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Abstract: A theoretically sound bootstrap procedure is proposed for build-
ing accurate confidence intervals of parameters describing the extremal be-
havior of instantaneous functionals {f(Xn)}n∈N of a Harris Markov chain
X, namely the extremal and tail indexes. Regenerative properties of the
chain X (or of a Nummelin extension of the latter) are here exploited in
order to construct consistent estimators of these parameters, following the
approach developed in [10]. Their asymptotic normality is first established
and the standardization problem is also tackled. It is then proved that,
based on these estimators, the regenerative block-bootstrap and its approx-
imate version, both introduced in [7], yield asymptotically valid confidence
intervals. In order to illustrate the performance of the methodology studied
in this paper, simulation results are additionally displayed.
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1. Introduction

As originally pointed out in [32], the extremal behavior of instantaneous func-
tionals f(X) = {f(Xn)}n∈N of a Harris recurrent Markov chain X may, just
like the asymptotic mean behavior, be described through the regenerative prop-
erties of the underlying chain. Following in the footsteps of this seminal contri-
bution (see also [2]), the authors have recently investigated the performance of
regeneration-based statistical procedures for estimating key parameters related
to the extremal behavior analysis in the Markovian setup; see [10].
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In particular, special attention has been paid to the problem of estimating the
extremal index of the weakly dependent sequence f(X), which measures to what
extent extreme values tend to come in “small clusters”; refer to [15, 11, 18] for
an account of this notion. Various extremal index estimators have been recently
proposed in the statistical literature; see [1, 21, 23, 29, 30] for instance. These es-
timators generally rely on blocking techniques, where data segments of fixed (de-
terministic) length are considered in order to account for the dependence struc-
ture within the observations. Alternatively, an asymptotically valid methodology
specifically tailored for regenerative sequences or pseudo-regenerative sequences
has been proposed, based on data blocks of random length, corresponding to cy-
cles in between successive regeneration times or approximate regeneration times.

Proceeding in the same vein, it has been established in [10] that a regener-
ative version of the Hill estimator, computed from the set of cycle submaxima,
namely maximum values observed in between consecutive renewal times, yields
consistent estimation of the tail index of f(X)’s 1-d marginal distribution in the
(supposedly existing) stationary regime, in the case where the latter belongs to
the Fréchet maximum domain of attraction.

It is the purpose of this paper to continue this approach by investigating the
problem of constructing confidence intervals for the extremal and tail indexes.
We first prove the asymptotic normality of the regeneration-based estimators
considered and then show how to studentize the latter in order to build asymp-
totic Gaussian confidence intervals. Next, we propose to extend the range of
application of the regenerative block-bootstrap (RBB in abbreviated form), re-
spectively the approximate regenerative block-bootstrap (ARBB in abbreviated
form), originally introduced in [8] for bootstrapping Markovian sample means,
to the present setting. Asymptotic validity of the RBB and ARBB procedures,
when applied to the regeneration-based index estimates, is established and em-
pirical simulations have been carried out, in order to evaluate empirically its
performance when compared to Gaussian asymptotic intervals.

The article is structured as follows. Notations are first set out in Section 2
and crucial notions related to the renewal properties of Harris Markov chains,
that will be needed throughout the paper, are also briefly recalled. In Section 3,
central limit theorems are stated for the regenerative versions of the “runs” and
“blocks” estimators of the extremal index. Asymptotic normality of the regen-
erative Hill estimator is established and the studentization of these estimators
is also investigated. Section 4 is devoted to the study of the RBB and ARBB
methodology, when applied to the construction of confidence intervals based
on the specific regeneration-based estimators considered. Finally, Section 5 dis-
plays preliminary simulation results, comparing the performance of bootstrap
and Gaussian intervals. Technicalities are treated in the Appendix.

2. Preliminaries

Throughout the article, we will denote by X = {Xn}n∈N a time-homogeneous
Harris recurrent Markov chain, valued in a measurable space (E, E) with transi-
tion probability Π(x, dy) and initial distribution ν; see [28] for an account of the
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Markov chain theory. We also denote by Pν (respectively, by Px with x ∈ E) the
probability measure on the underlying space such that X0 ∼ ν (resp., X0 = x)
and by Eν [.] (resp., Ex[.]) the corresponding expectation. We start off with re-
calling basic renewal properties of Harris Markov chains, while enhancing their
connection with extremal behavior analysis.

2.1. Regenerative chains

Recall first that the chain X is said to be regenerative when it possesses a Harris
recurrent atom, i.e., a Harris set A such that: ∀(x, y) ∈ A2, Π(x, .) = Π(y, .). Set
τA = τA(1) = inf {n ≥ 1, Xn ∈ A} and τA(j) = inf {n > τA(j − 1), Xn ∈ A}
for j ≥ 2. In the atomic case, by virtue of the strong Markov property, the
sequence {τA(k)}k≥1 of successive return times to the atom forms a (possibly
delayed) renewal process and more generally, the data segments, called regen-
eration cycles, determined by the times at which X forgets its past are i.i.d
random variables valued in the torus T = ∪∞

n=1E
n:

B1 = (XτA(1)+1, . . . , XτA(2)), . . . , Bj = (XτA(j)+1, . . . , XτA(j+1)), . . . .

We denote by PA the conditional probability measure given X0 ∈ A and by
EA[.] the PA-expectation.

In the regenerative setup, stochastic stability properties classically boil down
to checking conditions related to the speed of return to the regenerative set.
It is well-known for instance that X is positive recurrent if and only if α =
EA[τA] < ∞ [see Theorem 10.2.2 in 25], and its (unique) invariant probabil-
ity distribution µ is then the Pitman’s occupation measure given by µ(B) =
α−1EA[

∑τA
i=1 I{Xi ∈ B}] for all B ∈ E .

The following assumptions are involved in the subsequent analysis. Let κ ≥ 1
and ν be any probability distribution on (E, E).

H(κ) : EA[τ
κ
A] < ∞ and H(ν, κ) : Eν [τ

κ
A] < ∞.

Cycle submaxima. Let f : (E, E) → R be a measurable function. Consider
the submaximum of the instantaneous functional f(X) = {f(Xn)}n∈N over the
j-th cycle, j ≥ 1:

ζj(f) = max
τA(j)<k≤τA(j+1)

f(Xk).

It has been established in [32], see Theorem 3.1 therein, that, in the positive re-
current case, the distribution of the sampling maximumMn(f) = max1≤i≤n f(Xi)
can be successfully approximated by the distribution of the maximum of ⌊n/α⌋
(roughly the mean number of cycles within a trajectory of length n) indepen-
dent realizations of the cycle submaximum as n → ∞, provided that the first
(non regenerative) data segment plays no role in the extremal behavior, i.e.
Pν(max1≤i≤τA f(Xi) > max1≤j≤l ζj(f)) → 0 as l → ∞. More precisely, under
these assumptions we have

sup
x∈R

|Pν(Mn(f) ≤ x)−Gf (x)
⌊n/α⌋| → 0 as n → ∞, (1)
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where Gf (x) = PA(max1≤i≤τA f(Xi) ≤ x) for all x ∈ R. This shows that the tail
behavior of the cycle submaximum’s distribution Gf (dx) governs the extremal
behavior of the sequence f(X).

