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Abstract

This paper deals with the numerical approximation of normalizing constants pro-
duced by particle methods, in the general framework of Feynman-Kac sequences of mea-
sures. It is well-known that the corresponding estimates satisfy a central limit theorem
for a fixed time horizon n as the number of particles N goes to infinity. Here, we study
the situation where both n andN go to infinity in such a way that limn→∞ n/N = α > 0.
In this context, Pitt et al. [11] recently conjectured that a lognormal central limit the-
orem should hold. We formally establish this result here, under general regularity as-
sumptions on the model. We also discuss special classes of models (time-homogeneous
environment and ergodic random environment) for which more explicit descriptions of
the limiting bias and variance can be obtained.

Keywords : Feynman-Kac formulae, mean field interacting particle systems, particle
free energy models, nonlinear filtering, particle absorption models, quasi-invariant mea-
sures, central limit theorems.

Mathematics Subject Classification :
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1 Introduction

1.1 Feynman-Kac measures and their particle approximations

Consider a Markov chain (Xn)n≥0 on a measurable state space (E, E), whose transitions are
prescribed by a sequence of Markov kernels (Mn)n≥1, and a collection of positive bounded
and measurable functions (Gn)n≥0 on E. We associate to (Mn)n≥1 and (Gn)n≥0 the sequence
of unnormalized Feynman-Kac measures (γn)n≥0 on E, defined through their action on
bounded (real-valued) measurable functions by:

γn(f) := E


f(Xn)

∏

0≤p<n

Gp(Xp)


 . (1.1)

The corresponding sequence of normalized (probability) Feynman-Kac measures (ηn)n≥0 is
defined by:

ηn(f) := γn(f)/γn(1). (1.2)
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It is easily checked that, for all n ≥ 0, the normalizing constant γn(1) satisfies

γn(1) = E




∏

0≤p<n

Gp(Xp)


 =

∏

0≤p<n

ηp(Gp). (1.3)

Here and throughout the paper, the notation µ(f), where µ is a finite signed measure and f
is a bounded function defined on the same space, is used to denote the Lebesgue integral of
f with respect to µ, i.e. µ(f) :=

∫
f(x)dµ(x). Given a bounded integral operator K(x, dx′)

from E into itself, we denote by µK the measure resulting from the action of K on µ, i.e.

µK(dx′) :=

∫
µ(dx)K(x, dx′).

For a bounded measurable function f on E, we denote by K(f) the (bounded measurable)
function resulting from the action of K on f , i.e.

K(f)(x) :=

∫
f(x′)K(x, dx′).

Feynman-Kac measures appear in numerous scientific fields including, among others,
signal processing, statistics and statistical physics; see [1], [3] and [8] for many applications.
For example, in a non-linear filtering framework, the measure ηn corresponds to the posterior
distribution of the latent state of a dynamic model at time n given the observations collected
from time 0 to time n−1, and γn(1) corresponds to the likelihood of these very observations.
A generic Monte Carlo application has (ηn)n≥0 corresponding to a sequence of tempered
versions of a distribution η that we are interested in sampling from using suitable ηn-invariant
Markov kernels Mn, with (γn(1))n≥0 the resulting sequence of normalizing constants [4].
Two applications are discussed in more details in Sections 1.3.1 and 1.3.2.

A key issue with Feynman-Kac measures is that they are analytically intractable in most
situations of interest. Over the past twenty years, particle methods have emerged as the
tool of choice to produce numerical approximations of these measures and their associated
normalizing constants. We give a brief overview of these methods here, and refer to [3] for
a more thorough treatment.

We first observe that the sequence (ηn)n≥0 admits the following inductive representation:
for all n ≥ 1, one has

ηn = Φn(ηn−1). (1.4)

Here, Φn is the non-linear transformation on probability measures defined by

Φn(µ) := ΨGn−1(µ)Mn,

where, given a bounded positive function G and a probability measure µ on E, ΨG denotes
the Boltzmann-Gibbs transformation:

ΨG(µ)(dx) :=
1

µ(G)
G(x)µ(dx). (1.5)

One then looks for representations of Φn of the form:

Φn(µ) = µKn,µ, (1.6)

where (Kn,µ)n,µ is a collection of Markov kernels defined for every time-index n ≥ 1 and
probability measure µ on E. The choice for Kn,µ is far from being unique. One can
obviously use Kn,µ(x, dx

′) := Φn(µ)(dx
′), but there are alternatives. For example, if Gn−1

2



takes its values in the interval ]0, 1], ΨGn−1(µ) can be expressed through a non-linear Markov
transport equation

ΨGn−1(µ) = µSGn−1,µ (1.7)

with the non-linear Markov transition kernel

SGn−1,µ(x, dx
′) := Gn−1(x) δx(dx

′) + (1−Gn−1(x)) ΨGn−1(µ)(dx
′)

so we can use
Kn,µ := SGn−1,µMn. (1.8)

The non-linear Markov representation (1.6) directly suggests a mean-field type particle
approximation scheme for (ηn)n≥0. For every n ≥ 0, we have an N−tuple of elements of E

denoted by ξ
(N)
n =

(
ξ
(N,i)
n

)
1≤i≤N

, whose empirical measure ηNn := 1
N

∑N
j=1 δξ(N,j)

n
provides

a particle approximation of ηn. The sequence (ξ
(N)
n )n≥0 evolves as an EN -valued Markov

chain whose initial distribution is given by P

(
ξ
(N)
0 ∈ dx

)
=

∏N
i=1 η0 (dxi), while, for n ≥ 1,

the transition mechanism is specified by

P

(
ξ(N)
n ∈ dx

∣∣ FN
n−1

)
=

N∏

i=1

Kn,ηNn−1
(ξ

(N,i)
n−1 , dxi). (1.9)

Here FN
n−1 is the sigma-field generated by the random variables (ξ

(N)
p )0≤p≤n−1, and dx :=

dx1 × . . .× dxN stands for an infinitesimal neighborhood of a point x = (x1, . . . , xN ) ∈ EN .
Using the identity (1.3) we can easily obtain a particle approximation γNn (1) of the nor-

malizing constant γn (1) by replacing the measures (ηp)
n−1
p=0 by their particle approximations

(
ηNp

)n−1

p=0
to get

γNn (1) :=
∏

0≤p<n

ηNp (Gp) (1.10)

and we define its normalized version by

γNn (1) = γNn (1)/γn(1) =
∏

0≤p<n

ηNp (Gp) with Gn := Gn/ηn(Gn). (1.11)

The main goal of this article is to establish a central limit theorem for log γNn (1) as
n → ∞ when the number of particles N is proportional to n. Such a result has been
conjectured by Pitt et al. [11], who provided compelling empirical evidence for it. To our
knowledge, the present work gives the first mathematical proof of a result of this type.

1.2 Statement of the main result

To state our result, we need to introduce additional notations. We start with the convention
that Φ0(µ) := η0 for all µ, K0,µ(x, ·) := η0(·) for all x, and FN

−1 = {∅,Ω}. For the sake of
definiteness, we also let η−1 := η0 and ηN−1 := η0. These conventions make (1.4)-(1.6)-(1.9)
valid for n = 0.

Then denote by V N
n the centered local error random fields defined, for n ≥ 0, by

V N
n :=

√
N

(
ηNn − Φn(η

N
n−1)

)
, (1.12)

so that one can write

ηNn = Φn(η
N
n−1) +

1√
N

V N
n .
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To describe the corresponding covariance structure, let us introduce, for all n ≥ 0,
bounded functions f1, f2, and probability measure µ, the notation

Covn,µ(f1, f2) := µ [Kn,µ(f1f2)−Kn,µ(f1)Kn,µ(f2)] .

