

Modeling of gene ow by a Bayesian approach: A new perspective for decision support

Arnaud Bensadoun, Herve Monod, Frédérique Angevin, David Makowski,

Antoine Messean

► To cite this version:

Arnaud Bensadoun, Herve Monod, Frédérique Angevin, David Makowski, Antoine Messean. Modeling of gene ow by a Bayesian approach: A new perspective for decision support. GMCC 2013, Nov 2013, Lisbon, Portugal. pp.28. hal-01019193

HAL Id: hal-01019193 https://hal.science/hal-01019193

Submitted on 3 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Materials and Method 00000 Results 0000 Discussion and Perspectives

Modeling of gene flow by a Bayesian approach: A new perspective for decision support

Arnaud Bensadoun

Joint work with: Hervé Monod, Frédérique Angevin, David Makowski and Antoine Messéan

> GMCC 2013 - Lisbon 12-15 November 2013

Materials and Methods 00000 Results 0000 Discussion and Perspectives

Outline

Introduction

- Context
- Objectives

2 Materials and Methods

- Dispersal model
- Observation model
- Types of data

3 Results

- Parameter estimation
- Overall variability
- Goodess of fit
- Uncertainty quantification

Discussion and Perspectives

Materials and Methods 00000 Results 0000 Discussion and Perspectives

Outline

- Context
- Objectives

Materials and Methods

- Dispersal model
- Observation model
- Types of data

3 Results

- Parameter estimation
- Overall variability
- Goodess of fit
- Uncertainty quantification

Discussion and Perspectives

Introd	uc	tio	n
•00			

Results 0000 Discussion and Perspectives

Context and Challenges

EU Commission provides recommendations for coexistence measures:

- To base decisions on scientific results.
- To take specific measures depending on the species and varieties and regional context.

How to set up coexistence measures in practice?

Introduction •OO Materials and Method

Results 0000 Discussion and Perspectives

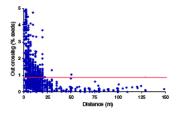
Context and Challenges

EU Commission provides recommendations for coexistence measures:

- To base decisions on scientific results.
- To take specific measures depending on the species and varieties and regional context.

How to set up coexistence measures in practice?

• Statistical approach.



 \Rightarrow Easy to implement from a regulatory point of view.

 \Rightarrow Difficult adaptation to local contexts \rightarrow Not proportional to the risk

Figure: Cross pollination rate as a function of distance. *Source*: Riesgo et al., 2010

Results 0000 Discussion and Perspectives

Context and Challenges

EU Commission provides recommendations for coexistence measures:

- To base decisions on scientific results.
- To take specific measures depending on the species and varieties and regional context.

How to set up coexistence measures in practice?

- Statistical approach.
- Modelling approach considering the effects of landscape characteristics, climate and agricultural practices to set up coexistence measures adapted to local climatic and agronomic factors.

 \Rightarrow Proportionality principle.

 \Rightarrow More difficult to implement under a regulatory framework.

Results 0000 Discussion and Perspectives

Context and Challenges

EU Commission provides recommendations for coexistence measures:

- To base decisions on scientific results.
- To take specific measures depending on the species and varieties and regional context.

How to set up coexistence measures in practice?

- Statistical approach.
- Modelling approach considering the effects of landscape characteristics, climate and agricultural practices to set up coexistence measures adapted to local climatic and agronomic factors.

 \Rightarrow Proportionality principle.

 \Rightarrow More difficult to implement under a regulatory framework.

Challenges

- \Longrightarrow Adapt coexistence rules to the diversity of possible situations.
- \implies Incorporate variability and uncertainty in decision making.

Materials and Method

Results 0000 Discussion and Perspectives

Knowledge and Objectives

- Knowledge about the risks of mixing and in particular on gene flow.
 ⇒ Databases gathering results of field experiments (e.g. SIGMEA).
- Generic models of pollen dispersal and Cross Pollination Rate (CPR) at the landscape scale, for instances:
 - \Rightarrow MAPOD (Angevin et al., 2008) for maize.
 - \Rightarrow GeneSys (Colbach et al., 2001) for rapeseed.

Materials and Method

Results 0000 Discussion and Perspectives

Knowledge and Objectives

- Knowledge about the risks of mixing and in particular on gene flow.
 ⇒ Databases gathering results of field experiments (e.g. SIGMEA).
- Generic models of pollen dispersal and Cross Pollination Rate (CPR) at the landscape scale, for instances:
 - \Rightarrow MAPOD (Angevin et al., 2008) for maize.
 - \Rightarrow GeneSys (Colbach et al., 2001) for rapeseed.