2.2. Regenerative extensions of general Harris chains

Although the class of regenerative Markov chains includes all chains with count-
able state space as well as many Markov models used in Operations Research
for modeling queuing/storage systems, the existence of Harris regenerative set
is a very restrictive assumption in practice, that is not fulfilled by most Harris
chains. Here we briefly recall a theoretical construction, termed the splitting tech-
nique and originally introduced in [26], extending in some sense the probabilistic
structure of a general Harris chain, so as to artificially build a regeneration set,
together with a practical method for approximating the regenerative extension.
It is based on the notion of Harris small set. Recall that a Harris set S ∈ E is
small for the chain X if there exist m ∈ N∗, a probability measure Φ supported
by S, and δ > 0 such that

∀x ∈ S, ∀A ∈ E , Πm(x,A) ≥ δΦ(A), (2)

where Πm denotes the m-th iterate of Π. Roughly speaking, the small sets are
the ones on which an iterate of the transition probability is uniformly bounded
below. When (2) holds, one says that X fulfills the minorization condition
M(m,S, δ,Φ). We point out that small sets do exist for Harris chains, see [22].
Suppose now that condition (2) is satisfied. Rather than replacing the original
chain by the chain {(Xnm, . . . , Xn(m+1)−1)}n∈N, we take m = 1. The regen-
erative Markov chain into which X is embedded is constructed by expanding
the sample space in order to define a specific sequence (Yn)n∈N of independent
Bernoulli r.v.’s with parameter δ. The joint distribution is obtained by ran-
domizing the transition Π each time the chain X hits S, which occurs with
probability one (recall that the chain X is Harris). In order to obtain an in-
sight into this construction, observe first that, when Xn ∈ S, the conditional
distribution of Xn+1 given Xn may be viewed as the following mixture

Π(Xn, dy) = (1− δ)
Π(Xn, .)− δΦ(dy)

1− δ
+ δΦ(dy),

of which the second component is independent of Xn. More precisely, the so-
termed split chain {(Xn, Yn)}n∈N is built the following way: suppose that Xn ∈
S, if Yn = 1 (which occurs with probability δ ∈ ]0, 1[), Xn+1 is drawn from Φ,
otherwise (i.e. if Yn = 0, which happens with probability 1− δ), Xn+1 is drawn
from (1− δ)−1(Π(Xn, .)− δΦ(.)). Clearly, S×{1} is an atom for the split chain,
the latter inheriting all the communication and stochastic stability properties
from X . In particular the data segments in between consecutive visits to S×{1}
are independent.

On approximating the regenerative extension. Unfortunately, the split
chain is a theoretical construction and the Yn’s cannot be observed in practice.
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A “plug-in” approach has been nevertheless proposed in [8], in order to generate,

conditionally to X(n+1) = (X1, . . . , Xn+1), a random vector (Ŷ1, . . . , Ŷn) from
(supposedly known) parameters (S, δ,Φ) in a way that its conditional distribu-
tion approximates the distribution of (Y1, . . . , Yn) conditioned upon X(n+1) in a
certain sense that will be specified below. Here we assume that the conditional
distributions Π(x, dy) with x ∈ E are dominated by a σ-finite measure λ(dy)
of reference, in a way that Π(x, dy) = π(x, y) · λ(dy) for all x ∈ E. This clearly
implies that Φ(dy) is also absolutely continuous with respect to λ(dy), and that

∀x ∈ S, π(x, y) ≥ δφ(y), λ(dy) almost surely, (3)

where Φ(dy) = φ(y) · λ(dy). Given the sample path X(n+1), the Yi’s are inde-
pendent random variables. To be more precise, the conditional distribution of
Yi is the Bernoulli distribution with parameter

δφ(Xi+1)

π(Xi, Xi+1)
· I{Xi ∈ S}+ δ · I{Xi /∈ S}. (4)

A natural way of mimicking the Nummelin splitting construction consists of
computing first an estimate π̂n(x, y) of the transition density over S2 based on
the available sample path and such that π̂n(x, y) ≥ δφ(y) a.s. for all (x, y) ∈ S2,

and then generating independent Bernoulli random variables Ŷ1, . . . , Ŷn given
X(n+1), the parameter of Ŷi being obtained by plugging π̂n(Xi, Xi+1) into (4)
in place of π(Xi, Xi+1). We point out that, from a practical viewpoint, it ac-

tually suffices to draw the Ŷi’s only at times i when the chain hits the small
set S, Ŷi indicating whether the trajectory should be cut at time point i or
not. Let l̂n =

∑
1≤k≤n I{Xk ∈ S, Yk = 1}. Proceeding this way, one gets the

sequence of approximate regeneration times, namely the successive time points
τ̂S(1), . . . , τ̂S(l̂n) at which (X, Ŷ ) visits the set S×{1}. One may then form the

approximate regeneration blocks B̂1, . . . , B̂l̂n−1, as well as the approximate cycle
submaxima:

ζ̂j(f) = max
1+τ̂S(j)≤i≤τ̂S(j+1)

f(Xi) with j = 1, . . . , l̂n − 1. (5)

Knowledge of the parameters (S, δ, φ) of condition (3) is required for im-
plementing this approximation method. A practical method for selecting those
parameters in a fully data-driven manner is described at length in [9]. The
question of accuracy of this approximation has been addressed in [8]. Under the
following assumptions, a sharp bound for the deviation between the distribution
of ((Xi, Yi))1≤i≤n and that of the ((Xi, Ŷi))1≤i≤n in the sense of the Mallows
or Wasserstein distance has been established, which essentially depends on the
rate ρn of the uniform convergence of π̂n(x, y) to π(x, y) over S × S.

A1. The MSE of π̂ is of order ρn when error is measured by the sup norm
over S2:

Eν

[
sup

(x,y)∈S2

|π̂(x, y)− π(x, y)|2
]
= O(ρn) as n → +∞,
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where (ρn) denotes a sequence of nonnegative numbers decaying to zero
at infinity.

A2. The parameters S and φ are chosen so that infx∈S φ(x) > 0.
A3. We have sup(x,y)∈S2 π(x, y) < ∞ and supn∈N sup(x,y)∈S2 π̂n(x, y) < ∞

Pν-a.s. .

3. Regeneration-based extreme value statistics

In this section, we recall how to construct estimators of the extremal and tail
indexes based on the (approximate) cycle submaxima following in the footsteps
of [10]. For each estimator considered, asymptotic normality is established and
the standardization problem is tackled.

3.1. Asymptotically normal estimators of the extremal index

A key parameter in the extremal behavior analysis of an instantaneous function
{f(Xn)}n∈N of the chain X is the extremal index θ ∈ (0, 1), measuring to what
extent extreme values tend to come in “small clusters”; refer to [15, 11] and
[18] for an account of this notion. For a positive recurrent Markov chain X with
limiting probability distribution µ and any measurable function f : (E, E) → R,
there always exists θ = θ(f) ∈ [0, 1] such that

Pµ( max
1≤i≤n

f(Xi) ≤ un) ∼ F (un)
nθ as n → ∞, (6)

for any sequence of real numbers {un} such that n(1 − F (un)) → η for some
η < ∞, denoting by F (x) = α−1EA[

∑τA
i=1 I{f(Xi) ≤ x}] the cdf of f(X1)

in steady-state, i.e. under Pµ. As already observed in [10], a positive recurrent
chain is a fortiori strong mixing (cf Theorem A in [4]) and consequently satisfies
Leadbetter’s mixing condition D(un); see [24].

