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Takagi-Sugeno Observers: Experimental Application for
Vehicle Lateral Dynamics Estimation

Zedjiga Yacine, Dalil Ichalal, Naïma Ait-Oufroukh, Saïd Mammar, and Saïd Djennoune

Abstract— This brief presents a contribution to nonlinear
observer design for both the estimation of vehicle lateral dynam-
ics and road curvature. The latter is recovered by a simple
algebraic technique and high-order sliding mode differentiator,
which allows to estimate exactly the time derivatives of measured
signals. For the lateral dynamics of the vehicle, a new approach is
developed by the use of a Takagi-Sugeno (TS) model representing
exactly, with no loss of information, the nonlinear vehicle behav-
ior in a compact set of the state space. The TS model involves
unmeasured premise variables. The proposed new observer starts
with the estimation of these premise variables. Second, the
design of an observer with weighting functions depending on
these estimated premise variables is considered. Theoretically,
the proposed observer ensures exponential convergence of the
state estimation error toward zero. This convergence is studied
by the Lyapunov theory and the obtained stability conditions
are expressed in terms of linear matrix inequalities. Finally,
experimental results are given for vehicle lateral dynamics and
road curvature estimation with real data.

Index Terms— Algebraic approach, high-order sliding
mode differentiators (HOSMDs), nonlinear observers, Takagi-
Sugeno (TS) systems.

I. INTRODUCTION

THE advanced progress in technology has allowed the
elaboration of sophisticated vehicle safety systems in

terms of driving assistance. From passive to active driving
assistance, the objectives vary but all have one mission that
is to ensure the safety of the road users. Driving assistance
systems have seen their deployment widen these last years
to become indispensable vehicle equipments, such as anti-
lock braking system, electronic stability program, and adaptive
cruise control. The design and the implementation of these
equipments requires the availability of certain vehicle informa-
tion, such as the lateral dynamics parameters (sideslip angle
and lateral velocity). Extension of these systems requires lane
attributes perception and in particular the road curvature. This
information, however, is often unavailable either for techno-
logical reasons or economical ones (high cost of the sensors
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required and implementation of measuring instruments). To
overcome this lack of unavailable measures, their estimation
proves to be a promising alternative.

Observer design for linear systems is a subject of an
extensive literature. Knowing that a linear model is valid
around a specific operating point, and thus only locally, this
alterates the quality of the estimations, in terms of accuracy.
On the other side, while nonlinear models are more accu-
rate in representing the real system’s behavior, the design
of observers for such systems, is still a field of intensive
researches. However, there are many approaches to solve the
problem of state estimation for nonlinear systems, but they are
specific to certain categories of nonlinear systems for which
they are developed, which is somehow restrictive. Namely,
geometric approaches [13], high-gain methods [9], and sliding
mode techniques [5], [16]. In algebraic framework, a nonlinear
system is algebraically observable if it is possible to express
the state vector as a mapping with respect to the measured
inputs, the outputs and their successive time derivatives. The
problem of state estimation is then turned into a problem of
time derivatives estimation of both the inputs and the outputs
of the system. The interest of such a result is in the formulation
of the states as algebraic equations. The time derivatives can
be estimated by different approaches such as sliding mode
differentiators (super twisting, higher order sliding mode [16]),
which provides an exact finite time derivatives estimation or by
nonasymptotic algebraic techniques [8]. These techniques are
very interesting and proved their efficiency in estimating the
time derivatives of measured signals. However, the algebraic
technique is sensitive to parameter uncertainties because there
is no tuning term that could render the state estimation robust
to these uncertainties. More recently, Takagi-Sugeno (TS)
approaches have been highly considered in control and design
observer theories, allowing to extend some tools developed in
the linear case to nonlinear systems. They allow combining
the accuracy of the modeling and the availability of designing
tools [11], [15], [18]. They basically transform the nonlinear
system into a polytopic form, represented by a convex sum
of local linear submodels. A large class of systems are then
expressed in terms of polytopic systems as linear parameter
varying (LPV) or quasi-LPV systems that coincide with the
so-called TS systems where the weighting functions are deter-
ministic [10], [22].

