
Switched systems that allows stochastic or non-deterministic transitions between modes. We consider two ran-
domness sources: the moment (time) at which happens the action of changing mode, and the new mode that
is chosen. The conditions that provoke the mode transitions are called guards. They are boolean formulas
defined over state variables, external controllers and modes values. For each mode i, the mode transition arriv-
ing to i corresponds to an event (action in Transition Systems theory, [10] and [11]). In the radiator example
(Fig. 2(B.1)), T ≤ 18 is a guard condition provoking that event turn on assigns the value 25 to the mode
variable K.

We formally define a Stochastic Switched System as a hybrid system whose model is given by the equations
2-5. The first one defines the continuous dynamics and 3,4,5 the discrete dynamics at any time t. We denote
P (ev|(x(t), u(t),mod(t)) the probability of choosing the event ev when the values of the state variables x are
x(t), the values of the continuous control variables u are u(t) and the value of the mode variablemod ismod(t),
time((x(t), u(t),mod(t)), ev) denotes the delay time of the event ev that is modeled to have distribution
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Distev{pevent,1, . . . , pevent,m}.

ẋ(t) = Fmod(t)(x(t), u(t)), (2)

P (ev|(x(t), u(t),mod(t)) = wev∑

e∈A(x(t),u(t),mod(t))
we

, (3)

time((x(t), u(t),mod(t)), ev) ∼ Distev{pevent,1, . . . , pevent,m}, (4)

where we is the probability weight assigned to the event e, and A(x(t), u(t),mod(t)) is the set of available
actions when x takes the value x(t), u the values u(t) and the mode variable m the value mod(t)) given by the
equation 5.

A(x(t), u(t),mod(t)) = {ev ∈ EV ENTS : Gev(x(t), u(t),mod(t)) = TRUE} , (5)

and EV ENTS is the set of events of the system (in Fig. 2 EV ENTS = {turn on, turn off}).
Non-determinism appears with the presence of two or more available actions given a tuple 〈(x(t), u(t),mod(t))〉.

We simulate non-deterministic systems by using random schedulers with weights given by the external direc-
tives choice, so the event turn on has probability 2

3 for the non-deterministic radiator (Fig. 2(B.3)). The time
delays can be stochastic, with law < ev >: Dist ev{pev 1, . . . , pev m} denoting that the time delay of the
event ev has distribution Distev{pev1, . . . , pevm} with parameters {pev1, . . . , pevm}. Between the possible
distributions we include T (a deterministic time T ), the Gaussian distribution Normal{µ, σ}, the exponential
distribution Exponential{r} with r the rate and the uniform with parameters a, b (a < b) Uniform{a, b}.

In the radiator example (Fig. 2), the simpler model is to consider a deterministic behaviour of the thermostat,
where at any temperature at most one mode transition is observed: the radiator can be or active or not. For this
model, it is obtained by considering the temperature of activation lower than the temperature where the radiator
is turned off (18 and 20 respectively, Fig. 2(B.1)). With more ambiguous guard rules, given a temperature
the radiator is accepted to be activated and turned off. This non-deterministic behaviour is obtained in case of
activation if temperature is between 18 and 20 and deactivation if it is in the same interval (Fig. 2(B.2)).

2.4 BioRica Description of Stochastic Switched Systems

We represent and simulate Stochastic Switched Systems with BioRica. BioRica uses automata theory to
represent Stochastic Switched Systems as a particular type of Hybrid Automaton ([1], [2]) where the continuous
dynamics is given by differential equations. The continuous dynamics (equation 3) is described in eqdiff while
the discrete one (equations 4 and 5) is described by transitions that change the form of the model.

In Fig. 2 is defined the BioRica node RADIATOR, with state variable T (temperature) and mode K. The
possible events are defined with the keyword event, turn on and turn off , and its effect is described in trans:
turn on provokes the assignment K := 25 when T ≤ 18, turn off assigns K := 15 if T ≥ 20. With the
keyword eqdiff one codes a set of differential equations, where dxi = fi(x1, . . . , xn, u1, ..., uk,mod) means
that the rate of change of xi with respect to the time is equal to fi(x1, . . . , xn, u1, ..., uk,mod). In init, one
defines the initial values of the variables. It is possible to define constant, const, and formula expressions,
formula, to use in the equations.

In cases of non deterministic behaviours, BioRica decides what event select considering an aleatory decision
between the possible events with weights given in the choice option of extern. In Fig. 2(B.3) the event turn
on has weight 2, then at arriving to temperatures between 18 and 20 it selects the event turn on (activate the
radiator) with probability 2

3 and turn off with probability 1
3 . The keyword extern allows the inclusion of external

directives about distributions of event delays and priority between events.

To decompose the dynamics we use the ideas of Fig. 1. With the keyword flow, one includes inputs (outputs)
from (to) other BioRica nodes. Continuous and discrete dynamics can be modeled separately, the node MAIN
represents the complete system and the keyword sub is used to define instances of other node (Fig. 3).
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3 Application: Approximating Regulatory Systems by Stochastic Switched Systems

The dynamics of the radiator (Fig. 2) is hybrid in its nature because the switches are directly associated to
the value of the mode. So, the mode K of the radiator is a piecewise-constant function. In less restrictive cases,
where one identifies different underlying behaviours, we can use Switched Systems too. One can choose a set
of factors to consider as piecewise-order k and approximate them to obtain a Switched model. A particular case
is given by the regulation models with reduced Hill functions.

3.1 Reducing Hill Functions

Hill functions [16] are sigmoidal curves used to measure the continuous influence of an element on a target,
depending on the concentration of the affecting element x, an exponent m to control the curve steepness, and
on the mean point of influence θ. We denoted h+(x, θ,m) = xm

xm+θm the positive influence and h−(x, θ,m) =
1− h+(x, θ,m) the negative influence.

Dynamics systems with interacting elements often generate differential equation systems with Hill func-
tions. The solution of such differential equation systems, equations 7-9 in case of the osteo-chondro cell
differentiation model, can be complicate and use high computation times. More influence relations more dif-
ficult to solve the system. To simplify them, we reduce them into switched systems choosing some influence
functions to be represented with piecewise-dependent behaviours. Thus, the system dynamics is obtained from
the interaction of continuous and discrete dynamics.

Here, we show two reductions of the Hill functions: Piecewise-constant and Piecewise-linear approxima-
tion. The first idea is considering Hill function as step functions. It is to say, piecewise-constant functions to be
0 when x is lower or equal than the threshold θ and 1 after this threshold. With this simplification, the model
moves between different modes in function of how high or low are the concentrations x with respect to the
thresholds θ. The thresholds divide the state variables space into cuboids, each one with an associated system
of equations. Despite one obtains information of the system behaviour by looking the form of the equations in
each cuboid of the state spaces, the observations are only qualitative.

The second reduction of Hill functions is the Piecewise-linear approximation, in which the transition be-
tween 0 and 1 is smoothed by a linear function. It is to say, we use the approximation of equation 6 below:

h+(x, θ,m) ≈ l+(x, θ1, θ2) =





0 if x ≤ θ1
x−θ1
θ2−θ1 if θ1 < x < θ2

1 if x ≥ θ2
(6)

With this second alternative, the switched system transits between a big set of modes according to how high are
the mRNA concentrations compared with the thresholds θ1 and θ2 of each influence function.

3.2 An Osteo-chondro Differentiation Model

An application of Gene Regulatory Networks is cell differentiation modeling. Each possible differentiation
of a cell is associated to the mRNA concentration of an specific gene. Here we use the model of Schittler et al.
([13]) to differentiate progenitor cells into osteoblasts (bone cells) or chondrocytes (cartilage cells). They are
considered two mutually inhibiting genes, so called the osteo-chondro switch, one associated to the osteogenic
differentiation (Runx2) and another (Sox9) to the chondrogenic option. A third gene (Tweak) is associated with
the progenitor maintenance role that inhibits both genes of the osteo-chondro switch. The mRNA concentration
associated to the progenitor state is denoted xP , the mRNA concentration of the osteogenic state is denoted
xO and the associated to the chondrogenic differentiation is denoted xC . To incorporate the external pro-
differentiation, pro-osteogenic and pro-chondrogenic stimulus are included three inputs: zD, zO and zC with
positive value. The increase of any differentiation stimulus provokes an increase of the expression of the
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const n=2;ap=0.2;bp=0.5;mp=10;cpp=0.1;kp=0.1;ao=0.1;ac=0.1;bo=1;
const n=2;ap=0.2;bp=0.5;mp=10;cpp=0.1;kp=0.1;ao=0.1;ac=0.1;bo=1;
const bc=1;mo=1;mc=1;coo=0.1;ccc=0.1;coc=0.1;cco=0.1;cop=0.5;
const ccp=0.5;ko=0.1;kc=0.1;

node DIFF
state xp,xo,xc:FLOAT;
flow zd,zo,zc:[0,1]:in;
eqdiff 

dxp=(ap*xp^n+bp)/(mp+zd+cpp*xp^n)-kp*xp;
dxo=(ao*xo^n+bo+zo)/(mo+coo*xo^n+coc*xc^n+cop*xp^n)

-ko*xo;
dxc=(ac*xc^n+bc+zc)/(mc+ccc*xc^n+cco*xo^n+ccp*xp^n)

-kc*xc;
init

xp:=12,xo:=0,xc:=0;

edon

node STIMULUS
state _zd,_zo,_zc:FLOAT;on_d,on_o,on_c:BOOL;
flow zd,zo,zc:FLOAT:out;
event to_diff,to_osteo,to_chondro;
trans

on_d=False |-to_diff -> _zd=1,on_d=True;

on_o=False |-to_osteo -> _zo=0.8,on_o=True;
on_c=False |-to_chondro -> _zc=0.8,on_c=True;

init

_zd:=0,_zo=0,_zc=0,on_d:=False,ond_o=False,on_c=False;

extern
law<to_diff>:Exponential{0.01};
law<to_osteo>:Exponential{0.002};
law<to_chondro>:Exponential{0.001};

edon

node MAIN
sub 

D:DIFF;
S:STIMULUS;

assert
D.zd=S.zd;
D.zo=S.zo;

D.zc=S.zc;
edon

assert
zd=_zd;
zo=_zo;
zc=_zc;

mRNA
concentration

Time

Figure 3. BioRica code and simulation of an osteo-chondro differentiation model ([13]). The pro-differentiation stimulus
happens at time exponential with rate 0.01 (expected value E(t) = 100), the pro-osteogenic stimulus happens with rate
0.002 (E(t) = 500) and the pro-chondrogenic with E(t) = 1000.

associated gene. The model is given by the equations 7-9 above.

ẋP (t) =
aP ·xnP+bP

mP+zD+cPP ·xnP
− kP · xP , (7)

ẋO(t) =
aO·xnO+bO+zO

mO+cOO·xnO+cOC ·xnC+cOP ·xnP
− kO · xO, (8)

ẋC(t) =
aC ·xnC+bC+zC

mC+cCC ·xnC+cCO·xnO+cCP ·xnP
− kC · xC , (9)

with n = 2, aP = 0.2, bP = 0.5, mP = 10, cPP = 0.1, kP = 0.1, aO = aC = 0.1, bO = bC = 1,
mO = mC = 1, cOO = cCC = cOC = cCO = 0.1, cOP = cCP = 0.5, kO = kC = 0.1 known parameters.

We obtain the same results for the scenarios analyzed in [13], but the BioRica representation gives flex-
ibility to the model. In Fig. 3 we considered another scenario, where pro-differentiation, pro-osteogenic and
pro-chondrogenic stimulus happen with exponential probabilities over time (a Poisson process). The system
corresponds to a strict Stochastic Switched System, in which delay times have random behaviours.

Since we separate between stimulus (node STIMULUS) and differentiation dynamics (DIFF), to specify
each differentiation stimulus one needs only to modify such a node. The dynamics of STIMULUS controls the
lineage decision by switching the values of the z coefficients, and depends on external factors. A factor that
affects the lineage decision is the activation of the Wnt/β−catenin pathway. Since Runx2 is a Wnt target gene,
the accumulation of β−catenin in the nucleus stimulates the expression of Runx2, and consequently favors the
bone formation ([17]). One can include this effect, on the synamics of z0, by measuring the concentration of
nuclear β−catenin over time and using LiCl to activate the pathway.
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4 Conclusions and Discussion
We used the theory of Stochastic Transition Systems ([10] and [11]) to define an special type of Hybrid

System: Stochastic Switched System (section 2.3). The model is formed by the continuous dynamics of the
state variables, given by differential equations, and the discrete dynamics of the modes that change over time to
transform the differential equations. We allow stochastic and non deterministic behaviours, and implemented
such systems using BioRica.

We defined the osteo-chondro cell differentiation model in [13] as a Stochastic Switched System by com-
posing STIMULUS and DIFF (differentiation) components giving more flexibility to extensions. As example,
stimulis are considered with aleatory behaviour. By considering the activation of the Wnt/β−catenin pathway
as factor of bone formation and measuring its effect, it is possible to improve the model.

We defined a non-ambiguous way to describe a complex system by decomposing it into different types of
interacting models. Behaviour laws change over time, which is modeled by discrete changes of mode variables
that transform the continuous dynamics, and complex processes are modeled by composing diverse models
with flow connections and synchronization of events. Our approach allows us to reuse SBML specified models
and exploits modular properties of systems, which can be separated into modules in function of the type of
process and its timescale, and the complexity or type of model.
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1 Introduction
Moonlighting proteins are a specific subset of multifunctional proteins. To be considered moonlighting,

a protein must have multiple, unrelated and independent functions (disabling one does not affect the other).
For example, human aconitase, in addition to its primary function of catalyzing the isomerization of citrate
to isocitrate is also involved in iron homeostasis [1]. Identification of moonlighting proteins is important for
many reasons. First of all, correct identification of moonlighting proteins is essential for the complete func-
tional annotation of a proteome. In addition, since moonlighting proteins can link unrelated processes, they are
likely to play a regulatory role. Some proteins perform their moonlighting function only in tumor cells and are
important for disease progression [2]. Finally, an unknown moonlighting function of a drug target may result in
unexpected side effects. The moonlighting proteins that have so far been identified were serendipitous discover-
ies and are probably but a fraction of the whole. The large scale prediction of moonlighting proteins, however,
requires the development of specific tools.

Protein-protein interaction networks (PPI networks) can be represented as simple graphs where each vertex
represents a protein, and each edge a direct interaction. By definition, moonlighting proteins will have multiple,
unrelated interacting partners. Large scale PPI networks are built using data from high throughput techniques
and are therefore context-free. A PPI network, therefore, represents the set of all known interactions between
each of its constituent proteins. When combined with functional annotations of its constituent proteins, PPI
networks are particularly well-suited for the identification of moonlighting proteins. Here, we present MoonGO,
the first method for the high-throughput prediction of moonlighting proteins from PPI networks.

2 Methods
2.1 Class Annotation

To ensure the quality of our data, we only use ’high confidence’ interactions, i.e., those that have been
identified by experimental methods that find direct, binary, interactions such as yeast two hybrid assays. We
start with a network that has been partitioned into a system of overlapping classes (for the work presented here,
we have used the OCG algorithm ([3]). Each class is then annotated according to the annotations of the proteins
it contains. We have tried different annotation methods and found that the best results are obtained when using
a simple majority rule. We therefore annotated a given class to a specific GO term iff ≥ 50% of annotated
proteins in that class share that GO term. While very extensive, the GO annotations are far from complete. For
example, of the 9006 proteins in our human interactome, 1540 (17.2%) lack annotations. A class is, therefore,
considered for annotation iff at least two thirds of its constituent proteins have GO annotations. If not already
annotated to them, member proteins inherit the annotation(s) of the class.

2.2 MoonGO

Many GO terms are either semantically similar, such as “cell death” and “cytolysis” or refer to closely
linked biological processes, such as “cytokinesis” and “mitosis”. Therefore, a method of evaluating the simi-
larity, or “closeness” of GO annotations is needed to distinguish between ‘normal’ multifunctional and bona
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fide moonlighting proteins. To that end we have calculated the hypergeometric probability of association for all
combinations of GO term pairs that annotate the human proteome. GO term pairs whose probability of asso-
ciation lies below the 99th percentile of the calculated probabilities are considered ‘dissimilar’. For the work
presented here, we have used the ’biological process’ ontology but any other may also be used.

MoonGO uses the annotated classes and GO term association probabilities to search the network for proteins
found at the intersection of two classes annotated to dissimilar GOs (Figure 1A). In addition, it can also search
for proteins whose interactors bridge two dissimilar classes (Figure 1B) and proteins whose direct annotations
are dissimilar to those of their class (Figure 1C). Finally, it can also search for interactions between proteins
annotated to dissimilar GOs and that belong to different classes (Figure 1D).

Figure 1. Moonlighting candidates. The situations recognized by MoonGO as indicative of moonlighting function. Cases
A,B and C identify a moonlighting protein, while case D a ‘moonlighting interaction’ as either, or indeed both, interactors
can be considered as candidates. Moonlighting candidates are shown as white circles. The large grey circles represent
classes annotated to dissimilar GO terms.

3 Results

When using the methods illustrated in Figure 1, which incorporate information from the annotated classes,
mode A finds 7 candidate proteins, mode B 52 and mode C 1565. Mode D finds 2396 interactions involving
2763 proteins. These sets of proteins are preliminary results and will be further filteredikel as described below.

4 Discussion/Perspectives

Our next step will be to integrate other data such as expression, subcellular localisation and protein struc-
tural disorder to refine our predictions. We will apply our method to the interactomes of five species: human,
mouse, fly, worm and yeast. As well as predicting possible moonlighting proteins in these species, we hope to
identify special cases where a protein is not only moonlighting in multiple species but also has different sec-
ondary functions in different organisms. This is the case for aconitase which in addition to its primary function
is involved in mitochondrial DNA maintenance in yeast but in iron homeostasis in mammals [4]. Cases like this
suggest that some proteins may be intrinsically amenable to the acquisition of novel functions.
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Gene duplication is readily accepted as a primary mechanism for generating organism complexity. However,
the mechanisms responsible for the maintenance of duplicated genes, at the genome scale, are still poorly
understood. Analysis of biological networks can help us to understand better which evolutionary forces are
acting on duplicated genes, as their interacting context is taken into account. Taking advantage of available
knock-out data, microarrays transcriptomic data and protein-protein interactions data from literature, we look
to characterise the functionalisation processes acting on duplicated genes in biological networks of Arabidopsis
thaliana. We take into account the underlying mechanism of duplication (whole genome duplication, tandem
duplication and segmental duplication) as it can influence the maintenance of duplicated genes [1,2].

The mechanisms mainly proposed to explain the maintenance of duplicated genes in genomes imply (see
for review [3]):

– Neofunctionalisation, where duplicated genes can acquire new functions, is modelled as a mutation hap-
pening to a duplicate gene after duplication and being fixed due to directional selection or genetic drift.

– Subfunctionalisation, which can describe two different models: the duplication, degeneration, comple-
mentation model (DDC), where duplicate genes are maintained, as the function of the parent gene is
divided between them, or the escape from adaptive conflict model (EAC), where the duplicate genes
undergo adaptive mutations that cause specialisations of subfunctions of the parent gene. We can distin-
guish subfunctionalisation where both duplicated genes are needed to complete ubiquitly the ancestral
function and subfunctionalisation where duplicated genes maintain each the ancestral function but in
different tissues.

– Redundancy of function, where the duplicate genes are maintained as copies of their parent gene, due to
increased gene dosage.

Hanada et al. [4] examined Arabidopsis thaliana paralogous gene pairs associated with morphological
diversification and classified them into high, low, and no morphological diversification groups, based on knock-
out data. They found that the divergence rate of both gene expression and protein sequences were significantly
higher in either high or low morphological diversification groups compared with those in the no morphological
diversification group. Considering that high morphological diversification duplicated gene pairs can correspond
to a neofunctionalisation underlying process and that no morphological diversification duplicated gene pairs can
correspond to a gene maintenance by redundancy of function, we took advantage of these data: we showed that
the evolutionary process of functionalisation can be in part characterised using the PPI network [5].
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We clustered the Arabidopsis thaliana genes into families using a walktrap clustering algorithm developed
at the laboratory with which we can control the inter connections level inside families. Using available knock-
out data, microarrays transcriptomic data and protein-protein interactions data from literature, we aim to answer
the following questions:

1. Which gene families are homogeneous in function? Which are the families showing the more divergence in
function (showing neofunctionalisation)? Can we retrieve this in the PPI network or in the expression data?

2. Using knock-out data, can we distinguish the high, low and no morphological diversification groups of du-
plicated pairs as defined by Hanada et al. [4] in the expression data? We expect a correlation of expression
for genes maintained by redundancy, a divergence of expression for genes maintained by neofunctionali-
sation and either a correlation of expression across all tissues or a divergence of expression according to
tissues for genes maintained by subfunctionalisation.

3. Is there specificity of correlation of expression according to the underlying mechanism of duplication?
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1 Introduction 

The superoxide anion is one of the deleterious reactive oxygen species. To survive and protect 
themselves from the toxicity of superoxide anion, many species have developed defence mechanisms [1]. 
Dismutation of O2- into molecular oxygen and hydrogen peroxide by Superoxide dismutase was the only 
biological mechanism identified for scavenging superoxide anion radicals until the early 1990’s [2,3,4]. Two 
novel iron-sulphur-containing proteins that detoxify superoxide molecules were then discovered in sulphate-
reducing anaerobes: desulfoferrodoxin (Dfx) [3], and neelaredoxin (Nlr) [4]. Superoxide reductase proteins 
(SOR) catalyzes the reduction of superoxide, rather than it dismutation [5]. SOR proteins have different 
numbers of iron sites: both contain a similar C-terminal single iron-containing site (centre II) but Dfx also 
has a second N-terminal site (centre I) [6]. SOR were first thought to be restricted to anaerobic prokaryotes 
but were subsequently discovered in some micro-aerophilic and micro-aerotolerant Bacteria and Archaea [4, 
7]. More recently, a SOR encoding gene was also discovered in an eukaryote [8]. A first classification of 
these enzymes was proposed according to the number of metal centres: neelaredoxin or 1Fe-SOR and 
desulfoferrodoxin or 2Fe-SOR [9,10]. An additional class was proposed after the isolation of a Treponema 
pallidum SOR that contains an extended non-iron N-terminal domain of unknown function [11,12]. Add to 
the problem of ambigous SOR classification, there are several mistakes with the annotation of superoxide 
reductase genes, partly a consequence of heterogeneous transfer of annotations from previously characterized 
neelaredoxin, desulfoferrodoxin, superoxide réductase. 

For all these reasons, we developed SORGOdb, the first resource specifically dedicated to superoxide 
reductase genes in entirely sequenced and in-draft genomes. SOR sequences were curated manually, 
analysed and stored using a new ontology in a publically available resource (http://sorgo.genouest.org/). 

2 Construction and Content 
For collection of SOR, we have extensively searched the Pubmed database and identified all relevant 

literature concerning any protein with “superoxide reductase” activity (13 SOR published in 12 organisms). 
We therefore enriched the database using manually curated sequences described as desulfoferrodoxin, 
superoxide reductase or neelaredoxin in EntrezGene and/or GenBank entries. As the “centre II” is the active 
site for the SOR activity, we also included all proteins with a domain of this type as described in databases 
(PRODOM, PFAM…). All sequences collected were cleaned up to remove redundancy and unrelated 
proteins. This non-redundant and curated dataset was used to investigate the complete and in-draft genomes 
available in the NCBI database through a series of successive BlastP and tBlanstN searches. At the end of 
this integrative research, we had a collection of 325 non-redundant and curated predicted SOR in 274 
organisms, covering all the three kingdoms: Bacteria (270 genes), Archaea (52 genes) and Eukaryota (3 
genes). 

3 New Classification and Ontology 
We propose a new unambiguous SOR classification based on their domain architectures (sequential 

order of domains from the N- to the C-terminus). Considering both domain compositions and arrangements, 

Communications affichées revues Affiche 209

–309–



this classification contains seven functionally relevant classes. Briefly, the 144 proteins that contain only the 
active site II (SOR) have been classified as Class II-related SOR. Class III-related SOR correspond to 
proteins which have the active site II and enclose an additional N-terminal region of unknown function. 
Class-IV related SOR correspond to very recently new class of methanoferrodoxin which have the active site 
II and an additional iron sulfur domain. The TAT-SOR have the active site II and include an extra twin-
arginine N-terminal signal peptide. The 152 proteins composed of a desulforedoxin (Dx) domain preceding 
the SOR unit were clustered in a class named Dx-SOR. The 19 proteins that combined a N-terminal helix-
turn-helix domain  (HTH) before the Dx-SOR module were gathered in a class called HTH-Dx-SOR. 
Finally, 10 SOR proteins that correspond to exceptional domains fusion or that encompass a mutated ncDx 
domain were classified in a disparate class labelled “Atypical-SOR”.  

4 Conclusion 
The SORGOdb server is the first web server that centralizes and provides an interface for information 

concerning superoxide reductase proteins. SORGOdb provides integrated features: (1) Multiple options for 
data browsing and searching (2) Complete descriptions of SOR and a new domain-based classification (3) 
Synthetic and downloadable synopsis for each locus tag (4) A SOR-homology analysis tool using BlastP 
similarity searches with the SORGOdb-positive dataset. SORGOdb is a unique mining tool that can assist 
researchers with diverse interests to retrieve, visualize and analyse superoxide reductase genes and proteins. 
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1 Background 
The identification and validation of neuroprotective targets is of primary importance in research on 

neurodegenerative diseases such as Huntington’s disease (HD). The development of genetically tractable 
models of disease and their use in genome-wide screens has generated a large amount of data in several 
species. A current challenge is the unbiased integration of these data sets in order to prioritize candidate 
target genes. The Biogemix knowledge base project has been developed with the European HD network 
(Euro-HD) to integrate ‘omics’ data from models of HD pathogenesis as available in several species 
(invertebrates, mammalian cells, mice, human samples). This project relies on the combination of network-
based and cross-species procedures to unlock the biological information buried into disease data sets. 
Ultimately, the aim is to make the Biogemix knowledge base v 1.0 publically available on-line. 

2 Results 
The Biogemix procedure is a method that relies on the use of molecular networks for the unbiased 

integration of ‘omics’ data across different species. This method is suited to the analysis of data sets for 
which the number of genes analyzed clearly exceeds the number of conditions tested. Single data sets are 
firstly analyzed with respect to a reference molecular network (for instance, use of WormNet to analyze 
worm data). To this end, the core method is the Fourier Transform of the data using prior knowledge of gene 
connectivity to gradually remove unreliable information [1]. Clusters of highly interconnected genes 
(modules) are then extracted, and they are annotated for their biological content using information from 
databases such as Gene Ontology, KEGG and Panther. In a second step, cross-species clusters (meta-
modules) are calculated using pairwise cluster alignment driven by gene/protein connectivity and protein 
similarities [2] and the resulting graphs annotated for their biological content. In a third step, all of the 
Biogemix products are ranked according to topological features, which is part of a larger prioritisation 
system that uses biological and drug discovery criteria to classify modules and genes of high interest. 
Preliminary results suggest that the Biogemix procedure is able to identify pathways previously associated to 
HD pathogenesis and to emphasize genes and pathways of novel interest in HD research. 

