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chromosomes and epigenetics
Anne Gabory1, Tessa J Roseboom2,3, Tom Moore4, Lorna G Moore5 and Claudine Junien1,6*
Abstract

Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension,
cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these
diseases begins early in development. The observed differences between the sexes may result from genetic and
hormonal differences and from differences in responses to and interactions with environmental factors, including
infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects
the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of
health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between
diverse environmental influences on placental functions and the risk of disease later in life. As one of the few
tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male
and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory
pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong
differences in sex hormone expression largely account for such responses. However, sex-specific changes in
epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence
of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in
placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the
role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific
epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention.
However, even with recent developments in this field, we still know little about the mechanisms underlying the
early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical
messenger between the maternal environment and the fetus, the placenta may play a key role not only in
buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to
preconceptional exposure of both the mother and the father to stressful conditions.
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Review
Introduction
The recent and rapid worldwide increase in non-
communicable diseases (NCDs) challenges the assump-
tion that genetic factors are the primary contributors to
such diseases [1]. There is compelling evidence based on
numerous clinical observations and on experimental ani-
mal studies, that a new dimension, that of the “develop-
mental origins of health and disease” (DOHaD) is at
stake and therefore requires a paradigm shift [2]. Such
studies are progressively revealing the role of early influ-
ences during gestation and lactation and, more recently,
even during the preconceptional and childhood as well
as adolescence periods on disease risk [3-11]. Exposure
to various exogenous or/and endogenous changes during
specific windows of developmental programming may
affect the long-term health and susceptibility to NCDs
of the offspring with a disparity between males and fe-
males in the timing of onset and severity of disease out-
comes [12-16], often with a long latency [17].
As the interface between mother and fetus, the pla-

centa plays a key role in fetal growth and development
and, as such, affects the fetal programming underlying
subsequent vulnerability in adulthood. Trophoblasts are
the first cell lineage to differentiate during mammalian
development. These cells mediate implantation and give
rise to most of the extraembryonic tissues [18]. The pla-
centa acquires nutrients and oxygen from the maternal
circulation, returns waste products to the maternal cir-
culation and prevents rejection of the semi-allogenic
fetus. The placenta is also a major endocrine organ be-
ing responsible for synthesizing vast quantities of hor-
mones and cytokines that have important effects on
both maternal and fetal physiology [19-22]. As a gateway
to the fetus the placenta is affected by numerous envir-
onmental factors including nutrient status and tissue
oxygenation, which may modify epigenetic marks and
gene expression within the placenta and therefore
placental development and function [23-25]. Studies of
rodents and large animals have shown placental develop-
ment to be highly adaptable, with many means of com-
pensating for poor nutritional conditions [26-30].
Sex differences in the rate of fetal growth have long

been recognized [31]. The sex of the embryo affects the
size of both the fetus and the placenta, together with the
ability of the placenta to respond to adverse stimuli
[27,32,33]. The placenta has traditionally been consid-
ered an asexual organ and therefore, many studies focus-
ing on the placenta have not taken the sex of the
embryo into account [33]. But given its extraembryonic
origin, the placenta has a sex: that of the embryo it
belongs to [33-35] and numerous DOHaD studies indi-
cate that sex differences can originate early in develop-
ment and in particular in the placenta [36]. Studies by
Ishikawa et al. have clearly established an effect of sex
chromosome « dosage » on placental size in mice, with
XY placentas being significantly larger than XX placentas
and that such differences are independent of androgen ef-
fects [37]. Although the possession of one X chromosome
rather than two leads to an increase in placental size, the
underlying mechanism is still to be determined [37].
In mice and cattle, accelerated development is already

evident in XY blastocysts; cell division among male em-
bryos occurs more rapidly than in female embryos [38]
and, in humans, boys grow more rapidly than girls from
the earliest stages of gestation [39]. These differences
may start as early as the blastocyst stage in bovines: one
third of genes showed sex differences in gene expression
[40,41]. Gene expression analysis either for candidate
genes or at the genome-wide level show that both the
trajectories under basal conditions and those modulat-
ing responses differ between the sexes [15]. Analysis of
genes involved in amino acid transport and metabolism
identified sex differences both in average placental gene
expression between male and female and in the relation-
ships between placental gene expression and maternal
factors [42]. Ontological analysis of such data suggests
a higher global transcriptionnal level in females and
greater protein metabolism levels in males. Specifically
global glucose metabolism and pentose-phosphate path-
way activity are twice and four times greater in bovine
male vs. female blastocysts respectively, with similar
metabolic differences being seen for human embryos at
the same stages (for review [43]). At birth, placental
weights and FPI (fetus-to-placenta weight ratio index,
reflecting placental efficiency), tend to be greater in boys
than girls [44]. These observations suggest that males
may be both more responsive to growth promoting influ-
ences, and more susceptible to supply disturbances [44,45].
How could placental sex-specific functions under basal

conditions, and sex-specific sensitivity to environmental
conditions contribute to the differences in frequency, se-
verity and age at onset of NCDs between the sexes?
Unequal gene expression by the sex chromosomes be-
tween males and females play an important role even be-
fore implantation and the initiation of adrenal and
gonad development. The burgeoning field of epigenetics
provides credible molecular mechanisms to account for
gene expression alterations that may persist in the long
term. Owing to complex and programmable epigenetic
processes, exposure to adverse environments during crit-
ical developmental windows can trigger long lasting in-
fluences on the cell’s-epigenome [46]. The resulting
changes in epigenetic marks may alter cell fate decisions,
the ensuing growth and development of tissues and or-
gans, and subsequently be responsible for inadequate re-
sponses to later challenges such as an obesogenic
environment in a sex-specific manner [15,47,48].