In the remainder of this subsection, the function f(x) is fixed and the index
θ is assumed to be strictly positive. We point out that [31] have proved, under
an extra technical assumption, that the extremal index of any geometrically
ergodic Markov chain is strictly positive; refer to Theorem 4.1 therein.

3.1.1. The regenerative “blocks” estimator

As originally shown in [32], it follows from (1) and (6) that, for any sequence
{un} such that n(1− F (un)) → η for some η < ∞, θ = limn→∞ θ(un), where

θ(u) =
Ḡf (u)

Σf (u)
, (7)

with Σf (u) = αF̄ (u) = EA[
∑τA

i=1 I{f(Xi) > u}], denoting by Ḡ(x) = 1 − G(x)
the survivor function of any cdf G(x), and the convention that 0/0 = 0.
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In the regenerative case, from expression (7), which may be viewed as a
regenerative version of the popular “blocks” estimator (see §8.1.2 in [15]), it has
been proposed in [10] that:

θn(u) =
Ḡf,n(u)

Σf,n(u)
, (8)

where, for all u ∈ R,

Gf,n(u) =
1

ln − 1

ln−1∑

j=1

I{ζj(f) ≤ u} and Σf,n(u) =
1

ln − 1

ln−1∑

j=1

Sj(u),

with Sj(u) =
∑τA(j+1)

i=τA(j)+1 I{f(Xi) > u}, ln =
∑n

i=1 I{Xi ∈ A}, and the usual

convention regarding empty summation and 0
0 = 0.

Expectedly, a counterpart of this quantity in the general Harris case is ob-
tained by replacing the regeneration cycle submaxima by their approximate
versions in (8):

θ̂n(u) =
1− Ĝf,n(u)

Σ̂f,n(u)
, (9)

where, for all u ∈ R, Ĝf,n(u) = 1

l̂n−1

∑l̂n−1
j=1 I{ζ̂j(f) ≤ u} and Σ̂f,n(u) =

1

l̂n−1

∑l̂n−1
j=1 Ŝj(u), with Ŝj(u) =

∑τ̂S(j+1)
i=τ̂S(j)+1 I{f(Xi) > u} for 1 ≤ j ≤ l̂n − 1.

These estimators have been proved consistent in [10] under mild moment
assumptions, see Proposition 4 therein. For clarity’s sake, we recall the related
result.

Proposition 1 ([10]). Suppose that θ > 0. Let (rn)n∈N increase to infinity
in a way that rn = o(

√
n/ log logn) as n → ∞. Consider (vn)n∈N such that

rn(1−Gf (vn))/α → η < ∞ as n → ∞.

(i) In the regenerative case, suppose that H(ν, 1) and H(2) are fulfilled. Then,

θn(vn) → θ Pν-almost surely, as n → ∞. (10)

(ii) In the general case, assume that moment assumptions H(ν, 1) and H(4)
are fulfilled by the split chain and in addition that conditions A1 −A3 are
satisfied. Then,

θ̂n(vn) → θ in Pν-probability, as n → ∞. (11)

Remark 1 (On moment assumptions for the split chain). We point
out that, in the pseudo-regenerative setup described in §2.2, a sufficient condi-
tion for condition H(κ) (respectively, for condition H(ν, κ)) to hold is Ĥ(κ) :

supx∈S Ex[τ
κ
S ] < ∞ (resp., Ĥ(κ, ν) : Eν [τ

κ
S ] < ∞). Practically, drift conditions

of the Foster-Lyapounov type are used for checking such moment conditions;
refer to Chapter 11 in [25] for further details.
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Remark 2 (On the empirical choice of the threshold sequence).
In practice, the threshold sequence {vn} must be picked by the statistician.
A natural choice, based on the available sample, consists of taking vn = G−1

f,n(1−
η/rn) in the regenerative case (respectively, vn = Ĝ−1

f,n(1− η/rn) in the pseudo-
regenerative case) and one may easily show that assertion (i) (resp., assertion
(ii)) of Proposition 1 remains valid.

The next result reveals that, for a fixed threshold u ∈ R, the asymptotic
distribution of the quantity (8), respectively (9), is Gaussian. The technical
proof is given in the Appendix section.

Theorem 2. Let u > 0 be fixed.

(i) In the regenerative case, under assumptions H(2) and H(ν, 1), there exists
a constant σ2

f (u) < ∞ such that

√
n (θn(u)− θ(u)) ⇒ N (0, α · σ2

f (u)) as n → ∞, (12)

where ⇒ denotes the convergence in distribution.
(ii) In the pseudo-regenerative case, if the moment assumptions H(ν, 1) and

H(4) are fulfilled by the split chain and if conditions A1−A3 are in addition
satisfied, then

√
n
(
θ̂n(u)− θ(u)

)
⇒ N (0, α · σ2

f (u)) as n → ∞. (13)

As shown in Theorem 2’s proof, the asymptotic variance is given by

σ2
f (u) =

[
σ2
1(u)

Σf (u)2
− 2

σ12(u)Ḡf (u)

Σf (u)3
+

Ḡf (u)
2σ2

2(u)

Σf (u)4

]
, (14)

where

σ2
1(u) = Ḡf (u)(1− Ḡf (u)), σ

2
2(u) = EA



(

τA∑

i=1

I{f(Xi) > u} − Σf (u)

)2

 ,

σ12(u) = EA

[(
I{ max

1≤i≤τA
f(Xi) > u} − Ḡf (u)

)( τA∑

i=1

I{f(Xi) > u} − Σf (u)

)]
.

These quantities may be straightforwardly estimated by computing their em-
pirical counterparts based on the (approximate) regeneration cycles. However,
the following result shows that, for a properly chosen threshold sequence {vn},
increasing to infinity at a suitable rate, the second and third terms on the right
hand side of (14) vanish, while the first one converges to (αη)−1θ2 as n → ∞.

Proposition 3. Let (rn)n∈N increase to infinity in a way that rn=o(
√
n/log log n)

as n → ∞. Consider (vn)n∈N such that rn(1−Gf (vn))/α → η < ∞ as n → ∞.

(i) In the regenerative case, provided that assumptions H(2) and H(ν, 1) are
fulfilled, the following convergence in distribution holds:

√
n/rn (θn(vn)− θ(vn)) ⇒ N (0, θ2/η), as n → ∞. (15)
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(ii) In the pseudo-regenerative case, if the split chain satisfies H(ν, 1) and H(4)
and conditions A1 −A3 hold, we have the following convergence:

√
n/rn

(
θ̂n(vn)− θ(vn)

)
⇒ N (0, θ2/η) as n → ∞. (16)

We point out that, under the maximum domain of attraction (MDA) as-
sumption combined with additional technical conditions, the asymptotic bias
may be proved to vanish. Indeed, recall that, under the assumption that θ > 0,
the probability distributions Gf (dx) and F (dx) necessarily belong to the same
MDA. Suppose for instance that they belong to the Fréchet MDA. There exists
then a > 0 such that one may write Ḡf (x) = L1(x)·x−a and F̄ (x) = L2(x)·x−a,
where L1(x) and L2(x) are slowly varying functions. In this setup, the extremal
index is thus proportional to the limiting ratio of these two functions:

θ(u) =
L1(u)

αL2(u)
.