3 Conclusion 
Current developments aim at fine-tuning data analysis. Another aim is to develop a user-friendly query 

system that will allow the users to easily localize and visualize the information of interest. Results will be 
shown to illustrate the performances of the Biogemix procedure, its value for research on HD and potential 
for research on other diseases. 
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1 Introduction 

The Standards-based Infrastructure with Distributed Resources (SIDR) is a data and metadata repository 
for multi-assay experiments. To overcome the “silo” organization ground on a discipline and/or technology 

basis, the purpose of the SIDR initiative is to provide the community with a data resource that collide all 

omics experiments in a standard format and to contribute to a worldwide network of interoperable data 
repositories. To achieve this, the CNRS Institute for Biological Science (INSB) launched the SIDR project in 

November 2008 to help collecting and sharing standardized data and metadata in biology. Developments are 

currently performed at the Institute for Scientific and Technical Information (INIST), a CNRS facility, which 

has expertise in the field of biocuration of digital resources and bibliographic databases. 

The objectives of SIDR being the integration, the preservation and the sharing of data resulting from 

multi-omics and other biological techniques, the main constraints are the interoperability of metadata. To 

achieve this goal, SIDR collects and structures metadata by combining different approaches. Metadata are 
collected: (i) in a standard umbrella technical format (ISA-Tab) [1] which overlays technology-specific 

omics data models in a metamodeling-like architecture [2]; as such, SIDR figures among ISA case studies 

(see: http://isatab.sourceforge.net/case_studies.html), (ii) according to the appropriate 
community/technological standards and guidelines (available at http://mibbi.org/), and (iii) annotated using 

ontologies (available at http://bioportal.bioontology.org/). Finally, metadata are centralized in a repository, 

linked to data files and identified by Digital Object Identifiers (DOI). A prototype was released in December 

2009 and the actual (V1) version was put online at http://sidr-dr.inist.fr in November 2010.  

2 The SIDR V1 Release 

Metadata and data architecture. The SIDR metadata object model is intended to be generic and 

applicable to any omics or other biological techniques. To that aim, SIDR has mapped the ISA-Tab 
specifications to the FuGE (Functional Genomics Experiment) object-oriented model [3]. This mapping uses 

a two-stage process: (i) a metamodel architecture was delineated to elicit the syntax of the mapping and 

resulted in producing an ISA-OM model; (ii) the ISA-OM model was utilized as a “helper” model to define 
the semantic of the mapping. The objects of the SIDR model are then persisted into a PostgreSQL relational 

database. Data files and metadata are distinct objects with their own identifiers, and metadata reference their 

related data files; data may be either stored in the SIDR repository or on a third-party site, including the data 
production site. 

Metadata and data collection. In the development phase, metadata were collected according to the ISA-

Tab format, by using ISA-Tab spreadsheet templates or the ISA-Creator® tool [4]. Metadata are transformed 

in XML dialect (ISA-ML) before being stored in a database. For now, SIDR repository contains 520 data 
files related to 24 studies grouped in 13 investigations. Main features concerning the current metadata 

content of the repository are listed in Table 1. 
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Feature type Content 

Organism Homo sapiens, Mus musculus, Caenorhabditis elegans, Escherichia coli, Cucumis melo 

Measurement type Molecular structure, Molecular interaction, Cell counting, Transcription profiling, 

Transcription binding site identification, Protein-protein interaction, Metabolite profiling 

Technology type Mass and NMR spectroscopy, DNA microarray, Flow cytometry, Nucleotide sequencing 

Vocabularies/Ontologies  

used for annotations 

BTO, CHEBI, CL, EFO, FIX, GO , IMR, MI, MS, MSH, NCBITaxon, NCIt, OBI, PO, 

SO, SwissProt, SWO, UO, WBbt, WBls, WBPhenotype. 

Table 1.  Main features of the metadata in SIDR V1 release. 

Metadata searching. To anticipate performance issues in querying large datasets, a search engine allows 

eliciting and retrieving complex data. Actually, SIDR V1 allows simple queries and the search engine 
retrieves datasets by browsing straightforward indexed terms. Metadata files can be downloaded in both ISA-

Tab and FuGE formats. In the next (V2) version (December 2011), complex queries will be allowed; for 

example: “give all Metabolite profiling (MeasurementType) and Transcription profiling  

(MeasurementType) performed with any organism (Organism) treated for 12 hours (Factor) with Salicylic 
acid  (Factor)”.  

3 Issues in Metadata Biocuration 

The submission of metadata by researchers themselves, owning most of the times insufficient knowledge 

about standards, annotation and ontologies, may result in discrepancies and inaccuracies in metadata 

description and hamper the comparison and the reuse of the datasets. This highlights the importance of 

biocurators recognized for their expertise in organizing knowledge, retrieving valuable information and 
designing databases, in producing consistently annotated experimental metadata. Looking forward scalability 

issues in data curation, we are currently developing tools to alleviate the biocuration effort. 

4 Conclusion  

Rapid advances in genome-wide technologies coupled with extensive access to large amounts of highly 

detailed scientific data have dramatically increased the difficulties of researchers in data handling, storage 

and retrieval. We think that academic data repositories might provide public, well-recognized places to store 
and share data. SIDR further developments will focus on methods and tools to improve data interoperability.  
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1 Introduction 
Dystrophin, encoded by the largest human gene DMD, is a 427 kDa sarcolemmal protein found 

predominantly in skeletal and cardiac muscles [1,2]. Dystrophin is composed of four structural domains with 
the major central rod domain composed by 24 repeats of about 100-110 residues. Each repeat has an 
identifiable structure in alpha-helical triple coiled-coil homologous to spectrin repeats. Dystrophin is also 
characterized by various binding domains (actin, lipids, nNOS, ß-dystroglycan…) [3]. 

Hundreds of mutations that conserve the open reading frame or not have been observed in human 
patients and lead to respectively, Becker (BMD) and Duchenne (DMD) Muscular Dystrophies. DMD is a 
severe disease that considerably reduces patient’s life span whereas BMD is less severe with a large 
spectrum of severity [4]. Generally, DMD patients have a reduced level or an absence of dystrophin whereas 
BMD patients show a reduced level of mutated dystrophin. The mutations are for a large part deletions or 
duplications of one or several exons. When the reading frame is conserved, the mutations lead to internally 
truncated or lengthened dystrophin molecules. These mutated dystrophins are largely used as patterns for the 
design of dystrophin to be expressed in gene therapy strategies. Therefore, it is highly relevant to gain great 
knowledge of their effects in muscle cells. 

In order to have a more detailed view of the consequences of the in-frame mutations, we developed a 
new database called eDystrophin specifically dedicated to the proteins produced by these mutations. For this 
purpose, eDystrophin gathers and builds wild type and mutation information going from the DMD gene to 
the dystrophin molecules. Concerning the mutated proteins, we have been able to model the three 
dimensional structure of the mutated parts of the dystrophin by homology modeling, giving some new 
insights above the consequences of the mutation on the structure and function of the dystrophin. This 
database is the first that focuses on the dystrophin protein and that correlates information between protein 
isoforms and structures with pathology phenotypes. 

2 The Database: eDystrophin 
eDystrophin is a database with only in-frame mutations of the DMD gene. The website has three distinct 

parts: Knowledge (dystrophin state of art), Wild type dystrophin data and Mutated dystrophin data.  

Gene data: The cDNA sequences and exons of 18 DMD variants were obtained from GenBank.  
eDystrophin contains 209 mutations that conserve the open reading frame gathered from literature and from 
J. Chelly group (Institut Cochin – Paris). The mutation nomenclature is unified according to HGVS 
(http://www.hgvs.org/mutnomen/). 

Protein data: Eighteen isoforms of dystrophin were gathered from GenBank such as cDNA sequences. 
The structural and functional domains are defined as from data of the literature. Thirty-five structural 
domains and 14 binding domains are available in eDystrophin. Only two X-Ray structures of dystrophin 
domains (ABD1 and Cys rich domain) were available from PDB (http://www.pdb.org/).  3D model of 24 rod 
domain repeats obtained in our group were added to eDystrophin. In a second part, mutated protein 
sequences were calculated from the mutated cDNA, and the presence of structural and binding domains were 
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deduced while lacking domains are highlighted. A structural homology model of each mutated protein 
domain was generated with I-TASSER when the mutation occurs in the central rod domain. All models were 
thermodynamically and stereochemistry checked using various softwares.  

Clinical data: At the present time, eDystrophin contains 884 patients. When available, information 
about disease state (DMD, BMD or IMD) and the severity grading, the dystrophin expression in muscles, the 
presence of an additional cardiomyopathy and/or a mental retardation is done. The presentation of all these 
data is standardized in order to allow a statistical analysis of the database. For each mutation type, the 
repartition of this information is available through histograms.   

3 Cases Studies  
We can study some mutations with eDystrophin such as exon deletion 45-55. In the left menu, the user 

can choose Explore database/Mutated dystrophin/Search exon deletion to find this mutation. Here, he can 
select “deletion” and “exon 45” to display a list of mutations that involve exon 45. In this list we can select 
del 45-55 and the result page appears. The summary array provides general information like the protein size 
and sequence as well as the phenotype associated with the mutation. More information about patients is 
available by the detail “link”. As a result, this deletion appears to be associated with a majority of BMD 
patients (more than 91%) with a mild grading of severity. Then three boxes are provided to study protein in 
detail. In a first box, a protein scheme is available to easily visualize the mutation localization. In the deletion 
of exon 45-55, repeats 18 to 21 and hinge 3 are lacking and repeats 17 and 22 are truncated. In a second box, 
3D structural model of repeats 16 to 23 is displayed. The model appears like a crystallographic structure. In 
the deletion studied here, the two truncated repeats are able to reconstitute fold that organizes in a triple 
coiled-coil as in wild type repeats. Therefore, it appears that this particular mutation may not have 
deleterious consequence on the central rod domain structure. In a third box, binding domains affected by the 
mutation are notified. In our case, ABD2, LBD2 and nNOS are partially lacking. ABD2 and LBD2 are large 
domains with electrostatic interactions so we can assume the binding property is always possible. This 
mutation may affect strongly nNOS binding. All this protein information can be correlated with clinical data. 
In this case, the absence of a priori deleterious effect of the mutation may explain the observed mild 
phenotype. This exon deletion can be a candidate for exon therapy. 

4 Conclusion 
eDystrophin database allows, for the first time, integration of data from the mutation on the DMD gene to 

the consequences of mutation on the protein structure the functional binding domains. In that 
sense,eDystrophin database can help to choose the best targets for gene therapies. 
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{ignacio.gonzalez,sebastien.dejean}@math.univ-toulouse.fr

2 Queensland Facility for Advanced Bioinformatics, University of Queensland, 4072 St Lucia, QLD, Australia
k.lecao@uq.edu.au

Abstract In the current ‘omics’ era, the integrative or joint analysis of large amount of data, such
as genomics, proteomics, metabolomics, interactomics, is becoming crucial to unravel the rela-
tionships between different biological functional levels and to better understand biological systems
as a whole. Integrating multiple highly dimensional omics data represent both computational and
analytical challenges. New methodologies need to be developed to extract and visualise meaning-
ful information. We introduce mixOmics, an R package dedicated to the integrative analysis of
biological data that implements several recently developed statistical methodologies to enlighten
correlation between two matching data sets and perform simultaneous variable selection in both
sets. We also propose useful graphical outputs to aid the interpretation of these promising and
flexible analysis tools. mixOmics has been successfully applied in various biological integrative
studies and is undoubtedly useful to give more insight into biological systems.
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1 Background

‘Omics’ data now form a core part of systems biology by enabling researchers to understand the integrated
functions of a living organism. However, the available abundance of such data (genomics, transcriptomics, pro-
teomics ...) is not a guarantee of obtaining useful information in the investigated system if the data are not
properly processed and analyzed to highlight this useful information. A major challenge with the integration
of omics data is therefore the extraction of discernable biological meaning from multiple omics data. The sta-
tistical integration of two highly dimensional data sets, combined with variable selection from both sets has
attracted considerable attention these last few years. Regularized and sparse variants of Canonical Correla-
tion Analysis (CCA) [1,2,3,4,5] and Partial Least Squares regression (PLS) [6,7] were subsequently proposed.
However, most of these articles are limited to numerical results, and little attention has been paid to either the
interpretation of the results or the graphical outputs. It is therefore crucial to propose a software that combines
both computationally efficient statistical methodologies and graphical outputs that can aid the interpretation.

2 Methods

To address this issue, we have developed and implemented several exploratory tools. To describe briefly
regularized CCA and sparse PLS, let first denote the two data matrices Xn×p and Yn×q with standardized
columns, where the p and q variables are measured on the same n samples. Both approaches seek for p- and
q-dimensional weight vectors (loading vectors), and n-dimensional vectors (scores or latent vectors).

Regularized Canonical Correlation Analysis. CCA maximizes the correlation between linear combinations
of the variables from each data set. However, CCA requires the computation of the inverses of the covariance
matrices XX ′ and Y Y ′ that are singular if p >> n and q >> n. The introduction of l2 penalties [8,9] make
them invertible in a regularized CCA (rCCA).

Sparse Partial Least Squares Regression. On the contrary to CCA, PLS circumvents the issue of ill-conditi-
oned matrices by performing local regressions. In order to give interpretable results and remove noisy variables,
[6,4] proposed to add l1 penalizations to each PLS loading vector, in which the magnitude of the coefficients
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indicate the importance of the variables in the integrative model. As a result, many coefficients in these vectors
are set to zero. This naturally allows for a simultaneous variable selection in the two data sets. Recently, a
discriminant analysis framework was introduced (sPLS-DA) for a supervised setting [10].

3 Graphical Outputs
In addition, a strong focus is given in mixOmics for graphical outputs to make the interpretation of the

obtained results easier to understand [13]. Typical plots in 2D and 3D such as samples representation or corre-
lation circles to represent variables are available. New developments were also recently proposed to generate
Clustered Image Map and infer Relevance Networks. A further assessment of the biological relevance of such
graphical tools showed that the inferred networks were relevant to the system under study [14].

4 Conclusion
mixOmics is a computationally efficient R package that enables the integrative analysis of large data

sets using exploratory techniques. The package provides relevant graphical outputs to explore the relationships
between two data sets. The relevancy of the implemented approaches and the graphical outputs has been previ-
ously demonstrated [1,6,11,12]. mixOmics is easily applicable to systems biology studies and will undoubt-
edly help in addressing fundamental biological questions and in understanding systems as a whole. mixOmics
is freely available from http://cran.R-project.org or from the website companion http://math.

univ-toulouse.fr/biostat/mixOmics that provides full documentation, tutorials and case studies.
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[4] K-A. Lê Cao, P. Martin, C. Robert-Granié and P. Besse, Sparse canonical methods for biological data integration:
application to a cross-platform study. BMC Bioinformatics, 10:34, 2009.

[5] D.M. Witten, R. Tibshirani and T. Hastie, A penalized matrix decomposition, with applications to sparse principal
components and canonical correlation analysis. Biostatistics, 10:515-534, 2009.
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1 Introduction

Corynebacterium glutamicum est  une  bactérie  largement  utilisée  dans  l'industrie  agroalimentaire,  en 
particulier pour la production d'acides aminés (glutamate, lysine).

L'équipe  Physiologie  et  Métabolisme  des  Corynébactéries de  l'IGM étudie  le  fonctionnement  et  la 
régulation du  métabolisme de  C. glutamicum en  condition  de stress  depuis  de nombreuses  années.  Les 
recherches  de  l'équipe  sont  menées  en  utilisant  une  approche  pluridisciplinaire  associant  des  méthodes 
expérimentales  et  bioinformatiques.  Au cours  des  années,  l'équipe a  accumulé un ensemble de données 
hétérogènes  (prédictions  bioinformatiques,  niveaux  d'expression,  phénomènes  de  régulation,  flux  de 
métabolites) sur C. glutamicum.

À l'heure  actuelle,  les  informations  disponibles  sur  C.  glutamicum sont  « dispersées »,  aussi  bien  à 
l'échelle de l'équipe, qu'à l'échelle des données consultables dans les bases de données généralistes (NCBI, 
PubMed, EBI, KEGG, Brenda) et spécialisées (CoryneRegNet). L'absence d'un outil dédié à C. glutamicum, 
qui fournirait un point d'entrée unique pour accéder aux données portant sur le sujet, complique la recherche  
d'informations, et les analyses bioinformatiques « inter-bases » sont limitées par le schéma propre à chaque 
base de données.

2 Objectif et Contexte

Au  regard  de  ces  constats,  l'équipe  Physiologie  et  Métabolisme  des  Corynébactéries a  proposé  de 
regrouper un maximum d'informations dans une base de données unique, suivant un schéma qui reflèterait 
les  « briques »  fonctionnelles  élémentaires  et  les  interactions  existantes  chez  un  organisme  tel  que  C. 
glutamicum.  Cette  base  de  données  doit  intégrer  les  données  génomiques,  les  données  disponibles  au 
laboratoire et dans la littérature, sur les réseaux métaboliques et de régulations chez cet organisme.

Cette proposition s'est concrétisée au cours de la mission que je réalise dans le cadre de ma formation en  
apprentissage et en alternance (master 2 de bioinformatique de l'université de Rouen). Au cours de cette  
mission de deux ans (2009 – 2011), l'objectif est de mettre en place un outil permettant d'une part d'accéder  

Mise en place de la Base de Données CoryneCyc

Une Base de Données de type « Pathway/Genome » pour Corynebacterium 
glutamicum

Mots-clés  Corynebacterium  glutamicum,  Génération  d'une  Base  de  Données  de  type 
« Pathway/Genome », Pathway Tools, Développements Additionnels.
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facilement aux données relatives à C. glutamicum et d'autre part de générer ensuite d'autres bases de données 
pour des organismes proches à des fins d'études comparatives.

Pour mettre en place un tel  outil,  nous utilisons une base de données  de type « Pathway/Genome » 
(Pathway/Genome Database, PGDB), qui regroupe des informations à la fois sur le génome et sur les voies  
métaboliques, ainsi que sur les entités intermédiaires comme les régulateurs transcriptionnels, les complexes  
protéiques ou les modulateurs de réactions enzymatiques. Parmi les modèles de PGDB existants, nous avons  
choisi d'utiliser une PGDB de type « BioCyc » [1].

3 Résultats

J'ai consacré une première partie de ma mission à la mise en place de l'infrastructure technique nécessaire  
au fonctionnement de l'application Pathway Tools [2] qui permet de générer des PGDB de type BioCyc. 
Cette infrastructure autorise l'utilisation de toutes les fonctionnalités offertes par l'application : génération, 
édition et consultation d'une base de données. J'ai  ensuite développé des programmes afin d'améliorer le  
processus de génération de bases de données par Pathway Tools. Enfin, j'ai défini et appliqué une procédure 
intégrant  les  outils  de  génération  de  Pathway  Tools  et  mes  propres  développements  pour  générer  une 
première version de CoryneCyc.

Dans une deuxième partie, j'ai développé une fonctionnalité qui permet aux scientifiques de contribuer à 
l'amélioration du contenu de la base de données CoryneCyc directement depuis une interface web. J'ai conçu 
un site « privé » en vue de proposer divers outils d'analyses de données, et d'entreposer des résultats issus 
d'expériences sur C. glutamicum utilisant des technologies à haut débit.

Enfin, je suis actuellement en train d'exploiter la base de données CoryneCyc en réalisant une étude sur 
l'usage des codons dans le génome de C. glutamicum. L'objectif de cette étude est de regrouper les séquences 
codantes du génome sur le critère de leur usage des codons, puis de rechercher à travers l'ensemble des 
informations  disponibles  dans  CoryneCyc  si  des  caractéristiques  « biologiques »  (classe  fonctionnelle, 
processus biologique, domaine protéique, etc.) sont partagées par des séquences contenues dans un même 
regroupement, ou discriminent des séquences contenues dans des regroupements différents.

4 Perspectives

CoryneCyc est déjà utilisé par l'équipe Physiologie et Métabolisme des Corynébactéries pour interpréter 
des données issues de technologies à haut débit (transcriptomique, protéomique). Par la suite, d'autres PGDB 
pour  des  organismes  proches  de  C.  glutamicum vont  être  générées,  en  utilisant  comme  base  pour  la 
génération les annotations de la base de données MetaCyc et de la PGDB de C. glutamicum. D'ici l'été 2011, 
l'accès à CoryneCyc sera ouvert à la communauté scientifique.

Les  données  qui  font  partie  de  CoryneCyc  pourront  servir  de  point  de  départ  pour  des  analyses  
bioinformatiques  fonctionnelles,  comme  la  modélisation  automatisée  de  réseaux  métaboliques  et  de 
régulations.  Ces analyses peuvent  être grandement facilitées par l'utilisation d'API dédiées aux bases de  
données de type « BioCyc ».

Outre  l'utilisation  des  API  « PerlCyc »  et  « JavaCyc »  déjà  existantes,  la  mise  au  point  d'une  API 
« RCyc » permettrait de coupler la puissance du logiciel de statistique R avec l'ensemble des informations 
contenues dans les PGDB de type « BioCyc ».  Dans le cadre de mon étude de l'usage des  codons,  j 'ai 
commencé à développer cette API « RCyc ».
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1 Introduction

UniProt  is  the  central  resource for storing and interconnecting information from large and disparate  
sources, and the most comprehensive catalog of protein sequence and functional annotation. UniProt is built  
upon the extensive bioinformatics infrastructure and scientific expertise at European Bioinformatics Institute  
(EBI), Protein Information Resource (PIR) and Swiss Institute of Bioinformatics (SIB). 

2 Different components optimized for different uses

The UniProt Knowledgebase (UniProtKB) [1] is a central access point for integrated protein information 
with cross-references  to  multiple  sources.  The UniProtKB contains  two sections.  UniProtKB/Swiss-Prot  
contains records with full manual annotation (or computer-assisted, manually-verified annotation) performed  
by  biologists  and  based  on  published  literature  and  sequence  analysis.  UniProtKB/TrEMBL  contains 
computationally generated records enriched with automatic classification and annotation. 

The UniProt Archive (UniParc) [2] is a comprehensive and non-redundant database of protein sequences 
extracted  from public  databases  UniProtKB/Swiss-Prot,  UniProtKB/TrEMBL,  PIR-PSD,  EMBL,  EMBL 
WGS,  Ensembl,  IPI,  PDB,  PIR-PSD,  RefSeq,  FlyBase,  WormBase,  H-Invitational  Database,  TROME 
database, European Patent Office proteins, United States Patent and Trademark Office proteins (USPTO) and 
Japan Patent Office proteins.

UniProt Reference Clusters (UniRef) [3] consist of three databases of clustered sets of protein sequences 
from  UniProtKB  and  selected  UniParc  records.  In  the  UniRef90  and  UniRef50  databases  no  pair  of  
sequences in the representative set has >90% or >50% mutual sequence identity. The UniRef100 database  
presents identical sequences and sub-fragments as a single entry with protein IDs, sequences, bibliography,  
and links to protein databases.

The UniProt Metagenomic and Environmental Sequences (UniMES) database is a repository specifically  
developed for the expanding area of metagenomic and environmental data. 

UniProt include other developments such as the ID mapping service (http://www.uniprot.org/mapping) 
which allows users to map between UniProtKB and more than 85 other data sources. Also The UniProtKB 
Sequence/Annotation Version Archive (UniSave) is a repository of UniProtKB/Swiss-Prot and UniProtKB/TrEMBL 
entry versions. UniMart (http://www.ebi.ac.uk/uniprot/biomart/martview) is a BioMart database for querying 
UniProtKB data, with a cross-querying facility to join to/from other BioMart databases. UniProtJAPI [6] is a 
Java library which facilitates the integration of UniProt data into Java-based software applications.

UniProt  is  updated  and  distributed  every  four  weeks  and  can  be  accessed  
online for searches or download at http://www.uniprot.org. 
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3 Complete Proteome Data Sets

The species coverage of the UniProtKB Complete proteome data sets will be extended to include all the  
species within the International Protein Index (IPI) (Arabidopsis thaliana, Bos taurus, Danio rerio, Gallus  
gallus, Homo sapiens, Mus musculus, Rattus norvegicus) andan additional five requested by users (Canis  
familiaris, Sus scrofa, Caenorhabditis elegans, Drosophila melanogaster and Saccharomyces cerevisiae). Due 
to strong collaborations between UniProt, Ensembl, NCBI and Vega, the quality of gene predictions from a  
reference genome has increased greatly. A consequence being that the requirement for IPI has diminished  
and is scheduled for closure summer 2011. All IPI users are being encouraged to use UniProtKB complete  
proteome  sets  as  the  approved replacement.  The  complete  UniProtKB proteome sets  will  be  based  on 
existing  UniProtKB  sequences  supplemented  by  high  quality  predictions  imported  from  Ensembl.  
Incorporation of Ensembl sequences into UniProtKB has been achieved for all  the IPI species and will  
expand to other species of interest in the near future. The proteome sets are available for download from the  
UniProt FTP and web site. We expect these will be very useful for our users as they will eliminate the need  
to combine data from different databases. 

4 Evidence Code in UniProt XML

Each UniProtKB entry combines information from a wide range of sources and becomes a central hub  
for  the  collection  of  functional  information  on  proteins.  An  entry  will  be  generated  from  a 
DDBJ/ENA/GenBank nucleotide record or other sequence database (for example Ensembl and PDB), and be 
enriched with  cross  references  to  a  large number  of  other  databases,  output  from automatic  annotation 
predictions, sequence analysis programs and, if selected for manual curation, experimental characterisation  
data from scientific literature and curator-evaluated computational analysis will be added. Because of this 
huge variety and number of data sources, it is vital that users are provided with a way of tracing the origin of  
each piece of information in an entry and given the opportunity to evaluate it. The UniProt Consortium has 
begun to approach this challenge by the use of an evidence attribution system. Evidence is attached to most 
data items in a UniProtKB entry thereby identifying the source(s) and/or method(s) used to generate the data.  
The evidences will be standardised using the widely known Evidence Code Ontology (ECO). In future, any 
database from which we import data that also has evidence attributions, this data will also be incorporated. 

