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ABSTRACT

We propose a novel method for mapping sound spectrograms

onto images and thus enabling alignment between auditory

and visual features for subsequent multimodal processing.

We suggest a supervised learning approach to this audio-

visual fusion problem, on the following grounds. Firstly, we

use a Gaussian mixture of locally-linear regressions to learn

a mapping from image locations to binaural spectrograms.

Secondly, we derive a closed-form expression for the condi-

tional posterior probability of an image location, given both

an observed spectrogram, emitted from an unknown source

direction, and the mapping parameters that were previously

learnt. Prominently, the proposed method is able to deal with

completely different spectrograms for training and for align-

ment. While fixed-length wide-spectrum sounds are used

for learning, thus fully and robustly estimating the regres-

sion, variable-length sparse-spectrum sounds, e.g., speech,

are used for alignment. The proposed method successfully

extracts the image location of speech utterances in realistic

reverberant-room scenarios.

1. INTRODUCTION

The association of auditory and visual data has been proved

to considerably improve the robustness of speech process-

ing whenever close-distance and frontal recordings of the

speaker’s face or lips are available, for example to separate

speech from noise [1–3], from competing sources [4, 5], or

for speech recognition [6–8]. However, the performance of

these methods rapidly degrades with far distance (2-3 meters)

cameras and microphones. The problem becomes more diffi-

cult for two reasons: several objects, e.g., faces, are present

at once, and both the visual and auditory data are degraded.

Vision is useful, among others, for detecting faces and facial

behaviors. Nevertheless, the field of view and the range of a

camera are limited and the image features are perturbed by

occlusions, perspective effects, illumination, and the relative

position between camera and scene. In contrast, auditory sig-

nals have the potential to enable verbal interactions but they
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Fig. 1. Left: The sound-to-image transformation is learned from an

audio-visual target composed of a loud speaker and a visual marker.

The loud-speaker emits full-spectrum sounds which are recorded

with a microphone pair while the visual marker is used to estimate its

corresponding image positions. Right: A speaking face is detected

and predicted from a sparse-spectrum sound.

are spatially ubiquitous, subject to overlap, and corrupted by

the acoustic environment.

Hence, vision and audition have both strengths and lim-

itations and exploiting their complementarity is still a chal-

lenging problem. In this paper we propose a method that

aligns auditory and visual data based on mapping auditory

spectrograms onto images. We start by learning a sound-to-

image transformation from a training set of audio/visual pairs

(Fig. 1-left); this mapping is then applied to a sound source

that emits from an unknown image location (Fig. 1-right).

Several problems need to be addressed for such a method

to be effective: (i) the sound representation should encode

its location with respect to the microphones while it should

be independent of the spectral content of the sound, (ii) in

order to properly and fully estimate all the sound-to-image

mapping parameters, the training should be performed with

full-spectrum signals, and (iii) natural sounds such as speech

signals, which are of particular interest, have sparse spectro-

grams and it is not clear how to map them onto images, based

on the sound-to-image transformation parameters that were

estimated with full-spectrum sounds.

We propose to use a setup composed of one camera and

two microphones. The microphones are embedded into an

acoustic dummy head, yielding non-linear filtering effects

that depend on the sound direction (azimuth and elevation).

We stress that with such a setup one can build interaural

spectrograms that encode two-dimensional (2D) directional

information and which are independent of the spectral con-



tent of the emitted sound [9]. In order to estimate a mapping

from sounds to images, we propose to learn the parameters

of a Gaussian mixture of locally linear regression functions

using pairs of full-spectrum-data and pixel coordinates of

associated image landmarks.

