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Context and Challenges

EU Commission provides recommendations for coexistence measures:

To base decisions on scientific results.

To take specific measures depending on the species and varieties and regional context.

. How to set up coexistence measures in practice?

Statistical approach. 

Knowledge and Objectives

Knowledge about the risks of mixing and in particular on gene flow. ⇒ Databases gathering results of field experiments (e.g. SIGMEA). .

Generic models of pollen dispersal and Cross Pollination Rate (CPR) at the landscape scale, for instances: . ⇒ MAPOD (Angevin et al., 2008) for maize. ⇒ GeneSys (Colbach et al., 2001) for rapeseed.

Objectives of the study

Integrate variability and uncertainty in decision making.

Probabilistic prediction rather than single value: ⇒ Associate confidence interval to any CPR prediction. Quantify prediction uncertainty.

Enable adaptability of models to information level.

Development of simplified and flexible models. Quantify the benefit of adding input data.

⇓

Relevance of the Bayesian approach 

Individual Dispersal Functions

.

Individual dispersal function: γ(ds )

A probability density function describing the probability that a pollen grain fertilises an ovule at a distance ds from its emission point.

Individual Dispersal Functions

γ(ds ) = K × e -a 1 ds ds < D K × e -a 1 D-a 2 ds ds ≥ D (1) 
(Source: Damgaard et al., 2005) Where: ds = x 2 + y 2 . . ⇒ Distance model. .

Individual Dispersal Functions

γ(ds ) = K × e -a 1 ds ds < D K × e -a 1 D-a 2 ds ds ≥ D (1) 
(Source: Damgaard et al., 2005) Where:

ds = x 2 + y 2 . . ⇒ Distance model. . ds = x 2 + y 2 × (1 -θv cos(ω -ω 0 )
), ω 0 the main wind direction, and ω the angle between the vector donor/receptor and the horizontal axis. . . ⇒ Distance+Wind model.

Bayesian Framework

Model parameters are random variables, so is the prediction:

⇒ Requires the definition of a probabilistic model linking the observations to the model parameters.

Observation model

Natural observation model for counts of rare events ⇒ Poisson model:

Ys ∼ P(K µ s ) (2)
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Types of data

Figure :

 : Figure: Cross pollination rate as a function of distance. Source: Riesgo et al., 2010

  Carlo Markov Chain (MCMC) Software for estimation and inference: JAGS Convergence to posterior distribution: OK γ(ds ) =K × e -a 1 ds ds < D K × e -a 1 D-a 2 ds ds ≥ D

  Figure: Boxplots of observed and predicted cross pollination rates as a function of distance to the closest GM source. ⇒ Both models reflect the overall variability well. ⇒ The observation model (ZI P+Normal expectation) is sufficient to reproduce this variability.
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Context and Challenges

EU Commission provides recommendations for coexistence measures:

To base decisions on scientific results.

To take specific measures depending on the species and varieties and regional context.

.

Knowledge and Objectives

Knowledge about the risks of mixing and in particular on gene flow. ⇒ Databases gathering results of field experiments (e.g. SIGMEA). . Generic models of pollen dispersal and Cross Pollination Rate (CPR) at the landscape scale, for instances: . ⇒ MAPOD (Angevin et al., 2008) for maize. ⇒ GeneSys (Colbach et al., 2001) for rapeseed. Both models predict the observed value as the more likely.

Goodness of fit

Uncertainty quantification

Histogram of a Distance model Prediction

Distance+Wind model gives more precise predictions.

⇒ Incorporate wind effect reduce uncertainty prediction. ⇒ Better description of the situation increases the accuracy of prediction.
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Bayesian methods allows for probabilistic predictions. ⇒ Overall variability well reflected. ⇒ Provide better understanding of prediction uncertainty.

Substantial benefit of a better description of the situation. ⇒ Decrease of absolute error. ⇒ Decrease of prediction uncertainty.

Probabilistic predictions provide better insight into the risk for decision makers. ⇒ Decisions may adapt to the level of risk aversion.
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Discussion

High uncertainty and/or unavailability of input that must be taken into account.

High uncertainty in predictions that need to be assessed. .

Bayesian methods allows for probabilistic predictions. ⇒ Overall variability well reflected. ⇒ Provide better understanding of prediction uncertainty.

Substantial benefit of a better description of the situation. ⇒ Decrease of absolute error. ⇒ Decrease of prediction uncertainty.

Probabilistic predictions provide better insight into the risk for decision makers. ⇒ Decisions may adapt to the level of risk aversion. . Perspectives Extension to Multi-source situations.

Incorporate the effect of flowering delay.

Refine the individual dispersal function. .

Thanks for listening

Any questions?

Life is like a Markov chain, you never know what you're gonna get