Gabory et al. Biology of Sex Differences 2013, 4:5 Page 3 of 14
http://www.bsd-journal.com/content/4/1/5
The aim of this review is to discuss the emerging
knowledge on the sex-specific relationships between di-
verse environmental influences on placental functions
and the risk of disease later in life. Given the abundance
of X-linked genes involved in placentogenesis, and the
early unequal gene expression by the sex chromosomes
between males and females, this review focusses on the
role of X- and Y-chromosome-linked genes, and espe-
cially on those involved in the peculiar placenta-specific
epigenetics processes, giving rise to the unusual placenta
epigenetic landscapes.

Sex-specific outcomes of the effects of placental growth
on fetal programming
As a critical messenger between the maternal environ-
ment and the fetus, the placenta may play a key role not
only in buffering environmental effects transmitted by
the mother but also in expressing and modulating effects
due to preconceptional exposure of both the mother and
the father to stressful conditions. Figure 1 shows how
such influences may operate on the transmission of en-
vironmental influences to subsequent generation(s), and
illustrate the central role of the placenta on the sex-
specificity of these parent-of-origin effects. Support for
the possibility of inter and transgenerational effects are
Figure 1 Sex-specific transmission of exposure to environment to sub
psychosocial stress, toxins, endocrine disruptors, tobacco, alcohol, microbio
pathways and networks in ways that differ between the sexes. For example
quality and be transmitted to the subsequent (F1) generation. Additionally
metabolism, diet, hormonal changes. . .) can be transmitted from the mate
and affect F1 tissue development. Programming of somatic tissues can lead
Moreover, primordial germ cells, which develop and undergo reprogramm
environment and contribute genetic and epigenetic information to the F2
such influences differently. In particular, multigenerational exposure on the
transgenerational phenotype would be observed in F3, whereas on the pa
transgenerational phenotype in F2 and F3 generations.
also emerging, making it important to know the role
played by the placenta and the possible maternal and or
paternal epigenetic imprints carried by the gametes
forming the zygote. Indeed, maternally or paternally
transmitted non-erased epigenetic alterations of key de-
velopmental genes may perturb early trophoblast devel-
opment in a sex-specific manner (Figure 1).
There is evidence to suggest that not only maternal

mal- or undernutrition in the context of famines
[20,49], maternal overnutrition, gestational diabetes or
obesity, maternal stress or depression, but also environ-
mental stressors such as drugs [50] and endocrine
disruptors [51] are deleterious to the health of the off-
spring. Many of these factors have been shown to have
the same range of defects and lead to the development
of the metabolic syndrome [52-56], or mental health
disorders in the offspring [57,58] with striking sex-
specificity [15,59-63]. Two common complications of
pregnancy, pre-eclampsia and asthma, have provided
valuable insight into the way in which the feto-placental
unit influences maternal physiology in a sex-specific
manner. There is also growing evidence to suggest that
some of these changes depend on the sex of the fetus
[60,64,65]. In normal pregnancies, maternal micro-
vascular vasodilatation, which is induced by placental
sequent generations. Environmental factors - including nutrition,
ta – impact individual (F0) epigenetic landscapes hence gene
maternal and paternal preconceptional exposures can modify gamete
consequences of maternal F0 exposure during pregnancy (stress,
rnal to the fetal compartment via the placenta in a sex-specific manner
to changes in long-term health outcomes in the first generation.

ing during fetal development, can also be affected by F0 maternal
generation. Maternal and paternal lineages affect the transmission of
maternal lineage can be seen in the F0, F1 and F2 generations, and
ternal lineage multigenerational exposure concerns F0 and F1, and
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corticotrophin-releasing hormone, is greater in preg-
nant women carrying male fetuses than in those carry-
ing female fetuses. In pregnancies complicated by
pre-eclampsia, microvascular vasodilatation in women
carrying a male fetus is weaker than that in normoten-
sive women carrying a male fetus, whereas no such
difference is observed in women carrying female fetu-
ses [64]. The human placenta adapts in a sexually di-
morphic manner to chronic maternal asthma. In this
situation, female fetal growth is limited, increasing the
chances of survival, whereas male fetuses grow nor-
mally, this normal growth being associated with a poor
outcome in cases of acute asthma exacerbation [33].