However, estimating such a function directly, from high-

dimensional spectrograms to low-dimensional image loca-

tions, is problematic for two reasons. Firstly, the large num-

ber of parameters that need to be estimated in this case is

prohibitive. Secondly, as detailed below, it is not possible to

apply this direct function to natural sounds. Instead, we train

an image-to-audio regression (Section 2) using full-spectrum

(white noise) signals. Then, we derive an analytic expres-

sion for the conditional posterior distribution of an image

location, given a sparse spectrogram and the learned regres-

sion parameters (Section 3). We show that this posterior

distribution is a Gaussian mixture whose parameters (priors,

means, and covariances) can be computed in closed-form,

from the parameters of the regression function. Prominently,

the proposed solution can deal with missing data in the ob-

served acoustic vectors, for example, it is able to map natural

sounds, such as speech, onto images of faces.

The proposed method is strongly linked with the problem

of sound-source localization. This is traditionally done using

time difference of arrival (TDOA) or intensity-level differ-

ences (ILD) between microphones, e.g., [10–12] to cite just a

few. However these methods perform only one-dimensional

(azimuth) source localization. In the framework of audio-

visual alignment, 2D estimation is needed in order to asso-

ciate sound-source directions with image locations, which

rules out azimuth-only source localization. Another possi-

bility is to estimate the geometry of the camera-microphone

setup, but this turns out to be difficult because of the non-

linear nature of the sound-propagation model [13]. TDOA-

based 2D sound-source localization needs non-coplanar mi-

crophone arrays and the solution must solve a complex non-

linear constrained optimization problem [14].

In [9] it was experimentally shown that the space of inter-

aural spectral features is homeomorphic to a 2D manifold that

can be parameterized by azimuth and elevation. A dummy

head mounted onto a pan-tilt mechanism was used to collect

pairs of motor positions and interaural spectrograms, used to

train a regression function. However, the emitter was kept

static at a single position in all training and test experiments,

while the dummy head was rotated onto itself. The method

was hence limited to theoretical conclusions rather than prac-

tical applications. In this paper, we extend [9] by formally

stating and proving a theorem showing that natural sound

spectrograms can be mapped onto an image plane by invert-

ing a piecewise affine mapping. We subsequently introduce

a novel and elegant way of precisely locating a sound source,

based on its pixel location, without moving the sensors.

2. LEARNING WITH FULL SPECTRUM SOUNDS

Let us consider a single, full-spectrum (e.g. white noise) point

source, and a static auditory system that captures acoustic

vectors in Y ⊂ R
D along time. We assume that at any time,

these vectors depend on the source position but not on its

emitted spectrum. Let X ⊂ R
2 be a set of image locations,

asociated to a static camera field of view. We consider N
training pairs {(yn,xn)}n=N

n=1
⊂ Y ×X that associate acous-

tic vectors with their corresponding sound source position in

the image. These pairs are realizations of observed random

variables (Y ,X). We consider the following piecewise lin-

ear regression from the low-dimensional image plane to the

high-dimensional acoustic space:

Y =

K∑

k=1

I(Z = k)(AkX + bk) + E (1)

where matrix Ak ∈ R
D×2 and vector bk ∈ R

D are the pa-

rameters of an affine transformation τk and E ∈ R
D is a

Gaussian error vector with zero-mean and diagonal covari-

ance Σ = Diag (σ2

1
. . . σ2

d . . . σ2

D) capturing both the obser-

vation noise in R
D and the reconstruction error due to the

local affine approximation. I is the indicator function and Z
is a hidden variable such that I(Z = k) = 1 if and only

if Z = k (Y is the transformed of X by τk), and 0 other-

wise. Consequently we have p(Y = y|X = x, Z = k) =
N (y; Akx + bk,Σ). To constrain the affine transformations

to be local, we associate the K affine transformations to an

equal number of regions {Rk}
k=K
k=1

⊂ R
2 that define a par-

titioning of X . The regions are modeled in a probabilistic

way by assuming that X follows a mixture of K Gaussians

defined by p(X = x|Z = k) = N (x; ck,Γk) with prior

p(Z = k) = πk and with ck ∈ R
2, Γk ∈ R

2×2, and∑K

k=1
πk = 1. To summarize, the model parameters are

θ = {{ck,Γk, πk, Ak, bk}
K
k=1

,Σ} (2)

and they can be estimated via an EM procedure yielding

closed-form expressions for the model parameters [15].

