N

N

The positronium and the dipositronium in a
Hartree-Fock approximation of quantum
electrodynamics.

Jérémy Sok

» To cite this version:

Jérémy Sok. The positronium and the dipositronium in a Hartree-Fock approximation of quantum
electrodynamics.. Journal of Mathematical Physics, 2016, 57 (2). hal-01018933v2

HAL Id: hal-01018933
https://hal.science/hal-01018933v2

Submitted on 15 Sep 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01018933v2
https://hal.archives-ouvertes.fr

The positronium and the dipositronium in a
Hartee-Fock approximation of quantum
electrodynamics

Sok Jérémy
Ceremade, UMR 7534, Université Paris-Dauphine,
Place du Maréchal de Lattre de Tassigny,
75775 Paris Cedex 16, France.

September 15, 2014

Abstract

The Bogoliubov-Dirac-Fock (BDF) model is a no-photon approximation of quan-
tum electrodynamics. It allows to study relativistic electrons in interaction with the
Dirac sea. A state is fully characterized by its one-body density matrix, an infinite
rank nonnegative projector.

We prove the existence of the para-positronium, the bound state of an electron
and a positron with antiparallel spins, in the BDF model represented by a critical
point of the energy functional in the absence of external field.

We also prove the existence of the dipositronium, a molecule made of two elec-
trons and two positrons that also appears as a critical point. More generally, for
any half integer j € % + Z4+, we prove the existence of a critical point of the energy
functional made of 25 + 1 electrons and 2j 4 1 positrons.
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1 Introduction and main results

1.1 The Dirac operator

Relativistic quantum mechanics is based on the Dirac operator Dg, which is the
Hamiltonian of the free electron. Its expression is [Tha92]:

3
Do := mec®f — ihcz ;O (1)

=1

where me is the (bare) mass of the electron, ¢ the speed of light and 7 the reduced
Planck constant and 3 and the «;’s are 4 x 4 matrices defined as follows:

 (Ide2 0 AR
ﬂ_< 0 —Idc2>7 Qj = <O’j 0)7]6{17273}

(01 (0 —i 10
= 10)727\i o) P\ -10)

The operator Dy acts on the Hilbert space $:
9= L*(R*,C*); (2)

it is self-adjoint on $ with domain H*(R®, C*). Tts spectrum is o(Dp) = (—00, mec?]U
[mec27 +00), which leads to the existence of states with arbitrary small energy.

Dirac postulated that all the negative energy states are already occupied by
"virtual electrons", with one electron in each state: by Pauli’s principle real electrons
can only have a positive energy.

In this interpretation the Dirac sea, composed by those negatively charged virtual
electrons, constitutes a polarizable medium that reacts to the presence of an external
field. This phenomenon is called the vacuum polarization.

After the transition of an electron of the Dirac sea from a negative energy state to
a positive, there is a real electron with positive energy plus the absence of an electron
in the Dirac sea. This hole can be interpreted as the addition of a particle with same
mass, but opposite charge: the so-called positron. The existence of this particle
was predicted by Dirac in 1931. Although firstly observed in 1929 independently
by Skobeltsyn and Chung-Yao Chao, it was recognized in an experiment lead by
Anderson in 1932.

1.2 Positronium and dipositronium

The positronium is the bound state of an electron and a positron. This system was
independently predicted by Anderson and Mohorovici¢ in 1932 and 1934 and was
experimentally observed for the first time in 1951 by Martin Deutsch.

It is unstable: depending on the relative spin states of the positron and elec-
tron, its average lifetime in vacuum is 125 ps (para-positronium) or 142 ns (ortho-

positronium) [Kar(04].



Here we are interested in positronium states in the Bogoliubov-Dirac-Fock (BDF)
model.

In a previous paper we have proved the existence of a state that can be interpreted
as the ortho-positronium. Our aim in this paper is to find another one that can be
interpreted as the para-positronium and to find another state that can be interpreted
as the dipositronium, the bound state of two electrons and two positrons. To find
these states, we use symmetric properties of the Dirac operator.

1.3 Symmetries

— Following Dirac’s ideas, the free vacuum is described by the negative part of the
spectrum o (Dy):

Pl = X (—o0,0)(Do)-
A correspondence between negative energy states and positron states is given by the
charge conjugation C [Tha92]. This is an antiunitary operator that maps Ran P°
onto Ran(1 — P2). In our convention [Tha92] it is defined by the formula:

Yy € L*(RY), C(z) = ifarip(x), (3)
where 1) denotes the usual complex conjugation. More precisely:
2] E_4
c | 2= % | (@)
(2 =y
W ¥

In our convention it is also an involution: C* = id. An important property is the
following;:
Vi e L) Ve e R, |Cy(a)* = o ()" (5)

The Dirac operator anti-commutes with Dy, or equivalently there holds
—CDyC™" = —CDoC = Do.

— There exists another simple symmetry. We define

- 0 _IdC2 4x4
Is = (Idcz 0 )G(C . (6)

This operator is —i the time reversal operator Lr [Tha92] 2.5.7] in §), interpreted
as a unitary reprsentation of the Poincaré group.
It acts on the spinor by simple multiplication, furthermore we have 12 = —Id and

RanP’° = Ran(1-P°)
P(x) = Lp(z)

Similarly we have —I;DoI;* = I, Dol = Do.
— To end this part we recall that SU(2) acts on $ [Tha92]. Writing o := (ay;)3_,
and

Is :

. 1 1o 0
p.f—th,L.fx/\p,S.f—za/\a7§<0 0'>’ (7)

we define
J:=L+S. (8)

The operator L is the angular momentum operator and J is the total angular mo-
mentum. From a geometrical point of view, —iJ gives rise to a unitary representation
of SU(2) in § by the following formula:

efiQJ-ww(x) — 677.'8-‘,‘;7\)0(]3‘:719)7
V0 € [0,4r),V4p € H,Vw € S?,



where Ry, 9 € SO(3) is the rotation with axis w and angle 6.

As each S; is diagonal by block, it is clear that this group representation can
be decomposed in two representations, the first acting on the upper spinors ¢ €
L?*(R?,C?) and the second on the lower spinors xy € L*(R* C?):

-(2)

In pp. 122-129] it is proved that Dy commutes with the action of SU(2), thus
the representation can also be decomposed with respect to Ran P° and Ran (1 —PE).

From an algebraic point of view, there exists a group morphism ®su : SU(2) —
U($Ha) where U($) is the set of unitary operator of ). We write

S i= ®su (SU(2)). (9)

The irreducible representations of ®sy are known and are expressed in terms of
eigenspaces of J2,S. The proofs of the following can be found in pp. 122-
129].

The operators J?, J3, K all commute with each other, and J?, K with Dg. More-
over K commutes with the action ®gyu.

We have 5 C L*(R®) ~ L?((0,00),dr) ® L*(S*)*, and J, L only act on the part
LA(S?)™.

Restricted to L?(S?)*, we have

@) =[G +1), je5+24}, (10)

and for each eigenvalue j(j + 1) € oJ?, the eigenspace Ker(J2 —3j(j + 1)) may
be decomposed with respect to the eigenspaces of Js and S. The corresponding
eigenvalues are

1. my=—j,—j+1,---,5—1,7 for Js,

2. Kj = i(j—|— %) for S.
The eigenspace &,;,; of a triplet (j,m;,x;) has dimension 2 and is spanned by
CI>:§LJ. iy 1L @;Lj o which have respectively a zero lower spinor and zero upper spinor.

Lemma 1. For each irreducible subrepresentation ®sy of ®su, there exists
. 1
(J, e,z = [z1 : 22],a1(r), a2(r)) € (5 +7Z4) x {+,-} xCP' x (SLz((07oo)7d7“))27

such that the representation ®gy is spanned by (x) defined as follows:

Vo =rw € R, ¢(z) := z1ra1 (1) ®"

+ o
ey @) 22raal)

G2
Remark 1. We recall that for any Hilbert space ) and any subspace V' C b, we define
SV as the unitary vector in V:

SVi={z eV, [lzfy =1}

We will use this notation throughout this paper.

We prove this Lemma in Section [l
Remark 2. An irreducible subrepresentation of ®gu is characterized by the two
numbers (7, ;). Indeed, the irreducible representations of SU(2) are known: they
can be described by homogeneous polynomials, and for any n € Z4, there is but one
irreducible representation of dimension n + 1, up to isomorphism.

In the case of sy, the two cases k; = +(j + %) are different but isomorphic.
Notation 1. An irreducible subrepresentation of ®sy spanned by an eigenvector of
J? and K with respective eigenvalues j(j 4+ 1) and e(j + %) will be refered as beeing
of type (j,) (where € € {+,—}).

Notation 2. Throughout this paper we write Proj E to mean the orthonormal pro-
jection onto the vector space F.



1.4 The BDF model

This model is a no-photon approximation of quantum electrodynamics (QED) which
was introduced by Chaix and Iracane in 1989 [CI89], and studied in many papers
[Sok14a].

It allows to take into account the Dirac vacuum together an electronic system in
the presence of an external field.

This is a Hartree-Fock type approximation in which a state of the system "vac-
uum plus real electrons" is given by an infinite Slater determinant 11 A g A ---.
Such a state is represented by the projector onto the space spanned by the ;’s:
its so-called one-body density matrix. For instance P° represents the free Dirac
vacuum.

We do not recall the derivation of the BDF model from QED: we refer the reader

to [CI89L [ILS07] for full details.

Remark 3. To simplify the notations, we choose relativistic units in which, the mass
of the electron m., the speed of light ¢ and # are set to 1.

Let us say that there is an external density v, e.g. that of some nucleus. We
write @ > 0 the so-called fine structure constant (physically e?/(4meohc), where e is
the elementary charge and €o the permittivity of free space).

The relative energy of a Hartree-Fock state represented by its 1pdm P with
respect to a state of reference (P° in [CI89] [AL.S05a]) turns out to be a function of
Q@ = P — PP, the so-called reduced one-body density matrix.

A projector P is the one-body density matrix of a Hartree-Fock state in Felec
iff P — P° is Hilbert-Schmidt, that is compact such that its singular values form a
sequence in ¢ [HLS05al, Appendix]|.

An ultraviolet cut-off A > 0 is needed: we only consider electronic states in
9= {f €9, supp f C B(0,A)},

where fis the Fourier transform of f.
This procedure gives the BDF energy introduced in [CI89] and studied in [HLS05a)
[HLS05D].

Notation 3. Our convention for the Fourier transform .# is the following

~

VfeL'(RY), flp) = W/f(x)e*”pdx.

Let us notice that £, is invariant under Do and so under P°.

We write 11, for the orthogonal projection onto $4: Il is the Fourier multiplier
F 'Xpon T

By means of a thermodynamical limit, Hainzl et al. showed that the formal
minimizer and hence the reference state should not be given by Iy P° but by another
projector PY in $5 that satisfies the self-consistent equation in $ [HLS07]:

PO — % = —sign(DO),
(P2 — (= —y) (11)
Do =  Dpllp — g;y
2 |z —yl

We have P° = X(,OO,O)(DO). This operator D° was previously introduced by Lieb
et al. in [LS00]. In §, the operator DY coincides with a bounded, matrix-valued
Fourier multiplier whose kernel is f_)f{ c 9.