We then have the following explicit expression for conditional covariances:

E
(
V N
n (f1)V

N
n (f2)

∣∣FN
n−1

)
= Covn,ηNn−1

(f1, f2). (1.13)

It is proved in [3, chapter 9] that, under weak regularity assumptions, (V N
n )n≥0 converges in

law, as N tends to infinity, to a sequence of n independent, Gaussian and centered random
fields (Vn)n≥0 with a covariance given by

CVn(f1, f2) := E(Vn(f1)Vn(f2)) = Covn,ηn−1(f1, f2). (1.14)

Note that, with the special choice Kn,µ(x, ·) := Φn(µ), (1.14) reduces to

CVn(f1, f2) = ηn(f1f2)− ηn(f1)ηn(f2). (1.15)

Let us now introduce the family of operators (Qp,n)0≤p≤n acting on the space of bounded
measurable functions, defined by

Qp,n(f)(x) := E


f(Xn)

∏

p≤q<n

Gq(Xq)

∣∣∣∣∣∣
Xp = x


 . (1.16)

It is easily checked that (Qp,n)0≤p≤n forms a semigroup for which γn = γpQp,n.
We also define

Qp,n(f) :=
Qp,n(f)

ηpQp,n(1)
. (1.17)

Finally, we define the Markov kernel Pp,n through its action on bounded measurable func-
tions:

Pp,n(f) := Qp,n(f)/Qp,n(1). (1.18)

It is well-known in the literature that (see for example [3, chapter 9]), for fixed n, as N →
+∞, the following convergence in distribution holds under weak regularity assumptions:

√
N

(
γN
n (1)− 1

) d−−−−−→
N→+∞

∑

0≤p<n

Vp(Qp,n(1)). (1.19)

Here, we are here interested in the fluctuations of γNn (1) as both n,N → ∞ with N
proportional to n. It turns out that, in such a regime, the observed behavior is different
from that described by (1.19). Indeed, the magnitude of the fluctuations of γNn (1) around 1
does not vanish as n,N go to infinity, and they are described in the limit by a log-normal
instead of a normal distribution.

Our result is obtained under specific assumptions that we now list. First, the potential
functions are assumed to satisfy

gn := supGn/inf Gn < +∞ and g := sup
n≥0

gn < +∞. (1.20)

Moreover, we assume that the Dobrushin coefficient of Pp,n, denoted β(Pp,n), satisfies

β(Pp,n) ≤ a e−λ(n−p) (1.21)
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for some finite constant a < +∞ and some positive λ > 0. Finally, we assume that the
kernels Kn,µ satisfy an inequality of the following form:

‖ [Kn,µ1 −Kn,µ2 ] (f)‖ ≤ κ |(µ1 − µ2)(Tn(f, µ2))|, (1.22)

for any two probability measures µ1, µ2 on E, and any measurable map f with oscillation
osc(f) := Supx,y|f(x)−f(y)| ≤ 1, where κ is a finite constant, and Tn(f, µ2) is a measurable
map with oscillation ≤ 1 that may depend on n, f, µ2.

In the rest of the paper, unless otherwise stated, we assume that (1.20)-(1.21)-(1.22)
hold.

Several sufficient conditions on the Markov kernels Mn under which (1.21) holds are
discussed in [3, Section 4.3], as well as in Section 3.4 in [6]. Conditions under which (1.22)
is satisfied are given in Section 2.

We are now in position to state the main result of the paper.

Theorem 1.1 Assume (1.20)-(1.21)-(1.22), and let vn be defined as

vn :=
∑

0≤p<n

E
(
Vp(Qp,n(1))

2
)
=

∑

0≤q<n

Covq,ηq−1(Qq,n(1), Qq,n(1)).

Assume that N depends on n in such a way that

lim
n→+∞

n

N
= α ∈]0,+∞[,

and that
lim

n→+∞

vn
n

= σ2 ∈]0,+∞[. (1.23)

One then has the following convergence in distribution:

log γNn (1)
d−−−−−→

n→+∞
N

(
−1

2
ασ2, ασ2

)
, (1.24)

where N (u, v) denotes the normal distribution of mean u and variance v.

Remark 1.2 It follows from the continuous mapping theorem that γN
n (1) asymptotically

exhibits a log-normal distribution. The relationship between the asymptotic bias and variance
in (1.24) should not be a surprise since E(γNn (1)) = 1 for any n,N [3, Proposition 7.4.1.].

Remark 1.3 We believe that Theorem 1.1 may be established under the weaker stability
assumptions developed in [7] and [13], at the price of a significantly increased technical
complexity.

Remark 1.4 Under assumption (1.20), it is easily seen that one always has supn
vn
n < +∞.

If, in addition to (1.20)-(1.21)-(1.22), one assumes that lim infn→+∞
vn
n > 0 instead of the

stronger assumption (1.23), the proof of Theorem 1.1 still leads to a lognormal limit theorem
of the following form:

1√
α
vn
n

(
log γNn (1) +

α

2

vn
n

)
d−−−−−→

n→+∞
N (0, 1).

This theoretical result was used in [11] to optimize the asymptotic variance of Metropolis-
Hastings estimates, for a given computational budget, using proposal distributions based on
particle methods. Another straightforward application is to the bias-correction of log-Bayes
factors estimates in large datasets. Yet another potential application in the spirit of [14]
is that σ2 provides a criterion which could be used to select between various interacting
particle schemes.
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1.3 Some illustrations

Here, we discuss two concrete situations where Theorem 1.1 can be used, and where the
variance expression (1.23) can be made more explicit.

1.3.1 Particle absorption models

Consider a particle in an absorbing random medium, whose successive states (Xn)n≥0 evolve
according to a Markov kernel M . At time n, the particle is absorbed with probability
1−G (Xn), where G is a [0, 1)-valued potential function. Letting Gn := G for all n ≥ 0, and
Mn := M for all n ≥ 1, the connection with the Feynman-Kac formalism is the following:
denoting by T the absorption time of the particle, we have that γn(1) = P (T ≥ n), and
ηn = Law (Xn | T ≥ n). In this situation, the multiplicative formula (1.3) takes the form

P (T ≥ n) =
∏

0≤m<n

P (T ≥ m+ 1 | T ≥ m) ,

where

P (T ≥ m+ 1 | T ≥ m) =

∫
G(x) P (Xm ∈ dx | T ≥ m) = ηm(G).

In the present context, we have a map Φ such that Φn = Φ for all n ≥ 1, and conditions
(1.20)-(1.21) ensure that Φ has a unique fixed point measure η∞ such that

Law (Xn |T ≥ n) −→n→∞ η∞ = Φ(η∞).

Moreover, we have that

Q0,n(1)(x) = P (T ≥ n |X0 = x)/P (T ≥ n) −→
n→∞

h(x).

Setting Q = Q/η∞Q(1), we find that the function h satisfies the spectral equations

Q(h) = h ⇔ Q(h) = λh,with λ = η∞(G).

The measure η∞ is the so-called quasi-invariant or Yaglom measure. Under some ad-
ditional conditions, the parameter λ coincides with the largest eigenvalue of the integral
operator Q, and h is the corresponding eigenfunction. In statistical physics, Q comes from
a discrete-time approximation of a Schrödinger operator, and h is called the ground state
function. For a more thorough discussion, we refer the reader to Chapters 2 and 3 in [3]
and Chapter 7 in [5].

In this scenario, the limiting variance σ2 appearing in (1.24) is given by

σ2 = Cov1,η∞(h, h). (1.25)

In particular, if the Markov kernels used in the particle approximation scheme are given by
Kη(x, .) = Φ(η), then using (1.15) we find that σ2 = η∞

(
[h− 1]2

)
. The detailed statement

and proof of these results are provided in Section 3.3.

1.3.2 Non-linear filtering

Let (Xn, Yn)n≥0 be a Markov chain on some product state space E1 × E2 whose transition
mechanism takes the form

P ((Xn, Yn) ∈ d(x, y) | (Xn−1, Yn−1)) = Mn(Xn−1, dx) gn(y, x) νn(dy),
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where (νn)n≥0 is a sequence of positive measures on E2, (Mn)n≥0 is a sequence of Markov
kernels from E1 into itself, and (gn)n≥0 is a sequence of density functions on E2 × E1. The
aim of non-linear filtering is to infer the unobserved process (Xn)n≥0 given a realization of
the observation sequence Y = y. It is easy to check that

ηn = Law (Xn | Ym = ym , ∀0 ≤ m < n) ,

using Gn := gn(yn, .) in (1.1). Furthermore, the density denoted pn(y0, . . . , yn) of the ran-
dom sequence of observations (Y0, . . . , Yn) w.r.t. to the product measure ⊗0≤p≤nνp evaluated
at the observation sequence, that is the marginal likelihood, is equal to the normalizing con-
stant γn+1(1). In this context, the multiplicative formula (1.3) takes the following form

pn(y0, . . . , yn) =
∏

0≤m≤n

qm(ym | yl, 0 ≤ l < m)

with

qm(ym | yl, 0 ≤ l < m) =

∫
gm(ym, x) P (Xm ∈ dx | Yl = yl, 0 ≤ l < m) = ηm(Gm).