5 Demonstration

The demonstration will cover:

1. A brief description of the UniProt databases.

2. Accessing UniProt using simple query syntax. The user will be presented with helpful suggestions 
and hints.

3. Exploration of sequence similarity searches, alignments and ID mapping tools provided.

4. Accessing UniProt data programmatically.

This demonstration will also encourage user interaction and feedback. 
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1 Introduction

The current growth of high-throughput experimentation in biological research implies a huge challenge to 
store and share generated data and their annotations [1]. Manipulating and integrating heterogeneous data 
types in large scale collaborative projects involving several geographically separated laboratories remains an  
even higher hurdle for which proper management systems must be deployed. Data annotations need to be 
recorded and homogenized for proper integration,  by using controlled vocabularies [2],  while respecting 
Minimum Information standards, such as MIAME [3] or MIFlowCyt or others.

In  contrast  with  previously  proposed  databases  and  Laboratory  Information  Management  Systems 
(LIMS),  the  Database  for  Joomla’s  Extensible  Engine  (Djeen)  is  conceptually  simple  (simple  database 
scheme and organization of data within a file system), usable for any data types (no technology-dependent  
semantics was used in the core code) and adapted to the manipulation of large numbers of data files and their 
annotations, generated in a high throughput way.

Djeen is designed as a Research Information Management System [4] which means that its structure is not 
modeled on data generated by a particular device, but around laboratory experimentation work flows (figure 
1). Longitudinal data integration concepts has also been implemented to address four previously identified 
fundamental  issues  in  high  throughput  biomedical  data  management:  data  organization,  data  sharing, 
collaboration and publication [4].

Figure 1. Data architecture and workflow.

2 Architecture and Workflow

Figure 1 shows the internal Djeen structure. It is based on a hierarchy including laboratory experimental  
workflow composed of 'Project'  element at its  top, as well as 'Samples',  and 'Experiments'.  Projects can  
contain one or several sub-projects. Each one is a coherent set of data - samples and files - described by  
annotations.  Projects are owned by a 'Project  Administrator',  who controls annotations and users/groups  
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permissions.  Samples  and  Experiments  are  connected  structures  defined  as  follows.  Samples  describe 
biological objects, and Experiments describe processes to transform these objects into other Samples.

Sample  and file  annotations  are  managed using  'Templates' to  enforce  the type  of  annotations  to  be 
provided by experimenters, permitting further data integration and minimum information gathering across 
collaborative  work.  Templates  are  specified  by  Project  Administrators  who defined their  structures  and 
elements that must be populated. Two types of annotations are stored, global experimental annotations that 
describe  experimental  design  (stored  as  'Parameters'),  and  phenotypes  that  varies  between samples  (for  
example, patients clinical annotations, stored as 'Phenotypes'). Moreover, Project Administrators can backup 
a whole project through the 'History' function.

Djeen has the capability to manage instruments configurations (for instance a flow cytometer). To do so, a 
user has to define a number of samples to be processed and directly export the experimental design to the  
device. Instrument export feature is currently implemented for flow cytometry data (FCS format) to the BD  
Diva®  software  XML format  and  other  instruments  interfaces  are  currently  under  development.  After  
samples have been processed and measurements generated, data is loaded in Djeen through a network share.

Designed to be user friendly and simple to administrate, Djeen user interface allows quick access to major 
elements and presents information into clear and simple views. By using templates, it allows streamlining 
data annotation for high-throughput projects. User management allows to share data only with designated 
collaborators and release them publicly after publication.

3 Software and Availability

Djeen web interface has been developed as a  Joomla! component.  Joomla! is an open-source Content 
Management System (www.joomla.org) featuring a documented API to create advanced extensions that can 
re-use basic features, such as authentication, back-end administration, database access and web interface.  
Embedding Djeen within a CMS helps saving costs on in-house development while focusing onto scientific 
development.

Djeen is available for download at http://bioinformatique.marseille.inserm.fr/djeen under CeCILL licence, 
and a test instance is available  at http://bioinformatique.marseille.inserm.fr/djeentest. Installation is greatly 
facilitated by a step by step process.

Future developments consists on the creation of exportable instruments configuration templates for high 
throughout  repetitive  projects  and  experiments.  Export  function  to  other  instruments  (Affymetrix 
GeneChips® system) and visualization software exports are planned for next release.
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1  Introduction

The Reverse Phase Protein Array (RPPA) is an emerging high-throughput technology relying on highly 
specific antibodies to quantify proteins and post-translational activation levels. Because it can be used with 
nanogram amounts of extracts, thus technology has become a promising approach for proteome analysis of 
cancer patients. A RPPA platform was set up at Curie Institute (Paris, France) as a result of a partnership 
with Servier  pharmaceutical  company.  Among the research projects  utilizing the platform,  a pilot  study 
focuses  on  finding  new  therapeutic  strategies  to  treat  sub-types  of  breast  cancers  by  examining  the 
phosphokinome of patient biopsies.

2  Results

To fully exploit the potential of RPPA technology, we have developed PARYS ( Protein ARraY Server ), 
a comprehensive bioinformatics environment for the platform. PARYS is composed of :

A LIMS-like section to track major  laboratory reagents ( e.g. antibodies, tumour samples, cell  lines, 
proteins extracts, arrays ) and key processes such as extracts preparation, spotting, antibody labelling and 
quantification.

A statistical module for optimal antibody dilution calculation, for array normalization ( with SuperCurve 
[1] ), for exploratory analysis ( Principal Component Analysis and Clustering ) [2].

A project section to coherently organize, visualize the data generated. Data-mining tools is implemented 
to help users retrieve meaningful biological information from the data.

Future  improvements  include  methods  for  confronting  RPPA-based  proteomic  quantifications  with 
genomic and transcriptomic array data, and implementation of differential analysis.
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Figure 1.PARYS Interface.
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Abstract	   The search for homologous sequences and orthologs is very useful for analyzing 
biological sequences, especially when studying a species whose genome is still to be entirely 
sequenced such as wheat. Steady growth of the size of genomic database makes homologous 
sequences analysis very time-consuming. Moreover, the functional annotation of the genes 
based on their sequence homology with model species genomes requires querying unrelated 
databases. Expressed sequence tags and transcripts represent one of the most important sources 
of information in gene expression study; however, raw sequences must be annotated before they 
are of value to the research community. The aim of the present work was to develop a functional 
annotation database dedicated to bread wheat (Triticum aestivum), gathering information 
about model plant species and linking them to wheat through BLAST results. 

Keywords BLAST, database, homology, orthologs, sequences, transcripts, Triticum aestivum. 

1 Introduction 
In order to annotate expressed sequence tags (ESTs) or transcripts one has to navigate through unrelated 

databases. Efforts are in progress to gather this kind of information for the model species Arabidopsis 
thaliana and rice (Oryza sativa) [1]. To the best of our knowledge, no database is available to relate wheat 
transcripts information to functional annotation using model species information. 

The aim of the present work was to develop a functional annotation database dedicated to wheat, gathering 
information about model plant species and linking them to wheat through BLAST [2] results. We developed 
an open-access database relating the transcripts of the wheat set UniGene and the wheat Transcription Factor 
DataBase (wDBTF) [3] that have been used to design a Custom Wheat Gene Expression 12x135k 
NimbleGen cDNA microarray [4] to A. thaliana and rice databases. 

2 Database Structure and Website 
The database contains information about Gene Ontologies (geneontology.org), functional annotations 

(mips.helmholtz-muenchen.de/plant/athal/), MapMan information  (mapman.gabipd.org), [5] gene families 
(arabidopsis.org) and metabolic pathways (plantcyc.org) for model species. More than four million BLAST 
results were stored, allowing an efficient use of the database. Following the recommendation of the 
International Wheat Genome Sequencing Consortium (IWGSC) for homology research, the percentages of 
coverage and identity are used to assign functional annotations to wheat transcripts [6]. 

The database was built so that one can use two different query’s approaches (Fig. 1). From wheat 
transcripts IDs or NimbleGen gene expression microarray probes to putative family, ontology, function, 
and/or metabolic pathway through BLAST results, and vice versa. BLAST results allow one to characterize 
the homology and assign putative functional annotation between two sequences based on coverage and 
identity threshold values specified by the user.  

A website (http://urgi.versailles.inra.fr/Species/Wheat/Tools/dbWFA) was developed in order to grant 
users with the most common queries that can be applied to the database. It includes searching for genes 
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involved in specified metabolic pathways, functional annotations, gene ontologies or belonging to specified 
families. Or inversely, searching for putative annotations related to a wheat transcript or a list of wheat 
transcripts. Results are available as detailed web/html pages or text files. 

 

Figure 1. Simplified model of the dbWFA database. 

3 Annotation of the Wheat Gene Expression NimbleGen Array 
A total of 40 349 transcripts are spotted on the Custom Wheat Gene Expression 12x135k NimbleGen 

array [4]. Out of these, 14 233 have a BLAST result with an identity percentage greater than 45% and a 
coverage percentage greater than 50%, which are the cutoff values recommended by the IWGSC [6]. Thus, 
35.3% of the transcripts of the NimbleGen array can be linked to A. thaliana and rice genes. Previous studies 
have shown that 18 140 genes are expressed during grain development [8], 8 160 (45%) of these genes have 
a BLAST matching the IWGSC recommended cutoff values. 

This database is part of a larger project leaded by INRA Clermont-Ferrand and the LIMOS aiming at 
elucidating Gene Regulatory Networks (GRNs) involved in the transcriptional regulation of seed storage 
protein genes in wheat using data mining methods. Network inference and mining tools are being developed 
as a web-oriented platform [7]. The aim is to develop integrated biological resources for wheat containing 
functional annotation data and providing network inference, visualization and mining tools. 
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We present here two new approximations for the computation of the significance score of a motif in a
biological sequence. The first one, called Near Gaussian (NG) approximation, dramatically extends the relia-
bility of the classical Gaussian approximations. The second one is a precise large deviation type result which
supersedes previous ones by providing explicit formulas for the derivatives of the cumulant generative func-
tion Λ. Both approximations are compared to classical ones (Gaussian, Compound Poisson, see [1,2,3]) on a
toy-example.

Significance score. Given R a motif of interest (from simple strings to complex regular expressions), a recur-
rent question is: “how surprising is it to observe n occurrences ofR in my dataset ?”. In statistical terms, this is
equivalent to compute the p-value of observation n in respect with a relevant reference model. More precisely,
if X1:` is length ` random sequence generated by our reference model, and if N` denotes the random number
of occurrences ofR in X1:`, for any n > 0 or objective is to compute the significance score of observation n:

S(n) =

{
+ log10 P(N` 6 n) if n 6 E[N`]
− log10 P(N` > n) if n > E[N`]

this score representing the p-value in a decimal log-scale, negative (resp. positive) values being associated to
under- (resp. over-) representation events.

Exact computation. Using Deterministic Finite Automata and Markov chain embedding techniques [4,5] one
can compute exactly S(n) with a complexityO(L3×n2× log(`)) (power) orO(L×n×`) (recursion) where L
is a parameter related to the complexity of the motifR (see [6,7] for details). Unfortunately, these complexities
prevent to use exact methods for long sequences (large `) when considering either high complexity motifs
(large L) or motif with large number of occurrences (large n). For such cases where exact computations are not
tractable, the need of efficient approximations remains critical.

Near-Gaussian Approximation. Thanks to recent advances in the field [8] it is now possible to compute
exactly the first k-th moments of N` complexity O(L3 × k2 × log(`)) (power), or O(L × k × `) (recursion)
which hence allows to obtain efficiently the moments of N` for any pattern problem. A tempting idea is then
to take advantage of these moments to derive Near Gaussian (NG) approximations for N` using Edgeworth’s
expansions. We compare these approximations to the exact distribution on Fig. 1: NG approximations are well
suited for center distribution events (ex: |S(n)| < 5.0) but are completely irrelevant for tail distribution events.

Bahadur-Rao Bound. Since we are usually more interested by tail distribution events, it might be interesting
to turn to the large deviation theory where the behavior ofN` is commanded by Λ(t)

def
= logE[etN` ] from which

we can derive the following precise Bahadur-Rao (BR) type bound:

BR(n)
def
=

e−Λ∗(n)

(
1− e−|τ |

)√
Λ′′(τ)2π

with Λ∗(n)
def
= maxt{tn − Λ(t)} and τ def

= arg maxt{tn − Λ(t)}, and we have: |S(n)| > log10 BR(n) for all
n. By providing explicit formulas for the two derivatives Λ′(t) and Λ′′(t), we derive an efficient algorithm to
compute BR(n) with complexity O(L3× log(`)) (power), or O(L× `) (recursion). On Fig. 1, we observe that
BR unsurprisingly performs well for tail distribution events but is irrelevant for the center of the distribution.
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Figure 1. Relative error in log-scale for various approximations on a random sequence X1:` generated by a M0 model
with parameters π(A) = π(T) = 0.10 and π(C) = π(G) = 0.40, and with ` = 1200 for: (a) the frequent motif G(G|C)G;
(b) the rare motif A(A|T)A.

Discussion. We can see on Fig. 1 that the classical approximations (Gaussian, compound Poisson) both lack
of precision and induce a bias which is not even conservative: significance is too large for over-represented
motifs with Gaussian approximations or for under-represented motif with compound Poisson approximations.
On the other hand, by combining NG approximation (for small S(n)) and BR (for large S(n)), one can obtain
a very reliable the approximation of S(n) for any value of n, thus providing a reasonable alternative to exact
computations with a dramatic reduction of the computational cost.
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1 Introduction 

Evidence from several systems indicates that oriented tissue growth is a major factor contributing to the 

shape of organs during embryonic development. Pioneering work for mapping cell polarity dealt with the 

simple geometry of the fly wing [1]. Most studies in mammals focused on organs where one or two principal 

axes allow an easier 2D analysis of individual cell polarities. For example in the kidney tubule the 

orientation of cell division in 2D is fully defined by the angle relative to the axis of the tubule. Thus in 2D, 

the tissue may be represented as a scalar field, and the analysis of tissue polarity mainly consists in showing 

that the angles deviate significantly from a random distribution. However, in an organ such as the embryonic 

heart, the tube axis is looped and therefore polarity cannot be analyzed in 2D. We have shown previously 

that growth of the developing mouse myocardium is oriented [2]. We now aim to map cell polarities in 

relation to the geometry of the heart. We analyze the direction of the centrosome-nucleus axis as a classical 

indicator of cell polarity. We propose here a 3D fluorescent image processing framework to analyze tissue 

polarity. 

 Polarity analysis in 3D presents specific challenges: 1) The data resolution must be of sufficient 

quality in each of the three dimensions, to allow proper object segmentation and precise axis measurement. 

2) The aim of the analysis is to map regions where cell polarities are coordinated. Since such regions may 

not coincide with those determined by morphological or molecular criteria, the search must be conducted 

objectively as a clustering problem in 3D. 3) The complex geometry of the heart prevents a straightforward 

application of standard spherical or circular statistics to test the significance of polarization in a given region. 

2 Acquisition of Centrosome-Nucleus Axis Data 

3-color 3D images of isolated E (embryonic day) 8.5 mouse hearts are acquired as previously described 

[3]. To optimize resolution we use confocal microscopy on samples with fluorescently labeled nuclei and 

membranes, and immunostained  centrosomes. The size of the data is 1024 x1024 x 40 voxels, with a 

resolution of 0.379 x 0.379 x 1μm. Appropriate 3D segmentation tools are used to compute automatically the 

center of gravity of the centrosomes (wavelet-based) and nuclei [3]. Centrosomes and nuclei are paired by a 

sorting procedure based on distances. The data to be analyzed hence consist of a set of 6 coordinates per cell: 

3 for the centrosome position and 3 for the associated centrosome-nucleus axis. Typically, data from about 

200 cells is extracted from each confocal stack, and images from different embryos are combined by 

Procrustes alignment and scaling.  

3 K-means Clustering of the Centrosome-Nucleus Axes 

To map regions where cell polarities are coordinated, we investigate how neighboring cells can be 

grouped together into regions where their centrosome-nucleus axes are similar. We have adapted a K-means 

clustering algorithm initially designed for computer graphics [4]. A measure of the quality of polarization in 

a given region is first defined. Since we are dealing with axial (and not vector) data, the mean direction of a 

region is the third eigenvector of the scatter matrix computed from the axes of all the cells in the region: the 

higher the associated third eigenvalue, the more concentrated the axes around this mean direction and the 

higher the quality of polarization. After choosing K random seeds among the data points, the algorithm 
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progressively grows regions around these seeds by allocating their closest neighbors. For this purpose, 

spatial neighbors of a given seed are sorted in ascending order of the angle made by the neighbor axis and 

the seed axis. This process leads to a partition of all the data points in K regions. For the next iteration, the 

previous seeds are replaced in each region by the data point associated with the axis making the smallest 

angle with the mean direction of the region. A new partition is built from these seeds and leads to a further 

iteration. In order to escape local minima, the basic algorithm is improved by inserting and deleting regions 

at regular intervals during iterations. For typical data sets, the algorithm does not fully converge but leads to 

very similar partitions, depending on the initial seeds. 

4 Optimization of Regions where Axes are Statistically Correlated 

Standard spherical statistical tests, applied to the axial dataset, show that there is a planar bias in the 

distribution of the centrosome-nucleus axes, which are preferentially aligned parallel to the envelope of the 

heart. We therefore divide the axes into planar and transmural components, in reference to this envelope, and 

focus the polarity analysis on the planar component, which is more relevant to cardiac chamber expansion. 

No meaningful statistical test is available to assess whether such planar components along a complex surface 

are uniformly distributed. We therefore use a bootstrap method in order to rate regions according to the 

quality of their polarization, i.e. the concentration of the axes of their cells around a mean direction. Random 

partitions are generated and for each region-size a threshold (0.05) third eigenvalue is computed; regions are 

rated by the ratio of their third eigenvalue to this threshold. Since the clustering algorithm may be run with 

varying K values, we end up with a list of partly overlapping regions. The final map, which is independent of 

K, is determined by an optimization criterion according to the biological question asked. Only the most 

significant regions may be selected and thus the map is built by adding non-overlapping regions in 

decreasing order of significance. Alternatively, the map providing the best coverage of the whole organ may 

be selected, with the highest number of data points lying within significant regions. The statistical p-value of 

each selected region may finally be approximated in 2D by standard tests of uniformity in a plane tangential 

to the point of the heart envelope nearest to the center of the region.  

5 Conclusion 

Our 3D polarity analysis in the developing heart of the mouse, by optimized K-means clustering, 

permits the objective identification of regions where neighboring cells coordinate their polarity, as evidenced 

by the centrosome-nucleus axis. This method may be used more generally for analyzing any polarity axis 

within a complex 3D organ geometry. 
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Abstract biomanycores is a repository of open-source parallel bioinformatics code in OpenCL
(and, temporarily, in CUDA). We aim to bridge the gap between research in high-performance
computing and the everyday work of bioinformaticians and biologists through the BioJava, BioPerl
and Biopython frameworks.

Keywords bioinformatics software, high-performance computing, GPU.

biomanycores.org : un Portail de Codes Libres
pour la Bio-informatique Haute Performance

Résumé biomanycores.org est un portail pour la diffusion de codes libres en bio-informatique pour pro-
cesseurs massivement multi-cœurs. Biomanycores propose des interfaces de ces programmes aux frame-
works BioJava, BioPerl et Biopython.

Mots-clés pipelines bioinformatiques, calcul haute-performance, cartes graphiques, GPU.

1 Contexte
La bio-informatique est une discipline traditionnellement gourmande en ressources de calculs. La situation

s’est encore amplifiée depuis l’arrivée des nouvelles technologies de séquençage. Dans certains cas, les grilles
de calcul sont une solution. Aujourd’hui, les architectures massivement multi-cœurs, notamment les cartes
graphiques (GPU), offrent une alternative interessante pour du calcul haute-performance à un coût bien plus
faible. Ces processeurs proposent un parallélisme à grain fort (work-groups ou blocks de calculs indépendants),
tout comme un parallélisme à grain fin, similaire à du SIMD (work-items ou threads).

Depuis 2007, avec l’apparition du langage CUDA (www.nvidia.com/cuda), de nombreuses applica-
tions ont été développées. On en compte aujourd’hui plus d’une quinzaine provenant d’une dizaine d’équipes,
que cela soit en France ou dans le monde [1,2,3,4,5,6,7] (revue dans [8]). Défini en 2009, le standard OpenCL 1

améliore la portabilité des applications multi-cœurs, en permettant de développer à la fois pour des CPU multi-
coeurs et des GPU de différents constructeurs.

Les programmes CUDA ou OpenCL offrent des accélérations de 5× à 50× par rapport à un processeur
mono-cœur. Cependant, la valorisation de ces résultats de recherche reste faible. Les outils développés restent
à l’état de prototype et ont peu de visibilité du fait de leur nouveauté et du changement de culture que cela
suppose. De plus, ils ne proposent pas d’intégration aisée dans les frameworks d’analyse bio-informatique
couramment utilisés.

2 Biomanycores
Biomanycores (www.biomanycores.org) est une collection d’applications bioinformatiques pour ar-

chitectures massivement multi-cœurs, conçue pour faire le lien entre la recherche en calcul haute-performance

1. www.khronos.org/opencl
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et le quotidien des biologistes et des bio-informaticiens. Les services suivants sont proposés : portail pour les
codes sources CUDA et OpenCL, développement d’interfaces aux frameworks BioJava [9], BioPerl [10], et
Biopython [11], et définition et mise à disposition de benchmarks construits autour de données biologiques.

3 État du Projet et Développements Futurs

Biomanycores intègre actuellement cinq applications : alignement local de séquences (Smith-Waterman) [4],
recherche de motifs protéiques modélisés par des modèles de Markov cachés (HMMER) [12], recherche de
sites de fixation de facteurs de transcription sur une séquence d’ADN avec des matrices position-poids [1],
prédiction de structures secondaires d’ARN (RNAfold) [13], et détection de pseudo-nœuds (pKnotsRG) [14].
D’ici fin 2011, au moins cinq nouvelles applications seront ajoutées, ainsi que des benchmarks et des tutoriaux
d’installation et d’utilisation.

Depuis fin 2010, Biomanycores bénéficie d’un ingénieur à temps plein grâce au soutien d’une ADT (action
de développement technologique) INRIA. Biomanycores est un projet collaboratif, ouvert à la communauté :
nous invitons les équipes souhaitant l’utiliser ou développant des applications CUDA/OpenCL à nous contacter
(contact@biomanycores.org).
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Abstract  BioCampus  Montpellier  hosts  several  technical  platforms  including  MGX  -  
Montpellier  GenomiX,  a  microarray  and  next-gen  sequencing  facility  (Illumina  GAIIx  et  
HiSeq2000). This platform is aimed at seamless integration of data production with 1st-3rd  
level data analysis tools. MGX team comprises 3 molecular biologists, 3 bioinformaticians and  
1 manager. The facility is accessible to both academic and industry/biotech scientists.
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1 Introduction

La plateforme de service en génomique de Montpellier (MGX – Montpellier GenomiX) est une plateforme 
labellisée par le réseau IBiSA et la Cancéropôle Grand Sud-Ouest. Elle propose des services en microarrays,  
séquençage nouvelle génération et bioinformatique pour les communautés scientifique et industrielle, aussi  
bien  dans  le  domaine  végétal  qu'animal.  Depuis  octobre  2010,  en  reconnaissance  de  sa  conformité  au 
référentiel ISO 9001 : 2008, le plateau technique IGF/IGH est certifié pour ses activités de développement et 
de réalisation de prestations en génomique (microarray, séquençage et bioinformatique).

La plateforme apporte son expertise pour :

-  conseiller  les  utilisateurs  dans  la  réalisation  de  leurs  expériences  et  leur  proposer  les  plans  
expérimentaux les mieux adaptés

- générer les données microarrays et séquençage nouvelle génération

- analyser les données générées sur la plateforme

- former les utilisateurs aux outils mis en place et les accompagner dans l'interprétation des données.

2 Procédure pour la Réalisation d'un Projet

2.1 Définir Ensemble la Prestation

Afin de comprendre la problématique de chaque équipe et de cibler au mieux le service à mettre en œuvre, 
la plateforme organise une réunion au démarrage de chaque projet. Suite à cette réunion, un compte-rendu et 
un devis sont rédigés. Nous avons mis en place un gestionnaire de projet accessible via une interface web 
pour que les utilisateurs puissent visualiser à tout moment la progression  de leur projet.

MGX – Montpellier GenomiX

Plateforme de Service en Génomique
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2.2 Traiter et Analyser pour vous les Echantillons

La politique de la plateforme pour le traitement des projets est la méthode FIFO (First In, First Out) : un 
utilisateur entre dans la file d'attente à partir du moment où la plateforme reçoit la totalité des  échantillons à  
traiter. MGX réalise ensuite le traitement biologique des échantillons et l'analyse bioinformatique des don-
nées générées (détaillée plus bas) dans l'ordre d'arrivée.

2.3 Accompagner et  Former

Une fois l'analyse réalisée, un rapport est rédigé, décrivant étape par étape le traitement des échantillons et  
des données. En complément du rapport, il est proposé à l'utilisateur de venir nous rencontrer afin de discuter 
des résultats obtenus et du contenu du rapport. Une formation aux outils mis à disposition des utilisateurs est  
alors réalisée.  Une aide à la publication des données est proposée notamment en écrivant les "matériels et  
méthodes" et en déposant les données dans les dépôts publics, e.g. Gene Expression Omnibus.

3 Analyses de Données

3.1 Microarray

L'équipe de bioinformatique MGX analyse les données générées sur la plateforme 

- analyses primaires : en réalisant les contrôles qualité des données, la normalisation, les analyses 
statistiques

- analyses secondaires : analyses Gene Ontology, classification hiérarchique...

3.2 Séquençage Haut Débit

La  plateforme  a  depuis  2008  un  Genome  Analyzer  (GAIIx)  et  depuis  juin  2010  un  HiSeq2000.  La 
plateforme réalise essentiellement des applications de comptages d'étiquettes telles que la ChIP-Seq, Digital 
Gene Expression, small RNA-Seq, RNA-Seq mais peut réaliser également des séquençages de novo. Les  
prestations comprennent : alignement – contrôle qualité : les bioinformaticiens réalisent l'épuration des tags 
si  nécessaire  et  l'identification  des  tags  sur  des  banques  de  données  spécialisées  (banque  de  transcrits,  
génome  de  l'espèce  étudiée) ;  analyse  statistique ;  visualisation ;  analyses  secondaires  :  analyses  Gene 
Ontology, classification hiérarchique...

3.3 Développement – Collaboration

La plateforme travaille en collaboration avec différentes équipes de recherche :

En biologie pour développer de nouvelles applications: 1ère puce café, plateforme microarrays infrarouge, 
identification à l'échelle génomique des régions d'interaction avec la matrice nucléaire (MAR-Seq).

En bioinformatique avec les bioinformaticiens et biostatisticiens des équipes de recherches de l'Institut de 
Génomique Fonctionnelle et de l'Institut de Génétique Humaine, ainsi qu'avec les chercheurs statisticiens de 
l'université de Montpellier pour proposer de nouveaux outils adaptés aux besoins des utilisateurs.

