
HAL Id: hal-01019431
https://hal.science/hal-01019431

Submitted on 7 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High rate-localization for high-speed all-terrain robots
Cyril Roussillon, Simon Lacroix

To cite this version:
Cyril Roussillon, Simon Lacroix. High rate-localization for high-speed all-terrain robots. IEEE 2nd
International Conference on Communications, Computing and Control Applications (CCCA), Sep
2012, Marseille, France. pp.1-8, �10.1109/CCCA.2012.6417929�. �hal-01019431�

https://hal.science/hal-01019431
https://hal.archives-ouvertes.fr

High rate-localization for high-speed all-terrain robots

Cyril Roussillon and Simon Lacroix

Abstract— Localization plays a central role in autonomous
robot navigation, and a vast number of contributions can
be found in the robotics literature. High speed all terrain
robots raise new challenges for localization, that must run at
higher rates, while being more accurate than for walking speed
robots. The article presents a SLAM setup that satisfies these
requirements, using vision and low-cost inertial sensors as its
core. Other localization sensors can also be incorporated, such
as GPS or odometry, yielding a system that estimate the robot
pose and velocity parameters at 100 Hz, with translation errors
on the pose of the order of 1m for 500m long trajectories.

I. INTRODUCTION

Most field robotics applications would benefit from faster

operations, which implies faster robots. Augmenting the

speed of all-terrain robots raises several challenges, the

main one being the fact that the vehicle dynamics must be

considered for both path planning and path tracking pro-

cesses, which is all the more difficult with hardly predictable

vehicle/ground interactions. Moving at higher speeds also

impacts the perception processes: the robot must perceive

the terrain further away in order to assess feasible paths,

and process the gathered data at a speed compatible with

its motions. One of the key to cope with computation

limitations, is to exploit approaches that comply with an

economy of means principle [1].

But high motion speeds also imply stringent constraints

on the rate and precision of the localization processes.

Localization is essential to autonomous navigation, and is

notably required to ensure (i) the spatial consistency of

the terrain model built to plan paths and (ii) the proper

tracking of the paths. Both functions require precise pose

estimates: for instance, a 1◦ error on the robot pitch angle

yields a 17cm error on the elevation of a point detected

at 10.0m, a distance at which precise information on the

terrain is required for speeds above a few m/s, and the

robot position and heading must be precisely known to

track paths at such speeds. Both functions also require a

given frequency of the pose estimates. Path tracking does not

require very high rate localization (e.g. in [2] a 10Hz rate is

sufficient to control a robot at 8m/s: the response time of the

actuators and the robot dynamics are such that a higher rate

is not necessary), but terrain modelling processes do require

high rate localization. Since every data perceived on the

environment must be precisely localized to be incorporated

in the model that represents the environment geometry, the

robot pose must be known at the exact time data are gathered.

CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France
Université de Toulouse ; UPS, INSA, INP, ISAE; LAAS; F-31077

Toulouse, France
firstname.lastname@laas.fr

The use of rotating Lidar that continuously stream range

data are becoming popular in field robotics (for instance

the Velodyne Lidar simultaneously fires 64 lasers at about

4kHz): in the absence of “continuous localization”, the

produced images are warped because of the robot translations

and of the attitude variations, that can not be neglected for

all-terrain robots. Finally, locomotion monitoring to detect

faults such as slippages may also benefit from precise high

rate pose estimates.

SLAM processes have shown to be elegant and robust so-

lutions to the localization problem, and the robotics literature

now abounds with analyses of the problem, proposals of

theoretical solutions and practical setups (see e.g. [4], [5]

for a rather complete synthesis). In this paper we present

a SLAM solution that estimates the pose and velocities of

a robot at 100 Hz, thus making it usable for high speed

all-terrain robots. It mainly relies on a low-cost inertial

measurement unit (IMU) to predict the robot motions, and on

vision to observe landmarks of the environment. These two

sensors form the backbone of our approach, according to a

classical motion prediction / landmark observation scheme,

implemented with an extended Kalman filter. To improve the

consistency of the system, and in particular to avoid the scale

drift factor inherent to monocular SLAM approaches and that

is not perfectly corrected with low cost inertial sensors, direct

observations of the robot state provided by other sensors

(namely odometry and GPS) are incorporated in the filter.