Notation 4. Throughout this paper we write
m = inf o (|D°]) > 1, (12)

and
P i=TIa — P2 = x(0,100)(D°). (13)



The resulting BDF energy Egpr is defined on Hartree-Fock states represented by
their one-body density matrix P:

N ={PeB®nr), P*=P =P, P-P’ € G2(Ha)}.

We recall that B($)a) is the set of bounded operators and that for p > 1, &,(9a)
is the set of compact operators A such that Tr(|A[") < +oo [RS75, [Sim79]. In
particular G ($4) is the set Comp($a) of compact operators.

This energy depends on three parameters: the fine structure constant a > 0,
the cut-off A > 0 and the external density v. We assume that v has finite Coulomb
energy, that is

(k)|?
| |(1<:|Z| dk < 4o0. (14)

U measurable and D(v,v) := 471'/
R3

v(z)”

The above integral coincides with || o

"(‘y) dzdy whenever this last one is well-
R3 xR3 v

defined.

Remark 4. The same symmetries holds for P° and PR: the charge conjugation C
and the operator Iy maps RanP2 onto RanP{. Moreover thanks to [Tha92 pp.
122-129] we can easily check that D° also commutes with the action of SU(2) and
with the operators J% and K.

1.5 Minimizers and critical points
For P € ./, we have the identity

(P—P%? =PL(P -P°)PL - PL(P-POPY € &. (15)

The charge of a state P is given by the P -trace of P —P?, defined by the formula:
Trpo (P —PY) = Tr(PL(P - P2)P2 + PL(P —P2)PY), (16)

= DimRan(P{) N Ran(P) — DimRan(P%) NRan(1 — P).  (17)

A minimizer over states with charge N € N is interpreted as a ground state of a
system with N electrons, in the presence of an external density v

The existence problem was studied in several papers [HLS09, [Sok14al [Sok13]: by
[HLS09, Theorem 1], it is sufficient to check binding inequalities.

The following results hold under technical assumptions on « and A (different for
each result).

In [HLS09], Hainzl et al. proved existence of minimizers for the system of N
electrons with v > 0, provided that N —1 < fZ/ .

In [SokI4a], we proved the existence of a ground state for N = 1 and v = 0:
an electron can bind alone in the vacuum. This surprising result holds due to the
vacuum polarization.

In [Sok13], we studied the charge screening effect: due to vacuum polarization,
the observed charge of a minimizer P # P2 is different from its real charge Trpo (P—

779). We also proved it is possible to keep track of this effect in the non-relativistic
limit o — 0: the resulting limit is an altered Hartree-Fock energy.

Here we are looking for states with an equal number of electrons and positrons,
that is we study E3pp on

M ={PeN, Trpo (P-P) =0}, (18)

From a geometrical point of view .# is a Hilbert manifold and E3pr is a differentiable
map on .# (Propositions [ and H)).

We thus seek a critical point on ., that is some P € .#, P # P° such that
v5}%DF (P)=0.



In [Sok14b], we have found the ortho-positronium by studying the BDF energy
restricted to states with the C-symmetry:

Pe . st. P+ CPC=1dg,. (19)

We write .#« the set of such states. We will seek the para-positronium in the set
Mg of states having the Is-symmetry.

Definition 1.
My ={P € .M st. P+I,PI;" =P —I,PI, = Idg, }. (20)
Equivalently P € .#. if and only if Q := P — P? is Hilbert-Schmidt and satisfies
~LOL" =LOL = Q.

We seek a projector P "close" to a state Pp that can be written as:
Py =P + Ly ) (I | = [ ) (y-|, P =0. (21)

To deal with the dipositronium, we impose an additional symmetry: we define
W C M as follows.

Definition 2.
W :={P e .Me, VU€ES, UPU ' = P}. (22)

Equivalently
PeW < Q:=P—7P° satisfies —CQC=Q and UQU ' =Q, YU €8S.

Those sets A, #.#, " have fine properties: they are all submanifolds of .Z,
invariant under the gradient flow of £3py (Proposition [F).

However while .#« has two connected components, .#Z » has only one connected
component and # has countable connected components. So we may find critical
points by searching a minimizer of the BDF energy over the different connected
components of #. For the para-positronium, a critical point is found by an argument
of mountain pass.

Proposition 1. There is a one-to-one correspondence between the connected com-
ponents of # and the set Z3[X] of polynomials with coefficients in the ring Zo X Z.

Let P be in #. The vector space E1 := Ran P N RanP has finite dimension
and is invariant under ®sy. We decompose it into irreducible representations.

The projector is associated to ?;1 to X with t, = (te,13te,—1) if and only if for
any j € % +Zy:

1. The number bjfé,l of irreducible representations of Ev of type (j,+) satisfies
bj7%’1 = tj7%’1 [2].
2. The number bj7 B
3
bj7%’71 = tj7%’71[2].
Notation 5. The symbols # and Y denotes respectively ¢ and C or .# and I.

Furthermore the different connected components of % are written #,(x) with
p(X) € Z3[X].

To state our main Theorems, we need to introduce the mean-field operator.
Notation 6 (mean-field operator). An operator @ € ¥ is Hilbert-Schmidt and we
write Q(z,y) its integral kernel. Its density po is defined by the formula

Yz € R®, po(x) := Trea (Q(z,x)), (23)

1, of irreducible representations of E1 of type (j, —) satisfies

we prove in the next Section that it is well-defined. The mean-field operator Dg\)
associated to Q in the vacuum is :

Dg\) = TIa (DO + a(pg * ﬁ — Ti’(aj;))) (24)



Theorem 1. There exist ag, Lo, Ao > 0 such that if
a < ap; alog(A) =L < Lo and ATl < Aal,

then there exists a critical point P = Q + P° of ESpr in M that satisfies the
following equation.

30 < p<m, Fa € Ker(DS) = 1), P =X o0 (D) + [toa) (Wa| — [Tstba) (Tstbal.
(25)
As a tends to 0, the upper spinor of Uxtba := X 2a(A()) with X := gl (0) tends
to a Pekar minimizer.
— We recall that the Pekar energy is defined as follows

Vo € HY, Epr(v) = |VY|72 — D(I9, [9f°).

The infimum over SL? N H' is written Epr(1).

Theorem 2. There exist Lo, Ao > 0, and for any j € % + Z, there exists oj such
that if
a < aj; alog(A):=L< Ly and A~ <AJ',
then there exists a minimizer Py e, = Q+P of EY b over the connected component
of Wy xeo with t € {(1,0),(0,1)}.
Moreover there exists 0 < eyt < 1 and 1 € Ker(Dg\) — Mo,t) such that

Pyxto = X(—00,0)(D§”) + Proj ®su (¢) — Proj ®su(Cy).

Any upper spinor @ ofzz € Psu () can be written as

J
V:c:rZE]Rg,N::rar em(B)dT , cm(p) € C.
w p=iralr) 3 @) 1. em(?)
m=—j
Furthermore, as o tends to 0, the function Uxa(r) = A*2a(\r) tends to a mini-
mizer of the energy & xto over SL*(Ry,r?dr) N H' (Ry,r?dr) :

Eoxcto (F(r)) := Tr( = AProj Psu(rf(r)®) .«))) — [Proj Psu (rf(r)®} sm)l\E(z :
26
In particular, the dipositronium corresponds to the case o = jo — % =0.

Notation 7. The minimum is written t";go

E;, <) for the BDF energy over % yjo—1/2-

Notation 8. For tX“ € Z2[X] as in TheoremB] £(t) € {+, —} denotes + if t = (1,0)
or —if t =(0,1).

Remark 5. We expect the existence of minimizers over any connected components
of # (associated to p(X) € Z3[X]), provided that « is smaller than some oy (x).

for the non-relativistic energy and

Remark 6. The non-relativistic energy can be computed:
+oo

Euxeo (F(r) = (2o +1) / (P21 0 + o +€3)(Go + 1+ ) () dr

—jjmzu (r) 1S (r2) Pwo e (1, 2),
Wigew (i) = ] mi’?d:;w( St yet )

(32 . m1,e(jo+73) m1,e(jo+73)
(@* ot n)).
(m1§;n2 ml;e(j0+%)) 7”1»6(j0+%))( )

(27)



It corresponds to the energy
Enr(T) :=Tr(— AD) — |Dflfe, 0<T <1, T € &1 (H'(R?C?))
restricted to the subspace

Lo,et)) = {R I*=T?=T, Ran (@su)‘ irreducible of type (jo75(t))}.
r
This subspace is invariant under the action of sy and it is easy to see that it is a
submanifold of {I', I'* =T? =T, TrT = 2j, + 1}.
The subspace -7{;, <(t)) is invariant under the flow of &n;.

The energies can be estimated.

Proposition 2. In the same regime as in Theorem [@ the following holds. The
critical point P of the BDF' functional over /.y satisfies

Oézm

Erpr(P) =2m + g,l(—O)ZEpT(l) + O(a®). (28)

Furthermore the minimizer Py, over W, xe, satisfies:

2
a’m nr

E8pr(Piy) = 220 + 1)+ s Bl + 00’ K (o). (20)
1
Remark 7. The Pekar model describes an electron trapped in its own hole in a
polarizable medium. Thus it is not surprising to find it here. We recall that there is
a unique minimizer of the Pekar energy up to translation and a phase in S7 (in (C4).
The asymptotic expansion (28] coincides with that of the ortho-positronium
[Sok14b]. In fact, it can be proved that the first difference between the energies

occurs at order o,

Notation 9. Throughout this paper we write K to mean a constant independent of
a, A. Tts value may differ from one line to the other. When we write K (a), we mean
a constant that depends solely on a. We also use the symbol <: 0 < a < b means
there exists K > 0 such that a < Kb.

We also recall the reader our use of the notation SV for any subspace V' of some
Hilbert space that denotes the set of unitary vector in V.

1.6 Remarks and notations about D°
D° has the following form [HLS07]:

DY = go(—iV)B —iax - |—§|gl(—iV) (30)

where go and g1 are smooth radial functions on B(0, A). Moreover we have:

Vp € B(0,A), 1 <go(p), and |p| < g1(p) < |plgo(p). (31)

Notation 10. For alog(A) sufficiently small, we have m = go(0) [LLIT, [Sok14a].

Remark 8. The smallness of « is needed to get estimates that hold close to the
non-relativistic limit.

The smallness of alog(A) is needed to get estimates of D: in this case D° can
be obtained by a fixed point scheme [HLS07, [LLI7], and we have [Soki4al, Appendix
Al:

90(0) = 0, and [|go [z, (g0 |~ < Ka

32
gt — 1l < Kalog(A) < 2 and [|gf ]|~ < 1. 32



2 Description of the model
2.1 The BDF energy

Notation 11. For any e, € {+,—} and A € B(HA), we write
A% = pPAPY,. (33)

Notation 12. For an operator Q € G2($a), we write Rg the operator given by the
integral kernel:
Q(z,y)

Ro(z,y) = m

Definition 3 (BDF energy). Let a > 0, A > 0 and v € S’'(R?) a generalized function
with D(v,v) < +oco. For P € A4 we write Q := P — P and

ERor(Q) = Trpo (D'Q) — aD(pa,v) + 5 (Dipa, po) = QIR

2 (34)
Ve € B, pa(e) i= Tres Qo). QU = [ 420 dody,

where Q(x,y) is the integral kernel of Q.
Remark 9. The term Trpo (DOQ) is the kinetic energy, —aD(pq, v) is the interaction

energy with v. The term %D(p@, pq) is the so-called diract term and —%HQH%X is
the exchange term.