For time-homogeneous models (gm,Mm) = (g,M) associated to an ergodic process Y satis-
fying a random environment version of Assumption (1.21), the ergodic theorem implies that
the normalized log-likelihood function converges to the entropy of the observation sequence

1

n+ 1
log pn(Y0, . . . , Yn) =

1

n+ 1

∑

0≤m≤n

log qm(Ym | Yl, 0 ≤ l < m)

−→n→∞ E (log q(Y0 | Ym, m < 0)) ,

where q(Y0 | Ym, m < 0) is the conditional density of the random variable Y0 w.r.t. the
infinite past. In Section 3.4, we shall prove the existence of a limiting measure ηY∞, and
function hY such that

q(Y0 | Ym, m < 0) = ηY∞(g(Y0, .))

and

Q
Y
0,n+1(1)(x) :=

q0,n((Y0, . . . , Yn) | x)∫
ηY∞(dx) q0,n((Y0, . . . , Yn) | x)

−→n→∞ hY (x)

where q0,n((Y0, . . . , Yn)|x) stands for the conditional density of (Y0, . . . , Yn) given X0 = x.
Similar type results have been recently established in [14] using slightly more restrictive
assumptions. In this situation, the limiting variance σ2 appearing in (1.24) satisfies

σ2 = E

(
Cov

θ−1(Y )

1,η
θ−1(Y )
∞

(hY , hY ))

)
, (1.26)

where θ denotes the shift operator, and, if the Markov kernels used by the particle approxi-
mation scheme are given by Kn,η(x, .) = Φn(η) associated to the potential Gn := gn(Yn, .),
then using (1.15) we obtain

σ2 = E

(
ηθ

−1(Y )
∞

([
hY − 1

]2))
.

The detailed statement and proof of these results are provided in Section 3.4.
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1.4 Notations and conventions

We denote, respectively, by M(E), P(E) and Bb(E), the set of all finite signed measures on
space (E, E) equipped with total variation norm ‖.‖tv, the subset of all probability measures,
and the Banach space of all bounded and measurable functions f equipped with the uniform
norm ‖f‖ = Supx∈E |f(x)|. We also denote by Osc(E), the set of E-measurable functions f
with oscillations osc(f) := Supx,y|f(x)−f(y)| ≤ 1. We also denote by ‖X‖m = E(|X|m)1/m,
the Lm-norm of the random variable X, where m ≥ 1.

In the sequel, the generic notation c is used to denote a constant that depends only
on the model. To alleviate notations, we do not use distinct indices (e.g. c1, c2, . . .) each
time such a constant appears, and keep using the notation c even though the corresponding
constant may vary from one statement to the other. Still, to avoid confusion, we sometimes
make a distinction between such constants by using c, c

′
, c

′′
inside an argument. When the

constant also depends on additional parameters p1, . . . , pℓ, this is explicitly stated in the
notation by writing c(p1, . . . , pℓ).

1.5 Organization of the paper

The rest of the paper is organized as follows. In Section 2, we establish basic regularity
properties of the Cov operator. Section 3 is devoted to the long-time behavior of Feynman-
Kac semigroups, leading to a precise description of the asymptotic behavior of the variance
term vn appearing in Theorem 1.1 in two special cases : time-homogeneous models, and
models in a stationary ergodic random environment.

The key result, Theorem (1.1), is established in Section 4. The key idea is to expand
log γNn (1) in terms of local fluctuation terms of the form V N

k . Broadly speaking, the con-
tribution of quadratic terms in the expansion amounts to an asymptotically deterministic
bias term whose fluctuations are controlled with variance bounds, while the contribution of
linear terms is treated by invoking the martingale central limit theorem.

2 Regularity of the covariance function

We first note that, in the special case where Kn,η(x, .) = Φn(η) for all x, Property (1.22) is
in fact a consequence of (1.20) and (1.21). Indeed, we can then write

[Φn(µ1)− Φn(µ2)](f) =
1

µ1(Gn−1)
[µ1 − µ2] (Gn−1Mn(f − Φn(µ2)(f)))

and check that, for all f ∈ Osc(E), one has

‖ [Kn,µ1 −Kn,µ2 ] (f)‖ ≤ 2g |[µ1 − µ2] (hn,µ2)| ,

where g is defined in (1.21) and

hn,µ =
1

2‖Gn−1‖
Gn−1Mn(f − Φn(µ)(f)) ∈ Osc(E).

In the alternative case (1.8), we have

[Kn,µ1 −Kn,µ2 ] (f) = (1−Gn−1) [Φn(µ1)− Φn(µ2)] (f)

so that (1.22) is also satisfied.
Observe that (1.22) immediately implies the following Lipschitz-type property:

sup
x∈E

‖Kn,µ1(x, ·) −Kn,µ2(x, ·)‖tv ≤ κ‖µ1 − µ2‖tv. (2.1)
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Proposition 2.1 One has the following bound, valid for any two probability measures µ1, µ2

on E, and functions f1, f2 ∈ Osc(E):

|Covn,µ1(f1, f2)− Covn,µ2(f1, f2)| ≤ c‖µ1 − µ2‖tv. (2.2)

Proof:

We have

Covn,µ1(f1, f2)− Covn,µ2(f1, f2)

= [Φn(µ1)− Φn(µ2)] (f1f2) + [µ2 − µ1] (Kn,µ2(f1)Kn,µ2(f2))

+µ1 (Kn,µ2(f1)Kn,µ2(f2)−Kn,µ1(f1)Kn,µ1(f2))

and
[Φn(µ1)− Φn(µ2)] = µ1[Kn,µ1 −Kn,µ2 ] + [µ1 − µ2]Kn,µ2 .

Note that there is no loss of generality in assuming that µ2(f1) = µ2(f2) = 0, so that
‖fi‖ ≤ osc(fi) ≤ 1. Thus, using

‖Kn,µ2(f1)Kn,µ2(f2)−Kn,µ1(f1)Kn,µ1(f2)‖

≤ ‖Kn,µ1(f1)−Kn,µ2(f1)‖+ ‖Kn,µ1(f2)−Kn,µ2(f2)‖ ,

the desired conclusion follows from (2.1).

We also state the easily checked Lipschitz type bound, valid for all f1, f2, φ1, φ2 ∈ Bb(E)

|Covn,µ(f1, f2)− Covn,µ(φ1, φ2)|

≤ c (‖f1‖ ‖f2 − φ2‖+ ‖φ2‖ ‖f1 − φ1‖) .
(2.3)

3 Feynman-Kac semigroups

3.1 Contraction estimates

We denote by (Φp,n)0≤p≤n the semigroup of nonlinear operators acting on probability mea-
sures defined by

Φp,n := Φn ◦ · · · ◦Φp+1,

so that
ηn (f) = Φp,n(ηp)(f) = ηpQp,n(f)/ηpQp,n(1) = ΨQp,n(1)(ηp)Pp,n(f). (3.1)

One has that
sup
µ,ν

‖Φp,n(µ)− Φp,n(ν)‖tv = β(Pp,n), (3.2)

see for example [3, chapter 4]. We also set

gp,n := sup
x,y∈E

[Qp,n(1)(x)/Qp,n(1)(y)] and dp,n(f) = Qp,n(f − ηn(f)).

Note that Qn,n+1(1) = Gn/ηn(Gn) = Gn, and that

dp,n(Gn) = Qp,n(Qn,n+1(1)− 1) = Qp,n+1(1)−Qp,n(1). (3.3)
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We will use the fact that the semigroup Qp,n satisfies a decomposition similar to (1.3): for
any probability measure µ on E, one has that

µQp,n(1) =
∏

p≤q<n

Φp,q(µ)(Gq). (3.4)

Also, combining (1.17) and (3.4), we can write

logQp,n(1)(x) =
∑

p≤q<n

[log Φp,q(δx)(Gq)− log Φp,q(ηp)(Gq)] . (3.5)

Lemma 3.1 For any 0 ≤ p ≤ n and any f ∈ Osc(E), we have

gp,n ≤ b := exp
(
a(g − 1)/(1 − e−λ)

)
and ‖dp,n(f)‖ ≤ ab e−λ(n−p). (3.6)

In addition, for any µ, ν ∈ P(E) we have

‖Φp,n(µ)− Φp,n(ν)‖tv ≤ ab e−λ(n−p) ‖µ − ν‖tv. (3.7)

Proof:
Using the decomposition (3.4), we have

Qp,n(1)(x)

Qp,n(1)(y)
=

δxQp,n(1)

δyQp,n(1)
= exp





∑

p≤q<n

(log Φp,q(δx)(Gq)− log Φp,q(δy)(Gq))



 . (3.8)

From the identity log u − log v =
∫ 1
0

(u−v)
u+t(v−u) dt, valid for any u, v > 0, we deduce the

inequality

Qp,n(1)(x)

Qp,n(1)(y)
≤ exp





∑

p≤q<n

g̃q ×
∣∣∣Φp,q(δx)(G̃q)− Φp,q(δy)(G̃q)

∣∣∣



,

with G̃q := Gq/osc(Gq) (and the convention that G̃q := 1 if Gq is constant), and g̃q :=
osc(Gq)/inf Gq ≤ gq − 1.