3. MAPPING NATURAL SOUNDS ON IMAGES

We now consider the localization of natural sparse-spectrum

sounds, e.g., speech. A sound is described by T acoustic vec-

tors forming a time series, namely Y′ = {y′
1
. . .y′

t . . .y′

T } ⊂
R

D. We assume that these acoustic vectors are emitted from

the same location. A time series Y′ can be viewed as a D×T
spectrogram and each entry y′

dt is referred to as a frequency-

time point. Natural sounds are represented by spectrograms

that are extremely sparse, i.e., many frequency-time points

are null, resulting in an unusable or missing acoustic value at



that point. To account for this, we introduce a D × T ma-

trix χ = {χdt}
D,T
d,t=1

of binary variables such that χdt = 1
if the frequency-time point is active and χdt = 0 otherwise.

To summarize, a test sound is described by S = {Y′,χ} and

we seek the posterior density of the sound’s image location,

p(x|S; θ̃). We state and proof a theorem allowing for the full

characterization of this density.

Theorem 1 Under the assumption that all the acoustic vec-

tors in S are emitted from the same location, the posterior

distribution is a Gaussian mixture model in R
2, namely

p(x|S; θ̃) =

K∑

k=1

νkN (x;µk, Vk). (3)

whose parameters {νk,µk, Vk}
k=K
k=1

can be expressed in

closed-form with respect to θ̃ and S, namely:

µk = Vk

(
Γ̃
−1

k c̃k +

D,T∑

d,t=1

χdt

σ̃2

d

ãdk(y′

dt − b̃dk)

)
(4)

Vk =

(
Γ̃
−1

k +

D,T∑

d,t=1

χdt

σ̃2

d

ãdkã
⊤

dk

)−1

(5)

νk ∝ π̃k

|Vk|
1

2

|Γ̃k|
1

2

exp

(
−

1

2

( D,T∑

d,t=1

χdt

σ̃2

d

(y′

dt − b̃dk)2

+ c̃
⊤

k Γ̃
−1

k c̃k − µ⊤

k V−1

k µk

))
(6)

where ã
⊤

dk ∈ R
2 is the dth row of Ãk, b̃dk ∈ R is the dth entry

of b̃k and νk is normalized to sum to 1 over k.

The posterior expectation can then be used to estimate the

sound’s image location: x̂ = E[x|S; θ̃] =
∑K

k=1
νkµk.

Proof of theorem 1. By including the hidden variables Z
(section 2) and using the sum rule, we obtain:

p(x|S; θ̃) =

K∑

k=1

p(x|S, Z = k; θ̃)p(Z = k|S; θ̃). (7)

Since the proposed model implies an affine dependency be-

tween the Gaussian variables X and Y given Z, the term

p(x|S, Z = k; θ̃) is a Gaussian distribution in x. In other

words, for each k, there is a mean µk ∈ R
2 and a covari-

ance matrix Vk ∈ R
2×2 such that p(x|S, Z = k; θ̃) =

N (x;µk, Vk). Notice that νk = p(Z = k|S; θ̃) is not con-

ditioned by x. With these notations, (7) leads directly to

(3). We now detail the computation of the GMM parameters

{µk, Vk, νk}
K
k=1

. Using Bayes inversion we have:

p(x|S, Z = k; θ̃) =
p(S|x, Z = k; θ̃)p(x|Z = k; θ̃)

p(S|Z = k; θ̃)
. (8)

Since we already assumed that the measurement noise has a

diagonal covariance, the observations in S are conditionally

independent given Z and x. Therefore, by omitting the de-

nominator of (8) which does not depend on x, it follows that

p(x|S, Z = k; θ̃) is proportional to

p(x|Z = k; θ̃)
∏D,T

d=1,t=1
p(y′

dt|x, Z = k; θ̃)χdt

= N (x; c̃k, Γ̃k)
∏D,T

d=1,t=1
N (y′

dt|ã
⊤

dkx + b̃dk, σ̃2

d)χdt

=
C

|Γ̃k|
1

2

exp

(
−

1

2
(A + B)