Let us see that formula (B4)) is well-defined whenever @ is P -trace-class [HILS05al
[HLS0Y).

PO . e o :
&, and the variational set K The set 6?7 of P%-trace class operator is
the following Banach space:

&7 = {Qe&a(n), QTT,Q7 " €61(94)}, (35)

with the norm

HQIIGPQ = Q" e, +1Q  llez +11Q e, +1Q7 s, - (36)

1
0
We have 4 C P + GT’ thanks to ([I&). The closed convex hull of A" — po
0
under (‘5?’ is
0

K={Qe6, (92), Q" =Q, -P2 <Q<P}}

and we have [HLS05al, [HLS05b]
VQeEK, @*<Q@"-Q .

9
The BDF energy for Q) € GT’ We have
PYL(D°Q)P’ = —|D°|Q™~ € G1(Ha), because |D°| € B(5Ha),

this proves that the kinetic energy is defined.
By the Kato-Seiler-Simon (KSS) inequality [Sim79], @ is locally trace-class:

Vo € CF(RY), dlla € &2 s0 Q¢ = 9114Q0 € &1 (L*(R?)).
We recall this inequality states that for all 2 < p < oo and d € N, we have

V f.g € L*(RY), f(x)g(=iV) € &,(94) and || f(2)g(=iV)lls, < 2m)" | f]|r gl Lr-

10



It follows that the density po of @, defined in (B4)) is well-defined. By the KSS
inequality, we can also prove that |[pgllc < K(A)[|Q]l po [GLSQ9, Proposition 2|.
72
By Kato’s inequality: '
— <

1 s
A% 37
BEELL (37)
the exchange term is well-defined.
Moreover the following holds: if a < %, then the BDF energy is bounded from

below on K [BBHS98], [HLS05b], [HLS09]. We have
7r
¥ Qo € 62(94), Expr(Qo) > (1= ) Tr(|D°(|Qof%). (38)

Here we assume it is the case. This result will be often used throughout this
paper.
Minimizers For Q € K, its charge is its P%-trace: ¢ = Trpo (Q). We define the
Charge sector sets:

VgeR®, K':={QeK, Tr(Q)=q}.

A minimizer of Egpp over K is interpreted as the polarized vacuum in the presence
of v while a minimizer over charge sector N € N is interpreted as the ground state
of N electrons in the presence of v, by Lieb’s principle [HLS09, Proposition 3|, such
a minimizer is in A4 — P2,

We define the energy functional Efpg:

Vq €R®, Expr(q) == inf {EEpr(Q), Q € K} (39)
We also write:

K ={Q € K, Trpo (Q) =0, ~YQY ' = Q}. (40)
0
Proposition [2] states that this set is sequentially weakly-* closed in GTﬁ (Ha).

2.2 Structure of manifold
We consider

¥ ={P-PY, P"=P*=PeB$Har), Trpo (P—PL) =0} C &2(H).
and write: .# =P 4+ ¥ ={P, P*=P?> =P, Trpo (P —P2) =0}.

We recall the following proposition, proved in [SokI4b].
Proposition 3. The set .4 is a Hilbert manifold and for all P € A,

Tptl ={[A,P], Ac B($Hr), A" = —A and PA(1 — P) € G2(Ha)}. (41)
Writing
mp = {A € B(Hr), A" = —A, PAP = (1-P)A(1-P) =0 and PA(1-P) € &2(Hr)},
(42)

any Py € A4 can be written as P1 = e*Pe= where A € mp.

0
The BDF energy E4pr is a differentiable function in 6?7 (HA) with:

VQ.6Q €S (94), dE4nr(Q) - 6Q = Trpo (Da.bQ).

0 ) (43)
Dq.v =D+ a((pg — v) * - Rq).
We may rewrite (43) as follows:
0
VQ.6Q € &) (M), dEfpr(Q) - 5Q = Trpo (12 Do 1 1126Q) (44)

We recall the mean-field operator Dg\) is defined in Notation 241
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Proposition 4. Let (P,v) be in the tangent bundle T.# and @ = P — P°. Then
we have [[IIaD@lIa, P, P] € Tp.# and:

AEYpu(P) v = C[‘r([[Dé?A)7 Pl P v). (45)
In other words:
VP e, VEppr(P) = [[IaDglla, P], P). (46)

Remark 10. The operator [[IIxnDglIla, P], P] is the "projection" of Iy DgIla onto
Tp..

In [Soki4D], we proved that .#% is a submanifold of .#. We recall that the
notations %, Y are specified in Notation

Proposition 5. The sets # .y and W are submanifolds of .# , which are invariant
under the flow of E%pr. The following holds: for any P € M s , writing

my ={aemp, YaY ' =a}, (47)
we have
TpMy ={[a,P], acmp}={veTpd, -YoY ' =0} (48)

Furthermore, for any P € Ma we have pp_po = 0.
For P € W, the same holds with

my = {aemf, K VUES, UaU ' =a},
TpW {la,P], aem} }.

Remark 11 (Lagrangians). The operator I induced a symplectic structure on the
real Hilbert space (a,Re(-, )g):

Vf,g €9, wi(f, g):=Re(f, Lg).

The manifold .#Z s is constituted by Lagrangians of wr that are in .Z.
We end this section by stating technical results.

2.3 Form of trial states

The following Theorem is stated in [HLS09, Appendix| and proved in [Sok14b].
Theorem 3 (Form of trial states). Let P1, Py be in A and Q = P1 — Py. Then
there exist My, M_ € Z4 such that there exist two orthonormal families

(a1,..., aM+) U (€4)ien in Ra,nPﬂ7

(a-1,...,a—n,)U(e—i)ien in RanP?,

and a nonincreasing sequence (X\;)ien € €2 satisfying the following properties:

1. The a;’s are eigenvectors for Q with eigenvalue 1 (resp. —1) if ¢ > 0 (resp.
i<0).

2. For each i € N the plane I1; := Span(e;, e—;) is spanned by two eigenvectors f;
and f—; for Q with eigenvalues i and —\;.

3. The plane 11; is also spanned by two orthogonal vectors v; in Ran(l — P) and
v—; in Ran(P). Moreover \; = sin(0;) where 0; € (0, %) is the angle between
the two lines Cv; and Ce;.

4. There holds:

M_

Q= Z las)(ai| — Z la—a)(a—sl + > N (1) (il = [f=3)(F=5])-

jEN
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Remark 12. We have

Q**-Zlaz (as| +_sin(0;)*le;) (e,

Jen (49)

7:—Z|aﬂ' a—i| =Y sin(0;)*e—;) (e,
i

JEN

Thanks to Theorem [3] it is possible to characterize states in .#%» and #. We
restate a proposition of [Sok14b] and add the case of Is.

Proposition 6. Let v =P — P° be in Mo . For —1 < <1 and X € {v,7*}, we
write

Eff = Ker(X — u).

Then for any p € o(v), YE, = EZH. Moreover for |p| < 1 if we decompose E;IGBEZM
into a sum of planes I1 as in Theorem[3, then

1. If Y =1, then we can choose the 11’s to be Is-invariant.
2. If Y = C, then each 11 is not C-invariant and Dim E}] is even.

2
FEquivalently DimEZ2 is divisible by 4. Moreover there exists a decomposition

2

S
EHZ—

B+

Vg and V, 5 =115, J@CH

l\’IZ

1<j

N

where the 11}, ;’s and CII}, ;’s are spectral planes described in Theorem [3

2.4 The Cauchy expansion

In this part, we introduce a useful trick in the model. The Cauchy expansion (54])

is an application of functional calculus: we refer the reader to [HLS05al [Sok14a] for
further details.

We assume Qo € G2 with
al||D°[*Qolls, < 1. (50)
We recall the following inequality, proved in [Sok14a
YQo € &3, |Ray =iz, < 1QIE < [[Ip+dllQp, ) *dpdg,  (51)

From now on, we only deal with Qo whose density vanishes: pg, = 0. The
mean-field operator Dg:)) is away from 0 thanks to (B0). Indeed, there holds

2 12 I 1/2
|HARQ0HA| < |V| / |V|1/2 RQDRQO |V|1/2 |V| /

< HA|V|||WRQ0||B
S TA|V|[1Qollex < [D°2(QollEx

thus N
IDSY| 2 1D°) (1 — aK|Qol|ex).- (52)

The Cauchy expansion gives an expression of
A —
Y0 = X(-o00,0) (Déh))) PO =7,
We have [HLS05a]

1 [T dw

1
= B0 (e Re, ) p——-Tls.  (33)

(A) 0
X(-o0.0)(Pgg ) =P Dow +iw

13



We also expand in power of Y[Qo] := —allaRg,IIa:

an P2 = ol MY [Qull,
i>1
) 54)
1 [T dw 1 j (
M) = _%/,oo D0+iw(YnD0+iw) '

Each M;[Y[Qo]] is polynomial in Iy Rg,IIs of degree j.

By using (B1l), the decomposition (B4) is well-defined in several Banach space,
provided that a||Qo||ex is small enough.
— First, integrating the norm of bounded operator in (G3)), we obtain

%o — P25 < allQollmx < 1.
— We take the Hilbert-Schmidt norm [HLS05al [Sok14a]: we get

[holle, < allQollex- (55)

— We take the norm |||D°|*/2(-)|e, We get the rough estimate
IID°1"*50]le, < min(vZa||Qollex, all R, lls,) + o®[|Qollix- (56)

Remark 13. The same estimates holds for the differential of Q¢ — ~o, for sufficiently
small . As shown in [Sok14a], the upper bound of each norm is a power series of
kind
+o0o ) )
Ivoll < @l Mi[Y[Qollll + ) Ve (KI|Qollex)’.
=1

In the case of the differential, we get an upper bound of kind

+oo )
ldoll < @l MY Qo]]ll + 5% (K| Qollex)’
j=1
The power series converge for sufficiently small a||Qo|Ex-

— It is also possible to consider other norms, using from the fact that a (scalar)
Fourier multiplier F(p — q) = F(—iV, +iV,) commutes with the operator R[] :

Qz,y) — % We can also consider the norm

1Qoll%, := [ w(p — a)(E (0) + E (0))|Qo (. a)|*dpda,

where w(-) > 0 is any weight satisfying a subadditive condition [SokI4al:

Vp,q € R®, Vw(p+q) < K(w)(vVw(p) + Vw(q)).

3 Proof of Theorems [ and

3.1 Strategy and tools of the proof: the dipositronium
3.1.1 Topologies

The existence of a minimizer over #;y: (with t € Z3) is proved with the same

method used in [Soki14b].
We use a lemma of Borwein and Preiss [BP87, [HLS09], a smooth generalization of

Ekeland’s Lemma : we study the behaviour of a specific minimizing sequence
(Pn)n or equivalently (P, — PO = Qn)n-

This sequence satisfies an equation close to the one satisfied by a real minimizer
and we show this equation remains in some weak limit.

Remark 14. We recall different topologies over bounded operator, besides the norm

topology ||| [RST5].
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1. The so-called strong topology, the weakest topology Ts such that for any f € $Ha,
the map

B($Hr) — $Ha
A - Af
is continuous.
2. The so-called weak operator topology, the weakest topology 7uw.o. such that for
any f,g € Ha, the map
B($Hr) — C
A = (Af,9)

is continuous.