Using (1.21) and (3.2), we deduce that

gp,n ≤ exp



a(g − 1)

∑

p≤q<n

e−λ(q−p)



 ≤ b.

This ends the proof of the l.h.s. of (3.6). The proof of the r.h.s. of (3.6) comes from the
following expression for dp,n(f):

dp,n(f) = Qp,n(1)× Pp,n

[
f −ΨQp,n(1)(ηp)Pp,n(f)

]

which implies, using the fact that ‖Qp,n(1)‖ ≤ gp,n, that

‖dp,n(f)‖ ≤ gp,n β(Pp,n) osc(f) ≤ ab e−λ(n−p) osc(f). (3.9)

From [3, Section 4.3], see also Proposition 3.1 in [6], we have

‖Φp,n(µ)− Φp,n(ν)‖tv ≤ gp,n β(Pp,n) ‖µ− ν‖tv.
Using (3.6), we conclude that

‖Φp,n(µ)− Φp,n(ν)‖tv ≤ ab e−λ(n−p) ‖µ− ν‖tv.
This ends the proof of the lemma.
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3.2 Limiting semigroup

We now state a general theorem on the convergence of Qp,n(1) when n → +∞.

Theorem 3.2 The following bound holds for all 0 ≤ p ≤ n:

∥∥Qp,n(1)−Qp,∞(1)
∥∥ ≤ c e−λ(n−p), (3.10)

where the limiting function Qp,∞(1) is defined through the following series:

logQp,∞(1)(x) :=
∑

q≥p

[log Φp,q(δx)(Gq)− log Φp,q(ηp)(Gq)] . (3.11)

Proof of Theorem 3.2:
We first check that the function Qp,∞(1) is well defined, using the fact that, as in the proof
of Lemma 3.1,

|log Φp,q(δx)(Gq)− log Φp,q(ηp)(Gq)| ≤ a(g − 1)e−λ(q−p).

One then has that

∣∣log Qp,n(1)(x)− log Qp,∞(1)(x)
∣∣ ≤

∑

q≥n

|log Φp,q(δx)(Gq)− log Φp,q(ηp)(Gq)| ,

whence

∣∣log Qp,n(1)(x)− log Qp,∞(1)(x)
∣∣ ≤

∑

q≥n

a(g − 1) e−λ(q−p) ≤ c e−λ(n−p).

Using the identity eu − ev = (x− y)
∫ 1
0 etu+(1−t)vdt, we finally check that

∥∥Qp,n(1)−Qp,∞(1)
∥∥ ≤ c

∥∥log Qp,n(1)− log Qp,∞(1)
∥∥ ,

thanks to the fact that ‖Qp,n(1)‖ ≤ gp,n ≤ g. This ends the proof of (3.10).

3.3 The time-homogeneous case

Here we consider the special case of time-homogeneous models, where there exist G,M,K
such that Gn = G for all n ≥ 0, and Mn = M and Kn = K for all n ≥ 1.

Our assumptions imply the existence of a unique fixed point η∞ = Φ(η∞) towards which
ηn converges exponentially fast: for all n ≥ 0,

‖Φn(η0)− η∞‖tv ≤ ab e−λn. (3.12)

In this situation, Theorem 3.2 leads to a precise description of the asymptotic behavior
of the variance term vn appearing in Theorem 1.1. To state it, consider the fixed point
measure η∞ introduced in (3.12), and define the function h by

log h(x) :=
∑

n≥0

[log Φn(δx)(Gn)− log Φn(η∞)(Gq)] .

In the stationary version of the model where η0 := η∞, h corresponds to the limiting function
Q0,∞(1) whose existence is asserted by Theorem 3.2. In this situation, it turns out that, by

stationarity, Qn,∞(1) = h for all n ≥ 1.
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Proposition 3.3 One has the following bound for all p ≥ 0:

||Qp,∞(1)− h|| ≤ ce−λp. (3.13)

Corollary 3.4 One has that

1

n

∑

0≤p<n

Covp,ηp−1(Qp,n(1), Qp,n(1)) = Covη∞(h, h) + O(1/n), (3.14)

where we use the notation Covη to denote the common value of Covp,η for p ≥ 1.

An alternative spectral characterization of the map h is given in the following corollary.
In the homogeneous case, Qp,p+1 does not depend on p, so we use the simpler notation Q.

Corollary 3.5 In the homogeneous case, the (η∞Q(1), h) is characterized as the unique
pair (ζ, f) such that Q(f) = ζf and η∞(f) = 1.

Proof of Proposition 3.3:
Using the exponential convergence to η∞ stated in (3.12), and the Lipschitz property (3.7),
we have that

∑

q≥p

[log Φp,q(ηp)(Gq)− log Φp,q(η∞)(Gq)] ≤ c
∑

q≥p

e−λ((q−p)+p) ≤ c′ e−λp.

We conclude as in the proof of Theorem 3.2.

Proof of Corollary 3.4:

Using the Lipschitz property (2.2), and the fact that, for all p, n, ‖Qp,n(1)‖ ≤ g, we see
that replacing each ηp−1 in the l.h.s. of (3.14) by η∞ leads to a O(1/n) error term. Then,
using Theorem 3.2 and (2.3), we see that we can replace each Qp,n(1) term by Qp,∞(1) in
the l.h.s. of (3.14), and commit no more than a O(1/n) overall error. Finally, (3.13), allows
us to replace each Qp,∞(1) by h, again with an overall O(1/n) error term.

Proof of Corollary 3.5:

We consider the stationary version of the model where we start with η0 := η∞.
Let us first check that one indeed has η∞(h) = 1 and Q(h) = η∞(Q(1))h. By Theorem

3.2, we have that
lim

n→+∞

∥∥Q0,n(1)− h
∥∥ = 0. (3.15)

Since by construction, η∞Q0,n(1) = 1, (3.15) yields that η∞(h) = 1. Then, due to station-

arity, one has Qp,n = Q
n−p

, with Q(f) := Q(f)/η∞Q(1), so that one can also deduce from

(3.15) that Q(h) = h, which yields that Q(h) = η∞(Q(1))h.
Now consider a pair (ζ, f) such that Q(f) = ζf and η∞(f) = 1, and let us show that

ζ = η∞Q(1) and f = h.
By stationarity, one has that

Q0,n(f) = Qn(f)/η∞Qn(1),

and we deduce from (3.4) and the stationarity of η∞ that

η∞Qn(1) = (η∞Q(1))n .
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Using the fact that Φ(η∞) = η∞, we have the identity

η∞Q(f)/η∞(Q(1)) = η∞(f).

Since Q(f) = ζf and η∞(f) = 1, we immediately deduce that ζ = η∞(Q(1)).
As a consequence, the fact that Q(f) = η∞(Q(1))f implies that, for all n ≥ 1, one has

Q0,n(f) = f.

On the other hand, given two bounded functions f1, f2, we have that

Q0,n(f1 − f2)(x) = Φ0,n(δx)(f1 − f2)×Q0,n(1)(x)

Letting n → ∞, (3.12) and Theorem 3.2 yield

lim
n→∞

Q0,n(f1 − f2) = η∞(f1 − f2)× h.

Using f1 := f and f2 := h, we deduce that f = h.

3.4 The random environment case

3.4.1 Description of the model

We consider a stationary and ergodic process Y = (Yn)n∈Z taking values in a measurable
state space (S,S). The process Y provides a random environment governing the successive
transitions between step n− 1 and step n in our model. In the sequel, we define and study
the model for a given realization y ∈ SZ of the environment. It is only in Corollary 3.7 that
we exploit the ergodicity of Y to establish the almost sure limiting behavior of the variance
vn.