Assume in addition that some second-order Hall-type conditions are fulfilled,

Li(x) = lim
y→∞

Li(y) + Ci · x−βi + o(x−βi),

as x → ∞ where Ci < ∞ and βi > 0, i = 1, 2. Then, θ(vn) converges to θ at

the rate v−β
n with β = β1 ∧ β2 and vn ∼ r

1/β1

n . Hence, as soon as (rn) is picked

such that n/r
1+2β/β1

n → 0, we have that
√
n/rn (θn(vn)− θ) ⇒ N (0, θ2/η) as

n → ∞ in the regenerative case, and a similar result holds true in the pseudo-
regenerative case.

3.1.2. The regenerative “runs estimator”

Using the regenerative method, it has been proved in [32] that θ may be ex-
pressed as a limiting conditional probability: if n(1−Gf (un))/α → η < ∞, we
have θ = limn→∞ θ′(un) where: ∀u ∈ R,

θ′(u) = PA( max
2≤i≤τA

f(Xi) ≤ u | X1 > u). (17)

Based on a path X1, . . . , Xn, the natural empirical counterpart of (17) in the
regenerative setting is

θ′n(u) =

∑ln−1
j=1 I{max2+τA(j)≤i≤τA(j+1) f(Xi) ≤ u < f(X1+τA(j))}

∑ln−1
j=1 I{f(X1+τA(j)) > u}

. (18)

Insofar as (17) measures the clustering tendency of high threshold exceedances
within regeneration cycles only, it should be seen as a “regenerative version” of
the runs estimator

θ̂(r)n (u) =

∑n−r
j=1 I{maxj+1≤i≤j+r f(Xi) ≤ u < f(Xj)}

∑n−r
j=1 I{f(Xj) > u}

, (19)

obtained by averaging over overlapping data segments of fixed length r.
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In the pseudo-regenerative case, a practical estimate is built by means of the
approximate regeneration times:

θ̂′n(u) =

∑l̂n−1
j=1 I{max2+τ̂S(j)≤i≤τ̂S(j+1) f(Xi) ≤ u < f(X1+τ̂S(j))}

∑l̂n−1
j=1 I{f(X1+τ̂S(j)) > u}

(20)

Beyond its practical advantage (blocks are here entirely determined by the
data), the estimator (18) may be proved strongly consistent as stated in the first
part of the next theorem, while only weak consistency has been established for
(19) but for a wider class of weakly dependent sequences; see [21].

Theorem 4. Let rn increase to infinity in a way that rn = o(
√

n/ log logn) as
n → ∞.

(i) Assume that H(ν, 1) is fulfilled. Considering (vn)n∈N such that rn(1 −
F (vn)) → η < ∞ as n → ∞, we then have

θ′n(vn) → θ, Pν-almost surely, as n → ∞.

(i′) Similarly, if the split chain fulfills moment conditions H(ν, 1) and H(4)
and conditions A1 − A3 hold, then weak consistency holds in the pseudo
regenerative case:

θ̂′n(vn) → θ, in Pν-probability, as n → ∞.

(ii) In the regenerative case, provided that assumption H(ν, 1) is fulfilled, the
following convergence in distribution also holds:

√
n/rn (θ

′
n(vn)− θ(vn)) ⇒ N (0, θ2(1− θ)/η), as n → ∞. (21)

(ii′) In the pseudo-regenerative case, if the split chain satisfies H(4) and H(ν, 1)
and conditions A1 −A3 hold, we have the following convergence:

√
n/rn

(
θ̂′n(vn)− θ(vn)

)
⇒ N (0, θ2(1− θ)/η) as n → ∞. (22)

The last statement of the preceding theorem and Proposition 3 (i) constitute
the regenerative versions of Theorems 3 and 4 in [33], who first proved the
CLT for the classical runs estimator (based on blocks of fixed length, cf. (19)).
The proof of the preceding theorem follows the lines of those of Proposition 1,
Theorem 2 and Proposition 3, as sketched in the appendix section.

3.2. Asymptotic normality of the regeneration-based Hill estimator

In this section, we assume that θ > 0 and hence, as recalled in the previous
section, the distributions Gf (dx) and F (dx) belong to the same MDA. We
assume here that they belong to the Fréchet MDA. In the regenerative setting,
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a natural way of estimating F ’s tail index, proposed in [10], thus consists in
computing a Hill estimate of Gf ’s tail index from the observed cycle submaxima:

ξn,k =

(
k−1

k∑

i=1

log
ζ(i)(f)

ζ(k+1)(f)

)−1

, (23)

with 1 ≤ k ≤ ln − 1 when ln > 1, denoting by ζ(j)(f) the j-th largest submaxi-
mum. As ln → ∞, Pν- almost surely as n → ∞, asymptotic results established
in the case of i.i.d. observations extend straightforwardly to our setting, see part
(i) of Theorem 5 below. We point out that in the i.i.d. setup one may take the
whole state space as an atom, i.e. A = E, each cycle comprises then a single
observation and (23) reduces to the standard Hill estimator.

In the general Harris case, one may naturally build an estimate by replacing
the cycle submaxima by their approximate versions:

ξ̂n, k =

(
k−1

k∑

i=1

log
ζ̂(i)(f)

ζ̂(k+1)(f)

)−1

, (24)

with 1 ≤ k ≤ l̂n−1 when l̂n > 1 and denoting by ζ̂(j)(f) the j-th largest approx-
imate submaximum. It is shown in Proposition 5 of [10] that the approximation
step does not compromise the consistency of the estimator, provided that the
estimator of π(x, y) over S2 is accurate enough. In order to establish a rate of
convergence, we will also consider the case where the transition estimate used
in the approximation stage is computed from a trajectory of length N >> n

and will denote by Ĥ
(N)
k,n, the corresponding estimator.

The consistency and the asymptotic normality of these estimators have been
shown in [10] under the Von Mises condition recalled below; see Proposition 5
therein.

VM assumption (Von Mises condition, [19]). Let ρ ≤ 0. Suppose Ḡf (x) =
L(x)x−a,

lim
x→∞

Ḡf (tx)/Ḡf (x) − t−a

b(x)
= t−a t

ρ − 1

ρ
, t > 0

where b(x) is a measurable function of constant sign, and with, by convention,
(t−ρ − 1)/ρ = log t when ρ = 0. Equivalently, if Uf(t) = G−1

f (1− t−1),

lim
x→∞

Uf (tx)/Uf (x)− t−1/a

B(x)
= t1/ξ

tρ/a − 1

ρ/a
,

where B(x) = a−2b(Uf(x)).

Here, we formulate a central limit theorem in a more general fashion, revealing
a bias-variance trade-off similarly to [13] in the i.i.d. setup. The proof is omitted
as it follows by a straightforward modification of the proof of proposition 5 in
[10] and the references therein.
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Theorem 5. Assume that F belongs to the Fréchet MDA and the VM assump-
tion holds and consider an increasing sequence of integers {k(n)} such that:
k(n) < n, k(n) = o(n) and log logn = o(k(n)) as n → ∞. Assume further that

lim
√
kB(n/k) = λ ∈ R, (25)

(i) then, in the regenerative case, the following convergence in distribution
holds

√
k(ln)

(
ξn, k(ln) − ξ

)
⇒ N

(
ξ3λ

ρ− ξ
, ξ2

)
under Pν , as n → ∞. (26)

(ii) in the pseudo-regenerative case, if conditions A1 −A3 are in addition ful-
filled, let (mn)n∈N be a sequence of integers increasing to infinity such that
mn

√
ρn/k(mn) → 0 as n → ∞, then

√
k(l̂mn

)
(
ξ̂mn, k(l̂mn ) − ξ

)
⇒ N

(
ξ3λ

ρ− ξ
, ξ2

)
under Pν , as n → ∞.