Vehicle lateral dynamics are described by a nonlinear model
affected by intrinsic parameters and influenced by many
external others, such as the cross wind, road friction coef-
ficient, and hence forth, and many other unknown effects that
cannot be measured, which are identified as unknown inputs
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(perturbations, noise, and modeling uncertainties). Thus, the
vehicle model can be represented by a nonlinear model subject
to unknown inputs.

In the field of lateral dynamics studies, the linear single
track vehicle model is usually used, neglecting roll and pitch
dynamics [1], [7], named yaw-drift model. The design of
observers for linear systems with unknown inputs has been
undertaken extensively these last decades [12], [23]. Observer
design are proposed for estimating these lateral dynamics in
normal driving zone (mainly, linear part of the tire forces) with
linear Luenberger, PI or unknown input observers [17]. But
if we speak about detection of dangerous driving situations
(sliding situation, etc.) the model describing this behavior
is nonlinear. For such situation, the extended Kalman filter
is often used [2]. Recently, a technique using the bounded
Jacobian approach is proposed by Phanomchoeng et al. [21],
inspired from the approach of Zemouche et al. [25] for
Lipschitz systems. TS observers are proposed in [19] by
approximating the nonlinear model by a TS one [4]. A more
interesting TS model obtained by sector nonlinear transforma-
tions is proposed in [24] for more accurate representation of
the nonlinear behavior. This model is applied to lateral velocity
and road curvature estimation.

In this brief, we propose to consider the problem of
designing nonlinear observers with unknown inputs from the
nonlinear point of view using the TS formalism. This brief is
organized as follows. Section II presents the nonlinear model
of the vehicle lateral dynamics and its positioning on the
traffic lane with its reformulation in terms of two cascaded
interconnected systems. In Section III, the second subsystem
is used in an algebraic framework and high-order sliding
mode differentiator (HOSMD) to estimate the road curvature
and the unknown premise variables, which will be used in
the construction of the TS observer with estimated premise
variables. Then, the transformation of the second subsystem
under TS structure into a polytopic TS model with unmeasur-
able premise variables is performed, representing exactly the
nonlinear one in a compact set of the state space including
the nonlinear region of the lateral forces and considering the
longitudinal velocity varying. The observer is then designed
based on the obtained TS model. Section IV presents some
validations with real data and discussions about the proposed
state observation strategy.

II. VEHICLE LATERAL MODEL AND POSITIONING

RELATIVE TO ROAD

This section is dedicated to the presentation of the vehicle
model used for the observer synthesis. First, a nonlinear yaw-
drift model is considered. Then, the positioning of the vehicle
according to the road section is established. The dynamics
of the lateral forces are also considered. The overall model
including the lateral dynamics, the position relative to the road
and the tire force dynamics are then given as a model with
the road curvature acting as an unknown input.

A. Lateral-Drift Model

Most of the work that has dealt with vehicle lateral
dynamics use linear models. They are based on simplification

assumptions, which limit the evolution domain to the linear
region only [7]. Instead, we propose to use a nonlinear yaw-
drift model to overcome this limitation. Furthermore, we
consider the longitudinal velocity time-varying, to reflect a
more realistic behavior of the vehicle system. From [1] and [7],
the lateral model is described by

{

mv̇y = (F f + Fr ) − mvx ψ̇

Izψ̈ = a f F f − ar Fr .
(1)

The lateral front and rear forces F f and Fr are expressed by
the Pacejka’s magic formula [3], [20]

Fi = Di sin
(

Ci tan−1 (

Bi

(

1 − Ei

)

αi + tan−1 (

Biαi

)))

(2)

i = { f, r}. The front and rear sideslip angles of the tires α f

and αr are given by
⎧

⎨

⎩

α f = δ f − β − tan−1
(

a f

vx
ψ̇ cos(β)

)

αr = −β + tan−1
(

ar

vx
ψ̇ cos(β)

)

.
(3)

For small variations of the sideslip angles, corresponding
to the rational driving, between the normal and pseudosliding
regions, not exceeding 8°, the sideslip angles may be simpli-
fied as follows (β ≈ vy/vx ):

{

α f ≈ δ f −
vy

vx
−

a f

vx
ψ̇

αr ≈ −
vy

vx
+ ar

vx
ψ̇.