Objectives of the study

- Integrate variability and uncertainty in decision making.
 - Probabilistic prediction rather than single value:
 - \Rightarrow Associate confidence interval to any CPR prediction.
 - Quantify prediction uncertainty.
- Enable adaptability of models to information level.
 - Development of simplified and flexible models.
 - Quantify the benefit of adding input data.

₩

Relevance of the Bayesian approach

Materials and Methods

Results 0000 Discussion and Perspectives

Outline

Introduction

- Context
- Objectives

2 Materials and Methods

- Dispersal model
- Observation model
- Types of data

3 Results

- Parameter estimation
- Overall variability
- Goodess of fit
- Uncertainty quantification

Discussion and Perspectives

Materials and Methods

Results 0000 Discussion and Perspectives

Individual Dispersal Functions

Individual dispersal function: $\gamma(d_s)$

A probability density function describing the probability that a pollen grain fertilises an ovule at a distance d_s from its emission point.

Introd	uction
000	

Results 0000 Discussion and Perspective

(1)

Individual Dispersal Functions

$$\gamma(d_s) = \left\{ egin{array}{ccc} {\cal K} imes e^{-a_1 d_s} & d_s < D \ {\cal K} imes e^{-a_1 D - a_2 d_s} & d_s \geq D \end{array}
ight.$$

(Source: Damgaard et al., 2005)

Where:

•
$$d_s = \sqrt{x^2 + y^2}$$

 \Rightarrow Distance model.

Introduction	
000	

Materials	and	Methods
00000		

Results 0000 Discussion and Perspective

Individual Dispersal Functions

$$\gamma(d_s) = \begin{cases} K \times e^{-a_1 d_s} & d_s < D \\ K \times e^{-a_1 D - a_2 d_s} & d_s \ge D \end{cases}$$
(1)

(Source: Damgaard et al., 2005)

Where:

•
$$d_s = \sqrt{x^2 + y^2}$$

 \Rightarrow Distance model.

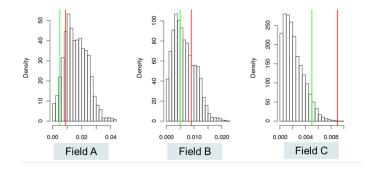
- $d_s = \sqrt{x^2 + y^2} \times (1 \theta_v \cos(\omega \omega_0)),$ ω_0 the main wind direction, and ω the angle between the vector donor/receptor and the horizontal axis.
 - \Rightarrow Distance+Wind model.

Materials and Methods

Results 0000 Discussion and Perspectives

Bayesian Framework

Model parameters are random variables, so is the prediction:



 \Rightarrow Requires the definition of a probabilistic model linking the observations to the model parameters.

Introd	uction
000	

Results 0000 Discussion and Perspectives

Observation model

Natural observation model for counts of rare events \Rightarrow Poisson model:

$$Y_s \sim \mathcal{P}(K\mu'_s)$$
 (2)

Introd	uction
000	

Results 0000 Discussion and Perspectives

Observation model

Natural observation model for counts of rare events ⇒ Poisson model:

$$Y_s \sim \mathcal{P}(K\mu'_s)$$
 (2)

But highly variable observations AND over-representation of zeros \Rightarrow Zero-Inflated Poisson model:

$$Y_s \sim ZI \mathcal{P}(1-q_s, K\mu'_s)$$
 (3)

Introd	uction
000	

Results 0000 Discussion and Perspectives

Observation model

Natural observation model for counts of rare events ⇒ Poisson model:

$$Y_s \sim \mathcal{P}(K\mu'_s)$$
 (2)

But highly variable observations AND over-representation of zeros \Rightarrow Zero-Inflated Poisson model:

$$Y_s \sim ZI \mathcal{P}(1 - q_s, K\mu'_s) \tag{3}$$

Taking into account the remaining variability

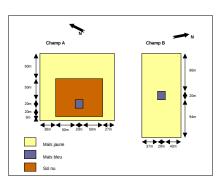
 \Rightarrow Normal model for the Poisson model expectation :

$$\mu'_{s} \sim \mathcal{N}(\gamma(d_{s}), \sigma^{2}) \tag{4}$$

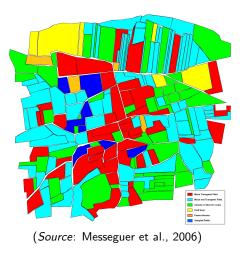
Materials and Methods

Results 0000 Discussion and Perspectives

Types of data



(Source: Klein et al., 2003)



Materials and Methods 00000 Results

Discussion and Perspectives

Outline

Introduction

- Context
- Objectives

2 Materials and Methods

- Dispersal model
- Observation model
- Types of data

3 Results

- Parameter estimation
- Overall variability
- Goodess of fit
- Uncertainty quantification