(27)

4. Regenerative block-bootstrap confidence intervals

In this section, we recall the principle underlying the (approximate) regenerative
block-bootstrap, originally introduced in [8] for bootstrapping Markovian sam-
ple means, and establish its asymptotic validity when applied to the estimators
described in the preceding section.

4.1. The RBB and ARBB principle

Practically, the RBB algorithm, respectively the ARBB algorithm, applies to
any statistic T̂n = T (B1, . . . ,Bln−1), based on the cycles, respectively approx-
imate cycles, with standardization σ̂n = σ [T (B1, . . . ,Bln−1)]. For notational
simplicity, regeneration cycles and their approximate versions are here denoted
in the same manner. The resampling scheme consists of mimicking the underly-
ing renewal structure by drawing data blocks with replacement until a trajectory
of roughly length n is built. In this way, the randomness in the number of re-
newals is reproduced during the procedure and, conditionally to the original
data, the bootstrap series thus generated is regenerative.

Algorithm 1. (A)RBB algorithm

1. (Blocks.) Identify the (pseudo-) blocks B1, . . . ,Bln−1 from the observed
trajectory X0, . . . , Xn as explained in Section 2.1 (resp. in Section 2.2 in

the pseudo-regenerative case) and compute the statistic T̂n = T (B1, . . . ,
Bln−1), and its standard deviation σ̂n = σ(B1, . . . ,Bln−1).
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2. (Sequential drawing.) Draw sequentially and independently bootstrap
data blocks B∗

1 , . . . ,B∗
k from the empirical distribution of the blocks defined

at step 1. until the length of the bootstrap series l∗(k) =
∑k

j=1 l(B∗
j ) is

larger than n. Let l∗n = inf{k ≥ 1, l∗(k) > n}. If one is just interested in
asymptotic results, one may just draw ln − 1 i.i.d blocks (conditionally to
the trajectory so that ln is fixed in the bootstrap procedure).

3. (Bootstrap statistics.) From the bootstrap data blocks generated at
step 2, reconstruct a pseudo-trajectory by binding the blocks together, get-
ting the reconstructed RBB sample path X∗(n) = (B∗

1 , . . . ,B∗
l∗n−1) of length

n∗ = l∗(l∗n − 1). Then compute the bootstrap version of the regenera-
tive blocks estimator: T ∗

n = T (B∗
1, . . . ,B∗

l∗n−1) and its standard deviation

σ̂∗
n = σ(B∗

1 , . . . ,B∗
l∗n−1).

4. (Bootstrap CIs.) Bootstrap confidence intervals (CI) at level 1 − α ∈
(1/2, 1) for the parameter of interest are obtained by computing the boot-
strap root’s quantiles q∗α/2 and q∗1−α/2, of orders α/2 and 1 − α/2 respec-

tively (in practice, the latter are approximated in a Monte-Carlo fashion
by iterating steps 2-3): the basic Percentile bootstrap CI is simply

[q∗α/2, q∗1−α/2],

the Percentile bootstrap CI is defined as

[
2T̂n − q∗1−α/2, 2T̂n − q∗α/2

]

and the t-Percentile bootstrap CI is given by

[
T̂n − t∗1−α/2

σ̂n√
n
, T̂n − t∗α/2

σ̂n√
n

]
,

where t∗p is the pth quantile of the studentized bootstrap root
T∗

n−T̂n

σ̂∗

n/
√
n
.

Remark 3 (Gaussian confidence intervals). These bootstrap CI’s can be
compared to asymptotic CI’s classically built from the statistic and its stan-
dardization [

T̂n − Φ−1
1−α/2.σ̂n/

√
n, T̂n − Φ−1

α/2σ̂n/
√
n
]
,

where Φ−1
p is the pth quantile of the standard normal distribution, or replacing

σ̂n/
√
n with a new standardization estimator defined as the empirical standard

deviation of T ∗
n given by σ̃∗2 =

∑
b(T

∗
n − T

∗
n)

2/n.

4.2. Asymptotic validity of RBB and ARBB distribution estimates

The results stated below show that the bootstrap procedure described in the
previous subsection is asymptotically valid. Let P∗(.) be the conditional proba-
bility given the observed trajectory. The following assertions hold true.
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Theorem 6. 1. (“Blocks” estimator) Suppose that the assumptions of

Theorem 2 are fulfilled. Let θ̃n(u) denote the estimator θn(u) in the re-

generative case, θ̂n(u) in the pseudo-regenerative case, and let θ̃∗n(u) be its
bootstrap counterpart. Then, we have, as n → ∞:

sup
x∈R

∣∣∣P∗
(√

n
(
θ̃∗n(u)− θ̃n(u)

)
≤ x

)
− Pν

(√
n
(
θ̃n(u)− θ(u)

)
≤ x

)∣∣∣→ 0.

2. (“Runs” estimator) Suppose that the hypotheses of Theorem 4 are sat-

isfied. Denote by θ̃′n(u) the estimator θ′n(u) in the regenerative case, θ̂′n(u)

in the pseudo-regenerative case, and let θ̃′∗n (u) be its bootstrap counterpart.
Then, we have, as n → ∞:

sup
x∈R

∣∣∣P∗
(√

n
(
θ̃′∗n (u)− θ̃′n(u)

)
≤ x

)
− Pν

(√
n
(
θ̃′n(u)− θ(u)

)
≤ x

)∣∣∣→ 0.

Such results may also be used to estimate the mean-square error of
√
n(θn(u)−

θ(u)) and to calibrate the level u by minimizing the MSE, in the same spirit as
[20] or [12], and as illustrated in the simulation section.

4.3. Markov subsampling and the Hill estimator

As claimed by the following proposition, the RBB and ARBB algorithms can
also be successfully applied to tail index estimation provided that the sequential
drawing (step 2 in the previous algorithm) is replaced with a subsampling draw-
ing without replacement; see [14]. Proving that the procedure is still valid in
the absence of subsampling deserves a much more thorough analysis, far beyond
the scope of this paper. We thus introduce the following subsampling variant of
Algorithm 1.

Algorithm 2. RBB subsampling

1. (Blocks.) As described in step 1 of Algorithm 1.
2. (Subsampling drawing.) Choose a subsampling size mn large enough

but small compared to n and compute lmn
as the observed number of blocks

in a stretch of length mn : typically, lmn
is of order [ mn

EAτA
] and is thus

asymptotically equivalent to l̃mn
=
[
ln

mn

n

]
, where [x] is the integer part of

x. Draw l̃mn
bootstrap data blocks B∗

1 , . . . ,B∗
k by sampling without replace-

ment in the blocks B1, . . . ,Bln−1.
3. (Subsampling statistics.) Apply steps 3 and 4 of Algorithm 1 to the

reconstructed RBB sample path X∗(n) = (B∗
1 , . . . ,B∗

l̃mn−1
).