(4)

B. Positioning of the Vehicle Relative to the Track

To establish the lateral dynamics of the model (1) related to
the traffic lane, we add the differential equations of the lateral
deviation yL at a target distance ls from the center of gravity
and the relative heading angle ψ

L
with the road curvature ρ [7]

{

ẏ
L

= vx (β + ψ
L
) + ls(ψ̇ − vxρ)

ψ̇L = ψ̇ − vxρ.
(5)

C. Dynamic Lateral Forces

In practical situations, due to the characteristics of the tires,
the forces F f and Fr are generated by dynamic systems given
by

{

τ f Ḟ f + F f = F S
f

τr Ḟr + Fr = F S
r .

(6)

For more details, the reader can refer to [20, ch. 5]. The inputs
of these two systems are F S

f and F S
r denoting the steady values

of the lateral forces, which can be represented by different
models as Pacejka magic formula (2) [20], Dugoff’s model,
and hence forth. In this brief, the Pacejka’s model is considered

F S
i = Di sin

(

Ci tan−1 (

Bi

(

1 − Ei

)

αi + tan−1 (

Biαi

)))

. (7)

The parameters τ f and τr are given by τi = ri/rD |�|, i =

{ f, r}, where rD |�| denotes the longitudinal velocity (rD

and � represent the dynamic rolling radius and the angular
velocity), ri are the relaxation lengths.
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The global nonlinear model is then given by the following
two cascaded nonlinear models:

S1 :

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

v̇y = 1
m

(F f + Fr ) − vx ψ̇

ψ̈ = 1
Iz

(a f F f − ar Fr )

Ḟ f = − vx

r f
F f + vx

r f
F S

f

Ḟr = − vx

rr
Fr + vx

rr
F S

r

(8)

S2 :

{

ψ̇L = ψ̇ − vxρ

ẏ
L

= (vy + vxψL
) + ls(ψ̇ − vxρ).

(9)

The aim of this decomposition is to reduce the complexity of
the system, so the first model S1 will be used to estimate the
lateral velocity vy and the lateral tire forces F f and Fr and
the second one S2 will be used to estimate the road curvature
ρ since ψ

L
and y

L
are available to measure with adequate

sensors (vision system).

III. OBSERVERS DESIGN FOR LATERAL DYNAMICS

ESTIMATION AND ROAD CURVATURE

A. Road Curvature Estimation

From the vision system S2, it is also possible to estimate
exactly the road curvature from the knowledge of the angle
ψL , the yaw rate ψ̇ and the longitudinal velocity vx . Consider

ψ̇L = ψ̇ − vxρ (10)

it is easy to express the road curvature by the algebraic
equation ρ = ψ̇ − ψ̇

L
/vx , which is valid for all vx �= 0.

The time derivative of ψL is obtained by a HOSMD noted
ψ̇Le. Finally, the equation allowing the estimation of the road
curvature is

ρ̂ =
ψ̇ − ψ̇Le

vx
. (11)

B. Lateral Velocity and Tire Forces Estimation

Before designing the observer that estimates the lateral
dynamics of a vehicle, the model (8) is transformed, by the
following state transformation:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1(t) = vy

x2(t) = ψ̇

x3(t) = 1
m

(F f + Fr )

x4(t) = 1
Iz

(a f F f − ar Fr ).