Specifically, we consider a family (Ms)s∈S of Markov kernels on E, a family (Gs)s∈S of
positive bounded functions on E.

For n ∈ Z and y ∈ SZ, we set My
n := Myn and Gy

n := Gyn . We then denote with a y
superscript all the objects associated with the Feynman-Kac model using the sequence of
kernels (My

n)n≥1 and functions (Gy
n)n≥0, i.e. the measures γyn and ηyn, the operators Φy

p,n,
Gy

p,n, Cov
y
p,η, etc. To define the particle approximation scheme, we also consider a family of

Markov kernels (K(s,s′),µ)s,s′∈S, µ∈P(E) such that, for all s, s′, µ, one has

ΨGs(µ)Ms′ = µK(s,s′),µ.

We then use Ky
n,µ := K(yn−1,yn),µ for all n ≥ 1.

We then define the shift operator on SZ by setting, for every y = (yn)n∈Z ∈ SZ, θ(y) :=
(yn+1)n∈Z. With our definitions, one has that, for all 0 ≤ p ≤ n,

Qy
p,n = Q

θp(y)
0,n−p, Φy

p,n = Φ
θp(y)
0,n−p,

and in particular

Φy
0,n = Φ

θp(y)
0,n−p ◦ Φy

0,p. (3.16)

Our assumptions on the model are that E has a Polish space structure, and that the
bounds listed in (1.20), (1.21) and (1.22) hold for My

n , G
y
n and Ky

n,µ uniformly over y ∈ SZ.
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3.4.2 Contraction properties

Rewriting (3.2) and (3.7) in the present context, we have that, for all y,

β
(
P y
0,n

)
= sup

µ,ν
‖Φy

0,n(µ)− Φy
0,n(ν)‖tv ≤ a e−λn (3.17)

and
‖Φy

0,n(µ)− Φy
0,n(ν)‖tv ≤ ab e−λn ‖µ − ν‖tv, (3.18)

with the constant b defined in (3.6). Using (3.16), we have

Φ
θ−(n+m)(y)
0,n+m = Φ

θ−n(y)
0,n ◦ Φθ−(n+m)(y)

0,m ,

so that, using (3.17), one has that

sup
µ,ν

‖Φθ−n(y)
0,n (µ)− Φ

θ−(n+m)(y)
0,n+m (ν)‖tv ≤ a e−λn.

Arguing as in [10, 14], we conclude that for any f ∈ Bb(E), and any µ ∈ P(E), Φ
θ−n(y)
0,n (µ)(f)

is a Cauchy sequence, so that Φ
θ−n(y)
0,n (µ) weakly converges to a measure ηy∞, as n → ∞. In

addition, for any n ≥ 0, we have

Φy
0,n(η

y
∞) = ηθ

n(y)
∞ (3.19)

and exponential convergence to equilibrium

sup
µ

‖Φθ−n(y)
0,n (µ)− ηy∞‖tv ≤ a e−λn. (3.20)

We now restate the conclusion of Theorem 3.2 in the present context : for all 0 ≤ p ≤ n,
one has that ∥∥Qy

p,n(1)−Q
y
p,∞(1)

∥∥ ≤ c e−λ(n−p), (3.21)

where the limiting function Q
y
p,∞(1) is defined through the series:

logQ
y
p,∞(1)(x) :=

∑

q≥p

[
log Φy

p,q(δx)(G
y
q)− log Φy

p,q(η
y
p)(G

y
q )
]
. (3.22)

We now define the map hy by

hy(x) :=
∑

q≥0

[
log Φy

0,q(δx)(G
y
q)− log Φy

0,q(η
y
∞)(Gy

q )
]
.

Proposition 3.6 One has the following bound, valid for all y ∈ SZ and p ≥ 0:

||Qy
p,∞(1)− hθ

p(y)|| ≤ ce−λp. (3.23)

Proof of Proposition 3.6:

Setting q := q − p in the definition, we rewrite

logQ
y
p,∞(1)(x) =

∑

q≥0

[
log Φ

θp(y)
0,q (δx)(G

θp(y)
q )− log Φ

θp(y)
0,q (ηyp)(G

θp(y)
q )

]
.
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On the other hand,

hθ
p(y)(x) =

∑

q≥0

[
log Φ

θp(y)
0,q (δx)(G

θp(y)
q )− log Φ

θp(y)
0,q (ηθ

p(y)
∞ )(Gθp(y)

q )
]
.

Using (3.20), we obtain that

‖ηyp − ηθ
p(y)

∞ ‖tv ≤ a e−λp.

Combining this bound with (3.18), we deduce that

∣∣∣Φθp(y)
0,q (ηyp)(G

θp(y)
q )− Φ

θp(y)
0,q (ηθ

p(y)
∞ )(Gθp(y)

q )
∣∣∣ ≤ ce−λ(p+q).

We conclude as in the proof of Theorem 3.2.

Introduce the map C defined on SZ by

C(y) := Cov
θ−1(y)

1,η
θ−1(y)
∞

(hy, hy).

We add to (1.20)-(1.21)-(1.22) the assumption that C is measurable with respect to the
product σ−algebra on SZ.

Arguing as in the proof of Corollary 3.14, then applying the ergodic theorem, we deduce
the following asymptotic behavior for the variance vn.

Corollary 3.7 One has the following bound:

1
n

∑
0≤p<nCov

y
p,ηyp−1

(Q
y
p,n(1), Q

y
p,n(1))

= 1
n

∑
1≤p<n C(θp(y)) +O(1/n).

In addition, we have

lim
n→∞

1

n

∑

0≤p<n

Covp,ηYp−1
(Q

Y
p,n(1), Q

Y
p,n(1))) = E

(
Cov

θ−1(Y )

1,η
θ−1(Y )
∞

(hY , hY )

)
a.s.

4 Fluctuation analysis

4.1 Moment bounds

In addition to the local error fields V N
n defined in (1.12), we consider the global error fields

WN
n defined by

WN
n =

√
N

(
ηNn − ηn

)
⇔ ηNn = ηn +

1√
N

WN
n . (4.1)

We now quote key moment estimates on V N
n and WN

n , see [3, chapter 4] or [5, chapter
9]. Under our assumptions, one has that, for all n ≥ 0, N ≥ 1, all f ∈ Osc(E) and m ≥ 1,

∥∥V N
n (f)

∥∥
m

≤ c(m), (4.2)

and ∥∥WN
n (f)

∥∥
m

≤ c(m). (4.3)

15



4.2 Expansion of the particle estimate of log-normalizing constants

Starting from the product-form expression (1.11), we apply a second-order expansion for
the logarithm of each factor. Using (4.3), we have that, for all n ≥ 0 and N ≥ 1,

log γNn (1) =
1√
N

∑

0≤p<n

WN
p (Gp)−

1

2N

∑

0≤p<n

(
WN

p (Gp)
)2

+
1√
N

( n

N

)
C(n,N), (4.4)

where, for all m ≥ 1, the remainder term satisfies the moment ||C(n,N)||m ≤ c(m).

4.3 Second order perturbation formulae

We derive an expansion of WN
n (f) in terms of local error terms V N

p introduced in (1.12),

up to an error term of order 1
N . The key result we prove is the following.

Theorem 4.1 For all n ≥ 0, N ≥ 1 and any function f ∈ Osc(E),

WN
n (f) = WN

n (f) +
1

N
RN

n (f) (4.5)

where

WN
n (f) =

n∑

p=0

V N
p [dp,n(f)]

− 1√
N

∑

0≤p<n




p∑

q=0

V N
q

[
dq,p(Gp)

]





p∑

q=0

V N
q [dq,n(f)]




and where the remainder measure RN
n is such that, for all m ≥ 1,

||RN
n (f)||m ≤ c(m).

To prove Theorem 4.1, we start with the following exact decomposition of WN
n (f) into a

first term of order 1 involving the V N
p for p = 0, ..., n plus a remainder term of order 1/

√
N .

Theorem 4.2 ([5, chapter 9]) For all n ≥ 0, N ≥ 1 and any function f ∈ Osc(E), we
have the decomposition

WN
n (f) =

n∑

p=0

V N
p [dp,n(f)] +

1√
N

SN
n (f), (4.6)

with the second order remainder

SN
n (f) := −

∑

0≤p<n

1

ηNp (Gp)
WN

p (Gp) W
N
p [dp,n(f)] .