How unbalanced parental nutrition perturbs these
differences
Placental growth has been shown to respond to maternal
influences, including nutrition. There is evidence that
the responses are different for the sexes. Studies among
babies born around the time of the Dutch famine near
the end of the Second World War (1944–1945) have
provided insight into the effects of undernutrition on
placental size and efficiency in humans, as well as re-
garding the existence of sex differences in these effects.
Maternal undernutrition in early gestation resulted in a
smaller placenta with the decrease in placental area be-
ing greater for boys than for girls. Famine also impaired
placenta development even for pregnancies occurring
after the famine had officially ended. Famine in mid to
late gestation made the placenta less efficient as indi-
cated by being born lighter than predicted from placen-
tal area, but more efficient when the famine occurred in
early gestation or for conceptuses conceived after the
famine had ended, since such babies were heavier than
predicted [20]. In addition to the sexual dimorphism in
the acute effects of undernutrition on placental size, the
association between placental size and later health also
appeared to differ between the sexes. In men, the associ-
ation between placental size and later hypertension was
completely reversed by famine exposure, while the asso-
ciations were unaltered by famine in women [14].
Consistent with observations in humans, the restric-

tion of placental function alters heart development in
sheep fetuses, and small size at birth is associated with
more components of metabolic syndrome in adult rams
than in adult ewes [66,67]. Experimental and epidemio-
logical studies in humans and animals also demonstrate
an association between low or high FPI and impaired
glucose tolerance, blood pressure and coronary heart
disease [68].
The size and shape of the placenta are predictive of

childhood blood pressure. Changes in the placentation
process affecting implantation, the expansion of the
chorionic surface in mid-gestation or the compensa-
tory expansion of the chorionic surface in late gestation
may affect blood pressure responses and the potential
development of hypertension later in life. The adverse
effects of small placental size may be compounded by
those of poor maternal nutrition, whereas the area of the
placenta may expand to compensate for fetal undernut-
rition in better-nourished mothers [69]. Changes in
placental structure, activity or physiology may thus con-
tribute to the programming of cardiovascular disease
(CVD) in sex-specific ways [22,39,70]. For example
hypertension in the male subjects in the Helsinki birth
cohort born between 1934 and 1944 was associated with
a long minor diameter of the placenta. Growth along
this minor axis may be more sensitive to nutritional
factors than growth along the major axis [71]. By con-
trast, hypertension in women was associated with a
small placental area at birth, potentially indicating lower
levels of nutrient delivery to the fetus. The greater de-
pendence of boys on the diet of their mothers may en-
able them to make the best use of increases in food
supply, but it also leaves them vulnerable to food short-
ages. This may be reflected in the tendency of men to
have higher blood pressure and to die younger than
women [72].
The effects of maternal undernutrition on placental

growth and development have been studied in detail.
However, fewer studies have focused on the potentially
deleterious effects of maternal overnutrition or meta-
bolic disturbances on the future health of the offspring,
particularly as concerns the development of metabolic
syndrome or the combination of obesity, type 2 diabetes
(T2D) and CVD [53,73]. The embryo may also react to
maternal overnutrition even before the placenta is
formed - at the oocyte, zygote or blastocyst stage
[74,75]. Moreover there are now convincing data show-
ing that ancestral exposure to an environmental com-
pound modifies the perception and response of the
offspring to stress experienced during their own life his-
tory. While the effect of fetal sex on placental develop-
ment and growth are known, there is relatively little
known concerning sex differences in the context of
overnutrition. Interestingly expression studies, although
rare, do show a sex effect [27,61].
The Aberdeen Maternity and Neonatal Databank in-

volving 55,105 pregnancies showed that maternal body
mass index was positively associated with placental
hypertrophy and birth weight but negatively associated
with FPI, suggesting that being overweight or obese was
associated with greater placental weight but lower pla-
cental efficiency [45]. In humans, placental weight and
birth weight are lower in mothers with high carbohy-
drate intakes in early pregnancy. Low maternal intakes
of dairy and meat proteins in late pregnancy are also as-
sociated with lower placenta weight and birth weight
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[76]. In mice, maternal obesity, T2D and a high-fat diet
(HFD) during gestation increase adiposity and modify
metabolism and blood pressure in adult offspring fed a
control diet (CD), revealing a predisposition to the de-
velopment of metabolic syndrome [77,78]. These find-
ings suggest that impaired placental development under
conditions of maternal overnutrition modifies fetal pro-
gramming, resulting in impaired responses to diet in
adulthood [22,27,71,79,80]. In pregnant mice fed a HFD
during gestation, placental weight was higher and pla-
cental efficiency (FPI) lower, regardless of the sex of the
fetus, without any gross changes in the areas or propor-
tions of the labyrinth and junctional zone layers [81].
There have been few studies of paternal non-genetic

effects on the health of the offspring in humans. However,
epidemiological studies have suggested that a relationship
between maternal grandmother's age and a major autistic
trait, or paternal grandfathers access to food and rates of
obesity and cardiovascular disease in subsequent genera-
tions in a sex-specific manner [82,83]. These aspects have
been studied more thoroughly in rodents, in which clear
evidence has been obtained for paternal effects on the
phenotype and health of the offspring [84]. In particular
paternal fasting before mating [85], paternal exposure to a
HFD [8] or to a low-protein diet [6], and maternal caloric
undernutrition during late gestation [7] all have been
shown to alter metabolic function in the offspring.
Additionally a human study involving 2947 singletons
found a positive association between paternal weight and
placental weight [86]. Thus, like maternal exposure, prior
paternal exposure may have effects on placenta growth.
However, to our knowledge, the effects of prior paternal
exposure on placenta growth, size and shape have yet to
be investigated, in order to elucidate mechanisms by
which paternal influences, not just maternal ones, may be
transmitted to the embryo, hence to the placenta.