(12)

Let us assume that the relaxation parameters ri , i ∈ { f, r}

have the same value, i.e., r f = rr = r . The system (8)
becomes

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ẋ1(t) = −vx x2(t) + x3(t)

ẋ2(t) = x4(t)

ẋ3(t) = − vx

r
x3(t) + vx

mr

(

F S
f + F S

r

)

ẋ4(t) = − vx

r
x4(t) + vx

Izr

(

a f F S
f − ar F S

r

)

.

(13)

In this section, an observer design strategy is proposed by
using the system presented in (13).

1) TS Formulation of the Lateral Dynamics Model: In this
section, we aim to rewrite the system (13) into a polytopic
TS model, using the sector nonlinearity approach. For this, we
proceed by expressing the nonlinearities in the model into a TS
formulation. Note that the transformation is exact in a compact
set of the state space, so there is no loss of information (the
two models are equivalent in that set).

a) TS formulation of the lateral forces F S
f and F S

r :

We aim to rewrite the nonlinear functions defining the lateral
forces model F S

f and F S
r in a TS formulation. First, let us

consider the expressions of Pacejka’s forces (7). The objective
is to express (7) in TS form as follows:

F S
f =

2
∑

i=1

µ f i (α f )M f iα f (14)

with simple mathematical manipulations, it is easy to write

F S
f = f (α f )α f (15)

where

f (α f ) = A f

sin(S3 f )

S3 f

tan−1(S2 f )

S2 f

+B f

sin(S3 f )

S3 f

tan−1(S2 f )

S2 f

tan−1(S1 f )

S1 f

(16)

S1 = Bα f , S2 = B(1 − E)α f + E tan−1 (S1)

S3 = C tan−1 (S2) , A f = BC D(1 − E)

B f = BC DE .

It is known that sin(x)/x is defined on R and when x → 0
sin(x)/x → 1. It is the case also for the function tan−1(x)/x .
It is obvious that limx→0(tan−1(x)/x) = 1. Knowing that α f

is a bounded angle, the function tan−1(x)/x is also bounded.
The function f (α f ) is bounded ∀α f : fmin ≤ f (α f ) ≤ fmax.
Let us define the f (α f ) as a premise variable, it follows:

µ f 1(α f ) =
f (α f ) − fmin

fmax − fmin
, µ f 2(α f ) =

fmax − f (α f )

fmax − fmin
. (17)

Thus, the exact T-S model is given by F S
f =

∑2
i=1 µi (α f )Miα f , where the parameters Mi , i = 1, 2, are

defined by M1 = fmax and M2 = fmin, describing the tire
stiffness. The same reasoning is followed to establish the TS
formulation of the rear lateral force F S

r , so that one obtains:

F S
r =

2
∑

i=1

µri (αr )M f iαr . (18)

Next, both F S
f and F S

r will be expressed in exact T-S formu-
lations using the above formulas, the new expressions of these
forces are as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

F S
f =

2
∑

i=1
µ f i

((

−M f i

vx

−a f M f i

vx
0 0

)

x + M f iδ f (t)
)

F S
r =

2
∑

j=1
µr j

((

−Mr j i

vx

ar Mr j i

vx
0 0

))

x

(19)

where x T (t) = [x1(t) x2(t) x3(t) x4(t)]
T is the state vector,

the functions µi f and µ j r satisfy the convex sum property,
i.e.,

∑2
i=1 µ f i = 1,

∑2
j=1 µr j = 1 and 0 ≤ µ f i , µr j ≤ 1,
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i, j = 1, 2. Using (19) in the vehicle lateral-drift model, its
dynamics can be expressed in a T-S formulation

ẋ(t) =

4
∑

i=1

µi (x(t))(Ai x(t) + Bi u(t)) (20)

where u(t) is the steering angle δ f . 0 ≤ µi ≤ 1, i = 1, 4,
and

∑4
i=1 µi = 1. The matrices of the model are defined

by A1 = A11, A2 = A12, A3 = A21, and A4 = A22 and
B1 = B11, B2 = B12, B3 = B21, and B4 = B22, where