Theorem 7. Suppose that the assumptions of Theorem 5 are fulfilled. Denote by
ξ̃n,k the estimator ξn,k in the regenerative case, ξ̂n,k in the pseudo-regenerative

case, and let ξ̃∗n,k be its subsampling counterpart.
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Let mn > 1 such that mn → +∞ and mn/n → 0 as n → +∞. If we assume

in addition that k(l̃mn
)/k(ln) → 0, we then have, as n → +∞,

sup
x∈R

∣∣∣H̃∗
n(x)− H̃n(x)

∣∣∣→ 0,

where H̃∗
n(x) = P∗(

√
k(l̃mn

)(ξ̃∗mn, k(lmn ) − ξ̃n, k(ln)) ≤ x
)

and H̃n(x) =

Pν

(√
k(ln)(ξ̃n, k(ln) − ξ) ≤ x

)
.

In the subsampling context, higher order accuracy cannot be established. It
is thus sufficient to consider a simple form of the standardization in order to
prove the asymptotic validity. The issue of choosing the subsampling size mn

and the tuning parameter k is discussed in the next section.

5. Simulation results

In this section, we present illustrative simulation results to provide empirical
evidence of the nice behavior of the estimators and confidence intervals pro-
posed in this paper. Whenever possible, a comparison with other estimators
and confidence intervals is conducted.

5.1. Regenerative examples

Considering waiting times of certain queuing processes, we compute and discuss
the regeneration-based “blocks” and “runs” estimators of the extremal index
and the regeneration-based Hill estimator of the tail parameter.

Regeneration-based extremal index estimators. We first consider the
waiting times of an M/M/1 process (cf [3]) with parameters λ = 0.2, µ = 0.8
and sample path length n. As underlined in [10], there exists a closed analytical
form for the extremal index in this case; it is equal to θ = (1 − λ/µ)2 = 0.5625
and all the required assumptions are satisfied. The estimators θn(u) and θ′n(u) of
the extremal index proposed in this paper are both defined based on a threshold
u, supposed to be large.

RBB confidence intervals. Figures 1(a) and 1(b) show the asymptotic and
bootstrap confidence intervals of the regenerative “blocks” estimator and the
regenerative “runs” estimator, respectively. These CI’s are quite similar except
for the largest values of u. In the sequel, when a bootstrap CI is computed, it will
be the basic percentile bootstrap confidence interval. The coverage probabilities
of the basic bootstrap percentile CI for the M/M/1 waiting process is estimated
over M = 300 trajectories, as shown in Figure 2.

Choosing the threshold. As mentioned after Theorem 6, the threshold u can
be chosen by minimizing an estimation of the mean-square error of

√
n(θn(u)−

θ(u)). The optimal threshold value u∗ can therefore be determined as

u∗ = argmin
u>0

M̂SE(u),
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(a) Regenerative “Blocks” estimator
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(b) Regenerative “Runs” estimator

Fig 1. Extremal index estimation for waiting times of the M/M/1 queue with λ = 0.2, µ =
0.8, θ = 0.5625 (the x-axis gives the percentiles of the simulated (Wn), n = 1000, B = 199
bootstrap samples, solid red for the regenerative estimator, solid black for the mean bootstrap
estimator, dashed red for the basic percentile bootstrap CI, dotted red for the percentile boot-
strap CI, dashed green for the t-percentile bootstrap CI, dashed blue for the asymptotic CI
based on the regenerative standardization, dashed light blue for the asymptotic CI based on
the bootstrap standardization, horizontal black line is θ, vertical dashed red line is the optimal
u value as determined by minimizing (28).
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Fig 2. Coverage probabilities of the basic percentile bootstrap CI for the regenerative “blocks”
estimator and the regenerative “runs” estimators. M/M/1 queue with λ = 0.2, µ = 0.8, θ =
0.5625 (the x-axis gives the percentiles of the simulated (Xn), n = 1000, 1 − α = 95%-CI,
B = 199 bootstrap samples, M = 300, the solid blue curve is that of the “blocks” estimator,
the dashed red curve is that of the “runs” estimator).

with M̂SE(u) = σ2
f (un) + (θn(u) − θ̄∗n(u))2, where θ̄∗n(u) is the mean of the

bootstrap statistics. The same process can be applied to the regenerative “runs”
estimator. Applying this to the M/M/1 queue yields θ∗θn(u∗) = 0.5263 with CI
(0.4431 .6610) (which includes the targeted extremal index 0.5625).
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(a) n = 10000
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(b) n = 1000

Fig 3. Comparison of our bootstrap basic Percentile CI to that proposed in [16]. (B = 199,
dashed blue for ours and dashed green for theirs, solid black is the true θ).

Another possibility (which does not require any bootstrap) arises from the
fact that the ratio of the asymptotic variances of our 2 regenerative estimators
is asymptotically constant (σ′

f (un)
2/σ2

f (un) → 1 − θ for a properly chosen se-
quence of thresholds un, see Theorem 3, assertion (i) and theorem 4, assertion
(ii)1.) Hence, one may define an optimal threshold value u∗, and hence a unique
estimator of the extremal index, by minimizing in u the function

(
σ′2f (u)/σ2

f (u)− (1− θn(u))
)2

, (28)

and defining θ∗ = θn(u
∗). Applying this process to the MM1 queue yields θ∗ =

0.5179 with CI (0.4947 .6370) (which covers the targeted extremal index 0.5625).

Alternative estimators. In [10], the regenerative blocks estimator was com-
pared to the intervals estimator proposed by [16] and to various fixed lengths
block estimators and runs estimators (see Fig. 2 therein). Its mean squared error
was generally lower than those of the alternative estimators. As far as CI’s are
concerned, the authors of [16] also proposed a bootstrap procedure based on an
automatic declustering of the process relying on the estimation of the extremal
index (see section 4 therein). Figure 3 illustrates that our bootstrap CI is much
sharper than theirs on this example. This remains true for values of θ slightly
higher (e.g. 0.75, 0.81).

Regeneration-based Hill Estimator. We now consider the waiting times of
an M/G/1 process with Pareto service times, with parameters λ = 0.2 and a = 3.
The subsampling size was fixed at mn = ⌊n/ log(n)⌋. For each of the M trajecto-
ries, for each of the B bootstrap samples, the regenerative Hill estimator is first

1The asymptotic variance of the regenerative “runs” estimator for a fixed threshold u is
σ′

f
(u)2 = s2

f
(u)/α, with s2

f
(u) given in eq. (30) in the appendix section.
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Table 1
Confidence intervals around tail index estimators: M/G/1 queue with Pareto service times
λ = 0.5, 1/a = 1/3, sample path of length n = 10, 000, mn = [n/ log(n)] = 1, 085, B = 199
bootstrap samples, M = 300 Monte-Carlo replications to compute the coverage probabilities,
mean lengths of the CI’s and mean squared error of the estimator (MSE) - a Based on the
bootstrap variance - b the last line refers to the Standard Hill estimator while the rest of the

table refers to the Regenerative Hill estimator

CI name Lower b. Upper b. Coverage Mean length MSE

Basic Percentile CI 0.248 0.655 100.0% 0.449 0.0093
Percentile CI -0.077 0.330 57.3% 0.449 0.0093
Asymptotic CI 0.196 0.382 64.7% 0.161 0.0093
Asymptotic CI a 0.075 0.503 99.3% 0.471 0.0222
t-Percentile CI 0.095 0.314 49.7% 0.207 0.0093
Standard bootstrap CI b 0.156 0.201 0.0% 0.048 0.0547

computed for various values of k, from k = 10 to the number of blocks k = lmn
.