Our solution relies on RT-SLAM, an open-source software

framework originally presented in [6], whose architecture is

summarized in section II. Section III depicts the way the

images are processed so as to optimize computation time,

while ensuring that no outliers are integrated within the

filter. Section IV briefly depicts the way the IMU is used

to predict the robot motions, and section V introduces how

odometry and GPS pose measurements are introduced within

the filter for a better robustness and precision over time.

Finally section VI depicts some results, and in particular the

benefits of using the additional sensors.

II. OVERALL RT-SLAM ARCHITECTURE

RT-SLAM is a generic, efficient and flexible SLAM appli-

cations development tool, which is tailored to yield on-board

robust and real-time solutions. RT-SLAM stands for “Real-

Time SLAM”, and is available as open source software at

http://rtslam.openrobots.org.

Fig. 1 presents the main objects defined in RT-SLAM.

They encompass the basic concepts of a SLAM solution:

the world or environment contains maps; maps contain

robots and landmarks; robots have sensors; sensors can

make observations of landmarks. Each of these objects is

abstract and can have different implementations. They can

also contain other objects that may themselves be generic.

R1

S2

S1

S3

M1

L1 L3

L2

L4

O1

O2

O3

M Map

R Robot

S Sensor

L Landmark

O Observation

(a) Main objects in a SLAM context. Different robots R have several sensors
S, that can provide observations O of landmarks Lmk. States of robots, sensors
and landmarks are stored in the stochastic map Map.

(b) Objects hierarchy in RT-SLAM. Each individual map M in the world W

contains robots R and landmarks L. A robot has sensors S, and an observation
O is created for every pair of sensor and landmark. In order to allow full
genericity, map managers MM and data managers DM are introduced.

Fig. 1. The main objects in RT-SLAM

a) Map: The maps contain an optimization or estima-

tion engine: for now RT-SLAM uses a standard formulation

of EKF-SLAM. Since this solution is very well documented

in the literature [9], it is not detailed in depth here. Indirect

indexing within Boost’s ublas C++ structures is intensively

used to exploit the sparsity of the problem and the symmetry

of the covariances matrices.

b) Robot: Robots can be of different type according

to the way their state is represented and their prediction

model. The latter can be either a simple kinematic model

(constant velocity, constant acceleration, . . .) or a proprio-

ceptive sensor (odometry, inertial, . . .), as illustrated section

IV. The proprioceptive sensor is an example of generic object

contained in robot objects, as different hardware can provide

the same function.

c) Sensor: We distinguish two kinds of sensors. The

first kind are exteroceptive sensors, that observe landmarks

in the environment. Similarly to robots, they can also have

different models (perspective camera, panoramic catadioptric

camera, laser, . . .), and contain a generic exteroceptive

sensor hardware object (firewire camera, USB camera, . . .).

The second kind are proprioceptive sensors, that directly

observe the pose of the robot and help for localization.

Note that this acceptation of the term “proprioceptive” is

here quite different from its original meaning in physiology:

proprioceptive sensors are the ones that directly observe the

state of the robot (or a part of the state), as opposed to

exteroceptive sensors that observe the environment. Thus

we list as proprioceptive sensors inertial sensors, odometry,

GPS, magnetometers, barometers etc, even if some actually

observe properties of the environment – accelerometers ob-

serve earth gravity, magnetometers observe magnetic field,

barometers observe air pressure.

In addition, as sensors belong to the map, their state can

be estimated: this opens the possibility for estimating other

parameters such as extrinsic calibration, time delays, biases

and gain errors, and the like.

d) Landmark: Landmarks can be of different type

(points, lines, planes, . . .), and each type can have different

state parametrization (Euclidean point, inverse depth point,

. . .). Moreover the parametrization of a landmark can change

over time, as explained section III-B. A landmark also

contains a descriptor dedicated to data association, which

is a dual description to the state representation.