A j k =

⎛

⎜

⎜

⎝

0 −vx 1 0
0 0 0 1

a1 j k a2 j k − vx

r
0

a3 j k a4 j k 0 − vx

r

⎞

⎟

⎟

⎠

, B j k =

⎛

⎜

⎜

⎝

0
0

b1 j k

b2 j k

⎞

⎟

⎟

⎠

(21)

where

a1 j k = −
1

mr
(M f j + Mrk )

a2 j k = −
1

mr
(a f M f j − ar Mrk )

a3 j k = −
1

Izr
(a f M f j − ar Mrk )

a4 j k = −
1

Izr

(

a2
f M f j + a2

r Mrk

)

b1 j k =
vx

mr
M f j , b2 j k =

a f vx

Izr
M f j .

The weighting functions µi are defined by

µ1 = µ f 1 × µr1, µ2 = µ f 2 × µr1

µ3 = µ f 1 × µr2, µ4 = µ f 2 × µr2. (22)

Note that the developed TS model (20) with four submod-
els assumes that the longitudinal velocity vx is constant as
commonly used in the literature for lateral dynamics repre-
sentation. In this brief, an extension to time-varying velocity
is considered, then the TS system (20) becomes

ẋ(t) =

4
∑

i=1

µi (x(t)) (Ai (vx (t))x(t) + Bi (vx (t))u(t)) (23)

the matrices Ai (vx (t)) and Bi (vx (t)) are defined in (21), where
vx is time-varying and replaced by vx (t). Since vx (t) is mea-
sured and bounded as follows vmin

x ≤ vx (t) ≤ vmax
x , ∀t , which

is a realistic and nonrestrictive assumption in practical situa-
tions, the time-varying parameter vx in the matrices Ai (vx (t))

and Bi (vx (t)) can be rewritten in TS formulation by applying
the sector nonlinearity approach. One obtains Ai (vx(t)) =
∑2

k=1 µvk(vx (t))Ak
i and Bi (vx (t)) =

∑2
k=1 µvk(vx (t))Bk

i .
The global TS model of the considered subsystem S1 is then
given by (24) with eight submodels, where the weighting
functions depend on the system’s state variables, which are
not totally measurable

⎧

⎪

⎨

⎪

⎩

ẋ(t) =
8
∑

i=1
hi (z(t)) (Ai x(t) + Bi u(t))

y(t) = Cx(t).

(24)

The output of the system is the measured yaw rate ψ̇(t),
which leads to the following observation matrix C =

(0 1 0 0), and the vector of premise variables is z(t) =

(vx (t) vy(t) ψ̇(t) δ f )
T , note that this vector is partially

measured due to the presence of vy(t). Next, the obtained TS
model of the vehicle is used to design a nonlinear observer
to estimate the lateral vehicle velocity vy(t) and the lateral
forces F f and Fr acting on the vehicle wheels with accessible
measurements δ f (t), vx (t), and ψ̇ . For that purpose, the
proposed approach follows the steps:

1) use the vision system to estimate exactly the premise
variables by algebraic and sliding mode techniques;

2) transform the TS system with unmeasurable premise
variables into an equivalent TS system with measured
premise variables.

2) Premise Variables Estimation: As presented previously,
the premise variables vector z(t) depends on the measured
variables ψ̇ , vx , and δ f and the unmeasured variables vy . By
examining the vision system, giving the equation of the lateral
offset y

L

ẏL = vy + vxψL + lsψ̇L . (25)

From (25), it is possible to express vy with respect to the
measured variables and their time derivatives as follows:

vy = ẏL − vxψL − lsψ̇L . (26)

The TS system becomes a model with premise variables
depending only on measured variables vx , ψ̇ , and ψ

L
and the

time derivatives ẏ
L

and ψ̇
L

of y
L

and ψ
L
, respectively. Then,

the TS system is equivalent to the following:

⎧

⎪

⎨

⎪

⎩

ẋ(t) =
8
∑

i=1
hi (s(t))(Ai x(t) + Biu(t))

y(t) = Cx(t)

(27)

where s(t) =
(

vx ψ̇ ψ
L

ẏ
L ψ̇L

δ f

)T
.