Parental stress and behavior, neurobiology
Prenatal exposure to maternal stress, depression and
pathogenic infections are associated with a higher risk
for the development of neurodevelopmental disorders,
including schizophrenia and autism [13,87]. Early child-
hood adversity has also been associated with earlier can-
cer incidence [11]. Clear differences between the sexes
have been found in the programming of emotionality in
the offspring and strategies for coping with stress, with
the activational effects of testosterone producing females
with male-like strategies in tests of passive coping, but
with female-like behavior in tests of active coping [46].
Animal models of prenatal stress (psychological, behav-

ioural, nutritional, or metabolic. . .) have identified major
sex- and time-specific effects on the offspring. Maternal
stress is associated with the dysregulation of stress path-
ways, a common feature in most neurodevelopmental
disorders. Stress in early pregnancy has a significant sex-
dependent effect on placental gene expression, modifying
the fetal transport of key growth factors and nutrients
[88]. Synthetic glucocorticoids affect the fetal program-
ming of hypothalamic-pituitary-adrenal axis function
and behavior [89]. However, high levels of the 11βHSD2
enzyme, which converts active glucocorticoids to an in-
active metabolite in the placenta, protect the developing
fetus from high maternal levels of this hormone [50,90].
Sex-specific differences in the cortisol stress response
occur before birth, with much higher levels of cortisol
output for male than for female fetuses [91]. Multigen-
erational programming in glucocorticoid-programmed
rats is associated with effects on fetal and placental
weight that are generation-specific and dependent on
the parent of origin [92].
Recent reports have also highlighted the possibility of

paternal transmission of stress-induced conditions, such
as social defeat [93] and chronic and unpredictable post-
natal maternal separation [94]. Behavioral adaptations
that occur after the stress of chronic social defeat can be
transmitted from the father to his male and female F1
progeny. The male offspring of defeated fathers also dis-
play increased baseline plasma levels of corticosterone
and decreased levels of vascular endothelial growth fac-
tor [93]. Chronic and unpredictable postnatal maternal
separation leads to perturbations in social abilities and
serotonergic functions as well as traumatic experiences
in early life [87]. The profile of DNA methylation is al-
tered in the promoter region of several candidate genes
in the germline of the separated males. Comparable
changes in DNA methylation are also present in the
brain of the offspring and are associated with altered
gene expression [94]. This highlights the negative impact
of early paternal stress on behavioral responses across
generations and on the regulation of DNA methylation
in the germline. However neither of these studies ana-
lyzed the effects on placentas of the subsequent gener-
ation(s).

Early life exposures to environmental toxicants, endocrine
disruptors
In-utero and early-life exposures to environmental tox-
icants, ranging from heavy metals to endocrine-
disrupting chemicals, affect adult metabolism, immune
system function, neurodevelopment, and reproductive
function. It is now evident that early-life exposures
during the prenatal/fetal and postnatal period increase
the risk for developing cardiovascular disease, diabetes,
obesity, stroke, renal disease, osteoporosis, Alzheimer’s
disease, and cancer [95]. For example chemical factors
can behave as endocrine disruptors and as such per-
turb the developing endocrine and reproductive sys-
tems in a sex specific manner, either directly on
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somatic tissues of the exposed individual(s) and/or on
their germline with the possibility of being transmit-
ted to the next generation(s) through epigenetic
mechanisms (Figure 1). Sex-specificity may also be
generation-specific [92,96]. Thus disease susceptibility
may reflect developmental exposures rather than sim-
ply exposure at or near the time of disease detection.
Many of these compounds are lipid soluble and can ac-
cumulate in adipose tissue, with the possibility of being
transferred across the placenta and fetal blood brain
barrier. A number of studies in humans and rodents
have demonstrated that gestational/perinatal exposure
to either bisphenol A (BPA) or a common organophos-
phate pesticide interferes with several endocrine path-
ways and abrogates sexual dimorphism or shows
altered sex differences in brain structure, or in heart
respectively [97,98]. However while several studies
considered the effects as a clear consequence of the
transplacental deposition (reviewed in [99]), only one,
to our knowledge, has examined the effects on placen-
tal gene expression, showing that BPA can alter
miRNA expression in placental cells [100]. Thus inves-
tigating the effects of these compounds both on sexu-
ally dimorphic placental functions and on later health
is of great interest.