As shown Fig. 1(a), it is worth noticing that landmark

objects are common to the different sensors, all of them being

able to observe the same landmark (provided they have com-

patible descriptors for this landmark of course). This allows

to greatly improve the observability of landmarks compared

to a system where the sensors are strictly independent. In the

particular case of two cameras for instance, landmarks can

be used even if they are only visible from one camera or if

they are too far away for a stereovision process to observe

their depth (this process was introduced in [10] as BiCam

SLAM).

e) Observation: In RT-SLAM, the notion of observa-

tion plays a predominant role. An observation is a real

object containing both methods and data. One observation

is instantiated for every sensor-landmark pair, regardless of

the sensor having actually observed the landmark or not,

and has the same lifetime as the associated landmark. The

methods it contains are the conventional projection and back-

projection models (that depend on the associated sensor and

landmark models), while the stored data consist of results and

intermediary variables such as Jacobian matrices, predicted

and observed appearances, innovations, event counters and

others, that allow to greatly simplify and optimize computa-

tions.

f) Managers: In order to achieve full genericity wrt

landmark types, in particular to allow the concurrent use

of different landmark types for one sensor, two different

manager objects are added: data manager and map manager.

Their implementations define a given management strategy,

while their instantiations are dedicated to a certain landmark

type. The data manager processes the sensors raw data,

providing observations of the external landmarks. For this

purpose, it exploits some raw data processors (for feature

detection and tracking), and decides which observations

are to be corrected and in which order, according to the

quantity of information they bring and their quality. For

example it can apply an active search strategy and try to

eliminate outliers as described in section III-A. The map

manager keeps the map clean, with relevant information,

and at a manageable size, by removing landmarks according

to their quality and the given policy (e.g. visual odometry

where landmarks are discarded once they are not observed,

or multimap slam where maps are “closed” according to

given criteria). These managers communicate together: for

example, the data manager may ask the map manager if

there is enough space in the map to start a new initialization

process, and to allocate the appropriate space for the new

landmark.

III. VISUAL PROCESSING WITHIN RT-SLAM

Vision is currently the only exteroceptive sensor imple-

mented in RT-SLAM. The processing of images for a SLAM

setup is quite complex, and calls for the definition of several

key processes that are summarized here.

A. Active search and one-point RANSAC

The strategy currently implemented in RT-SLAM data

manager to deal with observations is an astute combination

of active search [9] and outliers rejection using one-point

RANSAC [11].

The goal of active search is to minimize the quantity of

raw data processing by constraining the search in the area

where the landmarks are likely to be found. Observations

outside of this 3σ observation uncertainty ellipse would be

anyway considered incompatible with the filter and ignored

by the gating process. In addition active search gives the

possibility to decide anytime to stop matching and updating

landmarks with the current available data, thus enabling hard

real-time constraints. We extended the active search strategy

to landmark initialization: each sensor strives to maintain

features in its whole field of view using a randomly moving

grid of fixed size, and feature detection is limited to empty

cells of the grid. Furthermore the good repartition of features

in the field of view ensures a better observability of the

motions.

Outliers can come from matching errors in raw data or

mobile objects in the scene. Gating is not always discrim-

inative enough to eliminate them, particularly right after

the prediction step when the observation uncertainty ellipses

can be quite large – unfortunately at this time the filter is

very sensitive to faulty corrections because it can mistakenly

make all the following observations incompatible. To prevent

faulty observations, outliers are rejected using a one-point

RANSAC process. It is a modification of RANSAC, that

uses the Kalman filter to obtain a whole model with less

points than otherwise needed, and provides a set of strongly

compatible observations that are then readily corrected. Con-

trary to [11] where data association is assumed given when

applying the algorithm, we do the data association along

with the one-point RANSAC process: this allows to look for

features in the very small strongly compatible area rather

than the whole observation uncertainty ellipse, and to save

additional time for raw data processing.

B. Landmark parametrization and re-parametrization

In order to solve the problem of adding to the EKF a

point with unknown distance and whose uncertainty cannot

be represented by a Gaussian distribution, point landmarks

parametrization and initialization strategies for monocular

EKF-SLAM have been well studied [12] [13] [14]. The

solutions now widely accepted are undelayed initialization

techniques with inverse depth parametrization. Anchored

Homogeneous Point [15] parametrization is currently used

in RT-SLAM.

The drawback of inverse depth parametrization is that they

describe a landmark by at least 6 variables in the stochastic

map, compared to only 3 for an Euclidean point (x y z)
T

.