Remark 1: Note that the system (27) is equivalent to the
first one if the time derivatives of ψ

L
and y

L
are computed

exactly ∀t ≥ 0. However, this is not true in practical situation,
for example, if a HOSMD is used, the time derivatives are
obtained exactly after a given finite time T .

In the light of Remark 1, the transient phase of the differ-
entiators is taken into account by defining the vector se(t),
which contains the measured variables and the outputs of the
differentiators as follows:

s(t) = (vx ψ̇ ψ
L

ẏLe ψ̇Le δ f )
T (28)

where ẏLe and ψ̇Le are the time derivatives of y
L

and ψ
L

obtained from HOSMDs. The interest of such an approach
is that ∀t > T , the vector se(t) = s(t) (finite time exact
convergence). To consider Remark 1, the system (27) is
equivalent to

⎧

⎪

⎨

⎪

⎩

ẋ(t) =
8

∑

i=1
hi (se(t))(Ai x(t) + Bi u(t)) + Ŵδ(t)

y(t) = Cx(t)

(29)
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where

δ(t) =

⎧

⎪

⎨

⎪

⎩

8
∑

i=1
(hi (s(t))−hi (se(t)))(Ai x(t)+Biu(t)) t ≤ T

0 t > T

(30)

and

Ŵ =

(

0 0 1 0
0 0 0 1

)T

.

Then, the proposed observer takes the form

⎧

⎪

⎨

⎪

⎩

˙̂x(t) =
8

∑

i=1
hi (se(t))(Ai x̂(t) + Bi u(t) + L i (y(t) − ŷ(t)))

ŷ(t) = C x̂(t).

(31)

Let us consider the state estimation error e(t) = x(t) − x̂(t).
It obeys to the following differential equation:

ė(t) =

8
∑

i=1

hi (x̂(t))((Ai − L iC)e(t) + Ŵδ(t)). (32)

At this stage, the objective is to compute the gains L i of the
observer to ensure exponential stability of the system (32). The
following theorem provides sufficient linear matrix inequality
(LMI) constraints to design the gains L i guaranteeing the
exponential convergence of the state estimation error.

Theorem 1: Given a positive scalar α. If there exist a posi-
tive definite matrix P ∈ R

n×n , gain matrices Mi ∈ R
n×ny and

a positive scalar c solution to the following LMI constraints:

(

AT
i P + PAi −MiC−CT MT

i + αP PŴ

ŴT P −cI2

)

< 0,

i = 1, . . . , 8 (33)

then the state estimation error converges exponentially to zero
according to the following inequality:

‖e(t)‖2

<

⎧

⎪

⎨

⎪

⎩

√

α2
α1

‖e(0)‖2e−
α
2 t +

√

c
αα1

max
τ∈[0,T [

‖δ(τ )‖2 t ∈ [0, T [
√

(α2
α1

‖e(0)‖2
2+ c

αα1
max

τ∈[0,T [
‖δ(τ )‖2

2eαT)e−
α
2 t t ∈ [T,∞)

(34)

where α1 and α2 are given by the lower and the upper eigen-
values of the matrix P (i.e., α1 = λmin(P) and α2 = λmax(P)).
The gains of the observer are derived from L i = P−1 Mi and
the decay rate of the exponential convergence is given by the
scalar α/2.