Mechanisms of unequal expression of X- and Y-
chromosome-linked genes
Sex differences: sex hormones and/or sex chromosomes?
Increasing numbers of reports are challenging the trad-
itional view regarding the influences of gonadal hor-
mones and highlighting the potential roles for sex
chromosomes (reviewed in [15,60,101,102]). Data from
spotted hyena showed that the reduced expression of
placenta aromatase may allow the hyena placenta to
convert high circulating concentrations of androstene-
dione to testosterone, and could explain the virilization
of the fetal external genitalia in female fetuses [103].
However, current data highlight a sexually dimorphic
difference in placental function that may not be con-
ferred by classical assumptions of sex steroid regulation.
Testosterone may act in a sex specific manner in the hu-
man placenta and may be more potent in female placen-
tas than males; however further investigations into the
role of testosterone in placental function are required
[33]. Nonetheless, unequal gene expression by the sex
chromosomes has an impact much earlier, beginning at
conception, and may set the context for events in later
life (reviewed in [15,33,102,104]. Sex-linked genes and
sex hormones may work together to yield similar differ-
ences in physiology between the sexes in brain. For in-
stance, immune responses and cytokine production, or
sex-linked genes like the androgen receptor, or Y-linked
genes may exhibit sex differences because they can be
influenced differently by steroid hormones (reviewed
in [105]). Thus, unfavorable programming, whether im-
mediately before conception or during gestation, may re-
sult in various defects potentially translated into
differences in susceptibility to disease between males
and females [8,15,33,60,72,81,106].

Early involvement of sex chromosomes in sex differences
Even before implantation and the initiation of adrenal
and gonad development, transcriptional sexual dimorph-
ism is present in various species that has consequences
for developmental competence and adult health and dis-
ease [43]. For example, in bovine blastocysts, sex deter-
mines the expression levels of one-third of all actively
expressed genes [107]. Sexual dimorphism has also been
observed in embryonic cells isolated from mice at E10.5.
These cells responded differently to dietary stressors
even before the production of fetal sex hormones [108].
In the mouse, detailed studies on sex chromosomal con-
tribution to placental growth have been reported [37].
The X chromosome has been implicated in causing sev-
eral malformations of the placenta. About 30% of all
trophoblast-expressed genes are on the X chromosome,
and alterations in many different X-linked genes could
account for similar phenotypes [109,110]. Due to pater-
nal X inactivation in trophoblast cells, mutations in
these X-linked genes manifest themselves in embryonic
lethality upon maternal transmission of the mutant allele
in the mouse. A role for the Y chromosome in placental
dysplasia has also been demonstrated [111]. It is also
well-established that male fetuses have a higher rate of
perinatal complications attributed to placental dysfunc-
tion that may relate to the abundance of X-linked genes
involved in placentogenesis [112].

Unequal dosage and compensation mechanisms between
males (XY) and females (XX)
Mammals have a very complex, tightly controlled, and
developmentally regulated process of dosage compensa-
tion between males (XY) and females (XX). Two main
kinds of dosage compensation exist: the first being to
avoid X hyperexpression in females by equalizing the
expression of the X-linked genes via inactivation of
one of the two X-chromosomes in females (XCI: X-
chromosome inactivation) and the second leading to the
balanced expression between X-linked and autosomal
genes via transcriptional upregulation of the active X in
both sexes, males and females. There are two forms of
XCI—imprinted and random [113,114]. The incomplete,
and unstable imprinted inactivation of the paternally
inherited X-chromosome is observed in certain euthe-
rians (for example, rodents) at pre implantation stages of
embryonic development and is retained in the extraem-
bryonic organs that derive from the fetus. Therefore, in
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mice, the paternal X chromosome is inactivated in the
placenta [115]. In the cells that form the tissues of
the embryo proper, the paternal X-chromosome is
reactivated during implantation followed by a random
inactivation of either the paternal or maternal X-
chromosome [116]. The paternal imprint in the blasto-
cyst trophectoderm and their derivates such as placenta
seems to be unique to mice, not occurring in rabbits,
bovines or humans where XCI occurs after the blasto-
cyst stage [113].
However, not all X-linked genes are absolutely bal-

anced. Several X-linked genes can escape XCI. More
genes escape XCI in humans than in the mouse. While
it has been estimated that 15 to 25% of the 1400
X-linked human genes escape XCI in humans, only 3%
do so in the mouse [117-119]. There are also significant
differences in terms of the distribution of « escape genes
» in humans and mouse, with a random distribution
along the mouse X chromosome, suggesting that escape
is controlled at the level of individual genes rather than
chromatin domains. This suggest that men and women
may demonstrate greater sex differences in X linked
gene expression than mice as a result of the large num-
ber of escape genes. In addition, the degree of escape,
hence the expression levels from inactive X, can vary
considerably between loci, ranging from 5% to >75% of
active X levels [117]. Although there are no data on the
laboratory mouse, it is interesting that in common voles,
more genes were expressed on the inactive X chromo-
some in extraembryonic tissues than in somatic tissues
[120]. Escape from XCI can vary between different tis-
sues and/or individuals and the escape can also be de-
velopmentally regulated. In mice, silencing of some
X-chromosomal regions occurs outside of the usual time
window and escape from XCI can be highly lineage spe-
cific [113,116,121].
There are also additional control mechanisms to achieve

balanced or unbalanced expression between the sexes.
Some genes on the X-chromosome are imprinted: their
expression is monoallelic, depending on the parental ori-
gin of the allele. Recently, three genes have been described
as imprinted and expressed from the paternal X allele:
Fthl17, Rhox5 and Bex1. This monoallelic paternal expres-
sion is independent of XIC. Therefore, these genes are
expressed predominantly in female [122].