PO
We can also endow &, = with its weak-* topology, the weakest topology such that
the following maps are continuous:

6, — C

Q — Tr(A@™+Q ) +4QT +Q )
V(A07A2) S Comp(f)/\) X 62(5’)/\)

0
Lemma 2. The set K, defined in {@0), is weakly-+ sequentially closed in GTﬁ (Ha).

Remark 15. This Lemma was stated for % = ¢ in [Sok14b|. For # = .# the proof
is the same and we refer the reader to this paper.

3.1.2 The Borwein and Preiss Lemma

We recall this Theorem as stated in [HLS09]:

Theorem 4. Let M be a closed subset of a Hilbert space H, and F : M —
(=00, +00] be a lower semi-continuous function that is bounded from below and not
identical to +oc. For all € > 0 and all u € M such that F(u) < infq +€2, there
exist v € M and w € Conv(M) such that

1. F(v) < infaq+e?,
2. llu— vl < V& and llv — wl < V7,
3. F(v) +¢llv— w3 = min {F(2) + ¢z — w3, =z € M}.

— Here we apply this Theorem with H = &2(Ha), M = #j(x) — P° and F = E3pp.

The BDF energy is continuous in the 6?9 -norm topology, thus its restriction
over ¥ is continuous in the G2(HHa)-norm topology.

This subspace H is closed in the Hilbert-Schmidt norm topology because ¥ =
M is closed in G2(H) and E-1 — P° is closed in 7.

Moreover, we have

Conv(#pix) — P2) ° C KY%.

— For every n > 0, we get a projector P, € #j,(x) and A, € K% such that P that
minimizes the functional F;, : P € &1+ Egpp(P — P2) +¢||P — P2 — A&,
We write

Qu =Py —P°, Ty:=Qy— Ay, Dq, :=1a(D° — aRq, + 290 a. (57
Studying its differential on Tp, #', we get:
[Dq,, Py] = 0. (58)
In particular, by functional calculus, we have:

[7717 P’!I] = 07 71',,7 = X(—o0,0) (EQn)' (59)
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We also write _
ﬂﬁ = X(0,400)(Dq,) = —m,. (60)
We decompose $a as follows (here R means Ran):

9 = R(P))NR(m; ) GR(P,) NR(m}) OR(IIs - Py) NR(m ) OR(Is — Py) NR(w).
61
We will prove oy
1. Ran PN Ran 7\':; has dimension 25 + 1 and is invariant under ®sy, spanned by
a unitary ¥, € Ha.
2. As 7 tends to 0, up to translation and a subsequence, ¥, — 1, # 0, Q, — Q.
There holds P;, = Q + P° ¢ Wp(x), Ya is a unitary eigenvector of D%\) and

Q+ P2 = X(-o0.0) (DLY) + Proj @su (1) — Proj dsu(Ciba),  (62)

where Proj £ means the orthonormal projection onto the vector space F.

In the following part we write the spectral decomposition of trial states and prove
Lemma

3.1.3 Spectral decomposition

Let (Qn)n be any minimizing sequence for £ ;, 1/2) for jo € % +Zy.
Thanks to the upper bound, Dim Ker(Q, — 1) = 1, as shown in Subsection
There exist a non-increasing sequence (\j.n)jen € £2 of eigenvalues and an or-

thonormal family B,, of RanQ,:
B, = (¢n, Chn) U (€], eg;m Cefn, Ce?;n)7 Py, = Pge;;n =0, x €{a,b}, (63)

such that the following holds. We omit the index n.

1. For any j, the vector spaces Vi, := ®su(e],,) are irreducible, and so is Vo,n :=
Psu(thn)-

2. That last one is of type (fo,(t)) (see Notation ).

3. Moreover for any j € N we write:

e . := —Cel and e* ; := Ce?,
aJ J . J ) J . (648,)
V&= dsuel; and V2, := dgy e ;.
fr o= ier 4/ 12N 5,
MR o)
Fro= o TEre e,
and
VjeZ, Ff = dsu(f]). (64c)
The trial state @5, has the following form.
Qn = ProjVon —ProjCVon + > Nigjin
i>1 (64d)
@jm = ProjFy —ProjF®; + ProjF} — Proj F’;.

Remark 16. Thanks to the cut-off the sequences (5 )n and (ej;n)n are H'-bounded.
Up to translation and extraction ((nx)r € NV and (2, )r € (R*)"), we can assume
that the weak limit of (¢n)n is non-zero (if it were then there would hold I, o) =
2m(2jo + 1)).

We can consider the weak limit of each (en): by means of a diagonal extraction,
we assume that all the (ejn, (- — Zn,))r and (¢Yjn, (- — Tn, )k, converge along the
same subsequence (ni)r. We also assume that

Vi €N, N, = pys (4); € €2, (p3); non-increasing, (65)

and that the above convergences also hold in L2, and almost everywhere.
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3.2 Upper bound and rough lower bound of £

We aim to prove the upper bound of Proposition The method will also give a
rough lower bound of Fj; +.
Notation 13. We write:

4
1 HL“’7

Clo):=do_ sup_[I¥, . 1

—Jjo<m<jo

where the functions \I/m jorl are defined in [Tha92] p. 125]: they are the upper or
JoEg

lower spinors of the @iﬁjo ’s.

For Ej, .(+), we only consider t € {(1,0);(0,1)} and £(t) is defined in Notation
We consider trial state of the following form:
Q = Proj ®su(¢) — Proj ®su(Cy),
where ®su (1)) is of type (fo + %,(t)) and P2 = 0. For short, we write
Ny := Proj ®su () and Ncy := Proj ®su(Cy).

The set of these states is written th(go. We will prove that the energy of a
0

particular @ gives the upper bound. The BDF energy of Q € %, «,

2Tr (|D°|Ny) — af| Ny ||x — aRe Tr(Ny R[Ncy)). (66)

is:

— We will study the non-relativistic limit o — 0.
— To get an upper bound, we choose a specific trial state in %, y¢,, the idea is the
same as in [Sok14al [Sok14D]: the trial state is written in (69). Before that, we precise

the structure of elements in 4//1;2(‘0'

Minimizer for E{'{, By an easy scaling argument, there exists a minimizer for

the non-relativistic energy E['¢,, (26). The scaling argument enables us to say that
this energy is negative. Then it is clear that a minimizing sequence converges to a
minimizer I'; up to extraction. Writing

HF = —A— Rf7
this minimizer satisfies the self-consistent equation
[H=.T] = 0.

This comes from Remark [l In particular, Hy restricted to RanT is a homothety by
some —e? < 0, so

V¢ € RanT, [[¢]lr2 =1, [|A¢]z2 < |Rellze < [Tllexll VY24 2,

and we get
3/4 = . =4/3 . 2/3
|AY[E" S [T es de. A% < TS < (240 + 1)
The last estimate comes from a simple study of a minimizer for E'{,,: we have

Tr(— AT) — gm«(mf) < & (D) <0,
thus Tr( — Af) < j2 and Tr((—A)zf) < jg/Q.
We end this bootstrap argument at |||V|3%|| > for ¢ € Ran: we have

2 (19 Bely + Bry),

3 il ™ -5/2
VPl < [ATlle, + VT lle, < 0.

V|
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Trial state We take the following trial state. First, let T = Projrao(r)¥
We form

jo»j0+€(t)%

be a minimizer for t;{eo

N := Proj ®suy PLU, -1 (rao(r)®" 1) (67)
Jo,e(t)(Go+73)

where we recall that
/ 2
A= 9107 and Uy () := a**¢(azx), a > 0.
am

This corresponds to dilating T by A~! and projecting the range of the dilation onto
RanPl. Of course T' € &1(L*(R3 C?)) is embedded in &1(L*(R? C? x C?)) as
follows: -
T <g 8) € &1 (L3R, C? x C2)).
Then we define

N_ =CN_Cc'=CN_cC. (68)

Our trial state is

N:=N,-N_. (69)

Upper bound for Ej, + We compute Egpp(N).

Before that, we study a general projector Proj ®sy 1) where P21 = 0 and ®sy o
irreducible of type (jo,e(t)).

As an element of Ran P?m the wave function v can be written

- (3)

As it spans an irreducible representation of type (jo,e(t)), we can choose

Vz =rw, € R®, o(x) :=ia(r)¥’ (wz), a(r) € L? ((0, oo)ﬂ“er)7
Jote(t)3

where we used notations of p. 126]. This corresponds to taking

Y= Pﬂra(r)qfr e =¢e(t).

e(dot 1)7
We recall the following formulae of [Tha92l pp. 125-127| (with w : & — o)

—ia- V= —i(a-w)0r + L (- w)(2S - L),

{S L, a- w}——a w and io - WU —\I/mj (70)
J:E§ 112
This gives
i(1 4 90UVD g
Pla(r)e* _ 1 HUH o)l
+ ) - P a(r ’
m,e(6)Go+3) 2| ot (00 (a(r) + (o + 3) “)\I'jrs_
2
. g™
I AR
ai(gmjo;?n)\lﬂ,n 1
Jjo—egy
(71)
We write Op := D (‘H : the following holds.
T (NoRINeul)| S 3 sup,al|97 1 oo | laray (e, o 2
2
< CGo)D(Jarf10p - 9, (a(n)* + 5310p - 7 a(r)]?),
< CUIVIE, DIIVYIL2 = Remo(jo, v).
(72)

In fact, we have Tr(Ny R[Ncy]) > 0 by direct computation.
Let us deal with || Ny ||y
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Notation 14. We write P; the projection onto the upper part of C% x C? and P,
the projection onto the lower part. That is: P41 has no lower spinor and the same
upper spinor as .

Similarly,
[Ny lIEx — 1Py Ny Pr|[& = Tr(PrNy P Ry, ) + Tr(P,Ny P; R,
+ [|PyNy P [|Ex,
. . 3/2
< Rem(jo, ¥) + C o)V 12 | o122,
=: Remi(jo, ¥).

For the trial state ([G3)), this gives:

IN 4l = 1PN Prllf + O(C o) (0o + a5 )
am =
1
[v[°/2

+ Ol 25 ¢l (155wl o2 + IV9132)),
am =12
= r
AU
. 3.5/3 . 4s .4s/3 2.2/3 . 4s .4s/3
+0[0G0) (*55 + inf (@55"*) (0% + _inf_ (0*53%))) ]

0<s<1

We compute the kinetic energy as in [Sok14b]: we get

2

Tr(|DO[V4) = g?(g;’l‘r( — AT) (14 Ka) + O(aTr((A)°T)),
= ooz T = AT) + 0(0%o + %),

This proves
N a27n nr N
Ejoﬁ(t) < 2m(210 + 1) + 9702 Ttxto + O(Q(O"JO))
olajo) = a’jo+a'ji/* + CGio) (%5 + inf (a™55"*)(@%5° + inf_(a*
’ 0 0 0<s<1 0 0 2-1<s<1
(73)
First, by Kato’s inequality (37)), we have
™
Ny = Neyllix < S Tr(IVI(Ng + Ney)) = 7 Tr([V[Ny).
So
T )
EBor(Q) = 2(Tr(ID°IN,) — aZ Te(IVING) ) =: 2((2j0 + m + F(N,)).-

As a tends to 0, a minimizer over W&eo should be localized in Fourier space around

0. Indeed, for a, L sufficiently small, we have

2

= 90(p)*> —m* + 91(p)* p
VPGB(07A)7E(p)_m: =~ > ’
E(p)+m 2||gol| o= | Dol

and for any 0 < s < 2:
2

p am ast||gol| e
> s—|p| = [p|> = 0.
2|\gol| o= Do| 2

~ V1 (as7lgollL=)?