The optimal k is then determined by computing a bias corrected Hill estimator
(as in [6, 17]) and choosing the value k∗ that minimizes the estimated MSE

M̂SE(k) = Ĥ2
k, n/k + (Hk, n − Ĥk, n)

2,

where Ĥk, n is a bias corrected version of the Hill estimator. The regenerative

standardization is then computed as Hk∗,n/
√
k∗. Results of this simulation are

presented in Table 1. Note that the basic percentile CI and asymptotic CI with
bootstrap variance have the best coverage probabilities and are also very easy
to compute (it does better than the asymptotic CI which has however the ad-
vantage of not requiring the bootstrap resampling). Regarding the choice of the
subsampling size mn, various values were tested and larger values do keep a nice
coverage probability with reduced mean length. The application of Algorithm 1
yields particularly nice results questioning the validity of such procedure for the
regenrative Hill estimator and hence the validity of the bootstrap of the Hill
estimator in the i.i.d. case as well (theoretical work in progress).

Alternative estimator. In [10], the regenerative Hill estimator is compared to
the standard Hill estimator computed directly from the longest waiting times, as
proposed by [27]. The same bias correction method was applied to the standard
Hill estimator in order to determine the optimal k value. In their paper [27],
the authors do not propose any confidence interval for their estimator but one
could compute a bootstrap CI as proposed in [5] in the iid case (the principle is
to resample directly the log differences that are iid exponential rather than the
upper statistics). This approach results in very small CI’s that fail to compensate
for the fact that the Standard Hill estimator is quite bad on this example and
hence have a null coverage probability; see the last line of Table 1.

5.2. Pseudo-regenerative examples

We now turn to examples for which a regenerative extension must be approxi-
mated and show that this additional step does not damage the accuracy of the
method.
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(b) “Runs” estimator
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(c) Coverage “blocks” estimator

0.50 0.52 0.54 0.56 0.58 0.60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) Coverage “runs” estimator

Fig 4. Extremal index estimation for waiting times of the AR1 Cauchy process with ρ = 0.8
and σ = 1, θ = 0.2 (the x-axis gives the percentiles of the simulated (Xt), n = 10000, B = 199
bootstrap samples, M = 100 Monte Carlo replications

Approximate regeneration-based extremal index estimator. For the
pseudo regenerative case, we consider a first order autoregressive model with
Cauchy noise, with parameters ρ = 0.8 and σ = 1, yielding an extremal index
θ equal to 1− ρ, see [10] for details, namely section 5.2 therein for a precise de-
scription of the construction of the pseudo-blocks. The bootstrap CI’s and their
coverage probabilities are shown in Figure 4. Note that the percentiles of X used
for the “runs” estimator are a lot lower than those used for the “blocks” esti-
mator. The CI’s for the “blocks” estimator are better than those of the “runs”
estimator in terms of coverage probability.

Approximate regeneration-based Hill estimator.With the AR(1)-Cauchy
example again, we investigated the estimation of the tail index equal to 1
here, see [10] for details. The regenerative Hill estimator was computed for
M = 100 trajectories of length n = 10, 000, using a subsampling size mn =
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n/ log(n) = 1, 085 and B = 199 bootstrap replications in each case: we obtained

Ĥn, k∗ = 1.14 for k∗ = 104 (sd = 0.111) with a basic percentile bootstrap CI
of (0.592− 1.945); a coverage probability of 94% and a mean length of 1.457.
Again, when the subsampling size is increased, the coverage probability remains
aroung the desired 95% while the mean length of the CI is drastically reduced,
which puts questions to the validity of the full regenerative bootstrap for the
regenerative Hill estimator as proposed in Algorithm 1 and used for the regen-
erative extremal index estimators.

Appendix A: Technical Proofs

A.1. Proof of Theorem 2

For assertion (i), observe that θn(u) is simply the ratio of the components of
the bivariate vector (Ḡf,n(u),Σf,n(u))

′, which is asymptotically normal under
the specified moment conditions (see the proof of the CLT stated in Theorem
17.2.2 of [25]) for the atomic case:

√
n

[
Ḡf,n(u)
Σf,n(u)

− Ḡf (u)
Σf (u)

]
⇒ N

(
0, α ·

(
σ2
1(u) σ12(u)

σ12(u) σ2
2(u)

))
,

since n/(ln − 1) → α = EA[τA], Pν-a.s. as n → ∞, and with

σ2
1(u) = Ḡf (u)(1− Ḡf (u)), σ

2
2(u) = EA



(

τA∑

i=1

I{f(Xi) > u} − Σf (u)

)2

 ,

σ12(u) = EA

[(
I{ max

1≤i≤τA
f(Xi) > u} − Ḡf (u)

)( τA∑

i=1

I{f(Xi) > u} − Σf (u)

)]
.

Application of the Delta method finally yields (12), with

σ2
f (u) =

[
σ2
1(u)

Σf (u)2
− 2

σ12(u)Ḡf (u)

Σf (u)3
+

Ḡf (u)
2σ2

2(u)

Σf (u)4

]
.

The demonstration of assertion (ii) relies on similar arguments regarding

the asymptotic normal behavior of the bivariate vector (1 − Ĝf,n(u), Σ̂f,n(u))
′

obtained from the CLT stated in Theorem 17.3.6 of [25].

A.2. Proof of Proposition 3

Consider (vn)n∈N such that rnḠf (vn)/α → η < ∞ as n → ∞, with rn =

o(
√
(n/ log logn). A preliminary step consists of studying the behavior of the

various components of σ2
f (vn) as n → ∞, as stated in the next lemma.

Lemma 8. We have

rnΣf,n(vn)/α → η/θ, rnGf,n(vn)/α → η

rnσ
2
1(vn)/α → η, σ2

2(vn) = O(r−2
n ), σ12(vn) = O(r−3/2

n ).



1244 P. Bertail et al.

Proof. Consider the solution of the Poisson equation:

ĝ(x, u) = Ex

[
τA∑

i=1

I{f(Xi) > u} − Σf (u)

]
.

Observe that

σ2
2(vn) ≤ Eµ[ĝ(X1, vn)

2] ≤ EA



(

τA∑

i=1

I{f(Xi) > vn}
)2

+Σf (vn)

2

≤ EA[τ
2
A] + Σf (vn)

2.

By Cauchy Schwarz, we yield the last order of magnitude: σ12(vn)≤σ1(vn)σ2(vn).

Now, define Xn =
∑ln−1

i=1 Xj,n =
∑ln−1

i=1
I{ζj(f)>vn}−Ḡf (vn)√

ln−1σ1(vn)
, and observe that

√
n/rn(θn(vn)− θ(vn)) =

√
n√

ln − 1

√
rnσ1(vn)

rnΣf,n(vn)
Xn

− rnσ2(vn)

rnΣf,n(vn)

θ(vn)√
rn

√
n
Σf,n(vn)− Σf (vn)

σ2(vn)
.