Male-specific Y chromosome genes
In addition to unequal expression of X-linked genes, the
small number of expressed genes present on the Y
chromosome (and therefore only expressed in males)
may be involved. In humans 29 genes are conserved in
the pseudoautosomal regions (PARs) of the X- and
Y-chromosomes [123]. The non-recombining, male-
specific Y region contains about 27 protein-coding genes
[124]. Some X/Y gene pairs have been retained on sex
chromosomes and are referred to as paralogues. In the
case of X/Y pairs, in contrast to humans, for which a
number of X escapees do not have a Y paralogue, all
known mouse escapees do have a Y paralogue [115,125].
Studies in mice and rats demonstrating sex differences
in placental responses to changes in the maternal envir-
onment may thus indicate a role for these escaped genes,
as the placentas of female fetuses may produce small dif-
ferences in the amount of the corresponding proteins
compared to amounts present in male fetuses. However,
there are very few studies comparing levels of mRNA
and proteins for escape vs. non-escape genes [101,126].

Placenta, brain and testis common evolutionary features?
The unique evolutionary pathway of the X- and Y-
chromosomes has resulted in these chromosomes having
highly atypical gene contents and activities [127]. The
mapping of speciation genes has revealed one general
rule: there is an apparent excess of sex and reproduction-
related genes on the X-chromosome (reviewed in [128]).
A preponderance of sex-and reproduction-related genes
on the X chromosome has been shown repeatedly, but
also mental retardation genes are more frequent on the
X chromosome. Since the coordinate evolution of new
characters is best attained when the same set of genes is
redeployed, Wilda and co-workers suggested that new
characters in the brain, testis and placenta are most re-
sponsible for human speciation [128].
Evolutionary constraints may thus be responsible for the

presence of placental genes on the X chromosome that
are co-expressed in brain and testis [109]. In human term
placentas, Sood et al. have shown that many of the sex-
correlated genes are located on the sex chromosomes, but
that some are autosomal [129]. In addition, X- and
Y-linked genes may modulate the expression of different
sets of autosomal genes, leading to differences in physio-
logical trajectories between males and females [15]. Thus,
both the trajectories under basal conditions and those
modulating responses differ between the sexes.

Gene expression and epigenetic marks: mechanisms and
dynamics
Sex-specific epigenetic marks modulate sex-specific gene
expression
The study of the epigenetic marks and mechanisms
underlying sex differences is in its infancy. The epigen-
etic landscape required for placenta development has
been described [130]. The sex of the placenta and the
environment have an influence on its epigenomes, and
hence on the epigenomes of the developing fetus. In all
adult tissues examined to date, including the gonads
and brain, the expression of many genes is modula-
ted in a sex-specific manner [15,131,132]. Chromatin
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structure and epigenetic marks differ between male and
female samples in brain [133,134] The adult liver is the
organ in which these aspects have been best character-
ized, with genome-wide DNaseI-hypersensitive sites
and sex-specific gene expression detected [135-138].
However, even with recent developments in this field,
we still know little about the mechanisms underlying
the early sex-specific expression of genes and gene
networks resulting from epigenetic regulation in the
placenta.
Within the context of DOHaD, epigenetic marks,

which respond to the environment, record the effects of
the environment during development in a sex-specific
manner [139]. Developmental alterations to epigenetic
marks may induce long-term changes in gene expres-
sion, potentially leading to disease in later life [140,141].
Efforts are now being made to determine the contribu-
tion of epigenetics to the establishment and maintenance
of sex differences. Most DOHaD studies have reported
sex-specific transmission and/or effects, but very few
have tackled the sex-specific epigenetic mechanisms in-
volved, and especially in the placenta. In a recent review,
Novakovic and Saffery suggested that DNA methylation
profiling highlights the unique nature of the human pla-
cental epigenome for genomic imprinting and placenta-
specific gene-associated methylation. Placental cell types
have a pattern of genome methylation that is signifi-
cantly different from that in somatic tissues, with low
methylation at some, but not all, repetitive elements
(reviewed in [47]).
Sexually dimorphic patterns of gene expression have