La politique de la plateforme est d'utiliser au mieux des logiciels libres (soutient au projet 'Plume') dont 
notamment les outils du BioConductor (www.bioconductor.org). 

4 Projets réalisés sur la Plateforme

MGX a  réalisé  plus  de  100 projets  microarrays,  séquençage  et  bioinformatique  dans  de  nombreuses 
espèces (mammifères, insectes, poissons, invertébrés, protozoaire, plantes, levures, bactéries...)
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Coopération entre Optimisation Combinatoire et Statistiques pour l’Analyse de
données de Génotypage haut-débit

Depuis quelques années, la génomique a grandement évolué avec le développement de nouvelles technolo-
gies telles que le séquençage et le génotypage haut-débit. En ce qui concerne le domaine animal, nous sommes
aujourd’hui capables de lire les informations génomiques sur près de 800 000 marqueurs sur des ensembles
d’individus de plus en plus larges (de 3 000 à 10 000). Ces données peuvent donner lieu à des études d’asso-
ciation entre les marqueurs (Genome-Wide Association Studies). Outre les contraintes biologiques (stockage
des échantillons, manipulations longues et coûteuses. . . ), la partie analyse de données (extraction de connais-
sances) doit aussi être adaptée en terme de méthodologie et d’architecture matérielle et logicielle. L’objectif est
d’élaborer des modèles prédictifs permettant, à partir des données génomiques, de déterminer les individus les
plus performants selon certains critères quantitatifs de sélection animale. Pour cela, l’objectif théorique est à
terme de définir de nouvelles méthodes permettant la coopération entre statistique et optimisation combinatoire
spécifiquement dédiées aux données issues de génotypage haut débit en vue d’une implémentation.

1 La Sélection Génomique dans le Domaine Animal
En génétique, on admet que plusieurs zones chromosomiques, portant un ou plusieurs génes, sont im-

pliquées dans le contrôle de caractères quantitatifs (production de lait, fertilité...), et que de nombreux allèles
(identifiés sous forme de marqueurs) sont responsables de la variabilité. On appelle ces zones QTL : Quantita-
tive Trait Loci. La Sélection Génomique est une méthode d’évaluation génétique des animaux grâce à leur ADN
(suite à un prélèvement biologique de type sang, poils ou biopsie), qui utilise un nombre très élevé de marqueurs
couvrant l’intégralité du génome. Le principe de base a été établie par Meuwissen, Hayes et Goddard en 2001
[1]. Elle ne prend pas en compte les régions chromosomiques (QTL) mais exploite une densité de marqueurs
suffisante si bien que chaque QTL se trouve en déséquilibre de liaison avec au moins un marqueur. Les effets
des SNP (Single Nucleotide Polymorphism) sont estimés en associant les génotypes aux valeurs phénotypiques
d’animaux déjà indexés. Grâce à leur détection, on peut calculer l’index propre d’un animal. Dans ce contexte,
une problématique importante de la sélection génomique consiste à rechercher des marqueurs explicatifs (ou
combinaisons de marqueurs) pour un phénotype sous étude. Il est à noter que l’augmentation actuelle du nom-
bre de marqueurs (777 000 marqueurs en bovins) rend l’application de méthodologies séquentielles (analyse
des marqueurs un par un par régression linéaire) non adaptée et extrêmement coûteuse en temps de calcul, et
ne prend en compte aucune interaction éventuelle entre marqueurs. Nous proposons d’aborder ce problème en
combinant deux approches de la littérature.

2 Approches Statistiques Existantes
Deux types de modèles statistiques sont généralement utilisés pour prédire un trait quantitatif à partir d’un

grand nombre de marqueurs génétiques [2] :
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– les méthodes de régression pénalisées :
– la régression Ridge qui consiste à imposer une pénalité L2 sur les coefficients de la régression.
– la régression LASSO (Least Absolute Shrinkage and Selection Operator), qui en imposant une pénalité

L1, réduit des coefficients à 0, et donc sélectionne des variables (marqueurs génétiques) [3].
– la régression Oscar dont la pénalité conduit à annuler certains coefficients de régression et à en re-

grouper d’autres en mettant leurs coefficients égaux [4].
– Les méthodes de régression sur combinaison des variables d’entrées :

– PCA (Principal Components Analysis) - MCA (Multiple Correspondance Analysis)
– SPCA (Sparse Components Analysis) : intégration d’une pénalité de type LASSO dans la détermination

des composantes principales.
– PLS (Partial Least Square)

On notera que les méthodes de régression sur combinaison des variables d’entrées ne permettent pas de
sélectionner un nombre réduit de SNP et sont difficilement interprétables.

3 Optimisation Combinatoire

Les problématiques d’analyse liées aux données génomiques peuvent également être vues, dans la plupart
des cas, comme des problèmes d’optimisation combinatoire. L’utilisation de méthodes d’optimisation combi-
natoire pour l’extraction de connaissances permet d’accélérer l’analyse en présélectionnant des sous-ensembles
d’attributs intéressants, et de proposer de nouvelles méthodes permettant d’identifier des zones d’intérêts. Etant
donnée la taille de l’espace de recherche (constitué de toutes les combinaisons de marqueurs possibles), seules
des méthodes de types méta-heuristiques peuvent être mises en œuvre de façon efficace. Parmi ces méthodes,
nous pouvons citer les algorithmes de recherche locale (descente, recherche tabou. . . ) et les algorithmes à base
de population (algorithme génétique) qui ont déjà fait leur preuve dans ce domaine [5].

4 Approche proposée : Optimisation Combinatoire et Statistique

L’objectif de ce travail est de définir un modèle de prédiction des traits des animaux à partir des mar-
queurs génétiques, utilisant à la fois la puissance exploratoire des algorithmes d’optimisation combinatoire
et la spécificité des modèles statistiques de régression [1]. Nous choisissons comme première approche d’ef-
fectuer une sélection d’attributs en combinant une méthode d’optimisation de type recherche locale avec une
régression RIDGE. A chaque étape de la recherche locale, nous évaluons la sélection d’attributs à l’aide d’un
critère de type CVE (Cross Validation Error) calculé sur les prédictions par un modèle de régression, pour au
final converger vers une sélection d’un nombre réduit de SNP, et vers un modèle de régression sur ces SNP.

Afin d’évaluer la qualité de la méthode nous utiliserons les données de XII QTLMAS 2008 et comparerons
nos résultats et performances avec ceux des méthodes de sélection génomique présentées lors de ce Workshop.

Pour ce faire, nous utiliserons la plateforme ParadisEo développée par des membres de l’équipe DOLPHIN-
INRIA, en C++. La solution proposée pourra également être parallélisable et déployable sur des architectures
de calcul haute-performance (Cluster ou Grille de Calcul).
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J. Hamon, C. Dhaenens, J. Jacques and G. Even Affiche 223

–338–



New Types of Services in Mobyle 1.0
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Les Nouveaux Types de Services de Mobyle 1.0
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1 Introduction

Performing bioinformatics analyses requires the selection and combination of tools and data to answer a
given scientific question. Many bioinformatics applications are command-line only and researchers are often
hesitant to use them based on installation issues and complex command requirements. Mobyle [1] is a frame-
work and web portal specifically aimed at the integration of bioinformatics software and databanks. It allows
to run bioanalyses through a web interface without installing anything locally. In addition to a web interface
to command-line tools, the latest release of Mobyle, version 1.0, offers the possibility to execute predefined
workflows, and enhances visualization possibilities with browser-embedded client components, the viewers.
We focus here on these major improvements.

2 Chaining Automation with Workflows

To publish command-line applications as a set of homogeneous web-interfaces, Mobyle uses an XML-
based data model. The description of service parameters and user data includes a description of their type, both
at the semantic and syntactic levels. These elements describe the nature and format of the information conveyed
by the data or processed by the parameters and determine the compatibility between them. In the interface, this
allows to (1) suggest the relevant options to interactively chain successive programs using an intelligent piping
suggestion system, and (2) facilitate the reuse of data over successive analyses by storing data bookmarks that
can be directly loaded into a form.

Based on the need to automate these chainings, the data model has been extended to incorporate Workflows,
which define a dataflow-based coordination of programs that run successive and/or parallel tasks to perform an
analysis (see Fig. 1). Similarly to programs, workflows are viewed as services, sharing most of their description
with programs, with the exception of the execution, which consists of a coordination of subtasks rather than the
generation and execution of a command line.

3 Data Visualization with Viewers

When running an analysis in Mobyle, job result files can be directly pre-visualized in the portal. How-
ever, the understandability of the result is still often hindered by the necessity to browse potentially large and
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Figure 1. Use HMM to search a sequence family. The
first step aligns a set of sequences with muscle, the second
builds an HMM profile from the alignment produced by
muscle, the last uses the profile to search for significantly
similar sequences in a databank from the hmmprofile.

Figure 2. VARNA viewer example. Any compatible
RNA secondary structure displayed in the portal can be
accessed using this applet.

complex text-based files. To overcome this limitation, we created a specific type of service, Viewers. Viewers
are a way to embed type-dependent visualization components for the data displayed in the Mobyle Portal. As
opposed to programs and workflows, viewers are not executed on the server side, but rather rely entirely on
browser-embedded code. The XML description files provide a way to incorporate custom interface code that
will display data of a given type in the browser, incorporating HTML-embeddable components such as Java or
Flash applets, Javascript code, etc. For instance, using viewers, we automate the inclusion of the VARNA [2]
applet to visualize RNA secondary structures wherever it is relevant in the portal, such as in the results of RNA
secondary structure prediction tools like MFOLD [3] (see Fig. 1).

4 Conclusion

The new version of Mobyle, v1.0, extends the spectrum of services available to include workflows and
viewers. Current and future works include (1) the development of an interface that allows the “de novo“ creation
of workflows directly by users, and the automation of interactive chainings into workflows, and (2) the extension
of the integration capabilities for client-side components beyond simple visualization, to the edition of user data.
Mobyle is an open-source project available at https://projets.pasteur.fr/wiki/mobyle.
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Abstract Molecular biologists, just like geneticists, make use of various experimental mecha-
nisms and devices to conduct research and to validate – or invalidate – their theories or initial
hypotheses. Mechanisms powered by information technology, called “in silico”, put data and
analysis tools at the centre of the experiments, and are thus different from in vivo, ex vivo and in
vitro mechanisms.
Multiple resources (data sources as well as analysis tools) are widely available and, very often,
allow various modes of operation, requiring certain expertise for their optimal use. This is espe-
cially true when drawing up complex analysis scenarios based on the sequential use of appropriate
processing tools. To facilitate the construction of these experimentation mechanisms, we propose
a scientific workflow infrastructure which uses an organizational environment to allow abstract
planning of the experimentation, followed by its concretization. The concretization phase includes
a verification of the conformity of the planned process chain’s composition to avoid any error
during execution.

Keywords Scientific workflow, analysis pipeline, specification language, validation aspects of
service composition.

1 Introduction

Life sciences domains require the drawing up of experimentation process chains using various resources
(data and processes). These resources, while available in ever-increasing quantities, remain, for the most part,
expensive – and thus their reuse becomes almost a necessity.

To design these complex experiments, scientists often need to locate suitable resources and then to organize
or reorganize them. In addition, each experiment deserves to be saved so that it can be re-executed several
times, either in various different configurations or with diverse test data. In such a context, the use of a scientific
workflow proves to be an invaluable help. Several dedicated software applications for this purpose now exist,
most notably in the financial sector, and research in the field is relatively advanced. A first study [1] presented
our approach based on the concept of the scientific workflow environment. Its objective is to help the user to:

– design experimentation process chains (in as abstract a manner as possible),
– better organize resources (data and processes) which will be elements in the concretization of these

process chains,
– capitalize on the existing by constructing new processes from previously devised experimentation plans.
This article develops our research advances in terms of resource organization and semi-automatic verifica-

tion of validity of workflows designed within a prototype.
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This article is structured as follows: section 2 presents a brief state of the art, section 3 proposes an architec-
ture for implementing a scientific workflow and section 4 provides a glimpse of the organization brought about.
Section 5 covers the proposed verification of conformity, section 6 illustrates with an example the validation of
conformity of a concrete process chain, and section 7 presents perspectives in progress.

2 State of the Art

A study was conducted based on characteristics we deemed relevant [2]:

– The existence of a meta level for describing and creating process chains. In fact, the generic aspect
conferred by meta-modelling appears to be fundamental for all of us.

– Taking the experimental aspect into account. The unique characteristics of scientific data and processes
should show through at the formalism level.

We present here only two representative projects, Kepler[3] and Taverna[4], which gain a certain amount
of popularity among workflow scientists.

2.1 KEPLER

KEPLER 1 is a complete scientific workflow environment based on the Ptolemy II platform of the University
of Berkeley. As far as process chains are concerned, KEPLER adopts a “human organization” metaphor. It is
Actor-Based and considers all components of a process chain as actors. Actors (services) are accessed via a
structure corresponding to the business ontology of the concerned domain.

The workflow is represented using a graphical language in the form of a graph linking ports (input/output
parameters) of actors via channels. One or more actors in charge, Directors, plan tasks for other actors of the
organization; they do so based on the available ontology. The execution plan of a process chain (or a portion
of a process chain) is therefore created by a Director of the system. Any necessary adaptations are achieved by
intermediary sender and receiver programs, which ensure the compatibility of data transferred over a channel.
The process chain is saved in the form of MoML (Modelling Markup Language) files. (MoML is an XML-
based language.) At the environment-interface level, a specific zoom feature is associated with the concept of
an opaque actor (cf. Fig. 1). An opaque actor appearing in a process chain can be opened, thus revealing its
constituent details.

Figure 1. Overview of a process chain in the KEPLER environment.

2.2 Taverna

Taverna is a workflow project created by the myGrid team in England and used mainly in the life sciences. A
workflow in Taverna is considered as a process graph in which processes are connected by data links or control
links. Processes used are essentially web services (which can be supplemented by local libraries, manuscript
scripts, etc.). During process composition, the user manually couples input/output parameters of web services
or invokes shim services, specific adaptors existing from couplings constructed and tested for experiments. In
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Figure 2. A concrete workflow in Taverna (taken from the myExperiment Taverna sharing site).

addition, the process chain is saved in the form of a SCUFL (Simple Conceptual Unified Flow Language) file.
(SCUFL is an XML-based language.)

Taverna and Kepler projects both provide generic models for instantiation and composition of services. Our
proposal introduces an additional abstraction level whose purpose is to describe the business domain before
creating the process chains. This additional modelling level should facilitate the construction of process chains
by allowing biologists to use their expertise of their domain but without requiring them to have expert and
often exacting knowledge of the underlying resources and their locations. It also plays the role of a prescription
model to which instantiation and service composition models have to conform.

3 Workflow architecture

Our efforts have been guided by the “business” point of view, that of the experimenters. Designing an
experimental protocol corresponds to general model with three stages: 1) Definition: abstract definition of
a process chain corresponding to an experimentation sequence (planning the experiments), 2) Instantiation:
a more specific definition after identifying the various elements of the chain (data/processes), 3) Execution:
customized execution (according to strategies corresponding to the requirements).

Based on this experimental life cycle, and inspired by the architectural styles proposed by OMG [5], we
propose the following 3-level architectural vision (cf. Fig. 3):

Figure 3. 3-level architecture of a workflow component.

The static level concerns the design phase. It is a matter of constructing (abstract) business-process models
using a simple language. The intermediate level represents an instantiation and pre-verification phase. Using

1. http://kepler-project.org/

Affiche 225 An Organizational Environment for “in silico” Experiments in Molecular Biology

–343–



the business process model, the user constructs the real process chain by selecting and locating the processes
and data most appropriate to the planned experimentation. The pre-verification is semi-automatized (cf. section
4). The dynamic level concerns the actual execution phase. It takes place based on the various strategies defined
by both the user and the operational configurations.

The static level has been studied in some detail in our [2,1]. We have analyzed various language standards
such as UML (activity diagram) [6] and SPEM [7], as also various existing projects such as BioSide [8], Meta-
model WDO-It! [9] and CIMFlow [10]. Following this study, we proposed a simple but complete language. It
is based on a language defined by a meta-model whose abstract elements, tasks or processes, are connected by
unidirectional links and by the intermediary of ports. To facilitate the manipulation of abstract process chains,
a corresponding graphical language was created within a prototype (cf. Fig. 4) 2.

Figure 4. Some essential elements of our graphical language.

We currently focus on the intermediate level, which consists of two essential stages:
– instantiation of the abstract model with existing resources (data/processes);
– validation of the concrete model instantiated from the organizational environment.

4 Organizational Environment

To carry out the experimental protocols, the abstract model instantiation stage consists of finding and
reusing existing resources. To facilitate this search, we base ourselves on the concept of organizational envi-
ronment. This environment relies on the description of resources (data and processes) in the form of metadata
(expressed in XML schema format). The resource descriptions are hierarchized in resource categories and in
concrete resources. As shown in figure Fig. 5, it consists of:

– an organization relating to processes. It manages the hierarchy of descriptions of process categories
and of concrete processes. The concept of Converter corresponds to the concept of a specific process
responsible for adapting data between different formats of the same data category.

– an organization relating to data. It manages a hierarchy of descriptions of data categories, of concrete
data and of the various associated data formats 3.

Figure 5. Organizational environment.

To illustrate this concept of the environment, we take an example from the world of molecular biology (cf.
Fig. 6). The upper part of each hierarchy (processes and data) represent a set of categories (shown as ovals)
sorted according to the generalization/specialization relationship. The descriptions of concrete resources (data
or processes) are then associated to their category. The description of a concrete data describes its format,
whereas that of a concrete process corresponds to its signature, which we formalize thus:

2. It will be used in the examples to follow.
3. Remark: It should be noted that several data categories can share the same format.
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Name (Input parameter list, Output parameter list), where each parameter is described by the doublet (Data
category : data format).

A set of data formats (Fasta, xml, MultiFasta, Clustal, Newick, Jpeg) is also presented. Figure (Fig. 6) is
therefore complemented by the description of signatures of some example concrete processes:

Blastp(ProteinSeq:Fasta) : (SeqPairs:xml)
ClustalW(ProteinDataBank:MultiFasta) : (MultipleAlignment:Clustal)
InteractiveSelection(SeqPairs:xml) : (ProteinDataBank:MultiFasta)
Logo(MultipleAlignment:Clustal) : (Image:jpeg)
PhyML(MultipleAlignment:Clustal) : (PhylogeneticTree:Newick)

Figure 6. Illustration of an organizational environment in a biological context.

5 Conformities

5.1 The Problem

As already mentioned, the second important stage of the intermediate level consists of validating the con-
crete model instantiated from the abstract model.

Let us take an example described by using the workflow language, corresponding to an abstract process
chain model that a biologist designs with the intention of characterizing a protein sequence which interests him
in the context of his putative functional domains.

At the concrete level, the idea is to begin by using the Blast similarity-search tool to compare the protein
sequence under consideration with a data bank of protein sequences and to thus identify segments with high
similarity shared both by the protein sequence under consideration and by various sequences in the sequence
data bank. These similar segments indicate the possible presence of functional domains. The biologist then
continues his study by reusing the results output from the Blast tool [11], either to construct a phylogenetic
tree and retrace the evolutionary history of the sequence via the PhyML tool [12] or to display the preserved
positions common to all the similar segments via the Logo tool [13]. This simplified example of a process
chain in molecular biology allows us to highlight the difficulties encountered by the biologist in using the
results output by one tool as input to another tool. The difficulties relate, at the same time, to the nature of the
data (here characterized as data category), to the format of this data, and, finally, to the biologist’s expertise.
In the example, we make willing use of the discrepancy which arises between the Blast tool, which outputs a
collection of simple alignments, and the PhyML and Logo tools, which require multiple alignments to run. In
fact, Blast leads to multiple discrepancies two-by-two, involving the sequence under consideration and one of
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the sequences from the sequence data bank which is similar to it; whereas PhyML and Logo use the shared
similarity by a set of sequences which includes the sequence under consideration. This example highlights
what we will subsequently term semantic incompatibility.

In its upper part, Fig. 7 shows the abstract process chain and in the lower the concrete chain obtained after
locating data descriptions S1 and adapted processes Blastp and PhyML. The problem which we designate as one
of validation of the instantiated (concrete) model consists of verifying the compatibility of each composition.
A composition corresponds to the link between an output parameter p1 of a process T and an input parameter
p2 of the process following T; we denote it (p1 → p2).

Figure 7. Problem at hand.

5.2 Identifying Situations of Compatibility

Verification is undertaken by analyzing the signatures of linked processes. To do so, we have to take two
important aspects into account:

– the syntactic aspect, relating to the data formats used by the parameters.
– the semantic aspect, relating to the process’s functionality. It not only depends on the process’s name but

also on the signification of the input/output parameters.
For two processes T1(dc1:fo1) : (dc2:fo2, dc3:fo3) and T2(dc4:fo4) : (dc5:fo5), let us suppose that there

exists a composition, denoted p1→p2, between the p1 (dc3:fo3) output parameter of process T1 and the p2
(dc4:fo4) input parameter of process T2.

Syntactic and semantic compatibilities are defined as follows:

– Syntactic compatibility: p1 → p2 is syntactically compatible if (fo3 = fo4) ∨ (fo3 is a sub-format of fo4),

denoted p1
Syn→ p2. Two parameters are syntactically compatible if they use the same data format or if

they use an output format which is a sub-format of the input format. Else p1
Syn9 p2.

– Semantic compatibility: p1 → p2 is semantically compatible if (dc3 = dc4) ∨ (dc3 is a sub-category of
dc4), denoted p1 Sem→ p2. Two parameters are semantically compatible if they use the same category, or
if they use an output category which is a sub-category of the input category. Else p1Sem9 p2.

The verification of a composition’s compatibility is thus done at two levels: syntactic and semantic. Three
types of situations can arise:

– Situation 1 (p1 Sem→ p2) ∧ (p1
Syn→ p2): p1 and p2 are compatible at the semantic and syntactic levels.

This is the ideal situation in our context; we designate it as valid.

– Situation 2 (p1 Sem→ p2) ∧ (p1
Syn9 p2): p1 and p2 are compatible at the semantic level but not at the

syntactic level. The composition is syntactically adaptable. An adaptation between the two data formats
will be necessary (cf. converters).

– Situation 3 p1 Sem9 p2: The two parameters are not semantically compatible. In such a case, it is pointless
to proceed to verify their syntactic compatibility (in fact, for us, two parameters with different significa-
tions cannot be paired). The composition is semantically adaptable.

From these definitions, we develop our proposed approach for resolving the incompatibilities.
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6 Validation of the Experimental Chain
Of the three compatibility situations identified, the latter two require an adaptation stage before going on

to the execution phase. It is a matter of finding one or more intermediate processes which can overcome the
composition’s incompatibility. For situations 2 and 3, two types of adaptations are proposed:

– semantic adaptation (for situation 3). The incompatibility of situation 3 represents the case where the two
parameters of a composition use incompatible data categories. The adaptation here consists of finding a
possible intermediate process chain between these two categories.

– syntactic adaptation (for situation 2). In situation 2, where the composition is already semantically
compatible, the problem can be expressed as a divergence between the data formats used by the two
connected parameters. All that is required is to find converters to convert one data format into the other.

These adaptations are based on the organizational environment. The search for intermediate processes can
be equated to a search for itineraries between two incompatible data categories or formats. We will illustrate
this using the example and the organizational environment constructed earlier (cf. Fig. 6).

Let us consider again the previous example. The verification conducted on the instantiation of the abstract
model detects a semantic incompatibility in the composition between Blastp and Logo or between Blastp and
PhyML due to difference in categories Pairs of sequences and Multiple Alignment (Incompatibility situation 3).
The (semantic) adaptation will be applied; it consists of finding in what we call the (semantic) resource graph
the path allowing the conversion of categories.

The construction of the (semantic) resource graph consists of extracting, from the organizational environ-
ment, the descriptions of processes and of data categories referenced by their parameters. Such a (semantic)
resource graph generated from the environment described in Fig. 6 is shown in Fig. 8.

Figure 8. (Semantic) resource graph generated from the organizational environment of Fig. 6.

A graph traversal algorithm is used to find all the possible “paths” between the two concerned data cate-
gories (Pairs of sequences and Multiple Alignment). A single path is found in the graph: Pairs of sequences
→ InteractiveSelection → ProteinDataBank → ClustalW → Multiple Alignment. The two processes, Interac-
tiveSelection and ClustalW, will therefore be added to the incompatible chain (cf. figure Fig. 9).

Figure 9. Semantic adaptation.

Once this adaptation is done, there still remains the existing syntactic incompatibility of the composition
between the InteractiveSelection and ClustalW processes because even though InteractiveSelection outputs the
same data category that is accepted for input by ClustalW, their data formats are different (xml and MultiFasta).
Syntactic adaptation consists of finding specific converters, or compositions of converters, necessary for these
conversions. We will not cover this stage in detail; it is simply enough to understand that converters (or their
composition) can be added to obtain the required validity.
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7 Conclusion and Perspectives

A prototype (http://www.lirmm.fr/˜lin/project/) illustrating the key aspects of our approach
for designing and validating scientific process chains is currently being developed. This prototype serves as a
basis for an inductive experimental approach using data of BAC and EST nucleic sequences as well as physical
and genetic maps for identifying and characterizing genetic markers relating to sex of the Nile tilapia (Ore-
ochromis niloticus). Over a longer term, we intend to integrate the current prototype into a platform with a
search engine based on resource descriptions to be able to undertake the execution using real resources, after
requisite validation of experimentation chain. It will eventually also use open-source controlled vocabularies
such as PFO (Protein Feature Ontology)[14], SO (Sequence Ontology)[15], and GO (Gene Ontology)[16] to
enrich data categories by additional representations and thus extend the descriptive capacities of the organiza-
tional environment.
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Bât. Mendel, 43 bd du 11 novembre 1918, 69622 Villeurbanne cedex, France

{nicolas.rochette, manolo.gouy}@univ-lyon1.fr

Keywords Origin of eukaryotes, phylogeny, genomics.

Although it is widely regarded as a critical step in the evolution of life on earth, early eukaryotic evolution
remains essentially unknown. The last eukaryotic common ancestor (LECA) [1] was fully compartmentalized,
bore a mitochondrion derived from alphaproteobacteria, and its genome was made up of both archaeal-like and
bacterial-like genes. Two views coexist concerning its origin. According to the symbiosis-fusion hypotheses,
including the hydrogen hypothesis [2], a symbiosis between two prokaryotes evolved to the point that one was
engulfed by the other and most of its genes transfered to it, what allowed, in combination with metabolic supe-
riority, for a rapid complexification. According to the Archaezoa hypothesis [3], an archaea-related organism
gradually evolved compartmentalization and phagocytosis, possibly collecting genes from its environment, and
acquired mitochondrion lately.