Proof: The proof of the theorem is divided into two parts:
the first one demonstrates the exponential convergence of the
observer and the second one provides sufficient LMI condi-
tions to ease the design of the observer ensuring exponential
stability.

a) Exponential convergence proof: Let us consider the
Lyapunov function

V (e(t)) = eT (t)Pe(t), P = PT > 0. (35)

Its time derivative along the trajectory of e(t) is

V̇ (e(t)) = eT (t)

(

8
∑

i=1

µi (se(t))(�
T
i P + P�i )

)

×e(t) + eT (t)PŴδ(t) + δT (t)ŴT Pe(t) (36)

where �i = Ai − L i C . By adding and subtracting the term
αeT (t)Pe(t) − cδT (t)δ(t), where α and c are the positive
scalars, one obtains

V̇ (e(t)) =

8
∑

i=1

µi (se(t))ζ
T (t)iζ(t) − αeT (t)Pe(t) + cδT (t)δ(t)

(37)

where ζ(t) = [eT (t) δT (t)]T and

i =

(

�T
i P + P�i + αP PŴ

ŴT P −cI2

)

, i = 1, . . . , 8. (38)

If there exist matrices P and L i and positive scalars α and
c such that

∑8
i=1 µi (se(t))ζ

T (t)iζ(t) < 0, then, the time
derivative of the Lyapunov functions (37) can be bounded as
follows:

V̇ (e(t)) < −αeT (t)Pe(t) + cδT (t)δ(t). (39)

The solution of this differential inequality is bounded as
follows:

V (e(t)) < V (e(0))e−αt +
c

α
max

τ∈[0,t]
‖δ(τ )‖2

2. (40)

From this inequality, and since the term maxτ∈[0,t] ‖δ(τ )‖2
2 is

bounded in the interval [0, t], the ISS is then ensured. But
if we analyze this inequality in two time intervals t ∈ [0, T [

and t ∈ [T,∞), one can conclude that the state estimation
error converges exponentially to zero. To prove this claim, let
us begin by the first interval t ∈ [0, T [, the state estimation
error norm is bounded by the inequality (40) and at time T ,
it follows:

V (e(T )) < V (e(0))e−αT +
c

α
max

τ∈[0,T ]
‖δ(τ )‖2

2. (41)

Now, considering the second interval time, it leads to

V (e(t)) < V (e(T ))e−α(t−T ) +
c

α
max

τ∈[T ,t]
‖δ(τ )‖2

2 (42)

and knowing that after t = T , the term δ(t) = 0, then,
maxτ∈[T ,t] ‖δ(τ )‖2

2 = 0, which leads to

V (e(t)) <
(

V (e(0))e−αT +
c

α
max

τ∈[0,T [
‖δ(τ )‖2

2

)

e−α(t−T ) (43)

<
(

V (e(0)) +
c

α
max

τ∈[0,T [
‖δ(τ )‖2

2eαT
)

e−αt (44)

which proves the exponential convergence of the state estima-
tion error to zero after time T . The decay rate is given by α/2
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as follows:

‖e(t)‖2

<

√

(

α2

α1
‖e(0)‖2

2 +
c

αα1
max

τ∈[0,T [
‖δ(τ )‖2

2eαT

)

e− α
2 t ,

t ∈ [T,∞). (45)

Therefore, the state estimation error is bounded in the interval
[0, T ] (transient phase of the differentiators) and converges
exponentially to zero after time T , which corresponds to the
time of exact convergence of all the differentiators, then, the
inequality (34) in Theorem 1 is obtained, which proves the
exponential convergence of the state estimation error toward
zero.

b) Sufficient LMI conditions: As pointed out in the
previous section, the exponential convergence is obtained
if

∑r
i=1 µi (se(t))ζ

T (t)iζ(t) < 0. Due to the con-
vex sum property of the weighting functions, sufficient
conditions guaranteeing

∑r
i=1 µi (se(t))ζ

T (t)iζ(t) < 0
can be expressed by i < 0, i = 1, . . . , 8.
With the change of variables Mi = P L i , the LMIs
given in Theorem 1 are easily obtained, which ends the
proof.