Note that, under our assumptions, the remainder term satisfies for all m ≥ 1

||SN
n (f)||m ≤ c(m). (4.7)

Decomposing 1/ηNp (Gp) into a term of order 1 plus a term of order 1/
√
N as follows

1

ηNp (Gp)
= 1− 1

ηNp (Gp)

1√
N

WN
p (Gp), (4.8)

we refine Theorem 4.2 into the following decomposition, which now has an error term of
order 1/N .
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Corollary 4.3 For all n ≥ 0, N ≥ 1 and any function f ∈ Osc(E), we have the decompo-
sition

WN
n (f)

=
n∑

p=0

V N
p [dp,n(f)]−

1√
N

∑

0≤p<n

WN
p (Gp) W

N
p [dp,n(f)] +

1

N
RN

n (f)
(4.9)

where the remainder term is such that, for all m ≥ 1, ||RN
n (f)||m ≤ c(m).

Proof:
Using (4.8), we obtain (4.9) with the remainder term

RN
n (f) :=

∑

0≤p<n

1

ηNp (Gp)
WN

p (Gp)
2 WN

p [dp,n(f)] .

Note that, for any m ≥ 1, we have that

E
(∣∣RN

n (f)
∣∣m) 1

m

≤ g
∑

0≤p<n E

(∣∣WN
p (Gp)

∣∣4m
) 1

2m × E

(∣∣WN
p [dp,n(f)]

∣∣2m
) 1

2m
.

Combining (4.3) and (3.6), we find that

E

(∣∣RN
n (f)

∣∣m
) 1

m ≤ c
∑

0≤p<n

eλ(n−p).

This ends the proof of the corollary.

We are now ready to derive Theorem 4.1, by replacing the WN
p terms appearing in the

previous corollary by their expansions in terms of the V N
p provided by Theorem 4.2. Here

is the proof of Theorem 4.1.
Proof:
Using (4.9), we have

WN
n (f) = VN

n (f) +
1√
N

WN
n (f) +

1

N
RN

n (f)

with

VN
n (f) :=

n∑

p=0

V N
p [dp,n(f)]

WN
n (f) :=−

∑

0≤p<n

WN
p (Gp) W

N
p [dp,n(f)]

This implies that

∑

0≤p<n

WN
p (Gp) W

N
p [dp,n(f)] = I(0)

n +
1√
N

I(1)
n (f) +

1

N
I(2)
n (f) +

1

N2
I(3)
n (f)
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with

I(0)
n (f) =

∑

0≤p<n

VN
p (Gp) VN

p (dp,n(f)),

I(1)
n (f) =

∑

0≤p<n

[
VN
p (Gp) WN

p (dp,n(f)) +WN
p (Gp) VN

p (dp,n(f))
]
,

I(2)
n (f) =

∑

0≤p<n

{
RN

p (Gp)

[
VN
p (dp,n(f)) +

1√
N

WN
p (dp,n(f))

]

+RN
p (dp,n(f))

[
VN
p (Gp) +

1√
N

WN
p (Gp)

]}
,

I(3)
n (f) =

∑

0≤p<n

RN
p (Gp) RN

p (dp,n(f)).

Arguing as in the previous proof, we see that sup1≤i≤3 E

(∣∣∣I(i)
n (f)

∣∣∣
m) 1

m ≤ c(m), which yields

the conclusion.

4.4 Fluctuations of local random fields

As mentioned in Section 1.2, when N goes to infinity, the fields (V N
n )n≥0 converge in dis-

tribution to a sequence of independent centered Gaussian random fields (Vn)n≥0 whose
covariances are characterized by

CVn(f, φ) := E(Vn(f)Vn(φ)) = Covn,ηn−1(f, φ),

for any f, φ ∈ Bb(E).
We recall that for any n ≥ 1, q ≥ 1, and any q−tensor product function

f = ⊗1≤i≤qfi ∈ Osc(E)⊗q,

the q-moments of a centered Gaussian random field V are given by the Wick formula

E
(
V ⊗q(f)

)
=

∑

i∈π(q)

∏

1≤ℓ≤q/2

E(V (fi2ℓ−1
)V (fi2ℓ)), (4.10)

where π(q) denotes the set of pairings of {1, . . . , q}, i.e. the set of partitions i of {1, . . . , q}
into pairs i1 = {i1, i2}, . . . , iq/2 = {iq−1, iq}. Notice that when q is odd, both sides of the
above formula are equal to zero.

In the following, we give quantitative bounds on the convergence speed for product-form
functionals of the fields V N

n .

Proposition 4.4 One has the following bound, valid for any f = (fi)1≤i≤p ∈ Osc(E)p,
integers a = (ai)1≤i≤p, n ≥ 0 and N ≥ 1:

∣∣∣E(V N
a1 (f1) · · ·V N

ap (fp))− E(Va1(f1) · · ·Vap(fp))
∣∣∣ ≤ c(p)/

√
N.

To prove the proposition, we use the following lemma.
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Lemma 4.5 Consider a sequence of N independent random variables (Zi)1≤i≤N with dis-
tributions (µi)1≤i≤N on E, and define the empirical random fields V N for f ∈ Osc(E) by

V N (f) := N−1/2
N∑

j=1

(f(Zj)− µj(f)).

Finally, let V
N

denote a centered Gaussian random field with covariance function defined
for any f, φ ∈ Osc(E) by

C
V

N (f, φ) = E

(
V

N
(f)V

N
(φ)

)
=

1

N

N∑

i=1

covµi(f, φ)

where
covµi(f, φ) := µi ([f − µi(f)] [φ− µi(φ)]) .

For any 1 ≤ q ≤ N , and any q−tensor product function

f = ⊗1≤i≤qfi ∈ Osc(E)⊗q,

one has that ∣∣∣∣E
([

V N
]⊗q

(f)
)
− E

([
V

N
]⊗q

(f)

)∣∣∣∣ ≤ c(q)×N−ρ(q), (4.11)

where ρ(q) := 1 for even q, and ρ(q) := 1/2 for odd q.

Proof:
We write

V N (fi) =
1√
N

∑

1≤j≤N

f
(j)
i (Zj) with f

(j)
i = fi − µj(fi).

Expanding the product, we get that

N q/2
E

([
V N

]⊗q
(f)

)
=

∑

1≤j1,...,jq≤N

E(f
(j1)
1 (Zj1) · · · f

(jq)
q (Zjq)).

Each term in the above r.h.s. such that an index ji appears exactly once in the list (j1, . . . , jq)
must be zero, so the only terms that may contribute to the sum are those for which every
index appears at least twice. In the case where q is odd, the number of such combinations
of indices is bounded above by c(q)N (q−1)/2, for some finite constant c(q) < ∞ depending
only on q. Since each expectation is bounded in absolute value by 1, we are done.

Now assume that q is even. Consider a pairing i of {1, . . . , q} given by i1 = {i1, i2}, . . . , iq/2 =
{iq−1, iq}, and a combination of indices j1, . . . , jq such that ja = jb whenever a, b belong to
the same pair, while ja 6= jb otherwise. Denoting by kr the value of ja when a ∈ ir, and
using independence, we see that the contribution of this combination to the sum is

E(f
(j1)
1 (Zj1) · · · f

(jq)
q (Zjq)) = covµk1

(fi1 , fi2) · · · covµkq/2
(fiq−1 , fiq ).

Every combination of indices in which every index appears exactly twice is of the form we
have just described. Then, the number of combinations in which every index appears at
least twice, but that are not of the previous form, is O(N q/2−1). As a consequence

N q/2
E(

(
V N

)⊗q
(f))

=
∑

i∈π(q)

∑

k∈〈q/2,N〉

covµk1
(fi1 , fi2) · · · covµkq/2

(fiq−1 , fiq) + O
(
N q/2−1

)
,
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where 〈p,N〉 stands for the set of all (N)p = N !/(N − p)! one-to-one mappings from [p] :=

{1, . . . , p} into [N ]. On the other hand, for any function ϕ ∈ R
[N ][p] such that |ϕ| ≤ 1, we

have ∣∣∣∣∣∣
1

(N)p

∑

k∈〈p,N〉

ϕ(k)− 1

Np

∑

k∈[N ][p]

ϕ(k)

∣∣∣∣∣∣
≤ (p− 1)/N

(a detailed proof of this formula is provided in Proposition 8.6.1 in [3]). Now note that

∑
i∈π(q)

1
Nq/2

∑
k∈[N ][q/2] covµk1

(fi1 , fi2) · · · covµkq/2
(fiq−1 , fiq )

=
∑

i∈π(q)

∏
1≤ℓ≤q/2

1
N

∑
1≤j≤N covµj (fi2ℓ−1

, fi2ℓ)

=
∑

i∈π(q)

∏
1≤ℓ≤q/2CV

N (fi2ℓ−1
, fi2ℓ) = E

((
V

N
)⊗q

(f)

)
,

where the last identity uses the Wick formula (4.10).
This yields that

N q/2
E(

(
V N

)⊗q
(f)) = (N)q/2 E

((
V

N
)⊗q

(f)

)
+O

(
N q/2−1

)

We end the proof of (4.11) using the fact that 0 ≤ (1− (N)p/N
p) ≤ (p − 1)2/N , for any

p ≤ N . This ends the proof of the lemma.