We show that the bacterial signal in the eukaryotic genome is spread over many phyla, not just alphapro-
teobacteria. 289 homologous protein families that were traceable to LECA and widely represented in either
archaea or bacteria were identified. The analysis was performed with two independent methods, both taking
into account the statistical uncertainty associated with single-gene tree inferences. The two methods unequiv-
ocally recovered the archaeal and bacterial subsets, which were of even importance. Surprisingly, few families
supported the three-domains view [4], and our data rather support archaeal paraphyly, like in the eocyte hypoth-
esis [5,6]. At the phylum level, the methods agreed on bacterial families but not on archaeal families, indicating
that phylogenetic resolution might be lower in that part of the tree. Among bacterial families, 32 linked to
alphaproteobacteria, 67 were unequaly distributed over various phyla, and 30 could not be attributed to any
individual phylum.

Our results indicate that the complexification of the eukaryotic genome, and thus that of the cell, is best
explained by a phagocytosis-driven ”you are what you eat” [7] process.
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Two probabilistic methods are now commonly employed to either reconstruct phylogenies or estimate 
evolutionary parameters on a fixed topology: the Maximum Likelihood (ML) and the Bayesian approaches. 
This study focuses only on the ML context. The probabilistic evolutionary models used in ML are 
Markovian substitution processes. The original models were much simplified, essentially for practical 
reasons. In this way, strong assumptions were made, as for example (i) the constancy of evolutionary rates 
over time for all lineages and among sites and (ii) the constancy of the evolutionary process over time and 
among sites. The last hypothesis leads to homogeneous and stationary models of evolution. Thus, not only 
the process of evolution remains constant over time and among sites, but all species share the same 
equilibrium frequencies in terms of base or amino-acid. In reality, variations of compositions are frequently 
observed between species. The too simplified evolutionary models can thus estimate wrong phylogenies by 
grouping unrelated species just because they share similar compositions. It has been shown as well that 
homogeneous models may also be poor to estimate ancestral compositions and sequences along a 
phylogenetic tree [1]. 

In this work, we are more concerned on the development of a new time non-homogeneous evolutionary 
model for protein sequences. To relax the homogeneity hypothesis, one can allow the different branches of a 
phylogenetic tree to have their own equilibrium frequencies to better fit possible shifts of composition over 
time in particular lineages. However, such an approach is too parameter-rich since the model would have n x 
19 parameters to optimize, n being the number of branches. This major issue prevented to develop non-
homogeneous evolutionary models in the ML framework so far. We propose here a way to reduce 
considerably the number of parameters in the model, although each branch still conserves its own 
equilibrium frequencies.  

Thus, from the original alignment, a matrix of amino-acid frequencies for each species is built. From this 
matrix of frequencies, a Correspondance Analysis is performed to decompose the total variance in 
orthogonal factors, which specifies a 19-dimensional space. The first factor is the axis that represents most of 
the variance present in terms of amino-acid compositions. The second factor is the axis that represents most 
of the variance given the first orthogonal factor and so on. In this way, to one point in the new space 
characterized by the factors corresponds another point in the 20-dimensional space of amino-acid 
frequencies. The COaLA model, for COrrespondance and Likelihood Analysis, proposes to optimize 
positions along the factors instead of directly optimize the 19 frequencies. For a particular branch, by 
optimizing only a few positions along the first axes, the COaLA model allows to indirectly optimize a vector 
of equilibrium frequencies. The number of parameters is thus drastically reduced from 19 x n to P x n, P 
being the number of positions to optimize along the P first axes (P ∈ [1:19]). Consequently, it becomes 
feasible to determine the maximum likelihood values of the evolutionary parameters along a phylogenetic 
tree with a non-homogeneous protein model. 

Simulation experiments were realised and showed that the model performs really well in estimating the 
ancestral amino-acid frequencies. The COaLA model was also used on different biological data sets and 
interesting results will be presented. 
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Comparing phylogenies is a routine process in bioinformatics, performed to analyze alternative trees for 

a sequence alignment, to detect an outlier tree in a collection of trees or to view differences between gene 

and species trees. This in turn allows to identify recombinant evolution such as horizontal gene transfers or 

to evaluate the ability of a supertree/supermatrix tree to summarize a collection of individual gene trees. 

To locate (di)similar topologic features of analyzed trees, it is often useful to color particular leaves. 

When comparing trees with differing taxa sets, it helps to temporarily restrict these trees to their common 

taxa. Highlighting their common topologic structure is also important when they disagree on the position of 

few taxa [1]. Moreover, during the course of the analysis, the content of the tree collection or the names of 

the trees usually need to be modified to reflect the analysis progress. 

The online CompPhy platform allows distant coworkers to upload and manage a collection of 

phylogenetic trees into a project environment. CompPhy offers a visual comparison of two trees chosen in a 

collection of source trees and supertrees. It implements tools able to perform taxa colorization, tree 

restriction to common taxa and supertree computation for selected source trees. As CompPhy relies on the 

Scriptree system [2] to display trees, complex highlighting and annotation operations can be performed 

manually. The platform is still under development and collaborative operations will be added such as 

discussion threads and the possibility to invite guests, including anonymous reviewers for trees appearing in 

a paper submitted to a journal. Advanced highlighting operations will also be proposed such as indicating the 

largest common substructure of selected trees (MAST) or automatic coloring of subtrees based on taxonomic 

information. The CompPhy website can be tested by exploring the sample tree collection made available at 

http://compphy.creatox.com/ . 

        

Figure 1. Extract of two CompPhy pages: project managing (left); tree comparison and tools (right). 

[1] T. Nye, P. Lio and W. Gilks, A novel algorithm and web-based tool for comparing two alternative phylogenetic 

trees. Bioinformatics, 22:117–119, 2006 (website http://www.mas.ncl.ac.uk/cgi-bin/ntmwn/pairwise.cgi). 

[2] F. Chevenet, O. Croce, M. Hebrard, R. Christen and V. Berry, ScripTree: scripting phylogenetic graphics. 
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Competition of photosynthetic organisms for light has triggered the development of an amazing variety 
of pigments and chromophorylated proteins during evolution. This diversity is stunning in the ubiquitous 
marine cyanobacterium Synechococcus, the second most abundant oxygenic phototroph on Earth after the 
closely related genus Prochlorococcus. In the ANR PELICAN project (2010-2014), we intend to study the 
ecology, diversity and evolution of cyanobacterial pigment types in the marine environment using an 
integrative genomic approach.  

The first step of this approach consisted in evaluating the sensitivity and performances of several 
clustering tools to build protein families. The dataset used is composed of 29 genomes of Synechococcus and 
Prochlorococcus. The result of this evaluation result will help selecting software applications that will be 
integrated in a fully automated pipeline for building CyOGs (Cyanobacterial Orthologous Groups). We also 
tested software based on the Markov Cluster algorithm such as OrthoMCL [1], and other approaches such as 
Uclust [2] or Domclust [3]. 

 

Figure 1. Comparative results of orthologous clustering tools. 

The second step was the study of lateral transfers within and between the Synechococcus and 
Prochlorococcus genera. Several tools based on phylogenetic analyses (DarkHorse), nucleotides 
composition, genome organization and genome comparison (Alien Hunter, IslandPick, SIGI-HMM, 
IslandPath) were tested. Comparative analyses of the results were compared to detect putative genomic 
islands in the 29 genomes and phylogenetic origins of these islands. 

These preliminary results will allow building a pipeline to integrate annotated sequences data into a 
relational database, usable through a collaborative platform with a user-friendly interface. 

[1] Li Li, Christian J. Stoeckert, Jr., and David S. Roos, OrthoMCL: Identification of Ortholog Groups for Eukaryotic 
Genomes,   Genome Res., 3 13: 2178-2189, 2003. 

[2] Robert C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 26(19):2460-1, 
2010. 

[3] Ikuo Uchiyama, Hierarchical clustering algorithm for comprehensive orthologous-domain classification in multiple 
genomes, Nucl. Acids Res., 34(2): 647-658, 2003. 

Affiche 154 Communications affichées tardives

–354–



 

AnnotQTL: a New Tool to Gather Functional and Comparative Information on 
a Genomic Region 

Frédéric LECERF1,2, Anthony BRETAUDEAU3, Olivier SALLOU3, Colette DESERT1,2, Yuna BLUM1,2, Sandrine 
LAGARRIGUE1,2 and Olivier DEMEURE1,2 

1 INRA, UMR598 Génétique Animale, F-35000 Rennes, France 
{blum, demeure}@rennes.inra.fr  

2 Agrocampus OUEST, UMR598 Génétique Animale, F-35000 Rennes, France 
{lecerf, desert, lagarrigue }@agrocampus-ouest.fr 

3 GenOuest Platform, INRIA/Irisa – Campus de Beaulieu, F-35042 Rennes Cedex, France 
{anthony.bretaudeau, olivier.sallou}@irisa.fr 

Keywords  Genomic regions, Annotation, Gene ontology, QTL. 

The final steps of genetic mapping research programs require close analysis of several QTL regions to 
select candidate genes for further studies. Despite several websites (NCBI genome browser, Ensembl 
Browser, UCSC Genome Browser) or web tools (Biomart, Galaxy) developed to achieve this task, the 
selection of candidate genes remains a laborious process. The information made available on the more 
prominent websites differs slightly in terms of gene prediction and functional annotation, while other 
websites provide extra information that researchers may want to use (HGNC approved gene symbols, Gene 
Ontology Annotation or functional data, conservation of synteny with other species, etc.). It is possible to 
manually merge and compare this information for one QTL containing few genes, but not for many different 
QTL regions containing dozens of genes.  

Here, we propose a web tool that, for a given region of interest, merges the list of genes available in 
NCBI and Ensembl, removes redundancy, adds functional annotations from different prominent web sites, 
and highlights the genes for which functional annotation fits the biological function or diseases of interest. 
The tool is dedicated to sequenced species of livestock including cattle, pig, chicken, and horse as well as 
dog, i.e. species that have been extensively studied (with over 8000 QTLs detected; see 
http://www.animalgenome.org/cgi-bin/QTLdb/index). Nevertheless, the family designs and the low number 
of animals used in these species, most of the studies use linkage analysis, and the QTL regions identified 
remain large (containing dozens of genes). Conversely, in human and model species, most analyses now 
draw heavily on association studies involving large cohorts, thus providing more power and accuracy, and 
the web tools already available focus on these species through functional annotation of SNPs in association 
with the trait [1-3]. As most of these tools focus on the SNP annotation itself, describing whether the SNP is 
located in a gene, then a coding sequence could have a functional effect, etc. While these web tools are 
highly efficient in providing a good annotation for specific SNPs, they clearly cannot be used to collect 
information on the large regions obtained in livestock species. 

AnnotQTL is a web tool designed to gather the functional annotation of different prominent websites 
while minimizing redundant information. Using all known information substantially accelerates the gene 
analysis of QTL regions for livestock species traits and improves the selection of candidate genes. The 
AnnotQTL web tool is available at http://annotqtl.genouest.org. 

[1] S. Goodswen, C. Gondro, N. Watson-Haigh, and H. Kadarmideen, FunctSNP: an R package to link SNPs to 
functional knowledge and dbAutoMaker: a suite of Perl scripts to build SNP databases. BMC Bioinformatics, 
11(1): 311-311, 2010. 

[2] J. Reumers, S. Maurer-Stroh, J. Schymkowitz, and F. Rousseau, SNPeffect v2.0: a new step in investigating the 
molecular phenotypic effects of human non-synonymous SNPs. Bioinformatics (Oxford, England), 22(17): 2183-
2185, 2006. 

[3] M. Ryan, M. Diekhans, S. Lien, Y. Liu, and R. Karchin, LS-SNP/PDB: annotated non-synonymous SNPs mapped 
to Protein Data Bank structures. Bioinformatics (Oxford, England), 25(11): 1431-1432, 2009. 
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Recent DNA sequencing technologies (NextGen Sequencing) lead to an inflow of sequence for which 
adaptation  of  bioinformatics  tools  and  processing  policy  are  necessary.  Nowadays,  a  typical  project  in 
genomics includes the sequencing of several genomes of species evolutionary related to a reference species. 
Thus,  annotation  of  genome  sequences  by  the  Génolevures  Consortium [1]  becomes  automatic,  in  the 
framework of its new projects.

Genome sequence annotation comprises 2 phases: syntactical annotation which consists in the  prediction 
of various chromosomal elements (protein coding genes, tRNA genes, rRNA, transposons, centromeres, …),  
followed by functional annotation of each element often based on comparison with known sequences.

The automatic annotation pipeline assembled for the projects of the Génolevures Consortium gathers 
predictions of several types of objects. (1) The protein coding genes are predicted by 7 different algorithms  
using the same training set of sequences, which contains sequences with and without introns. The intron 
definition in this training sample can result either from experimental data (ESTs) or from comparisons with 
sequences of related genomes. The predictions are filtered according to the intron motifs and the values 
assessed by GeneMark [2]. (2) The contigs are compared to (a) non-coding elements of reference species 
with  BLASTn  [3], (b)  proteomes  of  reference  species  and/or  Uniprot  with  tBLASTn,  and  (c)  PSSM 
representative of protein families (Génolevures protein families [4] for yeasts) with PSI-tBLASTn. (3) The 
other  chromosomal  elements  are  either predicted by Consortium experts  or  are the outcome of specific  
bioinformatics tools.  (4) The overlap conflicts are solved by taking into account predicted models, other 
chromosomal elements, and similarity regions. (5) The functional annotation is then applied on the set of  
resulting elements, based on a decision tree inspired by previous semi-automated annotation projects. The 
functional annotation of a predicted model is composed by the level of similarity with the most meaningful 
hit, the ID and name of the hit and its functional annotation if any. This pipeline puts together bioinformatics 
tools widely used in the domain as well as specific scripts; it uses and produces data files in standard formats  
for Genomics and Bioinformatics (EMBL, GenBank, Fasta, GFF3).

The policy for automated annotation, implemented by the pipeline, allows the treatment of new genome 
sequences from the basis of reference related genomes, and under the annotation standards which result from 
the acquired experience of the Génolevures Consortium.

Moreover, all the data can feed into the MAGUS [5] genome annotation system and thus be visualized on 
a web navigator. The curator can see annotation of these genomes by contig (Gbrowse [6]), by element, or by 
homolog group and add/modify the chromosomal elements.

[1] www.genolevures.org  .

[2] M. Borodovsky and J. McIninch,  Recognition of genes in DNA sequence with ambiguities. Biosystems, 30:161-
171, 1993.

[3] S.F.  Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman, Gapped BLAST and 
PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3387-3402, 1997.

[4] D.J. Sherman, T. Martin, M. Nikolski, C. Cayla, J.L. Souciet and P. Durrens,Génolevures: protein families and 
synteny among complete hemiascomycetous yeast proteomes and genomes. Nucleic Acids Res. 36:D550-D554, 
2009.

[5] http://magus.gforge.inria.fr  .

[6] L. D. Stein, The Generic Genome Browser: A building block for a model organism system database.Genome Res., 
12:599-1610, 2002.
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Tropical diseases such as malaria, filariasis or trypanosomiasis are transmitted via vector species directly 
through blood meals. Previously largely neglected, these vectors now have their share in the amount of 
genomic data generated. VectorBase [1, http://www.vectorbase.org] is a Bioinformatics Resource Centre 
responsible for the storage, organisation and updating of these data – currently hosting data mainly for the 
mosquitoes, the tick and the body louse.  
 

Although it provides access to these data, it also generates some of them. It is involved in the annotation 
of all five species it represents [2, 3, 4, 5], and is currently annotating two more vector genomes: the kissing 
bug and the tsetse fly.  

 

The annotation process, largely based on similarities, is derived from the Ensembl annotation pipeline [6]. 
After an initial repeat masking step, several independent gene sets are built, based on data of various origins 
and confidence degrees: (i) manual annotation (high confidence), (ii) species-specific ESTs/cDNA (medium 
confidence), (iii) validated genes from closely related species (medium confidence), (iv) Uniprot sequences 
(low confidence), (v) ab initio (low confidence). These sets are concatenated in a single set following a gap 
filling method: highest confidence genes are placed first on the genome, then lower confidence genes fill the 
gaps. The final gene set is then polished (UTR addition, functional annotation, link to external data) before 
being submitted to GenBank and released in VectorBase. Gene set updates occur when enough new data are 
available for the species, or if its assembly changes. 
 

The pipeline is adapted for each species, based on its taxonomic position and data abundance. A new 
genome can benefit from the existing annotations of closely related species (e.g.: mosquitoes) or, this data 
source is limited (e.g. tick or kissing bug), it relies more on transcriptomic data and ab initio predictions. 
Regardless of its taxonomic position, if many species-specific data are available for a given genome (e.g. 
tsetse fly), those take precedence over closely related species data.     

 

VectorBase has strong links with its users and encourages them to provide gene models for their species 
of interest, via a custom-made submission pipeline. Such annotations improve greatly the gene sets, and in 
some cases compose more than half of the models (e.g. Anopheles gambiae). This community involvement is 
fundamental and allows us to deliver a high standard of annotation.   
 

The pipeline is deliberately very conservative, with a low false-positive rate compared to ab initio 
methods (K.M., D.L., pers. comm.). However, it remains a several month process incompatible, in its present 
state, with the increase of genomes to analyze. We are currently adjusting it in order to accelerate the 
procedure and take better advantage of the proliferation of transcriptomic data, while keeping a good 
standard of annotation.         

 
[1] D.Lawson, P.Arensburger, P.Atkinson, et al. VectorBase: a data resource for invertebrate vector genomics. 

Nucleic Acids Res., 37:D583-7, 2009. 
[2]  M.Sharakhova, M.Hammond, N.Lobo, et al. Update of the Anopheles gambiae PEST genome assembly. Genome 

Biol.,8(1):R5, 2008. 
[3]  V.Nene, J.Wortman, D.Lawson, et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science, 

316(5832):1718-23, 2007. 
[4]  P.Arensburger, K.Megy, R.Waterhouse, et al. Sequencing of Culex quinquefasciatus establishes a platform for 

mosquito comparative genomics. Science, 330(6000):86-8, 2010. 
[5]  E.Kirkness, B.Haas, W.Sun, et al. Genome sequences of the human body louse and its primary endosymbiont 

provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci,107(27):12168-73, 2010. 
[6]  V.Curwen, E.Eyras, T.Andrews, et al. The Ensembl automatic gene annotation system. Genome Res.,14(5):942-

50, 2004. 
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The continuing technical improvements and decreasing cost of next-generation sequencing technologies 

have made RNA sequencing (RNA-seq) a popular choice for gene expression studies in recent years. 

Because the data collected from such studies differ considerably from those measured using microarray 

technology, the statistical tools used for analysis must be adapted accordingly. In particular, several methods 

for the normalization and differential analysis of RNA-seq data have been proposed in recent years. However 

there are no clear indications on the best solution to be chosen. 

In this work, we focus on a comparison of seven different proposed normalization methods for RNA-seq 

data in the context of analysis of differential expression: total count (TC), upper quartile (UQ, [3]), median, 

full quantile (FQ, [2]), Trimmed Mean of M values (TMM, [6]), Reads Per Kilobase per Million (RPKM, 

[4]), and the normalization method implemented in the DESeq package in R [1]. Using graphical analyses 

and the results of differential analysis (e.g., Table 1) we compare the normalization methods to one another 

using RNA-seq data from a human melanoma cell line [7]. As suggested in Table 1, a change in the 

normalization method can lead to a very different list of differentially expressed genes. Groups of methods 

appear to provide close results, while some others behave in a radically different manner. In particular, the 

RPKM method may not be relevant in the context of differential analysis, as correcting for gene length 

introduces a bias in the variance estimation [5]. In addition, a classification of normalized samples suggests 

that the median method may be more sensitive to differences in read count distribution between samples. 

From these results, we make preliminary recommendations to biologists about their use in practice. 

 RPKM TC UQ Median DESeq TMM FQ 

Total 403 1604 1462 389 1569 1581 1830 

Table 1. Total number of differentially expressed genes for each normalization method (the DESeq package 

is used for the statistical test of differential expression). 

[1] S. Anders and W. Huber, Differential expression analysis for sequence count data. Genome Biology, 11:R106, 2010. 

[2] B. Bolstad, R. Irizarry, M. Astrand, and T. Speed, A comparison of normalization methods for high density 

oligonucleotide array data based on bias and variance. Bioinformatics, 19:185-193, 2003. 

[3] J. Bullard, E. Purdom, K. Hansen and S. Dudoit, Evauation of statistical methods for normalization and differential 

expression in mRNA-seq experiments. BMC Bioinformatics, 11:94, 2010. 

[4] A. Mortazavi, B. Williams, K. McCue, L. Schaeffer, and B. Wold, Mapping and quantifying mammalian 

transcriptomes by RNA-seq. Nature Methods, 5: 621-628, 2008. 

[5] A. Oshlack and M. J. Wakefield. Transcript length bias in RNA-seq data confounds systems biology. Biology 

Direct, 4:14, 2009. 

[6] M. Robinson and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data. 

Genome Biology, 11:R25, 2010. 

[7] T. Strub, S. Giuliano, T. Ye, C. Bonet, C. Keime, D. Kobi, S. Le Gras, M. Cormont, R. Ballotti, C. Bertolotto, and I. 

Davidson, Essential role of microphtalmia transcription factor for DNA replication, mitosis and genomic stability in 

melanoma. Oncogene, Epub ahead of print, 2011. 
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Next generation sequencing (NGS) are these days one of the key technologies in biology.  Comparative 
RNA-Seq experiments allow to detect differentially expressed genes in two conditions, and comparative  
NGS-Metagenomics experiments allow to identify species or genes which are more frequent in one condition 
than in an another one. The whole pipeline from the raw data to the scientific conclusions includes three  
steps: alignment of the reads and counting, normalization and statistical analysis to identify differentially  
expressed genes. The last step is not yet stabilized and several competitors are proposed. Recent work is  
mainly focalized on the distribution of the technical error and the studies taking into account the biological 
variability are based on less than 4 biological replicates.  The biological variability is generally considered as  
the most relevant source of variability in comparative studies. 

We used a real metagenomic data set with many biological replicates [3] to compare the performances of 
different statistical methods for comparative studies: Negative Binomial model,  methods implemented in 
DESeq [1] and edgeR [2] packages in R, Wilcoxon test, linear model on the log (GLM-log). The aim of the 
study is to detect differentially abundant species among 155 species present in the human gut between 41 
obese danish patients and 44 non-obese danish patients. Data were normalized by the total number of reads 
and  we  used  the  following  criteria  to  compare  the  methods  :  agreement  between  lists  of  declared  
differentially abundant species, false discovery rate evaluated by a simulation study based on the data from 
an homogeneous population (the 44 non-obese patients), robustness of the findings when suppressing one 
replicate.

The statistical method has a great impact on the results. We can separate the methods in two groups (i) 
methods based on the Negative Binomial (ii) Wilcoxon and GLM-log. The methods in the first group failed 
in controlling the type I error rate (see Table 1.). Moreover, these methods are not robust. We have made the  
comparative analysis of the “obese” versus “non-obese” groups. When we suppress one replicate among the  
85  biological  replicates,  the  lists  of  differentially  abundant  species  are  strongly  modified  when  using  
methods of the first group. Therefore we recommend to be careful when analyzing comparative experiments 
using any method based on the Negative Binomial law.

R=0 R>=1 mean(R)
Negative Binomial 0 50 6,32
DESeq 0 50 2,82
edgeR 0 50 8,5
Wilcoxon 48 2 0,04
GLM-log 48 2 0,04

Table 1. Number of simulations with no species (R=0) and at least one species (R>=1) declared differentially 
abundant between 2 groups taken at random in the non-obese population. R is the number of species (wrongly) 
declared significantly differently abundant between the two groups. The P-values have been adjusted using the 
Bonferroni procedure at level 0,05. The expected numbers for (R=0) and (R>0) are respectively 47,5 and 2,5. 

[1] S. Anders and W. Huber, Differential  expression analysis for sequence count data.  Genome Biology, 11:R106, 
2010.

[2] MD.  Robinson,  DJ.  McCarthy,  GK.  Smyth  and  S.  Dudoit,  edgeR  :  a  Bioconductor  package  for  differential 
expression analysis of digital gene expression data. Bioinformatics, 26:136-140, 2009.

[3] J. Qin et al.,  A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464:59-70, 
2010.
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DNA methyaltion is  a major  epigenetic modification in human cells.  Illumina  HumanMethylation27 
BeadChip makes it possible to quantify the methylation state of 27,578 loci spanning 14,495 genes. We 
developed  a  non-parametric  normalisation  method  to  correct  the  spatial  background  noise  in  order  to 
improve the signal-to-noise ratio. The prediction performance of the proposed method was assessed on 3 
fully  methylatted  and  3  fully  unmethylated  samples.  We  demonstrate  that  the  spatial  normalisation 
outperforms BeadSTudio to predict the methylation state of a given locus.

Our method allows a better concentration of the beta values around their expected value allowing the 
possibility  to  better  identify  intermediate  state  such  as  hemi-methylation.  For  a  l  of  0,35,  the  global 
performance criterion is 80% after normalisation, 53% with BeadStudio, and 60% without normalisation 
(raw).

Availability  and  implementation:  A  R  script  and  the  data  are  available  at  the  following  address: 
http://bioinfo.curie.fr/projects/smethillium

Contact: smethillium@curie.fr
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VectorBase ([1], http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center 
focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes 
providing a web accessible integrated resource for the research community. Currently, VectorBase contains 
genome information for three mosquitoes: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, 
the body louse Pediculus humanus, the tick Ixodes scapularis and the triatomine bug Rhodnius prolixus. 

VectorBase partners and the vector community have provided a significant amount of second generation 
sequencing datasets produced at low cost. Incorporating this data to inform and improve gene models present 
a novel challenge. One example is the transcriptional profiling studies of Aedes and Anopheles species using 
high-throughput RNA-Seq technologies. We have developed two pipelines to analyze RNA-Seq data from 
454 pyrosequencing and Illumina sequencing platforms.  

For the Anopheles gambiae transcriptome, we have analyzed a total of several million 454 reads from 
different experimental conditions. In this particular case, we have adopted a de novo assembly strategy to 
construct a set of transcript fragments used to improve the annotation of the UTR regions of the protein-
coding genes. To cluster the 454 reads into contigs, we have used MIRA [2], a multi-pass DNA sequence 
data assembler for genome and EST projects. 