)
(9)

where A =
∑D,T

d=1,t=1

χdt

eσ2

d

(y′

dt − ã
⊤

dkx − b̃dk)2, B = (x −

c̃k)⊤Γ̃
−1

k (x − c̃k), and the constant C depends neither on x

nor on k. Since p(x|S, Z = k; θ̃) is a normal distribution in

x with mean µk and covariance Vk, we can write:

A + B = (x − µk)⊤V−1

k (x − µk). (10)

By identification between the left-hand and right-hand terms

of (10), we obtain the formulae (4) and (5) for µk and Vk re-

spectively. Using Bayes inversion, the mixture’s priors νk =

p(Z = k|S; θ̃) are proportional to π̃kp(S|Z = k; θ̃). Unfor-

tunately, we cannot directly decompose p(S|Z = k; θ̃) into

a product over (d, t), as previously done with p(S|x, Z =

k; θ̃). Indeed, while it is assumed that the frequency-time

points of the observed spectrogram S are independent given

x and Z, this is not true for the same observations given only

Z. However, we can use (8) to obtain

p(S|Z = k; θ̃) =
p(S|x, Z = k; θ̃)p(x|Z = k; θ̃)

p(x|S, Z = k; θ̃)
. (11)

The numerator is given by (9) and the denominator is the nor-

mal distribution N (x;µk, Vk). After simplifying the terms

in x, we obtain the desired expression (6) for νk. �

4. EXPERIMENTS AND RESULTS

Setup. A binaural pair of microphones embedded into an

acoustic dummy head is mounted onto a camera system1. The

audio-visual source used for training is a loud-speaker with a

visual marker, e.g., Fig. 1(left). We assume a one-to-one map-

ping between pixels and sound directions.

Interaural acoustic vectors. Let a sound source emit from

a direction corresponding to a pixel position x ∈ R
2. We

denote the complex-valued left- and right-spectrograms with

sL = {sL
ft}

F,T
t=1,f=1

and sR = {sR
ft}

F,T
t=1,f=1

. These spectro-

grams are built using the short-time Fourier transform with

F frequency bands and T windows of size 64ms with 56ms

overlap. The resulting spectrograms have 125 temporal bins

1Full details on the setup at http://team.inria.fr/perception/popeye/



Fig. 2. A subject counts from 1 to 12 (white numbers) with a normal voice loudness and is static while pronouncing each number. The red

circles show the position found with our method. The yellow squares show the results of the Viola-Jones face detector [16].

per second and 512 frequency bins ranging from 0 to 8KHz.

The interaural-level-difference (ILD) and interaural-phase-

difference (IPD) spectrograms, α and φ, are defined as the

log-amplitude and phase of the ratio between the left and the

right spectrograms, i.e., αft = 20 log
10

(|sR
ft/sL

ft|) ∈ R and

φft = exp(j arg(sR
ft/sL

ft)) ∈ C ≡ R
2. A binaural acous-

tic vector y is obtained by taking the temporal mean of the

concatenation of α and φ, hence we obtain a vector of size

D = 1536. Because of the filtering effects from source to

microphones, αft and φft are independent of the emitted sig-

nal, and depend on the sound source position x if the recorded

spectral density at the spectrogram point (f, t) is large enough

[9]. Time-frequency points for which the total spectral den-

sity 10 log
10

(|sL
ft|

2 + |sR
ft|

2) is below a given threshold are

treated as missing values.

Training data2 are obtained with a loudspeaker emitting

white-noise (WN) from N = 432 different positions lying on

a 18 × 24 grid in the camera’s field of view, e.g., Fig. 1-left.

