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Context and Challenges

EU Commission provides recommendations for coexistence measures:

To base decisions on scientific results.

To take specific measures depending on the species and varieties and regional
context.

.
How to set up coexistence measures in practice?

Statistical approach.

Figure: Cross pollination rate as a function of
distance. Source: Riesgo et al., 2010

.

.
⇒ Easy to implement from a regulatory point
of view.
.
⇒ Difficult adaptation to local contexts → Not
proportional to the risk
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=⇒ Adapt coexistence rules to the diversity of possible situations.

=⇒ Incorporate variability and uncertainty in decision making.
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Knowledge and Objectives

Knowledge about the risks of mixing and in particular on gene flow.
⇒ Databases gathering results of field experiments (e.g. SIGMEA).
.

Generic models of pollen dispersal and Cross Pollination Rate (CPR) at the
landscape scale, for instances:
.
⇒ MAPOD (Angevin et al., 2008) for maize.
⇒ GeneSys (Colbach et al., 2001) for rapeseed.

Objectives of the study

Integrate variability and uncertainty in decision making.

Probabilistic prediction rather than single value:
⇒ Associate confidence interval to any CPR prediction.
Quantify prediction uncertainty.

Enable adaptability of models to information level.

Development of simplified and flexible models.
Quantify the benefit of adding input data.

⇓

Relevance of the Bayesian approach
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Individual Dispersal Functions

.
Individual dispersal function: γ(ds)

A probability density function describing the probability that a pollen grain
fertilises an ovule at a distance ds from its emission point.
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Individual Dispersal Functions

γ(ds) =

{
K × e−a1ds ds < D
K × e−a1D−a2ds ds ≥ D

(1)

(Source: Damgaard et al., 2005)

Where:

ds =
√

x2 + y2

.

. ⇒ Distance model.

.

ds =
√

x2 + y2 × (1− θv cos(ω − ω0)),
ω0 the main wind direction,
and ω the angle between the vector donor/receptor and the horizontal axis.
.
. ⇒ Distance+Wind model.
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Bayesian Framework

Model parameters are random variables, so is the prediction:

⇒ Requires the definition of a probabilistic model linking the observations to
the model parameters.
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Observation model

Natural observation model for counts of rare events
⇒ Poisson model:

Ys ∼ P(Kµ′s) (2)

But highly variable observations AND over-representation of zeros
⇒ Zero-Inflated Poisson model:

Ys ∼ ZIP(1− qs ,Kµ
′
s) (3)

Taking into account the remaining variability
⇒ Normal model for the Poisson model expectation :

µ′s ∼ N (γ(ds), σ2) (4)
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Types of data
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Parameter estimation

Method: Monte Carlo Markov Chain (MCMC)

Software for estimation and inference: JAGS

Convergence to posterior distribution: OK γ(ds) =

{
K × e−a1ds ds < D
K × e−a1D−a2ds ds ≥ D
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Overall variability
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Figure: Boxplots of observed and predicted cross pollination rates as a function of
distance to the closest GM source.

⇒ Both models reflect the overall variability well.
⇒ The observation model (ZIP+Normal expectation) is sufficient to
reproduce this variability.
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Goodness of fit

Model

Criterion Distance Distance + Wind

CRPS -2.720 -2.400 3

Correlation 0.696 0.746 3

Efficiency 0.465 0.536 3

RMSE 14.234 13.254 3

ROC 0.813 0.863 3

Table: Criteria values calculated with mean predictions for the two models

⇒ Distance+Wind model outperforms Distance model either on absolute
error (RMSE, efficiency, correlation) or on quality of decision (ROC).
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Uncertainty quantification
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Both models predict the observed value as the more likely.

Distance+Wind model gives more precise predictions.

⇒ Incorporate wind effect reduce uncertainty prediction.
⇒ Better description of the situation increases the accuracy of prediction.
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Discussion and Perspectives

Discussion

High uncertainty and/or unavailability of input that must be taken into account.

High uncertainty in predictions that need to be assessed.
.

Bayesian methods allows for probabilistic predictions.
⇒ Overall variability well reflected.
⇒ Provide better understanding of prediction uncertainty.

Substantial benefit of a better description of the situation.
⇒ Decrease of absolute error.
⇒ Decrease of prediction uncertainty.

Probabilistic predictions provide better insight into the risk for decision makers.
⇒ Decisions may adapt to the level of risk aversion.

.
Perspectives

Extension to Multi-source situations.

Incorporate the effect of flowering delay.

Refine the individual dispersal function.
.
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Thanks for listening
Any questions?

Life is like a Markov chain, you never know what you’re gonna get
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