Memory and temporal complexity being quadratic with the

map size for EKF, there is a factor of 4 to save in time and

memory by reparametrizing landmarks that have converged

enough [16]. The map manager uses the linearity criterion

proposed in [14] to control this process.

C. Image processing

g) Point extraction: Point extraction is based on Harris

detector with several optimizations. Some of them are ap-

proximations: a minimal derivative mask [−1, 0, 1] is used,

as well as a square and constant convolution mask, in order to

minimize operations. This allows the use of integral images

[17] to efficiently compute the convolutions. Additional

optimizations are related to active search (section III-A): only

one new feature is searched in a small region of interest,

which eliminates the costly steps of thresholding and sub-

maxima suppression.

h) Point matching: Point matching is based on Zero-

mean Normalized Cross Correlation (ZNCC), also with

several optimizations. Integral images are used to compute

means and variances, and a hierarchical search is made (two

searches at half and full resolution are sufficient). We also

implemented bounded partial correlation [18] in order to

interrupt the correlation score computation when there is no

more hope to obtain a better score than the threshold or the

best one up to now. To be robust to viewpoint changes and to

track landmarks longer, tracking is made by comparing the

initial appearance of the landmark with its current predicted

appearance [9].

IV. MOTION PREDICTION

A. Motion model-based prediction

In the absence of any additional sensor, a motion model

is required to predict the state at the time observations are

integrated in the filter. A constant velocity model is often

used in vision-based SLAM systems. Velocities must then

be included in the robot state to be estimated:

R = (p q v w)
T

where p and q are respectively the position and quaternion

orientation of the robot, and v and w are its linear and

angular velocities. The predict equation is then:

p
+ = p+v.dt q

+ = q∗w.dt v
+ = v w

+ = w

The covariance matrix is predicted with the Jacobians of

the predict equations for p and q, and with the uncertainty

of the model for v and w, that represents how much the

robot actual dynamic may differ from the model. For a

constant velocity model, it is defined by the maximal linear

and angular accelerations that the robot can experience.

The advantage of the constant velocity model is its sim-

plicity, but it rapidly fails when the system is subject to

dynamic motions. A more realistic motion model can be

provided by the robot dynamic model parametrized by the

applied control u, but this is hardly feasible with a high speed

ground robot, for which the terrain irregularities generate

unpredictable perturbations.

B. IMU-based prediction

The pure visual SLAM approach described in the previous

section suffers from several drawbacks that can be lessened

by using additional sensors:

• The scale factor is not estimated. This can be solved

by using a second camera with a known baseline, or

by using a proprioceptive sensor that provides velocity

information.

• Search areas for landmark matching in the image can be

large as a kinematic model is not very precise. Using a

proprioceptive sensor reduces the landmark uncertainty

ellipses and hence speeds up image processing.

• Linearisation points are not very accurate, again as a

consequence of the poor precision of the kinematic

model. Using another sensor at a higher rate will allow

to exploit the kinematic model at a shorter term where

it will be more precise, improving SLAM precision or

permitting to reduce the frame-rate to decrease CPU

load for equivalent quality.

• Very high motion dynamics are difficult to track be-

cause the uncertainty of the kinematic model has to

be increased even more, and the very large uncertainty

ellipses implied increase the matching time and the risk

of wrong matching.

The use of sensors for the prediction step is computation-

ally cheap, as only the covariance matrix part that depends

on the robot state is updated, which is significantly smaller

than the whole filter state covariance matrix that contains the

landmarks. The sensor must nevertheless fulfill the following

constraints to be eligible:

1) It is periodic with a higher frequency than any other

sensor integrated in the filter,

2) It provides complete data, i.e. that enables to predict

all the robot state parameters – otherwise a kinematic

or dynamic model is still needed to complete the

prediction,

3) It has a reasonably low level of noise, so that it

provides a good linearisation point,

4) It is never faulty, i.e. its errors are always consistent

with its uncertainty, and it has a Gaussian probability.

5) It does not measure a quantity that is redundant with

an other sensor, otherwise it would constantly override

its measures instead of being fused with.

An IMU satisfies all these requirements: it is fast and its

instantaneous measures are precise, thus yielding predictions

around which linearisations do not induce errors. It also

stabilizes the attitude angles thanks to the observation of the

earth gravity, and it complements well vision in the SLAM

problem, as it provides better observability of the scale factor.