Lemma 4.6 Given an even number q and a collection of functions (fi)1≤i≤q ∈ Osc(E)q,
for any n ≥ 0 and N ≥ 1, we have

∥∥∥
∏

1≤ℓ≤q/2Covn,ηNn−1
(f2ℓ−1, f2ℓ)−

∏
1≤ℓ≤q/2 Covn,ηn−1(f2ℓ−1, f2ℓ)

∥∥∥
m

≤ c(q,m)/
√
N.

(4.12)

Proof:
Combining (4.2) and (1.22) with the generalized Minkowski inequality, we obtain that, for
any f, φ ∈ Osc(E),

√
N

∥∥∥Covn,ηNn−1
(f, φ)− Covn,ηn−1(f, φ)

∥∥∥
m

≤ c
′

(m). (4.13)

We end the proof of (4.12) using the bound
∣∣∣∣∣∣

∏

1≤i≤m

ui −
∏

1≤i≤m

vi

∣∣∣∣∣∣
≤ sup(|ui|, |vi|; 1 ≤ i ≤ m)m−1

∑

1≤i≤m

|ui − vi|,

valid for all u = (ui)1≤i≤m ∈ R
m and any v = (vi)1≤i≤m ∈ R

m.

We now come to the proof of Proposition 4.4.
Proof of Proposition 4.4:

Assume that the ai are ordered so that a1 ≤ . . . ≤ aℓ < aℓ+1 = · · · = aℓ+q, where ℓ+ q = p.
Set

AN := V N
a1 (f1) · · · V N

aℓ
(fℓ) and BN := V N

a (fℓ+1) · · · V N
a (fℓ+q)
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where a := ap. Given FN
a−1, we let V

N
a be a sequence of Gaussian random fields with

covariance function defined for any f, φ ∈ Osc(E) by

C
V

N
a
(f, φ) = Cova,ηNa−1

(f, φ)

and we set

B
N

:= V
N
a (fℓ+1) · · · V N

a (fℓ+q) and B := Va(fℓ+1) · · ·Va(fℓ+q)

Now E(ANBN ) = E(AN × E(BN |FN
a−1)), and, by Lemma 4.5, one has the deterministic

bound ∣∣∣E(BN |FN
a−1)− E

(
B

N ∣∣FN
a−1

)∣∣∣ ≤ c(q)/
√
N

On the other hand, combining (4.12) with Wick’s formula (4.10)

E

(
B

N ∣∣FN
a−1

)
=

∑

i∈π(q)

∏

1≤r≤q/2

Cova,ηNa−1
(f (ℓ+2r−1), f (ℓ+2r)),

we deduce that √
N

∥∥∥E
(
B

N ∣∣FN
a−1

)
− E (B)

∥∥∥
m

≤ c(m).

Using the decomposition

E(ANBN )− E(AN
E(B)) = E

(
AN ×

[
E(BN |FN

a−1)− E(B)
])

we conclude that

∣∣E(ANBN )− E(AN ) E(B)
∣∣ ≤ c

′

(q)/
√
N.

One then concludes by iterating the argument.

4.5 Expansion of the particle estimates continued

We now plug the expansions obtained in Section 4.3 into the development obtained in (4.4),
which leads, after some rearrangement, to the following.

Proposition 4.7 For any n ≥ 0, N ≥ 1, we have the second order decomposition

1√
N

∑

0≤q<n

WN
q (Gq)−

1

2N

∑

0≤q<n

WN
q (Gq)

2

=
1√
N

∑

0≤q<n

V N
q (Qq,n(1))

− 1

2N

∑

0≤k≤p<n

[
V N
k (Qk,p+1(1)−Qk,p(1)) V N

k (Qk,p+1(1) +Qk,p(1))
]

− 1

N
UN
n − 1

2N
Y N
n +

1√
N

( n

N

)
C2(n,N)

(4.14)

with the centered random variables

UN
n :=

∑

0≤k 6=l≤q<p<n

V N
k

(
dk,q(Gq)

)
V N
l

(
dl,p(Gp)

)

Y N
n :=

∑

0≤k<l≤q<n

V N
k

[
dk,q(Gq)

]
V N
l

[
dl,q(Gq)

]

and some remainder term such that ||C2(n,N)||m ≤ c(m), for all m ≥ 1.
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Proof:

By Theorem 4.1, we may replace WN
q by WN

q in the linear terms of the expression we
want to expand, i.e. the l.h.s. of (4.14), while committing at most an error of the form

1√
N

( n

N

)
C3(n,N),

where for all m ≥ 1
||C3(n,N)||m ≤ c(m).

On the other hand, using the cruder expansion provided by Theorem 4.2, we may replace
WN

q by just
∑q

p=0 V
N
p

[
dp,q(Gq)

]
in the quadratic terms appearing in the l.h.s. of (4.14),

and commit an overall error of the form

1√
N

( n

N

)
C4(n,N),

where for all m ≥ 1
||C4(n,N)||m ≤ c

′

(m).

By the definition of WN
q given in (4.5), we have

WN
q (Gq) =

q∑

p=0

V N
p

[
dp,q(Gq)

]

− 1√
N

∑

0≤p<q

[
p∑

k=0

V N
k

[
dk,p(Gk)

]
] [

p∑

k=0

V N
k

[
dk,q(Gq)

]
]

so that

1√
N

∑

0≤q<n

WN
q (Gq)

=
1√
N

∑

0≤p<n

V N
p




∑

p≤q<n

dp,q(Gq)




− 1

N

∑

0≤q<n

∑

0≤p<q

[
p∑

k=0

V N
k

[
dk,p(Gk)

]
] [

p∑

k=0

V N
k

[
dk,q(Gq)

]
]
.

We recall that

∑

p≤q<n

dp,q(Gq) =
∑

p≤q<n

[
Qp,q+1(1)−Qp,q(1)

]
= Qp,n(1)− 1

so that on the one hand we have

∑

0≤p<n

V N
p




∑

p≤q<n

dp,q(Gq)


 =

∑

0≤p<n

V N
p

[
Qp,n(1)

]
,
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whereas, on the other hand, we have

∑
0≤p<q<n

[
p∑

k=0

V N
k

[
dk,p(Gk)

]
] [

p∑

k=0

V N
k

[
dk,q(Gq)

]
]

=
∑

0≤k≤p<q<n

V N
k

[
dk,p(Gk)

]
V N
k

[
dk,q(Gq)

]
+ UN

n

=
∑

0≤k<q<n

V N
k




∑

k≤p<q

dk,p(Gk)


V N

k

[
dk,q(Gq)

]
+ UN

n

=
∑

0≤k<q<n

V N
k

[
Qk,q(1)

]
V N
k

[
dk,q(Gq)

]
+ UN

n .

This implies that

1√
N

∑

0≤q<n

WN
q (Gq)

=
1√
N

∑

0≤p<n

V N
p

[
Qp,n(1)

]

− 1

N

∑

0≤q<n

∑

0≤p<q

V N
p

[
Qp,q(1)

]
V N
p

[
dp,q(Gq)

]
− 1

N
UN
n .

It remains to analyze the quadratic part, which we write as

∑

0≤q<n




∑

0≤p≤q

V N
p

[
dp,q(Gq)

]



2

=
∑

0≤q<n

∑

0≤p≤q

V N
p

[
dp,q(Gq)

]2
+ Y N

n .