For Aedes aegypti, we have started to work on a collection of Illumina experimental datasets containing 
either unpaired or paired-end reads of various lengths ranging from 36-bp to more than 100-bp depending on 
the sequencing platform, and representing in total hundreds of millions of reads. To date, different strategies 
have been employed in the analysis pipeline, depending on the type of Illumina run and length of the 
sequences. For instance, to map short reads back to the Aedes genome and identify the splicing junctions, we 
have used BWT-based aligners like Bowtie [3] and hash-based aligners like GSNAP [4] or GMAP [5] for 
longer reads. Gene models were reconstructed using existing software including Cufflinks [6] and Scripture 
[7] (for paired-end reads only), and a customized procedure we have developed to detect known and new 
transcripts from short-read alignments. Transcripts detected from different methods and experiments will be 
merged to build a consensus set of gene models (with alternative splice isoforms) and will help to 
complement existing annotations of both coding and non-coding regions of the genome. All these changes in 
the genome annotation will be reflected in the forthcoming releases of VectorBase. 

[1] D. Lawson, P. Arensburger, P. Atkinson, et al., VectorBase: a data resource for invertebrate vector genomics. 
Nucleic Acids Res., 37:D583-7, 2009. 

[2] B. Chevreux, T. Pfisterer, B. Drescher, et al., Using the miraEST Assembler for Reliable and Automated mRNA 
Transcript Assembly and SNP Detection in Sequenced ESTs. Genome Res., 14: 1147-1159, 2004. 

[3] B. Langmead, C. Trapnell, M. Pop and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA 
sequences to the human genome. Genome Biology, 10:R25, 2009. 

[4] T. D. Wu and S. Nacu, Fast and SNP-tolerant detection of complex variants and splicing in short reads. 
Bioinformatics, 26: 873-881, 2010. 

[5] T. D. Wu and C. K. Watanabe, GMAP: a genomic mapping and alignment program for mRNA and EST 
sequences. Bioinformatics, 21: 1859-1875, 2005. 

[6] C. Trapnell, B. A. Williams, G. Pertea et al., Transcript assembly and quantification by RNA-Seq reveals 
unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28, 511–515, 
2010. 

[7] M. Guttman, M. Garber,  J. Z. Levin, et al., Ab initio reconstruction of cell type–specific transcriptomes in mouse 
reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology, 28, 503–510, 2010. 
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Les analyses métagénomiques actuelles se basent sur la comparaison entre des séquences non identifiées 
et une banque de données de séquences connues, afin de déterminer le contenu taxonomique d’un échantillon 
d’intérêt. On peut identifier une séquence inconnue si elle est retrouvée dans la banque au-delà d’une 
certaine similarité. L’arbre taxonomique représentatif des organismes en présence est ainsi dessiné [1]. 

La métagénomique ciblée se concentre sur une région génétique précise suffisamment variable pour être 
un marqueur d’identification. Cette région doit être encadrée de régions flanquantes universelles pour 
permettre la sélection d’amorces d’amplification. On ne séquence ainsi pas tout le contenu génétique d’un 
échantillon, mais seulement cette région préalablement amplifiée. 

De ce fait, le choix de la banque de données de référence est une décision cruciale, puisqu’elle influence 
directement l’interprétation des résultats. Une telle banque doit représenter une taxonomie la plus exhaustive 
possible : un taxon non présent dans la banque sera impossible à révéler dans l’échantillon qui y est comparé. 
La banque ne doit pas être redondante afin de ne pas surreprésenter certains taxons, et doit contenir des 
séquences de qualité et longueur suffisante pour éviter de mauvaises identifications. 

Il existe déjà des banques publiques de certaines régions dont nous nous servons dans le cadre de nos 
analyses ; par exemple la banque SILVA [1] (ADN ribosomique, couramment utilisé chez les bactéries) ou 
encore l’ITS2 database [2] (région entre l’ADNr 5,8S et l’ADNr 28S, marqueur très discriminant chez les 
champignons). Ces banques sont construites en extrayant des séquences des banques généralistes selon 
différents critères : SILVA se base sur des mots-clefs et des profils de séquences, tandis que l’ITS2 database 
utilise des similarités structurales entre séquences. Toutefois, nous devons faire face à plusieurs problèmes 
inhérents à la construction de ces banques et aux séquences qui y sont comparées. 

En effet, nous avons constaté des erreurs d’identification, ou encore l’absence de taxons pourtant validés 
expérimentalement dans l’échantillon. Nous avons par conséquent fait une comparaison sur la banque nr du 
NCBI, afin d’avoir un maximum d’identifications. La quantité accrue de ces dernières a augmenté le taux 
d’erreurs, du à la mauvaise qualité ou annotation de certaines. Malgré de nombreux tests de création de 
banques spécifiques à partir de nr, les résultats n’étaient pas satisfaisants, puisque de nombreuses séquences 
ne sont pas annotées, et n’ont donc pas été sélectionnées.  

En outre, nous utilisons pour certains projets d’autres marqueurs génétiques pour lesquels il n’existe pas 
de banque de référence à l’heure actuelle. Nous avons ainsi développé une nouvelle méthode de construction 
automatique de banques de séquences mieux adaptées aux analyses métagénomiques ciblées, quelle que soit 
la région choisie. 
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Recent advances in sequencing technologies now enable to sequence transcriptomes. In principle, the
analysis of the reads obtained from an RNA-seq experiment should enable to identify and quantify all transcripts
present in an RNA sample, or to assess if the transcripts are differentially expressed, when comparing two
biological conditions. One of the main novelty of RNAseq is that no a priori knowledge of the transcripts is
required. RNA-seq may therefore be applied both to model or non model species.

When a reference genome is available (model species), reads from an RNA-seq experiment are directly
mapped to the genome and give direct access to genes and their expression levels. If no reference genome
is available (non model species), de novo assembly of reads can be used to reconstruct the transcriptome for
further analyses.

In order to assess how much one can trust the results obtained by de novo assembly, we studied the level of
confidence one can have in the assembled transcripts. To do this, we used RNA-seq single end libraries from
Drosophila melanogaster (under two differents biological conditions with two biological replicats for each). As
the genome of this species is available, we were able to apply both the mapping and the assembly approach.
The mapping was carried out using TopHat [3], whereas assembly was performed using Velvet [1] and Oases
(unpublished).

For each approach, we identified and quantified genes expression. For the mapping approach quantification
was done by htseq. For the assembly approach, per gene counts were obtained by summing the reads that
composed all the predicted transcripts for a given locus.

We then assessed if the detected genes were differentially expressed across biological conditions with the
DESeq R package [2]. Next, taking the mapping approach as the gold standard, we assessed the sensitivity and
the specificity of the assembly approach.

References
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Coevolving host-pathogens are characterised by genetic specificity, where the outcome of the host–
pathogen interaction (e.g., the probability of infection, pathology, or parasite transmission success) depends 
on the specific pairing of host and pathogen genotypes. In invertebrates, however, immune system pathways 
studied so far are not capable of such fine-tuned specificity[1,2]. To identify the genes and pathways 
responsible for these interactions, we exposed three Daphnia host genotypes to two naturally-infecting 
bacterial strains in a fully factorial design including unexposed host controls.  

Each condition was replicated three times and the complete transcriptome of the host was sequenced 
using Illumina RNA-seq technology. Quality controlled reads were mapped to the genome, duplicate reads 
were flagged, and differential gene expression was assessed. Gene enrichment analysis was carried out on all 
significantly up and down regulated genes. Allelic specific expression was determined by detecting 
heterozygous SNPs in individual genotypes, and testing for changes in allelic imbalance between control and 
treated samples. 

We show that host genotypes differ dramatically in the genes they express in response to the invading 
pathogen, both in terms of absolute gene expression, as well as allele-specific response. The genes identified 
in our analysis are the first candidates to be implicated in the host pathogen specific response in Daphnia. 
 

 
[1] Y. Carton, F. Frey, and Nappi, Genetic determinism of the cellular immune reaction in Drosophila melanogaster. 

Heredity, 69:393-399, 1992. 
[2] H. Agaisse and N. Perrimon, The roles of JAK/STAT signaling in Drosophila immune responses. Immunol. Rev., 

198:72-82 2004. 
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The  increasing  number  of  methodologies  and  tools  currently  available  to  analyse  gene  expression 
microarray data can be confusing for non specialist users.  Based on the experience of biostatisticians of 
Institut Curie, we propose both a clear analysis strategy and a selection of tools to investigate microarray 
gene  expression  data.  The  most  usual  and  relevant  existing  R  functions  were  discussed,  validated  and 
gathered in an easy-to-use R package (EMA [4]) devoted to gene expression microarray analysis.

Removing noise and systematic biases is performed using the most famous techniques for Affymetrix 
GeneChip normalisation. The data are then filtered to both reduce the noise and increase the statistical power 
of  the  subsequent  analysis.  Exploratory  approaches  based  on  R packages  such  as  FactoMineR  [3],  or 
mostclust [1] and classically used to find clusters of genes (or samples) with similar profiles are also offered. 
Supervised  approaches,  as  Significance  Analysis  of  Microarrays  (siggenes package  [5])  approach  or 
ANOVA functions, are proposed to identify differentially expressed genes (DEG) and functional enrichment 
of the DEG list is assessed based on GOstat package [2]. 

The package includes a vignette which describes the detailed biological/clinical analysis strategy used at 
Institut  Curie.  Most  of  the  functions  were  improved  for  ease  of  use  (fewer  command  lines,  default 
parameters  tested and chosen to  be  optimal).  Relevant,  enhanced and easy-to-interpret  text  and graphic 
outputs are offered. The package is available on The Comprehensive R Archive Network repository.

[1] A. Bertoni and G. Valentini, Model order selection for bio-molecular data clustering. BMC Bioinformatics, 8 Suppl 
2:S7, 2007.

[2] S. Falcon and R. Gentleman, Using GOstats to test gene lists for GO term association.  Bioinformatics, 23:257–
258, 2007.

[3] S. Le, J. Josse, and F. Husson (2008). Factominer: an R package for multivariate analysis. Journal of statistical 
software, 25:1–18, 2008.

[4] N. Servant,  G. Eleonore,  P. Gestraud, C. Laurent,  C. Paccard,  A. Biton, I.  Brito,  J. Mandel, B. Asselain, E.  
Barillot, and P. Hupé, Ema - a R package for easy microarray data analysis. BMC Research Notes, 3:277, 2010.
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MicroRNAs (miRNAs) are non-coding RNAs with only 21-25 nt in sequence length that are present in
all sequenced higher eukaryotes ([1]). miRNA genes are cleaved into a 40-940 nt long precursor of miRNA
sequences (pre-miRNAs). Pre-miRNAs, structured as hairpins, are transported into the cytoplasm and are
cleaved into mature miRNA ([1]). They are involved as negative regulators of gene expression by binding
to specific mRNA targets ([1]). Bioinformatics methods that predict pre-miRNAs can be divided into three
approaches: comparative genomics, homology-based approaches and ab initio approaches. Comparative ge-
nomics and homology-based approaches cannot detect miRNAs of unknown families and/or miRNAs with no
close homologous in genomes. Furthermore, comparative approaches do not work on new genomes that do not
have a closely related sequenced species. Ab-initio methods are needed to predict new miRNAs in genomes. In
our knowledge, there are very few ab initio algorithms that search for pre-miRNA structures in whole genomes
and all are specific to one or some genomes.

We present a new ab initio method, called miRNAFold, for predicting pre-miRNA structures in any genome.
Our method consider a sliding window of a given size L sufficiently long to contain a pre-miRNA. In a first
step, we search for long exact Watson-Crick stems which verify some criteria. In a second step, we extend the
selected stem in order to get the longest symmetrical non-exact Watson-Crick stem verifying some criteria. This
longest symmetrical non-exact stem can correspond to a large portion of a pre-miRNA. Possible pre-miRNA
hairpins are then searched for in the subsequence associated to the selected symmetrical non-exact stem. At
each step, several selection criteria are used, corresponding to several features observed on the exact stems, the
symmetrical non-exact stems and the hairpins. Some of these criteria, for example ∆G; ratio A, U, C and G,
are also used in ([2,4]). Because a miRNA hairpin can present some of these features but not all, an exact stem,
a symmetrical non-exact stem or an hairpin is selected when a certain percentage of the criteria are verified.
This percentage is a parameter which could be set by the user.

We compared our algorithm miRNAFold with RNALFold ([3]) which searches in genomic sequences for
all possible non-coding RNA secondary structures including hairpins. We thus compared the hairpins predicted
by RNALFold with the ones predicted by our algorithm miRNAFold. We used RNALFold software in version
1.8.4. downloaded from the Vienna RNA Package (www.tbi.univie.ac.at/RNA/) and it was run with its default
parameters. We used a sliding window of 150 nt for each of thr two software. We tested miRNAFold and
RNALFold on the human, mouse, zebrafish and sea squirt genomic sequences. Each sequence contains a cluster
of several known miRNAs. miRNAFold was run with a threshold of 70% for the minimum percentage of
verified criteria. miRNAFold has better sensitivity and selectivity results than RNALFold on the human, mouse,
zebrafish and sea quirt genomic sequences. Moreover miRNAFold is the fastest algorithm. Our average time
execution is 57 seconds for a sequence of 1 million of nucleotides, when RNALFold has an average time
execution of 5 minutes and 46 seconds. miRNAFold is then almost 6 times faster than RNALFold.

miRNAFold is available at http://EvryRNA.ibisc.univ-evry.fr/
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Since high density DNA chips provided the first global view of the human transcriptome [1], it has 

become clear that most of the non protein-coding regions that comprise 98% of our genome are under active 

transcription. This initial finding now extends to other model eukaryotes, including the simplest ones such as 

single-cell yeasts. Many questions remain unanswered about this extensive transcription. Can we 

discriminate functional from background transcripts? Can we identify precise transcript boundaries, and 

classify transcripts based on their expression, processing or conservation? Answering these questions will 

require considerable amounts of experimental evidence gathered from multiple conditions. In the meantime, 

our view of the non-coding transcriptome will remain largely deficient. It is revealing that most sequencing 

centers still distribute genome annotations limited to CDS (coding sequence) coordinates. Basic information 

such as transcript boundaries remains beyond reach for most genomes. In this poster, we present how our 

laboratories address issues of non-coding transcript annotation at several levels, using RNA-seq experiments 

carried out in human and yeast.  

First, we questioned the effect of RNA library preparation protocols on transcript annotation. RNA-seq 

protocols use either enzymatic or chemical RNA fragmentation for sequencing. We show that these methods 

significantly affect the accuracy of transcript reconstruction. One of the methods produces more irregular 

transcript coverage, which favors artifacts such as artificial dissociated transcripts within the same locus. 

Second, we have been screening transcriptome variations in mutants of the RNA degradation pathway in 

yeast. In a recent study (Fig. 1) the AM lab identified a novel class of non coding transcripts that are 

normally degraded by the Xrn1 nuclease. These RNAs, termed XUTs (Xrn1-sensitive Unstable non-coding 

Transcripts) constitute a novel class of transcripts that further expand the repertoire of cryptic transcripts [2]. 

Other mutant yeasts are now under scrutiny, including one producing small interfering RNAs through 

expression of an ectopic argonaute/dicer system. 

 

Figure 1. Strand-specific mapping of RNA-seq reads in the vicinity of the ARG1 gene (red lines) in a S. cerevisiae 

xrn1 mutant [2]. The ARG1 gene shows unusual antisense expression (bottom). 

Third, we are now performing meta-analysis of human RNA-seq data in order to refine our 

understanding of spliced non-coding transcripts. There are several thousand such transcripts in human, but 

only a few have proposed functions. We show that public RNA-seq data is now sufficient to enable a 

comprehensive analysis of these transcripts and their variations.  

[1] E. Birney, R.G. Anindya Dutta, R.G. Thomas et al. Identification and analysis of functional elements in 1% of the 

human genome by the ENCODE pilot project. Nature, 447:799-816, 2007. 
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Bacterial small RNAs (sRNAs) regulate target messenger RNAs by mediating their degradation or 

translation block. A bacterial genome may contain up to a few hundred sRNAs, and each sRNA can target  

up to dozens of mRNAs. Few actual sRNA-mRNA interactions are experimentally demonstrated and the 

total number of targeted mRNAs is unknown. In the absence of large scale data for these interactions, a 

global view of the RNA-RNA interaction network remains out of reach.  

 The NAPP (Nucleic Acid Phylogenetic Profile) pipeline uses all available bacterial genomes to identify 

ncRNAs and mRNA displaying similar patterns of presence/absence across species [1]. We showed NAPP is 

efficient for both sRNA prediction and the identification of functional clusters of sRNAs and mRNAs [2]. 

Here we will present a web interface that allows biologists to access NAPP prediction of sRNAs and other 

non-coding RNAs in about 1000 bacterial genomes, together with functional information derived from the 

analysis of NAPP clusters. The NAPP database is available at http://rna.igmors.u-psud.fr/toolbox/ 

In a parallel study, we analyzed the conservation profiles of mRNA sequences in order to observe 

potential signatures of targeting by sRNAs. A recent article [3] shows that, in sRNAs, the region targeting 

the mRNA is more conserved than other regions. To investigate what happens on the mRNA side, we 

computed conservation profiles of all E. coli mRNAs by comparison with 1070 bacterial species. We found 

evidence that known sRNA targets present a conservation signature in their 5’ untranslated region that 

distinguishes them from other mRNAs (Fig. 1). This is consistent with the observation that most documented 

sRNA-mRNA pairs interact in this region, around the ribosome binding site (RBS). Using a clustering 

analysis, we identify groups of mRNAs with similar conservation profiles that may be enriched in novel 

sRNA targets.  We present an analysis of these clusters in terms of mRNA functions and putative associated 

sRNAs. 

 

Figure 1. Average conservation profiles of E. coli mRNAs in a 60-nt window around the start codon (ATG). mRNAs 

targeted by sRNAs show manifest conservation peaks at and upstream of the ribosome binding site (RBS). 
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The Vibrio genus comprises a number of important human and animal pathogens. Among genes that  
confer virulence to these bacteria, small regulatory RNAs (sRNAs) appear to play a significant role [1].  
These sRNA genes, as well as other non-coding RNAs (ncRNAs) such as cis-acting RNAs and antisense 
RNAs, are difficult to characterize as they are devoid of a specific sequence signature. Most known ncRNAs 
in Vibrio are derived from genetic studies or medium-throughput analyzes. Here we attempt to expand the 
catalog of Vibrio ncRNAs using high-throughput RNA-seq analysis of  Vibrio splendidus and comparative 
genome analysis. 

Our RNA-seq experiment involved total RNA extraction from exponentially growing V. splendidus and 
treatment by the exoribonuclease Terminator for rRNA depletion and enrichment in primary transcripts.  
Sequencing on the Illumina GA IIx platform (36 nt  length),  and subsequent  mapping using the Bowtie 
program [2] produced 4.5 million uniquely mapping reads. We implemented computational pipelines for 
detecting cis-acting, trans-acting and antisense ncRNAs from these mapping data. Our pipelines rely on the  
S-MART  program  (M.  Zytnicki,  unpub.)  that  performs  transcript  reconstruction  and  facilitates  the 
comparison of mapped reads with existing annotation based on user-defined parameters.

After parameter optimization based on a set of 30 RFAM RNAs [3], we predict 943 ncRNAs in the 
V. splendidus genome, including 584 long 5’ UTRs that may contain cis-regulatory RNAs, 282 sRNAs and 
77  cis-encoded  antisense  RNAs.  Manual  curation  validates  about  82%  of  these  RNA  candidates.  We 
compared the RNA-seq-derived transcripts to RNAs predicted by bioinformatics alone using the SIPHT [4] 
and NAPP [5] systems, both based on conservation analysis. The overlap with SIPHT prediction is relatively 
low (~30% for sRNAs), suggesting that (i) a significant fraction of in silico-predicted RNAs are either false 
positives or expressed in specific conditions and (ii) a significant fraction of RNA-seq-supported transcripts 
are not conserved and may represent functional transcripts of recent emergence or high mutation rate. To  
further  analyze  the  emergence  of  novel  RNAs  in  the  Vibrio  genus,  we  present  a  comparison  of  our  
V. splendidus results with results of medium throughput screens performed on other Vibrio species [6].

We thank Matthias Zytnicki from INRA-URGI Versailles for assistance with the S-MART program and 
the high throughput sequencing platform of IMAGIF (www.imagif.cnrs.fr) for their facilities and expertise. 
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The multiple alignment of homologous sequences can provide numerous information on the evolution 
and  the  sequence-function  relationships  of  protein  families.  Most  methods  for  the  analysis  of  multiple 
sequence  alignments  rely  on  protein  clustering  after  the  building  of  a  tree  inferring  phylogenetic 
relationships.  However,  multivariate  analysis  can  also  provide  useful  information  without  inferring  a 
hierarchical  structure  of  the  data.  In  particular,  metric  multidimensional  scaling  (MDS)  is  a  powerful 
exploratory  procedure  designed  to  identify  patterns  in  a  distance  matrix  [1,  2].  MDS visualizes 
elements into a 2D or 3D space in such a way that the distances between these elements best approximate the  
original distances. Applied to biological sequences, this method usefully complements phylogenetic data [3].  
Moreover, MDS allows projection of supplementary elements onto a space of reference, based on the matrix  
of distances between reference and supplementary elements [1, 4]. MDS is thus a very useful tool to compare 
orthologous sequence sets.

We have developed the R package  bios2mds to provide all  the tools necessary to perform an MDS 
analysis from a multiple sequence alignment and to analyze the data. It allows users to build matrices of  
distances between aligned sequences, to analyze these matrices by MDS and the resulting data by K-means  
clustering. Moreover, bios2mds allows the projection of supplementary sequences onto a reference space and 
the visualization of the reference and supplementary elements,  with user provided color scheme (Fig.1).  
Finally, data can be exported in a PDB format for 3D visualization with molecular graphics programs.

Figure 1. 2D representation of the sequence space of human GPCRs (black dots), 
onto which the GPCRs from D. melanogaster (grey crosses) are projected.

[1] H. Abdi, Metric multidimensional scaling, Encyclopedia of Measurement and Statistics., 598-605, 2007.

[2] W.S. Togerson, Theory and methods of scaling. Wiley, New York, 1958.

[3] J. Pelé, H. Abdi, M. Moreau, D. Thybert and M. Chabbert, Multidimensional scaling reveals main evolutionary 
determinants and class A G-protein-coupled receptors, PloS one,april 2011.

[4] J.C. Gower, Adding a Point to Vector Diagrams in Multivaraiate Analysis Biometrika, 55, 582-585, 1968.
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Up to 40% of all proteins are known to functionally bind metals, the intrinsic metal atoms providing 
catalytic, regulatory and/or structural  roles critical to their functions. These metalloproteins are of major  
importance within the three domains of life. However, current methods dedicated to identifying members of 
this large family within bacterial proteomes are either not suitable for large-scale screening purposes or are  
of relatively limited performance when no 3D structural templates are available [1]. Within this context, we  
developed an approach based on a generalized linear model which combines the results of different sequence 
analysis  tools.  These  tools  are  based  on  the  screening  of  protein  descriptors  (e.g. patterns,  conserved 
domains, structural protein domains) or the building of protein profiles for remote homolog detection, each 
with a different scoring function. We assessed their respective predictive power towards the identification of 
a subset of metalloproteins, the iron-sulfur proteins (Fe-S), either separately or in combination. The linear 
model is trained on a dataset composed of protein sequences from the PDB70 (protein structures databank). 
Each protein  is  represented  by  a  boolean  vector  that  indicates  the  presence  or  absence  of  the  83 Fe-S 
descriptors we considered in this study. Five predictive models were built: four correspond to each class of  
descriptors and a mixed one concatenating the whole set of descriptors. Each linear model was estimated by  
a logistic regression procedure,  allowing the selection and weighting of the most  relevant  Fe-S protein-
predictive descriptors. We observed that descriptors based on distant homology profiles are more sensitive 
and less specific than those commonly used (patterns, domains), and that their inclusion in the combined  
model increases its global prediction quality. Then, we tested performances of each linear model on the 
complete genome of  Escherichia coli K12 and noticed that the mixed model outperformed each approach 
considered separately. 

Descriptors families TP TN FP FN Pre. Rec. F2

Patterns 53 4071 2 88 96.4% 37.6% 0.43
Conserved domains 76 4070 3 65 96.2% 53.9% 0.59
Structural domains 72 4069 4 69 94.7% 51.1% 0.56
Distant homologies 91 4012 63 48 59.1% 65.5% 0.64

Mixed model 91 4062 13 48 87.5% 65.5% 0.69

Table 1. Performances of each predictive model: four models for each class of descriptors and the  
mixed model which comprises the overall set  of FeS descriptors.  All models were trained on the  
PDB70 without E.coli sequences and assessed on E.coli genome. True positives (TP) and negatives 
(TN), false positives (FP) and negatives (FN) were determined by comparison of the prediction with  
Hamap annotations and literature. Recall (Rec.), is the fraction of correct predictions among all FeS 
proteins, while precision (Pre.) is the fraction of correct predictions among those that the algorithm 
believes to belong to the FeS proteins family. The F2 measure (F2) is the weighted harmonic mean of 
precision and recall; this latter metric reflects the efficiency of the model.

[1] A. Cvetkovic et al. Microbial metalloproteomes are largely uncharacterized. Nature, 466: 779-782, 2010. 
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Besides promoters, bacterial genomes are also rich in small (10-30 bp in length), dispersed and repeated 
(20-80 copies) DNA motifs  that serve to maintain or structure the genome [1]. These are progressively being 
uncovered in the last years, thanks to the Chip on chip technique, when the structuring/organizing protein is 
already known, or also sometimes with pure statistical means [2]. Chip on chip is a powerful technique 
allowing to identify collections of DNA fragments bound by a given protein at a given time in the living cell. 
A bioinformatics analysis is usually required to deduce, from the collection of DNA fragments given as an 
output of the technique (usually 1-2 kb in length), the DNA motif that is common to all fragments and may 
be the target of the protein under study. Motif search can be completed by enumeration of all motifs and 
ranking their exceptionality compared with a random Markovian model of the sequence under study, using 
programs such as R’mes.  Another approach for motif detection is based on multiple alignment with 
programs such as Bioprospector or Gimsan. In this last case, the output is a set of weight position matrices 
describing motifs of a given length (Gimsan) or two motifs separated by a gap (Bioprospector, conceived for 
bacterial promoter detection). However, they usually propose more than one single candidate motif, and 
another criterium, such as the enrichment of the motif among the precipitated fragments, relative to the rest 
of the genome, would be of a great help to assist motif prediction. In most cases reported however, such an 
enrichment factor is not calculated, and authors remain silent about the procedure that lead them to the 
appropriate motif prediction. 

This poster investigates methods for estimating the enrichment of a DNA motif, when described by a 
weight position matrix. To test these methods, a set of data was taken from the literature. The Chip on chip 
results obtained for four proteins structuring the bacterial chromosome, MatP, SlmA, Noc and Ram were 
collected. The two first proteins are encoded by Escherichia coli. MatP constrains the 800 kb TER 
macrodomain of E. coli, and permits its proper segregation after replication is completed. SlmA covers a 
large 3 Mb region around the origin of replication, and prevents the formation of a septum, so that septation 
occurs preferentially at mid-cell. Noc is the functional equivalent of SlmA in Bacillus subtilis, and Ram 
binds a region around the origin of replication of B. subtilis, to facilitate chromosome packing into the spore.  