When using an IMU to predict motions, the robot state

becomes:

R = (p q v ab wb g)
T

where ab and wb are the accelerometers and gyrometer

biases, and g the norm of the gravity vector. Estimating only

the norm of the gravity vector requires a correct initialization

of the attitude of the robot, which can easily be done with

initial acceleration measures acquired when the robot is

static, which is not a strong operational constraint.

A special care has to be taken for the conversion of the

noise from continuous time (provided by the manufacturer in

the sensor’s datasheet) to discrete time. As the perturbations

are continuous white noise, the variance of the discrete noise

grows linearly with the integration period.

V. ADDITIONAL OBSERVATIONS

The IMU does not directly measures velocities, but accel-

erations that are biased: it can only provide a correct scale

factor observation if these biases are properly estimated.

Good observability of these biases is a difficult task: it

requires the trajectory to stimulate all the degrees of freedom,

and the filter must remain consistent in the long term. These

conditions are hardly met with a typical robot trajectory,

that usually mainly goes forward with limited turns, and

because it covers large distances with landmarks that are

often renewed, easing a drift of the scale factor estimation.

And when the camera loses track of all the landmarks, the

scale factor drift biases the new landmarks position estimates,

leading the filter to become inconsistent.

A. Odometry

Odometry is an ambivalent sensor: it provides most of the

time a precise and stable estimation of the robot velocity,

but it can also deliver very faulty data, e.g. when the robot

experiences slippages.

There are two common flaws in odometry integration:

1) Using it in the prediction step of the filter. When faulty

measures are not identified as such, observation are not

consistent with the prediction and either rejected by a

gating process or badly integrated in the filter.

2) Assuming that odometry provides the complete veloc-

ity vector, oriented along the forward axis of the robot.

This is wrong whenever the robot is not rigid: because

of tires or suspension, the robot body (on which

observation sensors are rigidly tied) is not actually

Fig. 2. The robot Mana

moving along the estimated direction. This discrepancy

all the more important when the robot is moving at

high speeds.

Thus in RT-SLAM odometry is integrated by observing

only the norm of the robot velocity. This allows to properly

estimate the scale factor by providing correct velocities, and

to reject faulty data by gating out inconsistent values.

Our robot Mana is built upon a Segway RMP400 plat-

form (figure 2), and the odometry provides the independent

velocities and torques of the four wheels. This enables to

dynamically compute an estimation of the uncertainty of

odometry according to the consistency of these measures. For

now this estimation is made by analysing the homogeneity of

rear and front wheels velocities and torques, and the absolute

values of the acceleration, the turn radius and the torques – a

machine learning approach to derive this estimation should

give better results. However it is important to notice that

this uncertainty that takes into account the fault risk can not

be used by the gating process, because it would render the

faulty data consistent. It is better to use the basic Gaussian

uncertainty for the gating, so as to completely reject faulty

measures.

Another purpose of odometry integration is to stabilize

the system when vision is not working. For instance if the

environmental conditions prevent the camera from observing

landmarks (masking, low light, sun blinded, etc), then the

IMU is not stabilized anymore and quickly starts drifting:

odometry help stabilizing the system in such cases. For

more efficiency, it is possible to consider again that the

odometry observes the complete velocity vector but with

higher uncertainty. In particular one can assume that the

lateral component of the velocity is usually null, and use

gating to detect when it is not the case.

B. GPS

All the sensors described above will not prevent the esti-

mation of the robot’s pose to drift on large scale trajectories

(except the attitude angles that are stabilized by the IMU).

If GPS signal is available, even occasionally, it will not

only bound the position error, but also the heading error

by comparing the direction of the local velocity estimated

by vision and IMU to the direction of the global velocity

provided by the GPS measures (even if GPS provides only

position measures).

The easiest way to integrate GPS is known as loose inte-

gration, and consists in directly using the position measures

computed by the GPS. On the contrary, tight integration uses

the raw observations of pseudo-distances to the satellites and

reimplements the GPS equations in the filter, which is more

precise but also a lot more complex. Thus we only perform

loose integration in RT-SLAM.

This naturally works very well with RTK-GPS, because

its noise has a Gaussian distribution as required by the filter.