recently been reported for individual genes in placentas
from humans and rodents, potentially accounting for
differences in the sensitivity of male and female fetuses
to maternal diet (reviewed in [15]). Considering these
expression studies, it is noteworthy that sex differences
have been observed in the mRNA levels of housekeep-
ing genes and of commonly used reference genes in
human placenta, in a variety of mouse somatic and
extra-embryonic tissues, as well as in the preimplanta-
tion blastocyst and blastocyst-derived embryonic stem
cells [142,143]. Although this is not surprising given the
importance of sexual dimorphism in every tissue exam-
ined so far, it underlines the difficulty in choosing appro-
priate reference genes. Few groups have studied global
sexual dimorphism in the placenta with microarrays, fo-
cusing in particular on the impact of maternal diet,
asthma or stress on placental gene expression, through
systemic investigations of the relationship between diet
and the expression of sexually dimorphic genes. These
transcriptomic analyses showed that basal gene expres-
sion levels were sexually dimorphic in whole placentas
[27,61,129]. Even fewer studies have investigated the as-
sociated epigenetic changes [61,81].
Sex-specific impact of environmental influences
The expression of key enzymes of the epigenetic ma-
chinery mapping to autosomes also appears to be
sex-dependent, even at early stages [41,144]. Levels of
Dnmt1 are similar in male and female bovine embryos,
but Dnmt3a and Dnmt3b are produced in smaller
amounts in female embryos [41]. Levels of DNA methy-
lation have been reported to be lower in XX ES cell lines
than in XY or XO lines, and this hypomethylation is
thought to be associated with lower levels of Dnmt3a
and Dnmt3b [145]. In mouse placenta, global DNA
methylation is also sexually dimorphic in animals fed the
CD, with lower methylation levels in the placentas of
male offspring than in those of female offspring at E15.5
stage. Under HFD, hypomethylation was observed only
in the female placenta. Consistent with this observation,
expression of the gene encoding the DNA methyl-
transferase cofactor Dnmt3l was downregulated in
females only [61,81]. Clearly, further studies are needed
to understand the direct effects of sex chromosomes and
gonadal hormones on the regulation of genes controlling
histone acetylation and methylation, coregulatory proteins
and transient and stable DNA methylation patterns.
Expression analysis has also shown that maternal

high-fat diet (HFD) affects mouse placental gene ex-
pression in a sexually dimorphic manner [61]. A HFD
during gestation triggers the deregulation of clusters of
imprinted genes. Sexual dimorphism and sensitivity to
diet were observed for nine of 20 imprinted genes, from
four clusters on mouse chromosomes 6, 7, 12 and 17.
An analysis of CpG methylation in the differentially
methylated region of the chromosome 17 cluster re-
vealed sex- and diet-specific differential methylation
of individual CpGs in two conspicuous subregions.
Bioinformatic analysis suggested that these differentially
methylated CpGs might lie within recognition elements
or binding sites for transcription factors or factors in-
volved in chromatin remodeling [81]. Gregg et al. re-
cently reported sexually dimorphic genomic imprinting
in the brain, with sex-specific imprinted genes found
mostly in females [146,147]. Given the importance of
genomic imprinting in the brain and placenta, this pro-
vides new clues for further investigations of sexual di-
morphism in the placenta.

The special case of X/Y pairs of paralogues
In the same study, transcriptomic analysis showed that
both basal gene expression and response to maternal
HFD were sexually dimorphic in whole placentas. The
differences between the sexes in the transcriptomic re-
sponse to HFD were not only quantitative but also qua-
litative. The biological functions and networks of genes
dysregulated differed markedly in sex-specific ways,
with involvement of immune cells and uptake and



Figure 2 Sex specific expression of the X/Y paralogues Kdm5c
and Kdm5d. Three PCR primer pairs have been designed for
recognizing specifically either Kdm5c or Kdm5d cDNA and for
recognizing both Kdm5c/5d cDNA. Their expression was studied in
male and female placentas in pregnant female mice fed either a
control diet (CD) or a high-fat diet (HFD) from E0.5 to sacrifice at E15.5
stage. Kdm5c expression is higher in females (pink bars) than males
(blue bars), and Kdm5d is expressed only in males, regardless of
maternal diet. The Kdm5c/5d PCR shows that the combined expression
of Kdm5d and Kdm5c expression in males is not of equivalent
magnitude as the expression of Kdm5c from both alleles in females.
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metabolism of amino acids in females vs. the develop-
ment and function of vascular system, and uptake and
metabolism of glucose and fatty acids in males [61]. In
this study, 11 genes displayed sexual dimorphism re-
gardless of diet (control or HFD). Consistent with the
key role of genes on the sex chromosomes, three of
these genes were Y-specific, Ddx3y, Eif2s3y and Kdm5d
(Jarid1d) and were more expressed in males, and three
were X-specific, Eif2s3x, Kdm5c (Jarid1c) and Ogt and
were more expressed in females. Interestingly, among
these 6 X- and Y-linked genes, there were two paralogue
pairs: Eif2s3x/y and Kdm5c/5d [61]. Of particular inter-
est are the X-linked genes that encode enzymes of the
epigenetic machinery and transcription factors: Kmt1a
(Suv39h1), Jpx, Xist, Kdm6b (Jmjd3), Kdm5c, Eif2s3x,
Kdm6a (Utx), Ddx3x, are on the X chromosome, as well
as the corresponding paralogues for the latter ones,
Kdm5d, Eif2s3y, Uty, and Ddx3y that are on the Y
chromosome. Sex-specific differences in expression of
the histone demethylases Utx/Uty and Kdm5c have been
observed in mouse brain and neurons [148,149]. Other
studies have reported the male-specific expression of Y-
linked genes — Ddx3y, Eif2s3y and Kdm5d — in mouse
hearts and human myocardium [150]. In mouse brain,
Reinius and coworkers recently identified 4 female-
biased long non-coding RNAs (lncRNAs) associated
with protein-coding genes that escape X-inactivation,
the Ddx3x/Kdm6a cluster, Eif2s3x, 2610029G223Rik,
and Kdm5c [151]. Given that placenta, brain and testis
could share common mechanisms involving X-linked
genes [128], these lncRNAs might also be implica-
ted in placental development or function. Moreover,
these mouse escapees from X-inactivation also have a
paralogue on the Y-chromosome. According to the au-
thors, these lncRNAs might also escape X-inactivation
[151]. It would thus be interesting to investigate how
these three mechanisms (escaping X inactivation,
X/Y paralogues and lncRNA) participate in sexual
dimorphism.
The proteins encoded by Y-linked genes may or may