The difficulty for estimating a motif enrichment with weight position matrices is due to the fact that such 
matrices do not permit to count motif occurrences in a genome, they only provide a probability that a given 
position in the genome corresponds to the motif. We compare two methods for estimating enrichment in 
precipitated fragments, that both detect efficiently the motifs tested. We also intend to use this approach for  
de novo detection of motifs still hidden in bacterial genomes.  

[1] F. Touzain, M.-A. Petit., S. Schbath, and M. El Karoui, DNA motifs that sculpt the bacterial chromosome. Nature 
Reviews Microbiology 9: 15-26, 2011. 

[2] R. Mercier, M.-A. Petit, S. Schbath, S. Robin, M. El Karoui, F. Boccard and O. Espeli, The MatP/matS site 
specific system organizes the Terminus region of the E. coli chromosome into a Macrodomain. Cell 135: 475-485, 
2008. 
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      It is estimated that 500 million cases of malaria occur each year, leading to 1 million of deaths, mainly 
caused by the Plasmodium falciparum specie [1]. P.falciparum cysteine proteases Falcipain-2 (FP2) and 
Falcipain-3 (FP3) act in the hemoglobin degradation pathway, the parasite’s main source of aminoacids. The 
use of cysteine proteases inhibitor interrupts the hemoglobin degradation and some of them lead to cure of 
the disease in infected mice [2]. Many FP2 or FP3 inhibitors have been described, this work focused on the 
complexes with some of the classes described as potent and specific inhibitors: a vinyl-sulfone peptide-based 
(v1b) [3]; three peptidomimetics, with a pyridone ring scaffold (v5b) [3] and benzodiazepine scaffold (et2b 
and et4c) [4,5]; and two non-peptide inhibitors (des4 and zhu2k) [6,7]. Our goal is to characterize the 
enzimes-ligand interactions to support the rational design of new compounds. To accomplish that molecular 
docking and molecular dynamics simulations were performed for the complexes FP2/FP3-inhibitors. 

The analysis of the intermolecular contact area and the hydrogen bond showed that the introduction of 
non-peptidic scaffold in the backbone of the peptidomimetic inhibitors did not interfere with the stabilization 
of the complexes. It was found highly prevalent hydrogen bonds involving the inhibitors backbone and 
critical residues of the active site of the enzymes, but in higher number for the complexes with FP2, 
suggesting that in general the inhibitors are more specific to FP2. The exception was v1b inhibitor. The non-
peptidic zhu2k showed highly prevalent bonds with both enzymes, suggesting that it can be a candidate for 
common inhibition. The analysis of the binding energy confirmed the better interaction of v1b with FP3. 
Smallest inhibitors as v5b, des4 and zhu2k also showed small energy values for this enzyme. For FP2 the 
peptidomimetic et2b and et4c together with the non-peptidic zhu2k showed the smallest en energy values of 
interaction. Based on the intermolecular contact area and the hydrogen bond network we also performed an 
analysis of the chemical groups components derived from the inhibitors, highlighting the individual portions 
that would best fit each three of the four subsite cavities of both FP2 and FP3 active sites. 

[1] S. H. I. Kappe, A. M. Vaughan, J. A. Boddey and A. F. Cowman. That Was Then but This Is Now: Malaria 
Research in the Time of an Eradication Agenda. Science, 328 (5980):862-866, 2010. 

[2] S. Soni, S. Dhawan, K. M. Rosen, M. Chafel, A. H. Chishti and M. Hanspal, Characterization of Events Preceding 
the Release of Malaria Parasite from the Host Red Blood Cell. Blood Cells Mol. and Dis., 35(2):201-211, 2005. 

[3] E. Verissimo, N. Berry, P. Gibbons, M. L. S. Cristiano, P. J. Rosenthal, J. Gut, S. A. Ward and P. M. O’Neill, 
Design and Synthesis of Novel 2-Pyridone Peptidomimetic Falcipain 2/3 Inhibitors. Bioorg. & Med. Chem. 
Lett.,18(14):4210-4214, 2008. 

[4] R. Ettari, E. Nizi, M. E. Di Francesco, M.-A. Dude, G. Prade, R. Vicik, T. Schirmeister, N. Micale, S. Grasso and 
M. Zappalà, Development of Peptidomimetics with a Vinyl Sulfone Warhead as Irreversible Falcipain-2 Inhibitors. 
J Med Chem, 51(4):988-996, 2008. 

[5] R. Ettari, N. Micale, T. Schirmeister, C. Gelhaus, M. Leippe, E. Nizi, M. E. Di Francesco, S. Grasso and M. 
Zappalà, Novel Peptidomimetics Containing a Vinyl Ester Moiety as Highly Potent and Selective Falcipain-2 
Inhibitors. J Med Chem, 52(7):2157-2160, 2009. 

[6] P. V. Desai, A. Patny, J. Gut, P. J. Rosenthal, B. Tekwani, A. Srivastava and M. Avery, Identification of Novel 
Parasitic Cysteine Protease Inhibitors by Use of Virtual Screening. 2. The Available Chemical Directory. J Med 
Chem, 49(5):1576-1584, 2006. 

[7] J. Zhu, T. Chen, L. Chen, W. Lu, P. Che, J. Huang, H. Li, J. Li and H. Jiang, 2-Amido-3-(1h-Indol-3-Yl)-N-
Substitued-Propanamides as a New Class of Falcipain-2 Inhibitors. 1. Design, Synthesis, Biological Evaluation and 
Binding Model Studies. Molecules, 14(1):494-508, 2009. 
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The non specific Lipid Transfer Proteins (nsLTPs) show large variations in their sequences, biological 
roles, quaternary associations and the nature of bound hydrophobic ligands. However, they share a conserved 
cysteine pattern which plays an important role in the structural scaffold [1]. Besides, they are involved in a 
large number of biological processes relative to plant development and defense. For these reasons, the nsLTP 
superfamily constitutes an interesting case of study to validate a method to investigate protein structure-
function relationships. Eight hundreds mature amino acid sequences belonging to more than 100 plant 
species have been selected and submitted to comparative phylogenic, structural, and functional analysis [2, 3, 
4]. Using the evolutionary trace method [5], the observation of structurally equivalent positions allowed 
identifying evolutionarily important residues potentially involved either in the structural integrity or in the 
ligand binding diversity of the nsLTPs. 

[1] F. Boutrot, N. Chantret and M.F. Gautier, Genome-wide analysis of the rice and Arabidopsis non-specific lipid 
transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC 
Genomics, 9:86, 2008. 

[2] A. Sali and T.L. Blundell, Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol., 234:779-
815, 1993. 

[3] C. Fleury, V. Moreau, L. Felicori, S. Pérès, P.S.L. Beirão and F. Molina, in preparation. 

[4] A.R. Ortiz, C.E. Strauss and O. Olmea, MAMMOTH (matching molecular models obtained from theory): an 
automated method for model comparison. Protein Sci., 11:2606-2621, 2002. 

[5] O. Lichtarge, H. Bourne and F.E. Cohen, An evolutionary trace method defines binding surfaces common to 
protein families. J Mol Biol., 257:342-358, 1996. 
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Un objectif majeur de la modélisation biomoléculaire est de calculer et de prédire les conformations et 
les propriétés des biopolymères (ADN, ARN, protéines). La principale difficulté provient de la taille des 
molécules et de la complexité des conformations possibles à l’échelle atomique. Nous présentons ici les deux 
premières applications d’une méthode permettant de rechercher et d’obtenir les conformations qui 
correspondent à des minima énergétiques à différentes échelles de taille. 

La résolution de la conformation de l’ADN par RMN reste toujours difficile parce qu’expérimentalement 
sous déterminée, même à haute sensibilité (cryoprobe 750 MHz RMN). La région du squelette sucre-
phosphate la plus récalcitrante depuis les premières résolutions (~1990) dans les épingles à cheveux d’ADN 
est précisément la région du coude ou “sharp turn”. Pour obtenir des conformations de haute qualité pour 
deux séquences d’ADN, représentantes de deux principales catégories de boucles, 5’-d(GCGAAAGC)-3’, 
5’-d(…CCTTTGG…)-3’, nous avons utilisé une méthode de modélisation mésoscopique - déformation 
globale du squelette de l’ADN à l’aide de la théorie de l’élasticité des barres minces - appelée BCE. La 
déformation d’une hélice d’ADN-B canonique génère à l’échelle globale de plusieurs nucléotides la 
conformation en épingle à cheveux de référence la moins déformée qui satisfait les contraintes 
expérimentales RMN. Puis nous avons exploré les différentes combinaisons d’angles de torsion qui restaient 
possibles ou indéterminées par mécanique moléculaire avec AMBER pour interpréter les données RMN de 
31P. Grâce à cette méthode de modélisation à l’échelle globale, mésoscopique, puis atomique, nous obtenons 
une conformation qui satisfait non seulement toutes les contraintes RMN, mais qui permet aussi d’initier une 
dynamique moléculaire reproduisant toutes les observations avec une seule contrainte de plissement d’un 
sucre dans le premier cas, et sans aucune contrainte dans le second, chose impossible autrement. 

 
Figure 1. Application à la résolution d’un aptamère d’ADN anti MUC1 comportant la boucle TTT en épingle à cheveu.  
[1] G.P.H. Santini, J.A.H. Cognet, D. Xu, K. K. Singarapu & C. Hervé du Penhoat, Nucleic acid folding determined 

by mesoscale modeling and NMR spectroscopy: solution structure of d(GCGAAAGC). J. Phys. Chem. B, 
113:6881-6893, 2009. 

[2] M. Baouendi, J.A.H. Cognet, C.S.M. Ferreira, S. Missailidis, J. Coutant, M. Piotto, E. Hantz & C. Hervé du 
Penhoat, Solution structure of a truncated anti-MUC1 DNA aptamer determined by mesoscale modeling and 
NMR), en préparation. 
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Protein-protein interactions govern all cellular mechanisms that underlie life. Peptide-mediated 
interactions, which contribute up to 40% of the protein interactome, play a prominent role in regulatory 
processes such as signal transduction and protein trafficking. Given their prevalence and the broad repertoire 
of biological processes they mediate, peptides are associated to many human diseases and cancer, such as 
HIV. Short peptide stretches are also known to block existing protein-protein interactions, making them 
promising leads for drug design developments. 

The short size of these peptides combined with their highly flexible nature results in small and very 
versatile binding protein-peptide interfaces that are therefore difficult to predict.  Nevertheless, recent efforts 
in molecular docking show that this technique can be successfully applied to study protein-peptide 
interactions [1], even when the structure of the peptide is missing. In this work, we report on the modelling 
of protein-peptide complexes using our in-house flexible docking program, HADDOCK [2]. HADDOCK 
distinguishes itself from other docking software by its unique data-driven approach where experimental or 
bioinformatic information is directly used in the docking search to find near-native solutions. The 
performance of HADDOCK for protein-peptide modelling was benchmarked on a set of 103 protein-peptide 
complexes [3] covering the diversity of protein-peptide interfaces. 

Our initial results show that near-native (bbRMSD < 2Å) structures can be obtained for 90% of the 
dataset starting from a fully extended conformation of the peptide and the bound conformation of the protein. 
Even when starting from the unbound form of the protein an impressive 80% success rate is observed! 
Analysis of the results suggests that desolvation energy is less important than for the modelling of protein-
protein complexes. 

 

Figure 1. 1N7F (PDZ domain) - 0.59 Å. In dark blue, the bound conformation; in cyan, the best solution given by 
HADDOCK starting from an extended conformation of the peptide. 

 

[1] B. Raveh, N. London and O. Schueler-Furman, Sub-angstrom modeling of complexes between flexible peptides 
and globular proteins. Proteins, 78(9):2029–2040, 2010. 

[2] C. Dominguez, R. Boelens and A. Bonvin, HADDOCK: a protein-protein docking approach based on biochemical 
and/or biophysical information. J. Am. Chem. Soc., 125:1731–1737, 2003. 

[3] N. London, D. Movshovitz-Attias, O. Schueler-Furman, The structural basis of peptide-protein binding strategies. 
Structure, 18:188-199, 2010. 
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The family of TGF-beta ligands is large and its members are involved in many different important sig-
naling processes. These signaling processes strongly differ in type with TGF-beta ligands eliciting sustained,
transient, and possibly oscillatory responses. We are interested how this signaling network can exhibit these
different behaviors. Several differential equation-based models for the TGF-beta signaling network have been
developed [1-3] that focus on different aspects of the TGF-beta signaling network (receptor dynamics, the shut-
tling between the cytoplasm and the nucleus, and the negative feedback via the I-Smad). We chose the most
simple model for further investigation.The response to TGF-beta is a transcriptional activity, here monitored as
the nuclear concentration of R-Smad/Co-Smad complexes. Biologically meaningful ranges where determined
for each parameter (rate constants) and 106 simulations of the response to a step increase in TGF-beta where
generated and classified into sustained (14.8%), transient (2.2%), or oscillatory response (306 simulations).

A comparison of parameter sets leading either to transient or sustained responses indicates that a transient
response requires a quick import of R-Smad complexes into the nucleus and a strong feedback via I-Smad.
Similarly, a comparison between transient and oscillatory response highlights the importance of the binding
rate of TGF-beta to its receptor. Only when it is low enough, oscillations can appear. Especially when TGF-beta
ligands act as morphogen we expect the response to be proportional to the ligand concentration. To obtain such
a behavior both the affinity of TGF-beta for it receptor and the affinity of I-Smad for the receptor (sequestration)
must be rather low. The TGF-beta pathway is known to exhibit different behaviors over time and in different
cell types. Figure 1 shows that there are parameter ranges for which the response can easily switch between
sustained and transient responses when the initial concentrations of R-Smad, Co-Smad or receptor are changed.

We conclude that the TGF-beta networks appears to be designed for great regulatory flexibility and that cel-
lular protein concentrations offer a powerful point of control. Protein concentrations, unlike kinetic parameters,
can easily be modified by a cell.

Figure 1. Cellular protein concentrations can define the TGF-beta response. (A) Percentage of parameter sets that can
switch their qualitative response when TGFb-Receptor, R-Smad or Co-Smad concentrations are increased or decreased
100 fold. The parameters are chosen in the initial ranges (black), in more restricted ranges (grey) or in even more restricted
ranges (light grey). (B) Minimal change in TGF-Receptor (black), R-Smad (grey), or Co-Smad (light grey) needed to allow
the switch, when parameters are chosen in the most restricted range (corresponding to the light grey column in A).

References
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2 Université Rennes 2, Place du recteur Henri Le Moal, 35043 Rennes, France
Mathieu.Emily@univ-rennes2.fr

3 IRMAR, UMR6625 CNRS, Campus Beaulieu, 35042 Rennes, France

Keywords Amyloid proteins, Meta-prediction, Neurodegenerative diseases.

Background. Protein aggregation in an insoluble fibrillar form is involved in amyloidosis, a heterogeneous
group of diseases, such as Alzheimer’s, Huntington’s disease, type 2 diabetes...

Short sequences, named ”hotspots”, play a key role in the ability of proteins to aggregate into ordered
fibrillar structures. Over the last few years, various methods have been developed in the literature to detect
these ”hotspots” in proteins [1,2,3,4]. Existing approaches produce different aggregation indexes and profiles
by exploiting several data, including in vitro experiments on synthetic peptides, amino acid properties, confor-
mation space and/or 3D-structures. A recent work [5] showed the complementarity of the published methods
and highlighted that a combined predictor (or meta-predictor) might improve the predicting preformances.

In this work, we proposed a new meta-predictor of amyloidosis based on a logistic regression. We estimated
the best linear combination of four published indexes (Salsa [1], Pafig [2], FoldAmyloid [3], Waltz [4]) as a
predictor of the probability for a fragment to be amyloidogenic.

Results. We compared the overall accuracy and Area Under the ROC Curve (AUC) of our meta-predictor to
previously proposed methods. The comparison was performed using a recently published validated dataset [4],
composed by 116 hexapeptides known to induce amyloidosis and by 162 hexapeptides that do not induce amy-
loidosis. Table 1 summarizes the performances of the five compared methods: Salsa [1], Pafig [2], FoldAmyloid
[3], Waltz [4] and our proposed meta-predictor.

Salsa Pafig FoldAmyloid Waltz Our meta-predictor
Accuracy 0.69 0.69 0.62 0.77 0.84
AUC 0.79 0.82 0.70 0.85 0.89

Table 1. Comparison of four recently published methods with our proposed predictor in terms of accuracy and AUC.

The results show that our meta-predictor outperforms the other methods with a cross-validated accuracy of
0.84 and an AUC of 0.89.

Conclusion and perspectives. Based on complementary methods we propose a meta-predictor for amyloido-
genic proteins. Our meta-predictor has been proved to be efficient and fast enough to screen all possible
hexapeptides. Such exhaustive search will give insight into potential amino acid sequences associated with
amyloidosis, providing new perspectives in the understanding of neurodegenerative diseases.
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Gamma-cytokines (interleukin- (IL-) 2, 4, 7, 9, 15 and 21) regulate the differentiation, the homeostasis and
the activation of T lymphocytes. These IL bind at subnanomolar concentration to their respective receptors and
signal through common main signaling pathways but play markedly divergent roles in lymphoid biology in
vivo.

These signaling events take place within subcellular compartments where signaling complex associated to
the receptor are formed. Within these domains the diffusion of signal molecules is restricted, increasing local
concentrations and modulating response times. In addition active transport along components of the cytoskele-
ton replaces passive diffusion and accelerate the response further. Finally slow cascades of reactions in solution
are replaced by an efficient network of surface-bound transport and reactions on the complexes.

We study the formation of the complexes induced by IL-7 on human CD4 T lymphocytes: their composition
is analyzed by mass spectrometry and immunoprinting, their size and architecture by fluorescence correlated
spectroscopy and transmission electron microscopy, their structure by scanning electron microscopy (EM) and
cryoEM, their integrative function by raster-imaging correlated spectroscopy (RICS) and particle tracking from
confocal and STED microscopy.

We use these data to reconstruct single particles and simulate the dynamics of their distribution and their
function in an entire cell. We use these time-resolved simulations to test hypothesis of signal transduction
mechanisms by comparing virtual and experimentally observed kinetics. So far we have focused our simula-
tion on the effect on signaling rates of receptor localization in rafts and of microtubule transport of signaling
intermediates.

We will show how we combine data from biochemical and biophysical measurements together with simple
modelisation of essential features. In human primary T4 lymphocytes this will allow us to assess the influence of
the compartimentalisation and the formation of complexes on the time course and the dynamics of the response
to IL.
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Lipid assimilation in animals is a major agronomic challenge. Furthermore, the human associated lipid 
diseases (i.e. obesity) is an important public health concern in industrialized countries. Lipid metabolism 
relies on some genetic factors which are mostly conserved among species. Thus, it is necessary to qualify  
and to quantify the differences and the similarities to compare the lipid metabolism between species.

There is a need for an automatic method of metabolic pathways comparison between species. In a first  
step, we compare the structure of the pathways to identify common and species-specific reactions.  This 
automatic  comparison is  based on data  from the main pathways databases  (Reactome,  KEGG, BioCyc,  
WikiPathway...). Indeed, the low level of consistency, comprehensiveness and compatibility between these 
databases [1] forces us to use them all. Next, we quantify the semantic similarities and differences using the  
Gene Ontology annotations  of  the  genes  products  present  in  each step.  Gene  Ontology annotations  are 
compared  using  a  semantic  similarity  measure  according  to  the  Gene  Ontology rules  [2]  by  extending 
Wang's method [3]. A thesis work has started in oct. 2010 to develop this method. Further steps will address 
generalization to the comparison for pathways and validation.

STEP 1
STRUCTURAL COMPARISON

STEP 2
GO ANNOTATION

COMPARISON

Figure 1. Step 1: Identification of common and species-specific steps with different colors. Step 2: Computation of 
similarities and specificities using Gene ontology annotations of the genes products.

[1] D. Soh, D. Dong, Y. Guo and L. Wong, Consistency, comprehensiveness, and compatibility of pathway databases. 
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Post-translational modification (PTM) of proteins is a key mechanism for the regulation of cellular
processes. In any cell, a fraction of the expressed proteins is likely to be subject to PTMs that modify their
activity, subcellular localization, stability, etc… In this context, the most frequently studied PTMs are
phosphorylations. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is a powerful
approach for the analysis of complex protein mixtures, allowing identification of proteins together with their
possible PTMs [1]. The sensitivity and the speed with which mass spectrometers can characterize the content
of a protein sample have significantly improved over the past years, allowing more and more spectra to be
recorded and identified. Recent mass spectrometers like the LTQ-Orbitrap also allow combining several
fragmentation modes (e.g., MS2, MSA, ETD, HCD…) for fine-tuning the identification process [2]. Besides,
the importance of robust statistical data analysis of MS/MS spectra has become evident. Searches in decoy
databases and estimation of the FDR have become standard elements of the validation process. Yet, reliable
identification of PTMs and PTM sites by database matching algorithms remains a difficult task. When
studying complex phosphopeptide mixtures, typically enriched on IMAC or TiO2 resins, it remains common
practice to manually validate the putatively identified phosphorylated sequences. The main obstacle for
computational approaches currently lies in the automatic localization of the exact phosphorylation site within
the sequence. Because different fragmentation modes can provide complementary information, combining
two different scans on each phosphopeptide may improve its identification. We developed FragMixer to help
users validate the MS/MS data obtained on phosphopeptide samples analyzed by acquiring one or two
fragmentation scans on every precursor. The pipeline starts with the output of the commonly used search
engine Mascot [3]. Peptides are filtered by specifying permissible ranges on different scores (Mascot identity
or homology score, a user-defined arbitrary score or a score threshold automatically determined from the
specified FDR). Phosphosite localization is predicted using the Mascot Delta-Score (MD-Score) [4] which
has recently been shown to be a reliable indicator of correct/uncertain phosphosite localization. Taking as
input the Mascot results obtained with one MS fragmentation mode (MS2-only, MSA-only) or with the
combination of two modes (MS2/MSA or MSA/ETD), the pipeline incorporates a number of decision rules
to automatically classify the identified (phospho)peptides and position the phosphorylations at one precise or
several putative sites. We designed the tool with the possibility for manual validation. In addition, statistical
measures allow the end user to assess the overall effectiveness of different fragmentation modes in terms of
the number of peptide and protein identifications.
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La détection d’organismes pathogènes et le diagnostic très précoce (avant l’apparition de symptômes) 
font partie des enjeux de la biologie actuelle. Pour cela, le recours à la biologie moléculaire, en particulier la 
PCR, permet d'analyser et de détecter des gènes cibles. Cependant la sensibilité et la spécificité de la réaction 
PCR sont tributaires de la bonne conception des amorces. On admet généralement que ces amorces sont 
bonnes si (1) leur température d’hybridation (Tm) est supérieure à 55°C, (2) qu’elles sont spécifiques du 
gène et de l’espèce donnés, et (3) qu’elles s'hybrident à tous les allèles connus du gène. Il est donc essentiel 
d'avoir accès à toutes les séquences du gène et toutes les amorces PCR déjà publiées, ainsi qu’au maximum 
d’informations relatives à ces deux types de données (annotations fonctionnelles, ontologie, Tm, 
bibliographie...). C’est dans cette perspective que nous avons développé une procédure semi-automatique 
permettant de collecter, trier et organiser ces données au sein d’un site internet : www.patho-genes.org. 

Nous avons déjà appliqué cette procédure sur la totalité des gènes annotés des principales bactéries 
d’intérêt biodéfense. Pour commencer, chaque gène est trié par ordre décroissant du nombre de séquences 
par simple comptage des noms de gène présent dans les entrées EMBL. Puis, pour chaque gène, une 
recherche par similarité et par mots-clefs des séquences nucléiques est effectuée. Les articles pertinents sont 
collectés automatiquement au format pdf, pour permettre d'extraire les amorces PCR publiées puis de vérifier 
leur efficacité sur la totalité des allèles du gène considéré. En parallèle, la méthode récupère, pour chaque 
gène, toutes les informations associées comme le nom des souches bactériennes, des liens vers les bases de 
données d’ontologie et des annotations fonctionnelles. 

Pour une meilleure lisibilité, nous avons uniformisé les annotations des gènes : chaque gène est défini par 
un seul nom de gène et un seul nom de protéine. Cette nomenclature est conservée entre les espèces de telle 
manière qu’un même gène porte le même nom quelle que soit l’espèce (par exemple : gyrA/DNA gyrase A). 
Les séquences nucléiques des gènes peuvent être téléchargées au format fasta, afin d’être directement 
utilisables dans les logiciels de conception d’amorces. Il est aussi possible de rechercher un gène à partir 
d’amorces grâce à un système de requête en ligne. Le logiciel utilisé pour cela a été développé au laboratoire 
et permet l'utilisation du code IUPAC pour les positions dégénérées (contrairement à BLAST par exemple). 

Ces travaux ont permis de montrer dans le cas des gènes de pathogénicité de Vibrio cholerae que (1) 
seulement un tiers des amorces PCR publiées sont "bonnes" selon les critères mentionnés ci-dessus pour la 
détection, et (2) que la date de publication et le nombre de citations d’une amorce ne sont pas des facteurs 
permettant d'estimer leur qualité. 

Dans le temps imparti avant la soutenance de ma thèse, nous voulons étendre les ressources de notre site 
internet à l’ensemble des bactéries biodéfenses de classe B et C, afin de fournir aux équipes de biologistes de 
la DGA un support d'information complet pour mener à bien et faciliter leurs recherches. 
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The taxonomy of hemiascomycetous yeasts has greatly evolved in the genomic era. Genomic studies 
yielded large amount of sequences, which were subsequently used to improve yeast phylogeny with multi-
genic analyses. This led and is still leading to frequent species name changes. Currently, information on 
yeast taxonomy associated to sequences can be found in various databases, which are not up to date or 
inexact. Finally, sequences of interest for taxonomy are diluted in environmental and typing sequences and 
are difficult to retrieve. Within the frame of the FP7 european project EMbaRC (European Consortium of 
Microbial Resources Centres), the construction of a relevant database with verified nucleotidic sequences 
and an interface allowing the users to obtain correct identification, taxonomy and phylogeny of yeasts 
species, was undertaken. 

The YeastIP database was constructed using MySQL and HTML/PHP/JavaScript. Before their 
introduction in the database, sequences from generalist databases like GenBank/EMBL were screened 
through an expert selection: priority was given to type strains and to the most relevant markers for 
phylogeny. Sequence quality was also checked: length of the sequence and the presence of undefined 
nucleotides were verified. At the moment, YeastIP contains more than 3500 sequences, representing more 
than 750 species and a choice of up to 10 markers per species, when available in generalist databases. 