However the error of natural GPS is highly biased, mainly

by perturbations in the atmosphere that change very slowly.

Consequently it must be observed at a limited frequency to

avoid being affected too much by this bias.

VI. RESULTS

Videos illustrating the test sequences can be downloaded

at http://rtslam.openrobots.org/Material/

CCCA2012. As this sequences taken by our robot Mana

cover quite long distances, it is not possible to recall all

observed landmarks – otherwise the system would be far

from real-time. A solution to this problem is to build several

submaps, but as this is not implemented yet in RT-SLAM

we are running “short-term SLAM”, immediately forgetting

landmarks when they are lost.

A. First sequence

The first sequence represents Mana navigating au-

tonomously along a 450m trajectory at 1.5m/s. It is driving

half on a road and half on an irregular grassy terrain, reaching

successive waypoints while avoiding obstacles thanks to

a digital terrain map built from its Velodyne sensor data

integrated with our localization (see section VI-C).

Figure 3 shows the trajectory for different combinations

of sensors. The trajectory which is using RTK-GPS (with

centimetre accuracy at 20Hz) can be considered as ground

truth for the position. The trajectory with only camera and

IMU illustrates the difficulties it to correctly estimate the

scale factor. Adding odometry bounds the position error to

a few meters, as shown in more detail figure 4.

B. Second sequence

The second sequence represents Mana navigating au-

tonomously at 3m/s, again on grassy and concrete terrains.

A this speed our basic control algorithms reach their limits,

so the trajectory is quite jerky.

Figures 5 and 6 show two things. First as there are a lot

of accelerations and stops, the scale factor is better observed

by the system with only camera and IMU. Second, as the

robot is constantly turning left and right it renews very often

its landmarks, which makes the heading drift faster. That is

why there is no significant difference in accuracy with and

without odometry.

-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

-20 0 20 40 60 80 100 120 140 160 180

y
 (

m
)

x (m)

cam-imu-odo-gps (truth)
cam-imu-odo

cam-imu

Fig. 3. Trajectories estimated on the first sequence with different combinations of sensors

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200 250 300 350 400

P
o

s
it
io

n
 e

rr
o

r
(m

)

Time (s)

Position error (m)
Height error (m)

Fig. 4. Error in position of the cam-imu-odo trajectory of figure 3

-40

-30

-20

-10

 0

 10

 20

 30

-60 -50 -40 -30 -20 -10 0 10

y
 (

m
)

x (m)

cam-imu-odo-gps (truth)
cam-imu-odo

cam-imu

Fig. 5. Trajectories of the robot Mana on the second sequence with different set of sensors

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100 120 140

P
o

s
it
io

n
 e

rr
o

r
(m

)

Time (s)

Position error (m)
Height error (m)

Fig. 6. Error in position of the cam-imu-odo trajectory on the second sequence

Fig. 7. A digital terrain map of a flat grassy area, built from Velodyne lidar
range data using attitude angles provided by an INS (left) and by RT-SLAM
(right), while the robot is moving at 2m/s. Erroneous and delayed attitude
angles estimates of the INS corrupt significantly the range data, and hinders
the building of a precise terrain model.

C. Attitude angles estimation

It is difficult to evaluate the precision of the attitude

angle estimation in the absence of ground truth. Nevertheless,

the “quality” of the digital terrain model built using range

data acquired while to robot is moving provides insights on

the precision of RT-SLAM. Figure 7 compares two digital

terrain maps built with the Xsens MTi configured as an

INS to provide pitch and roll to a 3D odometry localization

process, and with RT-SLAM integrating the same Xsens MTi

configured as an IMU with camera and odometry.

VII. SUMMARY

We focused in this paper on the fact that high speed

and precise localization is necessary for faster autonomous

robots, and presented how this can achieved on the basis

of vision/INS SLAM approach, complemented by additional

proprioceptive sensors for better consistency of the position

estimates on the long run. Results show that this 100 Hz

localization system allows to build precise terrain models

from range data at speeds up to several meter per seconds,

and 1m accuracy position estimates overs several hundreds

meters long trajectories. Higher rates are easily reachable

with a faster CPU: RT-SLAM requires a single-core 3GHz

processor to process INS data at 100 Hz and VGA images

at 50Hz.