We get
2F (g, NyIly, ) < ERpr(Q) — 2(2j0 + 1)m.
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By Cauchy-Schwartz inequality, we get a rough lower bound
Tr( — Ally, NyIly, ) < a®(2jo + 1) and Eppr(Q) — 2(2jo + 1)m = —a®(2jo + 1).
For an almost minimizer ), the same argument shows that

ﬂ(%cf) < o?(2jo + 1). (74)

A precise lower bound is obtained once we know that there exists a minimizer
Pj,. This state satisfies the self-consistent equation ([G2)): see Subsection

Remark 17 The same method can be used to get an upper bound of E}(y, for any
p(X) = e:o to X", By scaling we have Ejixy <0.

3.3 Strategy of the proof: the para-positronium

The method is more subtle because .Z » has only one connected component. We
first consider the subset .# 5 defined by:

My ={Py =P+ )| - Iv)) (L], v € SRan P} }. (75)
Lemma 3. Let F.y be the infimum of the BDF energy over .4 . Then we have
052 EPT(l)m
91(0)?
We will prove the existence of a critical point in the neighbourhood of .#7% via
a mountain pass argument. In this part, we aim to prove the following Proposition.

Fgy >2m — +0(a?). (76)

Proposition 7. 1. In the regime of Theorem[d], there exists a bounded sequence in
My —P° of almost critical points: (Qn = Py — Pl )n such that

a2

lim_[|VERDr(Pr)lls, = 0 with E5pp(Qn) = 2m — W;’;Epm +0(a%).
n—r 1

Furthermore, for sufficiently big n, there exists 1a;n such that

Ci/}a » = Ran P, N Ran X (0, +oo)( — vgBDF( ))

A
and P, = X(—o0,0) (Dégn) - VS%DF(PH)) + |"/’a;n><"/’a;n| - |Is1/’a;n><18'l/)a;7l|'
2. Up to a subsequence and up to translation the sequence tends to a critical point
Moreover, writing P = Qoo + P2, there exists 0 < p < m and s € SHA such
that

P = X(—o00) (DG ) + [a) (Y| — [Tstha) (Tettal,
Ctba = Ker(Dy) —p), (77)
infa'(|D8\:o|) = Ll

Proof of Proposition [Tt first part For any ¢ € SRan P}, we define:

0,1 — As— P°
s |sin(ws)y + cos(ms)Isy) (sin(ws)y + cos(mws)Lsy)| — [Is) (Isth].
(78)
Remark 18. The loop cy + P° crosses A} at to = % where the BDF energy is
maximal:

Cy -

sup S]g,DF(c(s)).
s€[0,1]
Indeed, there holds

Epr(c(s)) = 2sin(ms)*(| D[y, ¥)—asin(ms)® [D(|¢[%, [¢]*)+cos(2ms) D (¥ L), ¥ Lt ],
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and the derivative with respect to s is:

4 8pr(c(s0)) = 2msin(2mso) (Dl ¥) — § [D (W%, )
+(sin(ms0)? — 3 cos(2mso))aD (¢ Is1p, 1/1*151/))}).

For sufficiently small «, this quantity vanishes only at 2wsq = 0[x].

What happens when we apply the gradient flow ®pr + of the BDF energy 7 The
loop ¢y is transformed into ¢; := Pppr+(cy) and we still have

ct(s=0)=c(s=1)=0.

This follows from the fact that P° is the global minimizer of E3pp.
We recall that for all s € [0,1], the function c(s) satisfies the equation

d
Vio € Ry, E(Cto(s)) = —Végpr(ci(s)) € Teyys)1po Ms-

The non-trivial result holds.

Lemma 4. Let Py, € .4’ be a state whose energy is close to the infimum F.g:
Expr(Py) < Fr +a’.

Let ¢y be the loop associated to ¢ (see ([(8)) and ¢+ := ®ppri(cy). Then for all
t € Ry, the loop c; crosses the set My at some 3(t) € (0,1).

Lemma 5. Let (ct)e>0 be the family of loops defined in Lemmalg] and let (s(t))¢>0
be a family of reals in (0,1) such that

Vit >0, S%DF(ct(s(t))) = s?p]S%DF(ct(s)).
s€[0,1

Then there exists an increasing sequence (tn)nen the sequence (ct, (s(tn)))n>0 satis-
fies the first point of Proposition[d

We prove Lemmas [3] and [] in Subsection We assume they are true to prove
Lemma [Bl and Proposition [7

Remark 19. The proof of Lemma [ uses an index argument. We kept it elementary
but it is possible to rephrase it in terms of the Maslov index once we notice
that Is induces a symplectic structure and that the projectors in .# ¢ are Lagrangians
(see Remark [IT]).

Spectral decomposition of P, We define

Fy = liminf E8pp(ce(s(t))) = liminf sup ERpr(ci(s)).
t—+oo t—+oo s€[0,1]

We assume (&, )n>0 is a minimizing sequence for Fi.
We may assume that limg,—s oo t,, = 400.

— First we prove that along the path ¢; the gradient VESpp (see (@d)) is bounded
in Sz. Indeed, for all P = Q + P° € .#, we write

Q=P X(—o0,0) (HaDQII4),

We recall that D(QA) = [IADglla:

Vélor(P) = [[D&, P, P] = {IDg";Q} — 20D Q,
IVESor(P)lles < IQllex B (A) [(1+ 1Qlls:) (1 + 1Qlss)] (79)
< KA F+0%).
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We have used the Cauchy expansion (B4) to get an expression

+oo
X(—oo0) (D)) =P =3 o* My [Y[Q]]
k=1

where M;[Y[Q]] is a polynomial function of maRoIlx of degree k. We refer the
reader to these papers or to (B3)-(EIl) above for more details.

From formula ([[9) and Remark [[3] we see that the gradient, as a function of Q
is locally Lipschitz, at least in some ball {Qo : [||D°|*/?Qolls, < Co} in which there
holds

inf o (|DSY ) > K(Co),

where Cj is some constant. The Lipschitz constant depends on the constant Cy and
in the present case, we can take Cp < 1.
Let us prove that

1irfoo||V5§DF(Ctn (s(tn)))lle, = 0. (80)

n—

If not, the limsup is bigger than some 1 > 0 and then we get a contradiction when
we consider ng large enough such that

|1 — EBow(c, (5(tno))] < 1 a0 [VERDE (et (3(tna))lles > 7

because
V7 >0, EBpE(Cong+7(5(tng))) —EBDE (Ctry (5(tno))) = —/ [V EBDF (Ctng+u) (St )&, du.
0

— We recall that the gradient at P € .# is the "projection" of the mean-field operator
onto the tangent plane Tp.Z, in the sens that
Vv e Tpa,PDg(l — P) € &; and
Tr(PDq(1 — P)v + (1 — P)DqPv) = Tr(VEppr)
Notation 15. For short, we write
Qn = ct, (s(tn)) and P, == Qn and v, := VERpr(Qn).
Moreover, we write
INDQTL = Dq, —vn and T = X(—0,0) (D(QAn) — vn).

We have shown that limy,— oo ||vn|le, = 0.
But as v, is an element of the tangent plane Tp,.#, we have

HU'rmPnLPn} = ann(l - Pn) + (1 - Pn)UnPn = Un

thus
(D) — v, 2], P] = 0.

Equivalently, we have
(DY, P.) = (1 - P.)DSY P, — P.DSY (1 - P,) = 0. (81)
Thus the projector P, commutes with the distorted mean-field operator EQW

We recall that
(A A
hanHDézn) — Dé?n) le, =0,

and thus up to taking n big enough, we can neglect the distortion v,: all its Sobolev
norms tend to zero as n tends to infinity thanks to the cut-off.
— Thanks to Lemma [3] we have the following energy condition:

2m 4 O(a’) < Fi < Epr(Qn) < Fi +a° = 2m + O(a?).
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Using the Cauchy expansion (G3)-(El), we have
1D 127 — PO)les < VLa||Qnllex < Ve
Thus we get
1Qnlles = 1Pn — F—inlle,| < P2 = F—inlle, < VIa.

As D, and P, commutes, then necessarily ||P, — 7_in||&, is an integer equal to
twice the dimension of Ran P, NRan (1 — 7w_.,).
But we know that

2m

1 o
2 < = )
l—algBDF(Q )7 1— o 2m+(’)(0¢)

2 012
mHQ7lH62 S Tl"(lD |Qn) S T
1 1
Then the above dimension is lesser than 1 and it cannot be 0 because of the energy
condition

g]gDF(Qn) >Fy >2m— Ka? > Via.
This proves the first part of Proposition[7l We have Ran P,NRan (1—7_,,) = Ctban

where 1q;n is unitary. It is an eigenvector for ﬁg\n) with eigenvalue p,. From the
equality:
o Lsthan (2, 9)|”

~ a;n A\
hor(@:) = Efor (7 — P2) & 230, — [ P Piten 0 gy,

we get 0 < pn < m. We end the proof as follows.

Proof of Proposition [Tt second part We follow the method of [SokI4h].
We recall the main steps and refer the reader to this paper for further details.
— The idea is simple: we must ensure that there exists a non-vanishing weak-limit
and that this weak-limit is in fact a critical point.

Let us say that g, is associated to the eigenvalue piy,.
— The condition of the energy ensures that the sequence (¢q;n)n does not vanish in
the sense that we do not have the following:

VA >0, limsup sup / [Ya:n]® = 0.
n xeR3J B(x,A)

Up to translation and extraction of a subsequence, we may suppose that (Qn) (resp.

(tha:n)) converges in the weak topology of H* to Qe # 0 (resp. v, # 0). In

particular these sequences also converge in L7 . and a.e. We recall that thanks to

the cut-off and Kato’s inequality (37) , we have Q, € H'(R?® x R?) with

~ E (A
1Dol@ul, < B D1 2QulE, < 7o

7/4 S:P glgDF(Qn)'

A similar estimate hold for (¢q;n). We also suppose that lim, pin = tec.
— As shown in [Sok14b], the operator R, converges in the strong operator topology
to Rq... Thanks to the Cauchy expansion (B4]), we also have

5.1 [X(_oe.0) (DY) = VERDE(Pa)) = P2] = X(—oo00 (D) = P2,

By that strong convergence, we also have the weak-convergence of ﬁg\n)wa;n to
DY g in L? and it follows that:

DY o = prooth # 0.

oo

— The condition of the energy ensures that for a sufficiently small, the tq4;n’s are
close to a scaled Pekar minimizer: for any n, there exists a Pekar minimizer ¢, such

that A
basm — A2 20 (A" ()41 < oK where A := 910"
am
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The constant K depends on the energy estimate of Proposmon [
— Thanks to that, for all n, u, is an isolated eigenvalue of DQ )7 uniformly in n: we
have
Ctpa;n = Ker(D(A) - un)
and
dist (,un; 0(55\3) \{un}) > Kao’.

By functional calculus, we finally get the norm convergence of (¢a;n)n to 1q in L2
— This proves that

5. im P = X(-o0,0) (D1, ) + [a) (Y] = [Istba) (Istha| € s,

and ends the proof.

3.4 Existence of a minimizer for F; .

We consider a family of almost minimizers (P, )n of type (57)) where (1), is any
decreasing sequence. We also consider the spectral decomposition (64]) of any
Qn = Py, —P°.