Given the rates in the preliminary lemma, the second term on the RHS is of order

OP(r
−1/2
n ). Consequently, the asymptotic behavior of

√
n/rn(θn(vn)− θ(vn)) is

determined by that of the first term. A direct application of the Lindeberg
Feller theorem is not possible here since ln − 1 is not a stopping time for (Xn).
However it can be shown through the application of a slight modification of the
arguments given page 425 of [25] that if we denote by X̃n the vectorXn in which

ln is replaced with ⌊n/α⌋, then n−1/2|Xn− X̃n| converges to zero in probability.

Then the asymptotic standard normality of X̃n, and hence that of Xn, results
from the Lindeberg Feller theorem under the assumed moment conditions. We
then conclude this proof from the above lemma that gives the limit as → ∞ of
the term in front of Xn, namely θ/

√
η. Let us now check the conditions of the

Lindeberg Feller theorem on X̃n.

H1 The sequence (X̃j,n) is asymptotically negligible since

⌊n/α⌋−1∑

j=1

PA(|Xj,n| ≥ ε) ≤
(⌊n/α⌋ − 1)EA[X

4
j,n]

ε4
≤ (⌊n/α⌋ − 1)−1

ε4σ4
1(vn)

P→0

since σ4
1(vn) = O(r−2

n ) = O(log log n/n) and EA[(I{ζj(f) > vn} −
Gf (vn))

4] ≤ 1.

H2 The second condition
∑⌊n/α⌋−1

j=1 EA[Xj,n] = 0 also holds since EA[I{ζj(f) >
vn}] = Ḡf (vn).
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H3 Finally, the condition on the variance is also satisfied since:

Γn =

⌊n/α⌋−1∑

k=1

VA(Xj,n) = (⌊n/α⌋ − 1)VA(Xj,n) =
(⌊n/α⌋ − 1)σ2

1(vn)

(⌊n/α⌋ − 1)σ2
1(vn)

P→1,

denoting by VA(.) the variance under PA(.).
Note that the assumptions H(2) and H(ν, 1) are only needed to ensure

that σ2(u) is defined for all u, and the length of the first non regenerative
block has a finite first order moment. Consequently, our regeneration-based
extremal index estimator does not differ much from that with denominator
(ln − 1)/n

∑n
i=1 I{f(Xi) > u}.

A.3. Proof of Theorem 4

Writing (17) as the ratio of G1
f (u) = PA({max2≤i≤τA f(Xi) ≤ u}∩{f(X1) > u})

and F̄ 1(u) = PA(f(X1) > u), then the regenerative “runs” estimator given
in (18) is simply the ratio of the empirical counterparts of the probabilities,
which are denoted G1

f,n(u) and F̄ 1
n(u) in the sequel. Hence, the proof of (i)

and (ii) exactly follows that of the strong consistency of the regenerative blocks
estimator, (8), provided in [10], and that of its asymptotic normality given above,
provided that the next lemma holds true under the stated assumptions.

Lemma 9. Since Ḡf (u) ∼ G1
f (u), F̄ (u) ∼ F̄ 1(u), we can state a LIL for G1

f (u),

a LIL for F̄ 1(u) and get asymptotic equivalences similar to those stated in the
previous lemma. Let rn ↑ ∞ in a way that rn = o(

√
n/ log logn) as n → ∞,

considering (vn)n∈N such that rn(1 − F (vn)) → η < ∞ as n → ∞, we have
rnF̄

1(vn) → η/θ.

More precisely, we can state the asymptotic normality of the bivariate vector
(G1

f,n(u), F̄
1
n(u))

′, for all fixed u,

√
n

[
G1

f,n(u)

F̄ 1
n(u)

− G1
f (u)

F̄ 1(u)

]
⇒ N

(
0, α · V

(
(G1

f (u), F̄
1(u))′

))
,

with V
(
(G1

f (u), F̄
1(u))′

)
=
(

G1

f (u)(1−G1

f (u)) G1

f (u)(1−F̄ 1(u))

G1

f (u)(1−F̄ 1(u) F̄ 1(u)(1−F̄ 1(u))

)
.

Note that because of the specific “probability” form of the covariance terms
here (they are all lower or equal to one), we do not need extra moment assump-
tions as we did in the case of the regenerative blocks estimator.

An application of the Delta method finally yields the following asymptotic
variance for all fixed u

s2f (u) = α×




G1

f (u)(1−G1

f (u))

F̄ 1(u)2
− 2

G1

f(u)
2(1−F̄ 1(u))

F̄ 1(u)3

+
G1

f(u)
2F̄ 1(u)(1−F̄ 1(u))

F̄ 1(u)4


 (29)

= α×
[
θ′(u)

(1−G1
f (u))

F̄ 1(u)
− θ′(u)2

1− F̄ 1(u)

F̄ 1(u)

]
. (30)
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Since rnF̄
1(vn) → η/θ, we can identify s2 in (21) and (22) as αθ2(1 − θ). A

formal application of the Lindeberg-Feller theorem similarly to the regenerative
blocks estimator proof (the Xn’s are bivariate) leads to the same result and it
is easily seen that, because only indicator functions are involved, no moment
assumption on τA is needed.

For the pseudo-regenerative version (i’) and (ii’), it is sufficient to observe that
under the stated assumptions, we can prove similarly to theorem 2 in [10], that
supx∈R |Ĝ1

f,n(x) − G1
f,n(x)| = OPν

(Rn(π̂n, π)1/2), as n → ∞, and similarly

to Lemma 6.2 in [8], that we have N(n) × supu∈R
|F̂ 1

N(n)(u) − F 1
N(n)(u)| =

OPν
(RN(n)(π̂N(n), π)

1/2) as N → ∞.

A.4. Proof of Theorem 6

The bootstrap version of the “Blocks” estimator of the extremal index is given
by the ratio of the bootstrap version bivariate vector (Ḡf,n(u),Σf,n(u))

′. Since
by [8], the RBB and ARBB are asymptotically valid, it follows immediately
that, for fixed u,

√
n(θ∗n(u) − θn(u)) has the same limiting distribution as√

n(θn(u)− θ(u)). The same result remains valid even if ln is fixed in the boot-
strap procedure. The same arguments may be used for the “runs” estimator.

A.5. Proof of Theorem 7

When using l̃mn
, the proposed procedure boils down to a subsampling procedure

in an i.i.d framework. Using continuity and standard U-statistics arguments (see
[14]), by mimicking the proof of [14] (see p. 44 therein), we obtain that

P
∗
(√

k(l̃mn
)
(
ξ̃∗mn, k(lmn ) − ξ̃n, k(ln)

)
≤ x

)

= P
∗
(√

k(l̃mn
)
(
ξ̃∗
mn, k(l̃mn )

− a
)
≤ x

)
+ o(1)

= P

(√
k(l̃mn

)
(
ξ̃mn, k(l̃mn ) − a

)
≤ x

)
+ o(1).

The first equality is a straightforward consequence of the continuity of the
limiting distribution of the Hill estimator and of the assumption stating that
k(ln

mn

n )/k(ln) → 0.
Now using the fact that mn → ∞ and the fact that the Hill estimator so

normalized has a nondegenerate distribution, we get the result of Theorem 7.
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