After estimating the states of the subsystem S1 in the new
coordinates (12), the estimated forces can be obtained easily
from the algebraic equations

F̂ f =
mar x̂3(t) + Iz x̂4(t)

a f + ar

, F̂r =
ma f x̂3(t) − Iz x̂4(t)

a f + ar

. (46)

IV. EXPERIMENTAL RESULTS

In this section, the proposed observation strategy is imple-
mented with real data obtained by a scenario realized in
the track of Versailles (France). The track is 3.5-km length
with different profiles. The lookahead lateral offset and the
relative yaw angle are measured using clustering of a video
camera mounted under the mirror of the vehicle and vision
algorithms [6], [14]. An inertial unit provides measurement
of the yaw rate ψ̇(t) and an optical encoder provides the
steering angle δ f (t). The vehicle longitudinal velocity is
measured by an odometer and the lateral one is obtained by
a CORREVIT sensor. Note that the proposed strategy uses
the time-varying longitudinal velocity. Finally, the measured
forces are generated from the validated nonlinear Pacejka’s
model [20] with the measured signals: vy , vx , ψ̇ , and δ f .

The road curvature ρ(t) and the premise variable vy(t)

are estimated by the algebraic technique and by the use of
a third-order sliding mode differentiator [16]. After that, the
estimated premise variable is used in the proposed TS observer
to reestimate the lateral velocity due to the inaccuracies of
the initial estimate obtained from the algebraic technique. In
addition, the TS observer provides an estimation of the lateral
forces. The gains of the observer are computed by solving
the LMIs in Theorem 1, with α = 0.001. The observer is
initialized to x̂(0) = [0 0 0 0] and implemented with the
sampling period 0.001. In our scenario, the constants are fixed
to M f 1 = 4.2 × 104, M f 2 = 3.3 × 104, Mr1 = 4.9 × 104, and
Mr2 = 3.3 × 104, and the bounds related to the longitudinal

Fig. 1. TS model validation (gray solid line: real data, black dashed line:
nonlinear model without force relaxations, and black solid line: TS model
with force relaxations).

Fig. 2. Lateral dynamics estimations compared with real data (gray solid
line: real data and black dashed line: TS observer).

Fig. 3. Road curvature estimation (gray solid line: real data and black dashed
line: estimation).

velocity are fixed to vmin
x = 0.2 m/s and vmax

x = 17 m/s.
Note that these parameters can be chosen in such a way to
enlarge the domain of the validity of the TS model and hence
considers extreme nonlinear behaviors. First, the developed
TS model is compared with the nonlinear one. Fig. 1 shows
the comparison between the TS model and the measurements.
Fig. 1 shows that the model fits perfectly the measurements,
which reflects the very accurate representation of the nonlinear
model by the TS model even when the steering angle input
values vary highly to include all the nonlinear dynamics.
Second, the proposed observation strategy is exploited and
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TABLE I

USED PARAMETERS

the results are shown in Figs. 2 and 3. One can observe
that the TS observer provides satisfactory estimations of the
lateral velocity and the lateral forces. In addition, the simple
algebraic technique provides an acceptable estimation of the
road curvature (Fig. 3).

V. CONCLUSION

In this brief, an observer design strategy is proposed to
estimate the lateral dynamics of a vehicle and the road curva-
ture. The nonlinear model of the vehicle dynamics is used and
transformed into an exact TS model with unmeasured state-
dependent weighting functions. The proposed TS observer is
decomposed into two steps: the first step aims to estimate,
because of the vision system, the premise variables of the
TS model. This is performed by the algebraic techniques
and the HOSMDs. In the second step, the estimated premise
variables are exploited to design an observer that converges
exponentially toward zero. The stability of the observer is
proved using the Lyapunov theory and a quadratic Lyapunov
function. The established exponential stability conditions are
then expressed in terms of LMIs to ease the computation
of the gains of the observer. Finally, the road curvature is
recovered by a simple algebraic equation provided by the
vision system. This estimation uses the time derivatives of the
measured signals, which have been obtained from a HOSMD.
The observation strategy is implemented successfully with real
data.

APPENDIX

See Table I shown at the top of this page.
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