Discussion and Perspectives

Intr	odu	ction
00	0	

0.04

50000

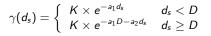
Iterations

Materials	and	Method
00000		

Results 0000

Parameter estimation

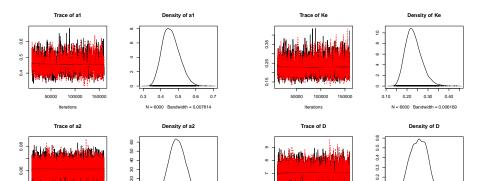
- Method: Monte Carlo Markov Chain (MCMC)
- Software for estimation and inference: JAGS ٠
- Convergence to posterior distribution: OK



5.0

00

5



ŝ

50000 100000 150000

Iterations

10

< 67 →

0.05 0.06 N = 6000 Bandwidth = 0.0009884

0.07 0.08 0.09

2

0.04

Materials and Methods

Results

Discussion and Perspectives

Overall variability

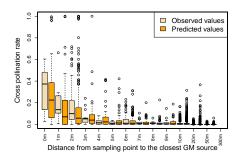


Figure: Boxplots of observed and predicted cross pollination rates as a function of distance to the closest GM source.

 \Rightarrow Both models reflect the overall variability well.

 \Rightarrow The observation model (*ZIP*+*Normal* expectation) is sufficient to reproduce this variability.

Materials and Method 00000 Results

Discussion and Perspectives

Goodness of fit

	Model	
Criterion	Distance	Distance + Wind
CRPS	-2.720	-2.400 🗸
Correlation	0.696	0.746 🗸
Efficiency	0.465	0.536 🗸
RMSE	14.234	13.254 🗸
ROC	0.813	0.863 🗸

Table: Criteria values calculated with mean predictions for the two models

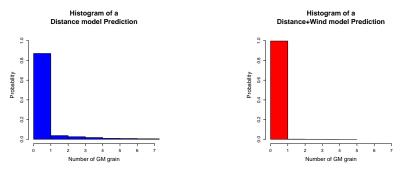
 \Rightarrow **Distance+Wind** model outperforms **Distance** model either on absolute error (RMSE, efficiency, correlation) or on quality of decision (ROC).

Materials and Method

Results

Discussion and Perspectives

Uncertainty quantification



- Both models predict the observed value as the more likely.
- Distance+Wind model gives more precise predictions.
- \Rightarrow Incorporate wind effect reduce uncertainty prediction.
- \Rightarrow Better description of the situation increases the accuracy of prediction.

Materials and Methods 00000 Results 0000 Discussion and Perspectives

Outline

Introduction

- Context
- Objectives

2 Materials and Methods

- Dispersal model
- Observation model
- Types of data

3 Results

- Parameter estimation
- Overall variability
- Goodess of fit
- Uncertainty quantification

Discussion and Perspectives

Materials and Method 00000 Results 0000 Discussion and Perspectives

Discussion and Perspectives

Discussion

- High uncertainty and/or unavailability of input that must be taken into account.
- High uncertainty in predictions that need to be assessed.

Materials and Method 00000 Results 0000 Discussion and Perspectives

Discussion and Perspectives

Discussion

- High uncertainty and/or unavailability of input that must be taken into account.
- High uncertainty in predictions that need to be assessed.
- Bayesian methods allows for probabilistic predictions.
 - \Rightarrow Overall variability well reflected.
 - \Rightarrow Provide better understanding of prediction uncertainty.
- Substantial benefit of a better description of the situation.
 - \Rightarrow Decrease of absolute error.
 - \Rightarrow Decrease of prediction uncertainty.
- Probabilistic predictions provide better insight into the risk for decision makers. \Rightarrow Decisions may adapt to the level of risk aversion.

Materials and Methods 00000 Results 0000 Discussion and Perspectives

Discussion and Perspectives

Discussion

- High uncertainty and/or unavailability of input that must be taken into account.
- High uncertainty in predictions that need to be assessed.
- Bayesian methods allows for probabilistic predictions.
 - \Rightarrow Overall variability well reflected.
 - \Rightarrow Provide better understanding of prediction uncertainty.
- Substantial benefit of a better description of the situation.
 - \Rightarrow Decrease of absolute error.
 - \Rightarrow Decrease of prediction uncertainty.
- Probabilistic predictions provide better insight into the risk for decision makers.
 ⇒ Decisions may adapt to the level of risk aversion.

Perspectives

- Extension to *Multi-source* situations.
- Incorporate the effect of flowering delay.
- Refine the individual dispersal function.

Materials and Method 00000 Results 0000 Discussion and Perspectives

Thanks for listening Any questions?

Life is like a Markov chain, you never know what you're gonna get