Now notice that

−
∑

0≤p<q

V N
p

[
Qp,q(1)

]
V N
p

[
dp,q(Gq)

]
− 1

2

∑

0≤p≤q

V N
p

[
dp,q(Gq)

]2

= −1

2
V N
q

[
dq,q(Gq)

]2 −
∑

0≤p<q

V N
p

[
dp,q(Gq)

]
V N
p

[
1

2
dp,q(Gq) +Qp,q(1)

]

= −1

2
V N
q

[
dq,q(Gq)

]2

−∑
0≤p<q V

N
p

[
dp,q(Gq)

]
V N
p

[
1
2

[
Qp,q+1(1)−Qp,q(1)

]
+Qp,q(1)

]

= −1

2
V N
q

[
Qq,q+1(1) −Qq,q(1)

]2

−1
2

∑
0≤p<q V

N
p

[
Qp,q+1(1)−Qp,q(1)

]
V N
p

[
Qp,q+1(1) +Qp,q(1)

]
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Recalling that Qq,q(1) = 1, we conclude that

−
∑

0≤p<q

V N
p

[
Qp,q(1)

]
V N
p

[
dp,q(Gq)

]
− 1

2

∑

0≤p≤q

V N
p

[
dp,q(Gq)

]2

= −1
2

∑
0≤k≤q V

N
k

[
Qk,q+1(1) −Qk,q(1)

]
V N
k

[
Qk,q+1(1) +Qk,q(1)

]

The next step is to show that both centered terms UN
n and Y N

n yield negligible contri-
butions in (4.14).

Proposition 4.8 For any n ≥ 0, and any N ≥ 1, we have that

E((UN
n )2) ≤ c

(
n+

n2

√
N

)
.

Proof:

We can write

E((UN
n )2)

=
∑

E
(
V N
k

(
dk,q(Gq)

)
V N
l

(
dl,p(Gp)

)
V N
k′

(
dk′,q′(Gq′)

)
V N
l′

(
dl′,p′(Gp′)

))

with ∑
=

∑

0≤k 6=l≤q<p<n

∑

0≤k′ 6=l′≤q′<p′<n

.

First consider replacing each V N
k by the corresponding Vk in the above expectations. By

Proposition 4.4 together with (3.6), the overall error is bounded by

c(p)√
N

∑
exp(−λ(q − k + p− l + q′ − k′ + p′ − l′)) ≤ c′ (p)

n2

√
N

.

Now consider the corresponding sum

∑
E
(
Vk

(
dk,q(Gq)

)
Vl

(
dl,p(Gp)

)
Vk′

(
dk′,q′(Gq′)

)
Vl′

(
dl′,p′(Gp′)

))
.

The only possibility to have a non-zero term is when either k = k′ and l = l′ or k = l′ and
k′ = l. Restricting summation to this subset of indices, we obtain that

∑
exp(−λ(q − k + p− l + q′ − k′ + p′ − l′)) ≤ c

′ × n.

With a similar argument, we also obtain the following result.

Proposition 4.9 For any n ≥ 0, N ≥ 1, we have

E((Y N
n )2) ≤ c

(
n+

n2

√
N

)
.
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Now, we consider the remaining term in (4.14), i.e.

HN
n :=

∑

0≤k≤p<n

(
V N
k

[
Qk,p+1(1) −Qk,p(1)

]
V N
k

[
Qk,p+1(1) +Qk,p(1)

] )
,

and show that it can be replaced by its expectation up to a negligible random term.

Proposition 4.10 For any n ≥ 0, N ≥ 1, we have the following bound :

V(HN
n ) ≤ c n.

Proof:
If we set

Jk,p := Qk,p+1(1)−Qk,p(1) and Kk,p := Qk,p+1(1) +Qk,p(1)

then we find that
E
(
HN

n

)
=

∑

0≤k≤p<n

E
(
V N
k [Jk,p] V N

k [Kk,p]
)

whence

(E
(
HN

n

)
)2

=
∑

0≤k≤p<n

∑

0≤k′≤p′<n

E
(
V N
k [Jk,p] V N

k [Kk,p]
)
E
(
V N
k′

[
Jk′,p′

]
V N
k′

[
Kk′,p′

] )

while

E

((
HN

n

)2)

=
∑

0≤k≤p<n

∑

0≤k′≤p′<n

E
(
V N
k [Jk,p] V N

k [Kk,p]V
N
k′

[
Jk′,p′

]
V N
k′

[
Kk′,p′

] )
.

Observe that, whenever k 6= k′, the terms in the above two sums coincide. Therefore,
it remains to bound the contribution in both sums of the terms that have k = k′. In both
expressions, the corresponding sum is bounded above in absolute value by

∑

0≤k≤p,p′<n

c
′ × e−λ(p′−k+p−k) ≤ c

′′ × n.

This ends the proof of the proposition.

Proposition 4.11 For any n ≥ 0, N ≥ 1, we have

E(HN
n ) = vn + ǫNn with |ǫNn | ≤ c× n/

√
N.
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Proof:
Recalling that Qp,n(1)− 1 =

∑
p≤k<n

(
Qp,k+1 −Qp,k

)
, we prove that

Vp(Qp,n(1))
2

=
(∑

p≤k<n Vp

(
Qp,k+1 −Qp,k

))2

=
∑

p≤k<n Vp

(
Qp,k+1 −Qp,k

)2

+2
∑

p≤l<n Vp

(∑
p≤k<l

[
Qp,k+1 −Qp,k

])
Vp

(
Qp,l+1 −Qp,l

)

=
∑

p≤l<n Vp

(
Qp,l+1 −Qp,l

)2

+2
∑

p≤l<n Vp

(
Qp,l

)
Vp

(
Qp,l+1 −Qp,l

)

This yields the formula

Vp(Qp,n(1))
2 =

∑

p≤l<n

Vp

(
Qp,l+1 −Qp,l

)
Vp

(
Qp,l+1 +Qp,l

)

Replacing each V N
k by Vk in the expectation of HN

n , we obtain

∑
0≤p≤l<n E

(
Vp

[
Qp,l+1(1) −Qp,l(1)

]
Vp

[
Qp,l+1(1) +Qp,l(1)

])

=
∑

0≤p<n E
(
Vp(Qp,n(1))

2
)
= vn.

To control the error introduced by the replacement, we use Proposition 4.4, (3.3) and
(3.6), so that the overall error can be bounded above by

c
∑

0≤k≤p<n

e−λ(p−k)

√
N

≤ c
′ n√

N

This ends the proof of the proposition.

4.6 Central limit theorem

This section established the proof of theorem 1.1. Using Proposition (4.4), the decomposition
(4.14), and Propositions (4.8), (4.9), (4.10) and (4.11), we obtain

log γNn (1) =
1√
N

∑

0≤q<n

V N
q (Qq,n(1)) −

1

2N
vn + εNn ,

with εNn going to zero in probability as n goes to infinity. Thus, to prove the theorem, it
remains to show that

1√
vn

∑

0≤q<n

V N
q (Qq,n(1))

converges in distribution to a standard normal. We do so using the central limit theorem
for martingale difference arrays (see e.g. [9, 12]). The martingale property just comes from
the fact that, for any q ≥ 0 and any bounded function fq, one has

E
(
V N
q (fq)|FN

q−1

)
= 0 a.s.
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We now have to show that

1

vn

∑

0≤q<n

E

([
V N
q (Qq,n(1))

]2 |FN
q−1

)

converges to 1 in probability. One easily checks from the definition that

E

([
V N
q (Qq,n(1))

]2 |FN
q−1

)
= Covq,ηNq−1

(Qq,n(1), Qq,n(1))

We observe that
vn =

∑

0≤q<n

Covq,ηq−1(Qq,n(1), Qq,n(1))

and
dNn :=

∣∣∣ 1
vn

∑
0≤q<n E

([
V N
q (Qq,n(1))

]2 |FN
q−1

)
− 1

∣∣∣

≤ 1
vn

∑
0≤q<n

∣∣∣Covq,ηNq−1
(Qq,n(1), Qq,n(1)) −Covq,ηq−1(Qq,n(1), Qq,n(1))

∣∣∣

Using (4.13), we see that

E(dNn ) ≤ c

(
n

vn

)
1√
N

,

so we can conclude using (1.23).
The last point to be checked is the asymptotic negligibility condition, that is, for all

ǫ > 0, we have to prove that

1

vn

∑

0≤q<n

E

([
V N
q (Qq,n(1))

]2
1l
([

V N
q (Qq,n(1))

]2 ≥ ǫ vn

)
|FN

q−1

)

goes to zero in probability. By Schwarz’s inequality and (4.2), the expectation of this
expression is bounded above by

c
′

(
n

vn

)
1

(ǫvn)1/2
,

This ends the proof of the theorem.
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