For short we write P, := P,, and we replace the subscript 1, by n (for instance
Yn := 1y, ). Moreover, we will often write ¢ instead of £(t).

We study weak limits of (Qn)n. We recall that @, can be written as follows:

{ Ny.n = PY Ny, = Proj sy 4y, and N_., = CN.,C, (62)

Qn=Nyn — N_.n+vn, Ran Ni, NKer~y, = {0}.
We can suppose
Yn = Plan(r)®) ¢, an(r) € SL*(Ry,r’dr).
Remark 20. The functions ¢ € Ran Ny, are "almost" radial. We recall ([{)), giving
Vo =rws € R, [¢(@)] < [[9]|p2]sn(r )|||<I>"‘L 1 [leee

i( jo+3 ) (83)
A (ro)|* = | (1 + BT )an| (r0)? + |LITH (9ran + 2= )\(TO)Z.

In particular by Newton’s Theorem for radial function we have:

91172

1 .
V1 € Ran N4y, |17/)|2 * —(x0) < K(jo) 2ol

— We first prove that there is no vanishing, that is

n zE€R3

Indeed, let assume this is false. Then using (&4), it is clear that
||Ni§”||}23x - 07

and we get liminf E3pr > 2(2jo + 1)m + liminf E3pp (vn) > 2(2j0 + 1)m
an inequality that is false as shown in the previous section.

Thus, we have: @, — Q« # 0.
— As the BDF energy is sequential weakly lower continuous [HLS05D], we have
Ejye > Eppr(Qso).

Our aim is to prove that Qs +P° € W, xto: in other words that Qo is a minimizer
for Ejj .
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The spectral decomposition (82]) is not the relevant one: let us prove we can
describe P, in function of the spectral spaces of the "mean-field operator" EQH: the
first step is to prove (88)) below.

We recall that @, satisfies Eq. (B8), that we have the decomposition (61]).

Using (74)), we have for all ¢ in SRan N, ,:

(D@, v, %) —m = ((ID°] = m)y, ¥) — ((@Rq, +2m.Tn)¥, ),
> —al|Qnllex [V ?| 12—
etan||Trlle, = —a2(2jo +1).

Thus Ran P, N Ranx’ # {0}.

— Let us prove this subspace has dimension 2jy 4+ 1: we use the minimizing property
of @n. The condition on the first derivative gives (B8). The estimation of the energy
(from above and below) obtained in the previous section gives this result. Indeed,
using the Cauchy expansion and the method of [Sok14al, we have

Tr(ID°12acin) S a(l@nlex +1allTnlle,) < VIavag, (85)
Yvacin ‘= X(—o00,0) (DQH) - Pg

The Cauchy expansion is explained in (B3))-(B4]) below, we assume the above estimate
for the moment (see (B4)).
We write @, = Ny, +7,,: there holds

INalIE, = 1Qnll&,] < L2 a(2jo +1).
As 2(2j0 + 1) < [|Qn |, < 2(2j0 +1)(1 — 0471'/4)717 then necessarily
[INa %, = 2(2j0 + 1)| < a(2jo + 1), (36)
and for « sufficiently small, the upper bound is smaller than 4. This proves
Dim Ran P, NRanw’l = 2jo + 1.
Remark 21. There exists a unitary tq;» such that
D5y Ya;n = Ran P, NRan 7).
We can assume that 1q;n € Ker(Jg — jo). Then we have
N, := Proj ®su Ya;n — Proj ®su Ctha;n.- (87)

Equivalently writing w;n := Ct)a;n there holds ®suy ¢w;n = Ran (1 — P,) NRanw”.
— We have:
P, = Proj ®su ta;n — Proj ®su Yu;n + 7. (88)
We thus write
Qn = Nn + Yvac;n- (89)
AsRan P, is .5Qn invariant and that EQn is bounded (with a bound that depends
on A), necessarily
Dq,Yain = pinthasn, pin € Ry
As in [Sok14b], studying the Hessian we have

— As for 1)y, there is no vanishing for (1a,n)n for « sufficiently small: decomposing
Y4 € Ran Py:
Yy = athan + ¢, » € Ran P, NRanw”,
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we have

1 ~ .
la* > ; (m+(Dq,|¢, ) — K(a®jo + nn[Tnlle.))-

Provided that p, is close to m, the absence of vanishing for ¢,, implies that of 1q;n.
By Kato’s inequality (B7):

Dj, > [D°|(1 ~ 20/ R, [D°| " |ls — 4naTa|s) D"
> |D°)* (1~ al|Qnllex — 47| Tnls )
Thus
|Da. | > 1D°|(1 - al|Qullex — 20a|Talle,) and pn > 1= K(a®jo +nalTalles)-
In the same way we can prove that
ltn —m| < a®jo + ||l s,

So
Yan — Ya # 0.
— We decompose Yyge;n = w8 — P e # —P° asin (G4): using Cauchy’s expansion

G3)-[E4), we have

Tl'n o PO 1 Foo dw

1
- % (99.T, — allaRg, TTa + 20, Ty) = TIa. (90
xR o G etadantat2n )DQn+z‘w r- (80)

To justify this equality, we remark that |5Qn| is uniformly bounded from below, it
follows that the r.h.s. of (@0) is well-defined provided that o < ay:
HARQ, 113 < [VI|Qnllix € (2o + 1)|V] < (2o + 1)[D°[.

We must ensure that av/a(2jo + 1) is sufficiently small.
Integrating the norm of bounded operator in ([@0), we obtain

72— P25 < @l @nllex + 7alTalls, < 1.

We also expand in power of Y, := —alla R, IIa + 21,y as in ([B4)
j>1
We have
”’Yvac;nHGg < OéHQnHEx + nnHFnHGg < 052' (92)

We take the norm |||D°"/2(:)||e,:

D12 Yuaemllen S VIal|Qnllox + nalTalls, < L ajo. (93)
— We thus write
Yvac;n = Z )\j;nqj;ru
j>1

where ¢j;, has the same form as the one in (&4).

Up to a subsequence, we may assume all weak convergence as in Remark (I8): the
sequence of eigenvalues (\j;n)n tends to (u;); € £* and each (e}.,,)n (with x € {a,b})
tends to ej*-;007 (e;n)n tends to .. We can also assume that the sequence (pin)n
tends to p with 0 < o <m.

Notation 16. For shot we write 1, := Cae.
Furthermore, we write P := Qoo + P% and 7 := X(,oo,o)(Dg\;)A

— We will prove that
1. [DYY P] =0,
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2. Dg\;wa = u, and so T, = 0.
Moreover Dg\o)o Ctpg = —puCtpq and <C'¢)a ) 1/)a> =0

T = P — Proj ®su(ta) + Proj ®su(Cepy) = P — N. (94)
These results follow from the strong convergence

s. lim Rg,, = Rg.. - (95)

This fact enables us to show
lim, RQ, Yain = RQuta in L7,
s.op. lim, (7r7l — 739) =7 —P% in B(Har),
w.op. lim, P, =7 — P° + Proj ®sv e — Proj ®sut)y, in B($Har),
limy, Ya:n = 1bq in L2,

(96)

Remark 22. We only write in this paper the proof of
L? L?
Rg,Yan — Rou%a and Ya;n  —> Ya.
n——+oo n——+oo

The convergence in the weak-topology can be proved using the same method as
in [Sok14b|. For the first limit this follows from the convergence of Rg, in the
strong topology. For the proof of this fact and of the strong convergence of vyqc;n =
7" —PY we refer the reader to [Sok14b].

For Rgq,, it suffices to remark that Qn.(x,y) converges in L? . and a.e.. To
estimate the mass at infinity, we simply use the term zi i in %’“")
The strong convergence of vyqc;n follows from that of Rg, and the Cauchy ex-

pansion ([@I)).

Then, assuming all these convergences, the convergence of @, resp. [Dg\n), Pn}

in the weak operator topology to Qoo resp. [Dg\a)o7ﬁ] are straightforward.
Similarly, using ([@5)), it is clear that

Dq,W%ain  — Dguta,

n——+oo

and that

DS ta = ptfa.
To get the existence of minimizer, it suffices to prove that ||t)q||;2 = 1 or equivalently
limy, Ya;n = g in L2

— To prove the norm convergence of tq4;n to 1., we need a uniform upper bound of
in, or precisely, we need the following:

limsup(m — pn) > 0. (97)

n

Indeed, we then get

[e%

(D —pin)tain = ARG, Yain =20 ntbain and am = D

(Rauthain—20aTntbun)-

(98)
Provided that ([@7) holds and that we have norm convergence of Rq, ¥a;n We obtain
the norm convergence of 1q;n.

— To prove the norm convergence of Rq, Ya:n to Rg. e, we use the fact that the
element of ®sy q;n are "almost radial" (see in Remark 20)). We recall (84]) holds.
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In the following, we write Q. := Qn —
Schwartz inequality: for any A > 0 there hold

0Qn(z,y)
|z —yl
0Qn(z,y)
|z —yl

="
="

Thus

Similarly

/ Qoo (@, y)
|l > A

e -yl
/\x\SA

Qoo (7, y)
e -yl

and

This proves that

2 2
S (y)dy d < —

2
Stom ( )dy‘ da <

2
Gun(p)dy| de < 10Qu 3

+ﬁ|

lim sup||R[Q

+ |

_A4

Qoo and 0y, = Pa;n —

K (jo)
A b

2 21
¢a;n(y)dy‘ dz < 9 <|v|"/’a;n7 'l/’a;7l>
B(0,A)x B(0,2A)

|5Q7l||262|‘1/)a;n”i?'

- QOO]'l/’a;n”L2 =0.

277T<|V|51/)n, 1)

B(0,A)x B(0,24)

Qoo 18, 116¢nIZ2,

lim sup||Rg... (Ya:n — V)2 = 0.

hm ||RQn7/)a n

— Let us prove ([@7). We have:

2in(2j0 +1) =

— Roootallr2 = 0.

Tr(f)Qn N)
= Tr(ﬁ%acm Nn)
< 2m(2o +1) —

- a'an|l}23x7

g]gDF(’Yvac;n) -
K (jo)a®

1Qoc 15, 16%nl1Z2 + 2(15¢nl|72

0Qn (z, y)[?

y)|
[z — y]

%”N”L”}zﬂxy

|z -yl

1o and use Cauchy-

)l dxdy

2
Z HQOOHZExv
|5Qn(x, ?

dxdy

(99)

This upper bound holds provided that a < «a, thanks to the upper bound of Ej, .
obtained in the previous section.

3.5 Lower bound of F;, .

Our aim is to prove the estimate of Proposition We consider the minimizer
= N + Yvac found in the previous subsection. It satisfies Eq. (@4) where

P="P° + Qoo and vyac = X(=o0,0) (D(QAi)nfty) —

PO

(100)

— The proof is the same as that in [SokI4al [Sok14D] and relies on estimates on the
Sobolev norms || |[V|° N4 ||s, where we write

Using (I0T), we get

Ny = Proj ®su vha = Ker (D) — p).

Te(|D° P Ny) = 2(2jo + 1)’ + 20uTr (Rgo, Ny ) + o®Tr (RS Ny ),
< 2(2jo + Dp” + dop|| Qoo sy | VN [lez + 40° | QoIS VNI,

and provided that a < aj,, we get

Tr((—A)Ny) <

o?(2jo + 1)
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We have used Hardy’s inequality:

1 . .3
TR < —Ain R". (103)
We recall that

0 < |lgoflzee —1 < alog(A) and ||g5 ]|z < o

See B2) (or Appendix A] for more details).