Since a WN signal have a significant spectral density in all

time-frequency points, the associated ILD and IPD spectro-

grams αn and φn do not have missing values. Therefore

we obtain a training set (yn,xn), n ∈ [1 . . . N ]. In all our

experiments we used K = 32 affine components to learn the

regression (Section 2).

Loud-speaker test data2 are obtained with the loud-speaker

emitting 1-second utterances from the TIMIT dataset [17].The

loud speaker is placed at 108 positions on a 9 × 12 grid cov-

ering the camera’s field of view. The binaural recording

associated to each utterance is cut, yielding ILD and IPD

spectrograms with 89% missing values on average. These

spectrograms are concatenated vertically, resulting in a time

series of acoustic vectors S = {Y′,χ} (Section 3).

Counting test2. The method was also tested on in a more

realistic scenario. A participant is asked to count from 1 to 20

in front of the camera. The speaker is required to be roughly

static while pronouncing each number, whereas he/she is

2The training data, test data, and video examples are available at

http://perception.inrialpes.fr/people/Deleforge/AVASM Dataset/

allowed to move in between numbers. The audio-to-visual

mapping method is applied on a 720ms analysis window that

is slid over the soundtrack, in order to estimate a speaker po-

sition at each video frame for which enough acoustic level is

recorded. This is a particularly challenging scenario because

the speaker has different direction, distance, orientation and

directionality than the loudspeaker used for training, and the

speaker emits sparse-spectrum and less loud sounds than in

the training set, thus considerably reducing the amount of

exploitable spectrogram data.

Results. The average localization error over 108 loud-speaker

tests was 21.9±17 pixels horizontally and 23.1±20 vertically.

This corresponds to less that 1◦ in both azimuth and elevation.

The largest ground-truth-to-estimate distance (GTED) error

was 89.9 pixels, i.e. ≈ 4◦. For comparison, we used PHAT

[18] as a baseline sound source localization method, with the

same test sounds. PHAT estimates the sound’s time difference

of arrival (TDOA), using cross-correlations at different times

and frequency channels. A linear regressor was trained to

map TDOA values obtained with PHAT onto the horizontal

image axis using the WN training data3. Note that the vertical

position cannot be estimated from TDOA. The average GTED

with PHAT was 64.0±51.5 pixels (3 times larger than with the

proposed method) with 21 out of 108 GTED larger than 100

pixels. The average computational time of our method and of

PHAT are of respectively 230ms and 400ms for 1s sounds.

Figure 2 shows some frames of the video generated from

the counting test2. The sound source position estimated by the

proposed method is shown by a red circle in the correspond-

ing video frame. The largest mouth-to-estimate distance error

is 128 pixels (number 3). This corresponds to ≈ 1.7◦ error

in azimuth and ≈ 5.3◦ error in elevation. For comparison, re-

sults obtained with a face detection algorithm [16] are shown

with a yellow square. While this method correctly localized

the faces in 10 out of 12 examples, it failed to detect faces #8

and #9 due to partial occlusions. It also featured a number of

false detections.

3A linear dependency was observed in practice.



5. CONCLUSION

We presented a method that maps sound-source directions

onto images in order to achieve audio-visual alignment, e.g.,

speech-to-face association. The direction of a sound is es-

timated both in azimuth and elevation (2D localization),

whereas the vast majority of state-of-the-art techniques es-

timate only the azimuth (1D localization). 2D localization

is absolutely necessary in order to align audio signals with

visual features. The method relies on a regression frame-

work [15] that learns the parameters of a transformation from

binaural spectrograms to pixel coordinates. While the offline

training needs full-spectrum sounds (white noise), the on-

line localization has a closed-form solution and can be used

to locate any sound type, including natural sparse-spectrum

sounds. Another advantage of our method is that it requires

neither explicit representation of the microphone/camera ge-

ometry [13, 14], nor long audio-visual sequences [3]. Proper

alignment between acoustic spectrograms and images paves

the road towards audio-visual data association for advanced

multimodal processing and scene understanding.
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