The interface was developed to propose a maximum of relevant information and choices to search the 
database. First, an authentication tool using the Blast program was implemented to allow users to compare 
their sequences of interest to the YeastIP database. Second, a tool allows the database search for sequences 
via taxonomy or keyword. A file containing all relevant information for each sequence is available i.e. 
species current name and synonyms, origin of the sequence. Both tools allow the retrieval of selected 
sequences in Fasta file, or the display of a table showing the available markers for each selected sequences 
and species or group of species. This table will guide the users for the choice of markers to sequence in order 
to perform phylogenic analysis. In this step, strains and markers can be selected to construct a concatenation 
file, retrievable in Fasta format or viewable as a phylogenetic tree via the Phylogeny.fr website. Users can 
also add their own sequences to the file and obtain phylogeny with their sequences and strains of interest. 
The YeastIP database will be updated in collaboration with the CBS, the major collection of yeast strains in 
Europe.  

YeastIP is a tool, which facilitates the retrieval of taxonomic information and guides the users to obtain a 
robust phylogenic analysis. This work is linked to another part of the EMbaRC project, consisting in 
producing new sequences, which will feed the YeastIP database. YeastIP put the emphasis on multigenic 
analysis to improve good practice in hemiascomycetous yeasts phylogeny, and could be extended in a future 
work to all fungal species. 
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The analysis of expressed repertoires of antigen receptors - immunoglobulins (IG) or antibodies and T 
cell receptors (TR) - represents a huge challenge for the study of the adaptive immune response in normal 
and disease-related situations, such as viral infections. To answer that need, IMGT®, the international 
ImMunoGeneTics information system® (http://www.imgt.org) has developed IMGT/HighV-QUEST [1]. 
IMGT/HighV-QUEST is devoted to the analysis of large repertoires of IG and TR sequences that result from 
Next Generation Sequencing technologies. IMGT/HighV-QUEST, a high throughput version of IMGT/V-
QUEST, analyses up to 150.000 sequences per run. It identifies the IG and TR variable (V), diversity (D) 
and joining (J) genes and alleles by alignment with the germline IG and TR gene and allele sequences of the 
IMGT reference directory. It describes the V-REGION mutations and identifies the hot spot positions in the 
closest germline V gene. It integrates IMGT/JunctionAnalysis for a detailed analysis of the V-J and V-D-J 
junctions, and IMGT/Automat for a full V-J- and V-D-J-REGION annotation. The analysis is based on the 
IMGT-ONTOLOGY concepts of description, classification and numerotation. 

IMGT/HighV-QUEST uses two different systems of HPC resources at CINES, and a local computational 
server, in order to perform the analysis of submitted sequences by a standalone version of IMGT/V-QUEST. 
Since the management of many analyses of thousands of sequences is a challenging task, IMGT/HighV-
QUEST manipulates a local database for the local analysis queue, and in order to manage the jobs, the tasks 
are split into three independent layers. The web service layer is responsible for providing user interaction 
facilities and adding new analyses in the local queue. The scheduled tasks layer (also called background 
layer) includes all core logical functionalities of IMGT/HighV-QUEST. Background operations such as 
selection of a resource, dispatching of analyses, monitoring the running jobs, preparation of results of the 
completed analyses are performed in this layer. Finally the computational resources layer is where the real 
analysis of user sequences is performed. The analysis results of IMGT/HighV-QUEST comprise a set of text 
files which include 11 files in CSV format equivalent to the eleven sheets of the 'Excel files' of IMGT/V-
QUEST and, for each analysed sequence, the 'Detailed view' that allows one to visualize the individual 
detailed results. These result files are archived in a single ZIP file that is downloaded by the user. 

Since its availability in October 2010, more than 41 million sequences have been submitted and 118 
users have registered to IMGT/HighV-QUEST (11/05/11). The jobs required 17,000 computational hours of 
resources and generated about one terabyte of results data. More than three quarters of the sequences were 
submitted by users from USA, the others being submitted by users from EU for most, but also from China, 
Japan, Australia, Canada, Korea and Venezuela. New functionalities have been developed that comprise the 
introduction of statistical analysis on the results of the batch to help the user in estimating the reliability of 
the results. Statistics are performed on results selected as ‘1 copy’ (redundancies are enregistered but not 
treated), and with quality criteria (identification of a single gene/allele, known functionality, REGION 
length, absence of IMGT/V-QUEST warnings regarding the CDR1-IMGT and CDR2-IMGT lengths or the 
percentage of identity). These statistics include the frequency of gene expression and of CDR3-IMGT length; 
they also report the number of identical CDR3-IMGT sequences and the number of sets of CDR3-IMGT 
with identical nucleotides (nt) and amino acid (AA) sequences. These functionalities, which have been set up 
in a first step for the human TR, are particularly useful to evaluate the significance of the results of a batch.   

Acknowledgments: this work was granted access to the HPC resources of CINES under the allocation 2010-
036029 made by GENCI (Grand Equipement National de Calcul Intensif).  
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The success of a knowledge discovery process relies on expert-guided iterative design and selection of 
datasets to be mined. In the post-genomic era this crucial issue is made difficult due to the multiplicity of 
data sources, the volume of the data they contain, their heterogeneity and frequent update. Integrated 
information systems exist to select datasets from most public databases (e.g., SRS, BioMart, BioWarehouse). 
However it is frequently desirable to build or modify datasets according to a data model representing the 
domain knowledge and reflecting a particular point of view [1]. A dedicated integrated database constructed 
on such a data model can facilitate the knowledge discovery process because it becomes easier to iteratively 
design and obtain appropriate datasets for mining. 

The “Model-driven Data Integration for Mining” (MODIM) system is a generic approach for automating 
data collection and integration according to a dedicated relational data model in order to conduct data mining 
experiments. In this approach, users’ requirements and expertise play the central role while fastidious 
repetitive tasks are automated. 

The MODIM architecture relies on three interactive modules (i) database, (ii) task configuration, and (iii) 
task enactment. Once a relational data model is available for a given data mining problem, the corresponding 
database can be created through the MODIM database module. A set of tasks is then configured with the 
MODIM task configuration module in order to populate the database. Each task is specific of an input query 
(for example a protein identifier in a database) and is composed of subtasks, one for each data source visited 
(most often represented by a URL query). Configuring a subtask schematically consists in describing how to 
recognize, in the result page, which item to collect and where to store this output data in the database. Once 
validated thanks to several testing functionalities, the MODIM tasks are stored and can be edited later. 
Finally data collection and integration can be launched through the MODIM task enactment module which 
can upload a file with all desired input queries. It should be noted that the concept of subtask in MODIM is 
not limited to the querying of distant web databases. For example, transformation scripts can also be invoked 
and executed if their output is needed in the database for the mining purpose. 

A test example will be presented in the domain of drug discovery aimed at analyzing drug side effects. 
Drug properties pertaining from the DrugBank and SIDER databases, MedDRA vocabulary, and MeSH 
thesaurus are collected and integrated in a consistent database using the MODIM software. The conduction 
and interpretation of iterative data mining experiments are facilitated thanks to this dedicated database. 

The MODIM approach is related to various efforts made today for offering model-driven solutions for 
biological data integration [2, 3]. MODIM is a light domain-independent system which should simplify 
analysis workflows in biology. 

[1] S. Yilmaz, P. Jonveaux, C. Bicep, L. Pierron, M. Smaïl-Tabbone and M.D. Devignes, Gene-disease relationship 
discovery based on model-driven data integration and database view definition. Bioinformatics, 25:230-6, 2009. 

[2] D. Smedley, M.A. Swertz, K. Wolstencroft, G. Proctor, M. Zouberakis, J. Bard, J.M. Hancock and P. Schofield, 
Solutions for data integration in functional genomics: a critical assessment and case study. Brief Bioinform. , 
9:532-44, 2008. 

[3] J.A. Vizcaíno, F. Reisinger, R. Côté and L. Martens, PRIDE and "Database on Demand" as valuable tools for 
computational proteomics. Methods Mol Biol., 696:93-105, 2011. 
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Understanding the effects of genetic variation on the phenotype of an individual is a major goal of 

biomedical research, especially for the development of diagnostics and effective therapeutic solutions.  

Here we present SM2PH-kb (from Structural Mutation to Pathology Phenotypes in Human), upgraded 

from SM2PH-db [1], a second generation of our data warehouse intelligence designed to investigate 

structural and functional impacts of missense mutations and their phenotypic effects in the context of human 

genetic diseases. 

Our data warehouse mines and regroups up-to-date heterogeneous interconnected information, including 

data retrieved from biological databases (GenBank, RefSeq, Uniprot, PDB, Gene Ontology, NCBI 

Taxonomy, Interpro, ELM), ‘omics’ data (transcriptomics from GEO or from in house-developed expression 

data relational databases (GxDB), interactomics from the STRING database), variant data (dbSNP, Uniprot), 

disease data (GeneCard, OMIM), pathways (KEGG) and data generated from a Sequence-Structure-

Evolution Inference in Systems-based approach, such as multiple alignments, 3D structural models and 

multidimensional (physicochemical, functional, structural and evolutionary) characterizations of mutations. 

At time of writing (Avril 2011), SM2PH-kb holds a total of 2,460 human proteins related to monogenic 

diseases with 62,454 missense mutations, among which 26,373 are considered as disease-causing and 36,081 

as nonpathogenic. The data warehouse is automatically updated every 2 months thanks to the Decrypthon 

computation grid and is publicly accessible online at http://decrypthon.igbmc.fr/sm2ph.  

We applied Inductive Logic Programming to automatically extract knowledge about deleterious/neutral 

mutations. This will guide human experts to improve our understanding of the relationships between 

physico-chemical and evolutionary features and deleterious mutations. SM2PH-kb provides a web service to 

predict the pathogenicity of submitted missense variations (2). 

SM2PH-kb has been organized to give the user a robust infrastructure associated with interactive 

analysis tools supporting in-depth study and interpretation of the molecular consequences of mutations, with 

the more long-term goal of elucidating the chain of events leading from a molecular defect to its pathology. 

[1] A. Friedrich, N. Garnier, N. Gagnière, H. Nguyen, L. P. Albou, V. Biancalana, E. Bettler, G. Deléage, O. 

Lecompte, J. Muller, D. Moras, J. L. Mandel, T. Toursel, L. Moulinier and O. Poch, SM2PH-db: an interactive 

system for the integrated analysis of phenotypic consequences of missense mutations in proteins involved in 

human genetic diseases, Human Mutation, vol. 31, pp. 127-135, 2010. 

[2] D. Luu, H. Nguyen, A. Friedrich, J. Muller, L. Moulinier and O. Poch, Extracting Knowledge from a Mutation 

Database Related to Human Monogenic Disease Using Inductive Logic Programming. Proceedings of the  

International Conference on Bioscience, Biochemistry and Bioinformatics, Singapore, IEEE Catalog Number: 

CFP1134M-PRT. ISBN: 978-1-4244-9388-3, 2011. 

Affiche 260 Communications affichées tardives

–386–



A Three-dimensional Modeling Software for Group-wise Data
Integration and Analysis of Spatial Distributions in Biological Imaging

Eric BIOT1, Jasmine BURGUET1 and Philippe ANDREY1,2

1 Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech,
INRA, Centre de Versailles-Grignon, Route de Saint-Cyr (RD 10), 78026 Versailles, France

{eric.biot, jasmine.burguet, philippe.andrey}@versailles.inra.fr
2 UPMC, Univ Paris 06, France

Keywords 3D imaging, 3D modeling, spatial normalization, density estimation.

We describe and make a practical demonstration of Free-D, a software we are developing to integrate
imaging data acquired on multiple individuals and to quantify biological organizations at the group level.

Protein intracellular localization and trafficking is essential to many biological processes in living cells.
Cellular imaging techniques such as confocal microscopy are tools of choice to visualize, within the three-
dimensional cellular space, the distribution of vesicles transporting labeled proteins. However, comparing spa-
tial distributions of vesicle positions in different physiological, biological and experimental conditions requires
integrating imaging data from different cells into common representations amenable to quantitative spatial anal-
yses. This represents a challenging task because individual data are affected by biological and experimental
variability in both cell size and shape.

To address this issue, we have adopted a spatial modeling strategy and have developed a collection of algo-
rithms for reconstructing graphical 3D models from image stacks [3,5], for registering and averaging individual
models [6], for spatially normalizing individual data into average models [1] and for generating 3D statistical
maps of point densities [4].

To make these tools practical and available for biologists, we have developed Free-D, an integrated, multi-
platform, freely distributed 3D modeling software. A first version of the software, offering tools for image seg-
mentation, registration, and model reconstruction, has been previously presented and applied to neuroimaging
data [2]. We describe here the latest release, which includes dedicated tools for processing multiple stacks, for
registering and averaging 3D models, and for the non-linear spatial normalization of individual data and their
integration into average, standardized 3D models. This version additionally offers tools for the quantitative
analysis of 3D models and spatial statistical tools for building representative density maps of point populations.
More generally, the software can be used for the group-wise analysis of biological structures at the histological,
cellular or subcellular scales. We believe this software should be of interest for studies in quantitative biological
imaging and, more generally, for large-scale approaches in Systems Biology.

References
[1] P. Andrey, E. Maschino, and Y. Maurin, Spatial normalisation of three-dimensional neuroanatomical models using

shape registration, averaging, and warping. In Fifth IEEE International Symposium on Biomedical Imaging (ISBI’08):
From Nano to Macro, pages 1183–1186, Paris, May 14-17 2008.

[2] P. Andrey and Y. Maurin, Free-D: an integrated environment for three-dimensional reconstruction from serial sections.
J. Neurosci. Methods, 145(1–2):233–244, 2005.
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A new generation of high throughput sequencing [1] machines has been released in the past few months,  
allowing this technology to spread over the scientific community and exponentially increasing the amount of 
sequence data, making the analysis process to be the bottleneck of any sequencing experiment [2]. As an  
answer to the need for an adapted but expensive hardware, the cloud computing approach [3] is an economic 
and scalable solution compared to large computer infrastructure investment that will be used occasionally.

Here  we  present  Eoulsan,  an  open  source  framework  based  on  the  Hadoop  implementation  of  the 
MapReduce algorithm and dedicated to high throughput sequencing data analysis on distant computers. With 
Eoulsan users can easily set up a cloud computing cluster, automate the complete analysis of several samples  
at once and select among various analysis solutions available. We first implemented Eoulsan to work on the 
differential  analysis  of  transcript  expression.  This  workflow  runs  in  5  steps:  quality  control  filtering,  
mapping, expression calculation, normalization and differential analysis.  All information available on the  
experimental design is gathered in one text file inspired from the one of the limma R package for microarray 
analysis [4]. All the options needed to run the workflow are gathered in one XML file that allows for the  
usage of plugin programmed by external developers. We demonstrate the modularity and scalability of this  
workflow  by  performing  mapping  of  different  RNA-Seq  experiments  using  several  softwares:  BWA, 
Bowtie, SOAP2. We assess the analysis duration and cost with various type and number of servers (call  
instances) using Amazon Web Services (AWS) cloud computing facilities. We show that once a minimal 
number  of instances has been selected,  the  cost  is  linear with the number  of  instances booked.  This is 
achieved through the full parallelization of the mapping and transcript expression estimation steps and allows 
for the optimization of either speed and cost of the analysis with no risk to fall in a suboptimal configuration 
in order to speed up the data analysis process. Finally, we show that running times performed with Eoulsan 
evolve linearly with the increase of the amount of data using from 188 to 752 million total reads.

To  conclude,  our  framework  provides  from standalone  workstation  to  cloud  computing  clusters  an 
integrated and flexible solution for high throughput sequencing data analysis from reads alignment to the list  
of significant differentially expressed transcripts. With its modular structure and parallel data processing,  
Eoulsan is ready to fulfill the challenges coming from the massive increasing of data amount and the new  
applications of sequencing technologies.

[1] ER. Mardis, A decade's perspective on DNA sequencing technology. Nature, 10:198-203, 2011.

[2] E. Pennisi, Human genome 10th anniversary. Will computers crash genomics? Science, 331:666-668, 2011.

[3] EE. Schadt,  MD. Linderman,  J. Sorenson, L.  Lee and GP. Nolan, Computational  solutions to large-scale data 
management and analysis. Nat. Rev. Genet., 11:647-657, 2010.

[4] GK.  Smyth,  Linear  models  and  empirical  bayes  methods  for  assessing  differential  expression  in  microarray 
experiments. Stat Appl Genet Mol Biol., 3, 2004
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La Bioinformatique fait  face à un déluge de données souvent complexes, de nature très hétérogène, et 
provenant de nombreuses sources. En conséquence, l’échelle des analyses s’est déplacée du gène/protéine au 
génome/protéome complet, d’une voie métabolique à la modélisation des réseaux. Pour analyser ces 
données,  les logiciels existants sont nombreux avec des modes opératoires variables (E/S, mémoire).  Ainsi 
cette masse de données génère un besoin d’une infrastructure informatique distribuée pour répondre aux 
besoins des biologistes/bioinformaticiens. A propos des données, les besoins concernent l’accès, depuis 
n’importe quel site, aux banques internationales maintenues à jour, l’accès à un espace personnel et à un 
espace commun (groupe, projets…). En terme de calcul, les besoins relèvent de la distribution de ces calculs 
(avec optimisation de l’utilisation des ressources informatiques et  rapidité d’exécution), du déploiement  des 
logiciels communément  utilisés, ainsi que le développement  et  le déploiement  de workflows et  pipelines. Et 
finalement les interfaces doivent  permettre la gestion des accès aux différents ressources, et surtout être  
faciles à utiliser et puissantes.

L'infrastructure GRISBI (www.grisbio.fr) est  une initiative conjointe entre plusieurs centres de 
Bioinformatique, collaborant  dans le cadre du réseau national RENABI (www.renabi.fr) : PRABI, RENABI-
GO, RENABI-SO, RENABI-NE et  APLIBIO. La couche logicielle de l’infrastructure GRISBI s’appuie sur 
le logiciel de grille européen gLite (www.glite.org), en collaboration avec l’Institut des Grilles du CNRS, et 
d’autres développements bioinformatiques nationaux comme BioMaj [1], le gestionnaire de mise à jour des 
banques de données biologiques. Les ressources disponibles représentent  près de 900 processeurs et 26 To au 
sein d’une infrastructure où l’accès et les mécanismes sont unifiées. L’infrastructure initialement composée 
de 8 sites, s’est étendue récemment avec l’arrivée de la plateforme RENABI-SO GenoToul. Un des objectif 
est, à terme, d’accueillir les autres plateformes bioinformatiques nationales qui le souhaitent. Dans ce sens, le 
comité technique a défini un ensemble de recommandations et de procédures pour l’intégration d’une 
nouvelle plateforme. Les ressources de l’infrastructure GRISBI ont été également  étendue par la 
participation de 3 mésocentres de calcul pluridisciplinaires (CRI Univ. Lille 1, IPHC Strasbourg et  M3PEC 
Bordeaux), grâce aux mécanismes d’organisation virtuelle de gLite.

L’utilisation de l’infrastructure par la communauté relève de différents domaines comme l'analyse NGS, 
la génomique comparative, la biologie des systèmes, la prédiction de fonction de protéines ou les interactions 
moléculaires. Notamment, un pilote de mise en oeuvre d’expériences NGS est en cours avec une 
collaboration entre certains partenaires du projet  GRISBI. Son objectif est  d’évaluer les solutions proposées 
par l’infrastructure GRISBI avec un cas d’usage réaliste sur des données maitrisées: l’analyse du génome 
complet de la levure Saccharomyces cerevisiae avec les logiciels du moment (BWA, Abyss et  Ray). L’accès 
à l’infrastructure est  ouvert à l’ensemble de la communauté et passe par la collaboration avec une des 
plateformes RENABI, qui sert d’interlocuteur et de guide pour l’utilisation des ressources

Remerciements: Delphine Naquin, Christelle Eloto, Pierre Gay, Daniel Jacob, Didier Laborie, 
Nouredine Melab, Alexis Michon, Frédéric Plewniak, les GIS IBISA et FranceGrilles.
[1] O. Filangi, Y. Beausse, A.  Assi, L. Legrand, J.M. Larré, V. Martin, O. Collin,  C. Caron, H. Leroy and D. Allouche, 

BioMAJ: A flexible framework for databanks synchronization and processing. Bioinformatics, 24:1823-1825, 
2008.
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Today, the bioinformatics community is facing a deluge of data. Several experimental technologies have 
been improved in such a way that  obtaining data is easy. The challenge is to be able to analyze these data 
with the relevant  applications. For example, sequencing a whole genome has became usual with the new 
technologies called Next  Generation Sequencing (NGS). Many projects are working on the genome sequence 
of different  organisms, thus continuously providing new sequences for analysis. Some bioinformatics 
algorithms like BLAST, FastA or ClustalW are used intensively for that  analysis and usually classified as 
data-intensive. They are processing gigabytes of data stored in flat-file databases like UNIPROT, EMBL or 
PDBseq on a shared filesystem. To give an insight  to this challenge, we have built two virtual bioinformatics 
appliances in the context  of the StratusLab project (EU-FP7, www.stratuslab.org). They are "Biological 
databases repository" and "Bioinformatics compute node", and they provide bioinformaticians with a 
repository appliance maintaining up-to-date international reference databases, then made available through 
shared filesystem in destination to bioinformatics cloud nodes with pre-installed bioinformatics software.

Bioinformaticians need access from any compute node to international reference databases recording 
biological resources such as protein or gene sequences and associated data, protein structures or complete 
genomes. The 2011 edition of the Nucleic Acids Research "Database" issue [1] lists 1330 carefully selected 
molecular biology databases. We have built  a virtual appliance that  acts as a proxy between the internet 
where all the reference databases are published and the cloud instances that will compute the bioinformatics 
analyses. To import and maintain the required biological databases, we use the BioMaJ system. This virtual 
machine stores the data in files organized from a root  directory `/biodb' that is being exported with NFS 
protocol in read-only mode to all the bioinformatics computing machines of the cloud.

Distributing the computation is also an important  requirement because bioinformatics applications could 
require very different resources depending on the analysis to perform: multiple alignments of sequences, 
genome assembling or intensive protein sequence comparison. Biologists and bioinformaticians are 
combining regularly multiple software packages to analyze their data. They used these software for their 
intensive processes from Web portals, or with shell commands or scrips written in interpreted languages. 
Regarding the computations and the virtual machines, the main requirements are related to satisfying the 
software dependencies and very different  behaviors of biological applications in terms of CPU and memory. 
Some applications only require one CPU but  with a lot  of memory (96 or 128MB) whereas others require lot 
of CPUs that  are accessed through MPI mechanism. We have built a virtual machine with bioinformatics 
software pre-installed with the help of a script  system, called `bioapps' developed in our team. This tool 
downloads the application package from the reference site, compiles and installs the binary on the machine. 
Because bioinformatics applications require access to reference data to process their analyses, this 
bioinformatics compute appliance is linked to the biological databases repository appliance, and mounts the 
exported volumes containing the biological databases.

The usage of cloud for Bioinformatics has to be connected with public bioinformatics infrastructures like 
the French Bioinformatics Network RENABI (www.renabi.fr) and especially its grid infrastructure GRISBI 
(www.grisbio.fr). The adoption of clouds for bioinformatics applications will be strongly correlated to the 
capability of cloud infrastructures to provide ease-of-use and access to reference biological data and 
applications. In that sense, StratusLab is collaborating with RENABI to help solving the requirements from 
the Bioinformatics community.
[1] M. Y. Galperin and G. R. Cochrane, The 2011 Nucleic Acids Research Database Issue and the online Molecular 

Biology Database Collection. Nucl. Acids Res., 39 (suppl 1):D1-6, 2011.
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Les approches de séquençage de nouvelle génération ont permis et permettent désormais d’obtenir très 
rapidement  des  séquences de génome entier.  Cependant,  l’obtention de séquences  « de haute  qualité »,  
totalement assemblées, sans manque ni ambigüité reste problématique. En effet, dans le cas de séquençage 
de novo l’étape de l’assemblage est très coûteuse en temps de calcul. La bioinformatique est confrontée à une 
explosion de ces nouvelles données. Le stockage et analyse des données devient difficile sur des serveurs  
locaux, et il est donc nécessaire de passer à d'autres infrastructures. Les grilles de calculs peuvent permettre  
de  résoudre  ce  défi.  Cependant,  ces  infrastructures  de  calculs  ne  sont  pas  facilement  accessibles  aux 
utilisateurs novices et en particulier aux biologistes.

Pour accompagner et répondre à de telles problématiques de biologie à grande échelle, l'infrastructure 
distribuée GRISBI (Grille Support pour la Bioinformatique) [1] a été initiée dans le cadre du réseau ReNaBi. 
L’objectif est de permettre la mutualisation des ressources de plates-formes de bioinformatiques nationales  
(dont le CBIB et PRABI) pour la communauté bioinformatique nationale et européenne. 

Afin d’évaluer la faisabilité et l’apport d’une grille de calcul telle que RENABI GRISBI pour ce type 
d’analyse, nous avons défini plusieurs cas d’utilisations et testé plusieurs solutions logicielles. Nous avons  
choisi d’utiliser une source de donnée maitrisées : le génome complet de la levure Saccharomyces cerevisiae  
[2]. A partir de ces séquences chromosomiques nous avons généré des jeux de lectures artificiels simulant  
des séquençages de type Illumina et de type Roche 454 grâce au logiciel MetaSim [3]. A partir de ces jeux 
d’essai, nous avons réalisé des alignements sur le génome de référence avec le logiciel Burrows-Wheeler 
Aligner (BWA) [4] et des assemblages de novo avec les logiciels Abyss [5] et Ray [6]. 

Nos  premiers  résultats  démontrent  la  faisabilité  et  l’apport  considérable  de  l’utilisation  de  cette  
infrastructure de calcul pour ces traitements. En effet, d’une part les temps de calculs sont réduits par rapport  
à des serveurs locaux de capacité moyenne, mais il est également possible de lancer en simultané plusieurs  
analyses en faisant varier les paramètres en vue d’optimisation des résultats dans le cas d’un assemblage de 
novo. La suite de ce travail va consister maintenant à intégrer ces traitements au sein d’un gestionnaire de  
workflow comme ERGATIS [7]. L’utilisateur pourra alors lancer une chaine de traitement via l’interface web 
du gestionnaire de workflow qui enverra sur la grille les traitements nécessitant le plus de ressources. 

[1] http://www.grisbio.fr

[2] http://db.yeastgenome.org/cgi-bin/seqTools

[3] http://ab.inf.uni-tuebingen.de/software/metasim/

[4] http://bio-bwa.sourceforge.net/

[5] http://www.bcgsc.ca/platform/bioinfo/software/abyss

[6] http://sourceforge.net/apps/mediawiki/denovoassembler/

[7] http://ergatis.sourceforge.net/
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