Thus for sufficiently small o, we have

2
o 2
< - < a’. 104
1 —4a2(2jo + 1) — 2[|gollLo=[lgg || Lo (104)

V¢ € SRan Ny, [|[V3)|72

— By bootstrap argument, we can estimate || ANy ||s,. We have:
Ve € SRan Ny, || |VI¥ 222 < o®/2j0 + I and [|AY]| 12 < o* (250 + 1)¥2. (105)

We prove this result below.
Furthermore, using the Cauchy expansion (54) and (&), we get

| D1 yvaclle, S @l VNls, + VELalywacllex + o?||Quo I (VN llsz + 1vvacles),

hence

D[V Yoaclles < a®v/2j0 +1. (106)
Now, if we assume (I05)-(I00), then we get

O(2m nr

W exto T O(QSK(jo)).

We do not prove this fact: the method is the same as in [Soki4al, [Sok14D] (in the
proof of the lower bound of Epg(1) resp. Ei1).
We just recall how we get (I05).

For a < aj, Epr (Qoo) =2m(2jo + 1)+

’ 2
Proof of ([[5) We scale the wave functions of () by A := 2%,

Va € R?, Unto(z) = ¥(z) == N *y(\z),

and we split ¢ (resp. 1) into the upper spinor ¢ (resp. ¢) and the lower spinor x
(resp. x). Thanks to ([@J), we have

a 2(m—p) =:a 26m > K(jo) >0

provided that « is sufficiently small (o < ).
We write
VQQ € 62, @ = UAQ()U;1 = UAQ()UA71.

For all 4 in SRanNy we have

)\25m£ = i)\o-Vx—Fa)\(Rgoog)T,
T e (107)
X = X _X(Rgoog)y
— We recall
¥ Qo € &2, |I[V, Ray| i3 < [[ o — aPlp+ allQo(p, @) Pdpda.  (108)

This result was previously proved in and follows from the fact that a (scalar)
Fourier multiplier F(p — q) = F(—iV, +iV,) commutes with the operator R[] :

Q(z,y) — % Then it suffices to use Hardy’s inequality (I03)):

IV, RaeJ¥ltz < X [{ Ip = a*|Qoc (p, ) Pdpdg x [|Ve][32.
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By Hardy’s inequality (I03]) and ({I08]), the following holds:

IxI&, < mzllVelld, +20°|ReL &, < o,
VX, < 2(A5m>2 +20% || Rau 0113, < U2 + 02 (2jo + 1),
[ApllE, < 2X°m||Vx[[72 +22°(|[V, RQm]wl\m + [|RQw 22 V)?
< QM4 (20 + 1) + 3 (20 + 1),
[AXIE, < 2X2(6m)?[Vellrz + 202 (| [V, R | ¥l 12 + |1RQu |22 V)
< Cm 4 (20 +1) + %20 + 1)

(109)
— There remains to estimate

H lp — al*|Qo(p, @) |*dpdg, for Qo = N and yuae.

For Qo = N, we just have to estimate Tr(|V|2N+)A

The case Qo = Yvac is dealt with as in [SokI4al [Sok13]: by a fized-point argument
(valid for a < @y, ), we prove that

{Jf 1p= a7z Pdpaa} " < amin (IAN s, | 1912 N,
Now, we can prove that
Tr([VPNG) < @220 4+ 1)%2.
For a unitary ¥ in Ran N, there holds

HVIY2D%)2: < W (VI ¥) + oK || VY29l 12| Row ¥l 2

2
+2 ([I[RQu VIV 210l L2 + 201 Qeclles | VP2 22) "
(110)
Similarly, in Fourier space we have:

|7 ((Raw. IVI"*1ip,0) | < Ip — a2 | Raw (0,0,
and by Hardy’s inequality
1[Baw 1VI2160132 < [[ Ip = al|@ (b, ) Pdpdal| Vo |72 < Te(IV]Q2) [V 72
Substituting in ([II0), we get

(V)2 ¥) < a®?\/2jo + 1, hence Tr(|V| Ny) < o®?(2j0 + 1)%2.

3.6 Proof of Lemmas [3] and 4
3.6.1 Proof of Lemma [3]
We consider a trial state Py € 4 :
Qu = Py — P2 = [)(¥] — [L)(Lstp|, PLoy =4 € SHa.
Its BDF energy is

Empr(Qu) = 2Dy, ¥) — 2 jf & A;%

> 2m + 2((|D°| = m)v, ¢) — aD(|¢[*, %) =: 2m + Gr, (¥).

|ddy

We recall the following

D] = m = s (@0(=19) = m)(a0(i¥) + m) + 01 (~iV)).
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Thanks to Estimates ([82) and Kato’s inequality (7)), we have
_ T
Gr. () < (1= Ko) (gt ) — ag (VI ¥)
We split ¢ into two with respect to the frequency cut-off Ilax,: we get

Y = ok, + Y2 = Y1 + 2.
The constant Ko is chosen such that
2 2
SA > araKy.
2F (CMK())

Then we have
D(19 P, [¥1?) = D(1r*, [1]*) + O((|V 2, w2} + [l[n*lle | [V]* 242l 2)
= D([e1 ), [ *) + O(([Vln, w2) + Val [V *¢al]12),
where we recall that ||p||2 = D(p, p). This gives
1G4, () = (BTl yr ) — afD(junf?, v ?)
+K®@$wmwﬁ+om>

ZR O g2, — 2D (junl?, |1 ) + O(a®),
> 297 (0)2EPT( )—|—O(O( )

(111)

%

We have obtained a lower bound. Let us prove that it is attained up to an error
O(a®). That is let us prove there exists a unitary 19 € RanP{ such that

EBpr(Quy) — 2m Gr. (o) + O(a?)

a2m
= o2 Epr(1) + O(a®).

(112)

Asin m‘! we consider the unique positive radially symetric Pekar minimizer
¢pr in L2 ( ,C). We form

opT
o= o |er@o, (113)
0
which is a Pekar minimizer in the space of spinors. We scale this wave function by
A= ga(gl)2

VzeR? ¢y-1(z) = A2 (A\ ). (114)
To get a proper ¥ € Ran P?H we form

1

0
[P0 n il +OA (115)

o 1=
Our trial state is:

Qo := [to) (o — |Istho) (Istbol. (116)

We do not compute its energy: the method is as in (except that instead
of I, the operator C is considered in [SokI4b], but that does not change anything).
Eventually we refer the reader to the proof of the upper bound of E, ¢, above in
Section for the ideas.
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3.6.2 Proof of Lemma [

We remark the following fact.
Lemma 6. Let Sy, C Ha be the set

SIs = {f € 9, ||f”L2 =1, <f7 ISf> = 0} = {f € 9, Hf||L2 =1, jm<7)9f7 IS,Pg»f) = 0}

There exists a smooth angle operator A : Si, — R/7Z.
For two C-colinear wave functions fi, f2 in Si, we have A(f1) = A(f2).
Furthermore we have A~"(0) = RanP? and A™'(%) = RanPY.

Proof: Let f be in Sy: the space Spanc(f,Isf) is spanned by the eigenvectors

= e N .
9= = T2 and g := TP,z We have

Spang(f,L.f) = Span(P2 g+, PLg+).

It follows that PLf || PLg+ and POf || IPLf. As f € Si, for ¢ € {+,—} with
P2f # 0, we have
PO f € Spang (PLf).

Thus we have with

Spang (f,Isf) = Spang(e—,Ise—), e— € RanP? and |le_|,2 = 1. (117)
0
Indeed if P°f # 0 we can choose e_ := ﬁ, else we can choose e_ :=
—Jlg
LT
STPY ST,z

Then we decompose f w.r.t. the basis (e—,Ise—) and there exists 0 € R/(27Z)
with f = cos(f)e— + sin(f)Ise—. In fact the function f +— (e—,Ise—) that maps f to
a basis (II7) is bi-valued: if (e—,Ise_) is a possibility, then (—e_, —Ise_) is another
possibility. It follows that the angle 0 is defined up to m: we thus obtain a function

A: S, — R/7Z.

The smoothness of A is straightforward. The end of the proof is also clear.
O

We use the angle operator to get a mountain pass argument: see Lemmal[7]below.
We use and Theorem [3] and Proposition
Let % C .# .+ be the open subset

UC My = {P =Q+P° € My, dimKer(Q — ||Q||5) = 1}.

For all P = Q + P° € %, the eigenspace Ker(Q — ||Q||5) is spanned by a unitary
vector fy. By Is-symmetry, we have

[Ker(Q — [|Qls) = Ker(Q + [|Ql|5),

and we have (fo, Isfo) = 0. By Proposition [0 the plane Spanc (f,Isf) is spanned
by f- € Ran P and f+ € Ran (1 — P).
By Is-symmetry, we have Isf— € Rfy. In other words:

the wave function f_ is in Si,.

Definition 4. Let Q + P° € % C .4 and f_ as above. We define the smooth
function Ay as follows:

Av:Q+P e C My — A(f).

It is clear it does not depend on the choice of f_ but is a function of Cf_. Further-
more, we have
VYPe#, VAu(P) #0
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The following Lemma is an application of classical results in geometry.

Lemma 7. Let #y,1, be the subset
Moy, ={Q+PL e, |QIz=1} = A&l({g}%

in other words the set of projectors in % whose range intersects nontrivially Ran PY.
For any differentiable function c: (—e,e) — M » such that € > 0, ¢(0) € My 1. and

Tr(VAU(c(O))*%c(O)) £0,

the following holds: any sufficiently small smooth perturbation
c+déc:(—ee) > My,

in the norm

el := sup [[&(s) = PLlle, + sup [4E(s)]e,
s€(—e,¢) s€(—¢,¢e)

still intersects M1, at some s(dc).

— Let us now prove Lemma [l We recall that we have defined a loop ¢y = ¢o that
crosses Ay, at s = 5 and we can easily check that Tr(Ay(c(27"))*Lc(271)) =
1#0.

Furthermore we have defined the family (c¢):>0 by ¢t := ®Bpr;¢(cy ) where Pppr;¢
is the gradient flow of the BDF energy.

— By Lemma [[ the loop c; still intersects .#y,1, for sufficiently small ¢t. We must
ensure that this fact holds for all ¢ > 0 to end the proof.
We use a continuation principle and set

0o 1= SUp {t >0, VO <7 <t,3s0 €[0,1]cr crosses Ay, at s = so}.

We also define for all 0 < 7 < too:

s—(1) = sup{s€[0,1], Vs <5, [les(s")|ls < 1} >0,
sy(r) = inf{s€[0,1], Vs > s, [le-(s)|g <1} < 1.

— We assume that too < +00 and prove this implies a contradiction.
The initial loop ¢¢ induces

Lo:s€[0,1] — Au(co(s)) =nms €T,

and we notice that £o has a non-trivial homotopy.
Thus, at least for 7 close to 0, the following holds.

1. There exist 0 < n,,n- < 1 such that

Au[er (5= () = mry s ()] N (5.5 +10) = 2. (118)
2. There exist 0 < n-,7; < 1 such that

Av[er ((s4(7),54(T) +0:)) | N (5 =7, 5) = 2. (119)

The functions 7 > 0 — s+(7) are well-defined and continuous in a neighbourhood
of 0 with s_(0) = s4+(0) = 5.