REFERENCES

[1] A. Kelly and A. Stentz, “Minimum throughput adaptive perception for
high speed mobility,” in International Conference on Intelligent Robots

and Systems, Grenoble (France), September 1997, pp. 215–223.

[2] R. Lenain, B. Thuilot, and O. H. an P. Martinet, “High-speed mobile
robot control in off-road conditions: a multi-model based adaptive
approach,” in IEEE International Conference on Robotics and Au-

tomation, Shangaï (China), May 2011.

[3] C. Brenneke, O. Wulf, and B. Wagner, “Using 3d laser range data
for slam in outdoor environments,” in International Conference on

Intelligent Robots and Systems, 2003, pp. 188–193.

[4] T. Bailey and H. Durrant-Whyte, “Simultaneous Localisation and
Mapping (SLAM): Part I The Essential Algorithms,” IEEE Robotics

and Automation Magazine, vol. 13, no. 2, pp. 99–110, June 2006.

[5] H. Durrant-Whyte and T. Bailey, “Simultaneous Localisation and
Mapping (SLAM): Part II State of the Art,” IEEE Robotics and

Automation Magazine, vol. 13, no. 3, pp. 108–117, June 2006.

[6] C. Roussillon, A. Gonzalez, J. Solà, , J.-M. Codol, N. Mansard,
S. Lacroix, and M. Devy, “Rt-slam: a generic and real-time slam
architecture,” in International Conference on Vision Systems, Sophia

Antopolis (France), Sept. 2011.

[7] K. Lingemann, A. Nuchter, J. Hertzberg, and H. Surmann, “High-
speed laser localization for mobile robots,” Robotics and Autonomous

Systems, vol. 51, no. 4, pp. 275–296, 2005.
[8] P. Gemeiner, A. Davison, and M. Vincze, “Improving localization

robustness in monocular SLAM using a high-speed camera,” in
Proceedings of Robotics: Science and Systems IV, Zurich, Switzerland,
June 2008.

[9] A. Davison, I. Reid, N. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 29, pp. 1052–1067, 2007. [Online]. Available: http:
//dx.doi.org/10.1109/TPAMI.2007.1049

[10] J. Sola, A. Monin, and M. Devy, “Bicamslam: Two times mono is more
than stereo,” in Proc. of IEEE International Conference on Robotics

and Automation (ICRA), 2007, pp. 4795 –4800.
[11] J. Civera, O. Grasa, A. Davison, and J. Montiel, “1-point ransac for

ekf-based structure from motion,” in Proc. of IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), oct 2009, pp.
3498 –3504.

[12] A. Davison, “Real-time simultaneous localisation and mapping
with a single camera,” in Proc. of IEEE International Conference

on Computer Vision (ICCV), oct 2003, pp. 1403–1410. [Online].
Available: http://pubs.doc.ic.ac.uk/single-camera-slam/

[13] T. Lemaire, S. Lacroix, and J. Sola, “A practical 3d bearing-only
slam algorithm,” in Proc. of IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), aug 2005, pp. 2449 – 2454.
[14] J. M. M. Montiel, “Unified inverse depth parametrization for monocu-

lar slam,” in Proc. of Robotics: Science and Systems (RSS), 2006, pp.
16–19.

[15] J. Sola, “Consistency of the monocular ekf-slam algorithm for three
different landmark parametrizations,” in Proc. of IEEE International

Conference on Robotics and Automation (ICRA), may 2010, pp. 3513
–3518.

[16] J. Civera, A. Davison, and J. Montiel, “Inverse Depth to Depth
Conversion for Monocular SLAM,” Proc. of IEEE International

Conference on Robotics and Automation (ICRA), pp. 2778–2783,
apr 2007. [Online]. Available: http://dx.doi.org/10.1109/ROBOT.2007.
363892

[17] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog,
2001, pp. 511–518.

[18] L. D. Stefano, S. Mattoccia, and F. Tombari, “Zncc-based
template matching using bounded partial correlation,” Pattern

Recognition Letters, vol. 26, no. 14, pp. 2129 – 2134,
2005. [Online]. Available: http://www.sciencedirect.com/science/
article/B6V15-4G3619F-7/2/c051cecd4a8d442e1fa8aa5c228c259c