not have the same functions, the same target sequences
or the same pattern of expression, according to age or
tissue, as their X paralogue. In our study, in placenta of
HFD fed mouse mothers, the Y- and X-linked histone
demethylase paralogue genes Kdm5c and Kdm5d were
sexually dimorphic. In another report, in mouse brain,
expression of the Y version of the gene in male mice did
not compensate for the dosage imbalance between the
two sexes in the expression of their X homologs escap-
ing X-inactivation. Figure 2 shows that, in placentas
from mothers fed a control or high-fat diet, the Y-linked
Kdm5d gene expression in males is not able to compen-
sate the expression of Kdm5c, its X-linked paralogue
escaping XIC, in females [61]. Thus the epigenetic
enzymes produced by these two genes could mark the
epigenome in a sex-specific manner, both at the quanti-
tive and qualitative levels [152].

Conclusion
The DOHaD concept is consistent with the possibility
that environmental influences can affect the develop-
ment of sex differences early in development and in par-
ticular in the placenta, sculpting its epigenomes, and
hence the epigenomes of the developing fetus [36]. But
where, how, and when sex differences begin in the pla-
centa and how they contribute to sex-specific responses
of somatic tissues later in life is still poorly understood.
The sex of the embryo affects the size of both the fetus
and the placenta, and the ability of the placenta to re-
spond to adverse stimuli [27,32,33]. Female and male
placentas have different routes to maximize fitness
and therefore the two sexes have different optimal
transcriptomes that may affect fetal growth and later dis-
ease susceptibility or health trajectory [61]. Differences
in how male and female placentas cope with stressful
conditions indicate that this tissue should also be taken
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into account if we want to understand how it contrib-
utes to sexual dimorphism later in life. The placenta
may therefore be seen as an ideal system to study the
sensing, by the fetus, of stresses, starvation, endocrine
disruption and obesity-prone diets or lifestyles, in a sex-
specific manner [51,88].
Several critical issues remain to be addressed for un-

ravelling the sexually dimorphic nature of programming
in utero. We still know little about the mechanisms
underlying the early sex-specific expression of genes and
gene networks resulting from epigenetic regulation in
the placenta. Elucidation of the biological basis of differ-
ences in male and female development will improve our
understanding of the respective contributions of hor-
mones, X- and Y-linked genes, autosomal genes, and
their possible synergistic or antagonistic interactions
[12,105,138]. An understanding of these factors and of
the sex-specific genetic and epigenetic architecture of
human disease might also reveal the existence of sex-
specific protective mechanisms that could be exploited
in novel treatments [153]. Thus if we are to use the
placenta as an indicator of what occurred in utero,
it is crucial to understand how, in addition to sex-
specific differences in the endocrine and immune sys-
tems [154,155], sex-specific genetic architecture [156]
also influences placental growth and specific functions
[112,157], both under normal conditions or severe pla-
cental dysfunction [63,158]. Finally, unravelling the epi-
genetic marks and mechanisms underlying these sex
differences in physiological trajectories and in response
to environmental changes represents a major health
challenge.
These findings highlight the importance of studying

both sexes in epidemiological protocols and dietary in-
terventions. Where possible, effects should be investi-
gated in a sex-specific manner in order to provide solid
scientific evidence for sex-specific interventions and
recommendations. The striking sexual dimorphism for
programming trajectories necessitates a considerable re-
vision of current dietary intervention protocols. The
identification of sex-specific explanations of the re-
sponses and adaptation of males and females to dietary
quality, quantity and other environmental factors should
help physicians and patients anticipate the major chal-
lenges likely to occur during the patient’s lifetime. In
that context, placental analyses could be used to identify
children at risk of adverse programming.
Owing to the flexibility of epigenetic processes, the

DOHaD and their underlying epigenetic mechanisms
offer a new possibility to envisage a comprehensive
and evidence-based plan of nutritional, behavioral, and
socio-economical recommendations to apply new cost-
effective preventive actions against NCDs, in a sex-
specific manner [159-161].
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