— We prove that by continuity in 7 we have
Vs e[0,1], ller(s)|ls =1 = er(s) + P° € Mua, (120)
and in particular

cr(s4(7)) € My, —P°. (121)
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If not, this implies that as 7 increases, the second highest eigenvalue of ¢, (so) also
increases to reach 1 where (II8) becomes false, at some (70, So).

This cannot occurs because of the energy condition: if this was true, we would
have by Kato’s inequality (B7])

SgDF (cm (so)) >(1- a%)Tr(|D0|cTO (50)2) >4m(l —af) > 2m.
Thus (I20)- ([I2) hold for all 0 < 7 < tuo.

— Thanks to this fact, by continuity for all 0 < 7 < o, (IIS)-(II9) hold: if we follow
the point s+(7) from 7 = 0, we see that there cannot exist 79 such that (II8) or
(II9) becomes false, because the set {t > 0, V0 < 7 < ¢, (II8) (resp. (II9)) holds
for 7} is non-empty and open.
— Up to an isomorphism of [0, 1], we can suppose that for all 0 < 7 < to,

Vs €[0,1], [[0scr(so)lle, < 1.

Remark 23. In G2, the function dsct(so) satsifies the following equation:
d 0
EasCt(So) = 85V€BDF(Ct(SO)) S 62.

These new loops are written ¢, and have the same range as the ¢;’s and define
the same arc length.

Studying the limit of ¢, as 7 tends to te, we get that at ¢t = to, (II8)-(II9) still
holds for the loop ¢;., at some 0 < s_(teo) < 54 (teo) < 1.

Then necessarily, the loop ¢ crosses .#u 1, at some s € [s_(too), S+ (tc)]. Going
back to ¢;__, this proves that the same holds for ¢;__, which contradicts the definition
of teo.

4 Proofs on results on the variational set

4.1 Proof of Lemma [I

Let

oy : SU(2) — U(E), E C Ha
be an irreducible representation of ®gy. As J? and S commutes with the action of
SU(2), then necessarily E is an eigenspace for J* and S, associated to j(j + 1) and
k; =¢e(j+ %) where j € % + Z4 and & = +. The eigenspaces are known [Tha92] p.
126]: they are spanned by wave functions of type

V:c =Twy € R37 'l/)(:l?) = a(r)(I)'rin,njv m = _j7 _.7 + 17 s 7j7 (122)
where
a(r) € L*(Ry., r2dr), (123a)
AV 0
ot = 3 Jand @ = gm (123Db)
m,£(+35) 0 m,£(j+3) j:F%

1
B Vitl—-mYy 2
2 and U™ | = 1 e
iy L it3 B 27 2 7 L
R W e e
2 itz
(123c)
We recall that the Y;™ are the spherical harmonics (eigenvectors of L?).
Hence FE is spanned by a wave function which is a linear combination of that of
type ([22).
We recall that for any integer n > 1 there is but one irreducible representation
of SU(2) of dimension n up to isomorphism. They can be found by the number
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of eigenvalues of J4, the infinitesimal "rotation" around the z axis which induces a
representation of SO(3).. Here J3 corresponds to Js.
Thus we get that for ¢ € {4+, —}

.= Pgy a(r)@j,ij

is irreducible with respect to ®sy. By unicity of the irreducible representation of
dimension 2j + 1, there exists an isomorphism from E_ to Ey. As there must be
a correspondence between the eigenspace of Js3(E_) and that of J3(E), necessarily
Ca@;ﬁj is sent to Ca@ﬁ%nj.

In particular as PyE and P E are also representation of SU(2) with same eigen-
values of J%,S (or = {0}). If one of them is zero then E is of type Ex. If both are
non-zero, then there exists a4+ (r), ay(r) such that

PyE = dsuay ()@, and P E = svay(r)®
Both P+E and P E are irreducible. We can suppose that there exists f € E with
Pif =ap(r)®f, and P f = ay(r)®; .-

Jikg

Jikgt

The isomorphism between the two representations implies that

E = dgu (aT(r)(I)TL + ai(r)q)jf,ij).

Jikj

4.2 Proof of Proposition

We have to prove that .# s and # are submanifold of .#Z. The method is similar
to the one used in to prove that .#« is a submanifold of .Z.

Let Py = Qo+P° € .#. We will prove that in a neighbourhood of Py in P° +&a,
the projectors Py in .# s (resp. #') can be written as

A —A
P1 =e€ Poe 5

where A € mﬁ) (resp. m;’o).
— If we assume this point, then it is clear that the two sets are submanifolds of .Z .
Indeed e is a global linear isometry of 4, whose restriction to the mp’s maps mp,
onto mp, .

Equivalently it maps the first tangent plane onto the other:

{la, Pol, a € mp,} = {la, P1], a € mp, }.

— We use Theorem [3] to write

—+oo
Qo =Y N (IFNE = 1F-5){f-5) (124)

=1

where (\;); € £? is non-increasing and the f;’s form an orthonormal basis of Ran Q.
Provided that
[P = Polls, <1,
then A\; < 1 and there is no j such that f; or f_; is in the range of 732 or PY.
We decompose with respect with the eigenvalues 1 > po > --- > 0 as follows:

+oo
Qo = Zuk (Proj Ker(Qo — ux) — Proj Ker(Qo + uk))

k=1
For short we write py_j := —pux, and
My, := Proj Ker(Qo — px) and E,?k“ = Ker(Qo — ). (125)

As any Y € {C, I} is an isometry (linear or antilinear) and as the eigenvalues
are the sine of the angles between vectors in Py and P, for any k we have
YED = B (126)

“HE

and the eigenspaces Egko @ E?ﬁk = Ker(Q% — ui) are invariant under Y.
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Case of 7 —In the case Y = C and Py € #, each eigenspace
Ker(Q§ — p2) is also invariant under the action of ®sy. In other words, Ker(Q§ —
ui) is a finite dimensional representation of ®sy, and we can decompose it into

irreducible representations Effk), where 0 < £ < (k.
By C-symmetry, we have

CEW) = g“)

—HE?

there is a one-to-one correspondence between irreducible representations of type E,(fk)

and that of type E(fl)% Up to changing indices ¢}, we can suppose that

Ce) = EY)

O 0 L< by

Decomposing E,(fk) with respect with P2 and 7>$, we see that
PiEffk) is irreducible,
and from the spectral decomposition of Qg
P EL oPEL =ED o F_,,,

where F_,, is an irreducible subset of Ker(Qo + pr).
— Let us show that
F_,, NnCEL = {0}. (127)

Indeed, from Lemma [l and the expression of the @ivm we see that
CKer(Jg - m) = Ker(J3 + m).
Thus if the intersection is non-zero, then we have by C-symmetry and ®sy-symmetry:
F_,., =CEY.

But as shown in [SokI4b], this cannot happen: let us say that E,(fk) is associated to
the eigenvalues jo(jo + 1), & of J? resp. S. We consider:

Ker(Js —m) N P°£EY) = Cexim, —jo <m < jo, lleximlz2 = 1.

We would have
Cei;m = eXpie(i; m)e;F*m'

The constant 6(+;m) does not depend on m by ®sy-symmetry. Moreover, if
Ker(J3 —m) N E,(fk) =Cfm,

then
PLfm || exim-
As in [Sok14b] for .#«, the condition C* = 1 implies 04+ — 0_ = 0[27] while

—CQoC = Qo
implies 0+ — 0_ = 7[27], which cannot occur.
Similarly, we can prove that (I27) holds and that in fact F_,, is orthogonal to

CEY.

As a consequence, the number of E;(fk)’s is even, or equivalently, the number of
PgE,(fk) is even.
— The fact that

Py =e*Pye ™, with dsyA = A, CAC = A, ||Alls, < +00, (128)

follows from Theorem [3] and the different symmetries.

36



The f;’s in (I24) can be written as (\; = sin(6;))

/1 1—|—)\
-+ €445 Pieij = €455
1+ A 1—)\;
V3 fe—j + V5 Tey

—+oo
A= Z%(Iemﬂea | = le—s)(esl)- (129)

We also have

Then we define

It is easy to check that A satisfies (I28). In fact, we can assume that f; spans an
irreducible representation of SU(2), and in this case the same holds for e4;; and
€—ij-

As in Section [£]] the correspondence e_;; — e4;; induces an isomorphism be-
tween ®syue—;; and Psuey;;. This fact together with the ®sy-symmetry implies
that

VU € Ran®sy, UAU ™ = A.

The fact that CAC = A was proved in in the case Py, P1 € .#«. Here this
remains true because

W C Me.

— We can now determine the connected component of #'. Let Py, Pi be in # and
let Q = P1 — Po.
We consider
ES :=Ker(Q — 1).

If EZ = {0}, then we can write P, = e*Poe™* as in (IZJ). And we see that the
path in ¢2:
te [07 1] — (té?j)j S 62
induces a path connecting Py and P;.
If B9 # {0}, we count the number of irreducible representation in E<: let bj;
be the number of irr. rep. in

Kelr(.]2 —j(G+1)) NKer(S — &;).

If all the bj’,gj ’s are even, we can still write P; as P1 = e Pye " with A as in (=9)
with the first 6; equal to 3. In particular the two projectors can be connected by a
path in 7.

Let us say that bj,,., = 1[2] for some jo,xo. We have shown that for P € #
with ||P — Py||s < 1, the number of planes 1I;’s in the decomposition of Theorem [3]
is even. Precisely, due to the C-symmetry, there exists a sequence (£,(j,)); in N,
with

Ker((P — Py) — p) NKer(J? — j(j + 1)) NKer(S — k)

4
= @ El(t )7
1<0<€,(4,k)

where each E,(f) is irreducible as a representation of ®su and £,,(j, k) is even.

We show that there cannot exist a continuous path linking Py and P, by a
contradiction argument.

Let us say that v : ¢t € [0,1] — # is a continuous path with v(0) = Py and
(1) = Polls = 1.

Then by the previous remarks, we have by continuity:

Vte0,1],Vj€L+2Z, Vee{£(i+3)}
el(Qt = ( ) - Po; 7, ) = 0[2]

In particular it is not possible to have v(1) = Pi.
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Case of #y ForY =1 and Py € .4, we use [I26). For each f € E,?, we have
Q
I € BZ, where p € 0(Q). We may assume that p > 0.
Thus the plane
II:= Span(f7 Isf)
is invariant under @ and Is. We decompose f and I f with respect to Py and 1— P.
By a dimension argument:

1. either p =1, Pof =0 and (1 — Po)Isf =0,
2. 0or0<p<1and

CPyf = CRIsf and C(1 — Py)f = C(1 — Ry)Isf.

In each case, we write e— a unitary vector in Ran Py N1l and e4 = Lse_.

If we consider the sequence (p;); of positive eigenvalues of @ (counted with
multiplicities), we get the correspondent sequences (e—;;); and (e;;). Moreover by
Theorem [B] we know that p; = sin(6;) where 6; € [0, 5] is the angle between the
two lines Ce_;; and Cf;.

Provided that we take —6; instead of §; and up to a phase, we can suppose that

fi = cos(0;)e—;; + sin(6;)Ise—,;.

In particular we have
P = (3141:’()67147
with
A= ZHj(|e+;j><e,;j| - |€*;j><€+;j|)-

It is straightforward to check that IsAIS L= A
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