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Introduction and main results

The Dirac operator

The theory of relativistic quantum mechanics is based on the Dirac operator D0, that describes the kinetic energy of a relativistic electron. To simplify formulae, we take relativistic units = c = 4πε0 = 1 and set the bare particle mass equal to 1.

In this case, the Dirac operator is defined by [START_REF] Thaller | The Dirac Equation[END_REF]: D 0 = -iα • ∇ + β where β, αj ∈ M4(C) are the Dirac matrices:

β = Id2 0 0 -Id2 , αj = 0 σj σj 0 , j = 1, 2, 3 (1a) 
σ1 = 0 1 1 0 , σ2 = 0 -i i 0 , σ3 = 1 0 0 -1 . ( 1b 
)
It acts on the Hilbert space H = L 2 (R 3 , C 4 ) with domain H 1 (R 3 , C 4 ). Its spectrum is not bounded from below: σ(D0) = (-∞, -1] ∪ [1, +∞), which implies the existence of states with arbitrarily small negative energy. Dirac postulated that all the negative energy states are already occupied by "virtual" electrons forming the so-called Dirac sea: by Pauli principle a real electron can only have positive energy.

According to this interpretation, the vacuum, filled by the Dirac sea, is a polarizable medium that reacts to the presence of an electromagnetic field.

BDF model

In this paper we study the Bogoliubov-Dirac-Fock (BDF) model which is a no-photon, mean-field approximation of Quantum Electrodynamics (QED) which was introduced by Chaix and Iracane [START_REF] Chaix | From quantum electrodynamics to mean-field theory: I. the Bogoliubov-Dirac-Fock formalism[END_REF]. It enables us to consider a system of relativistic electrons interacting with the vacuum in the presence of an electrostatic field. This paper is a continuation of previous works by Hainzl, Gravejat, Lewin, Séré, Siedentop [START_REF] Hainzl | Non-perturbative mass and charge renormalization in relativistic no-photon quantum electrodynamics[END_REF][START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF][START_REF] Hainzl | Self-consistent solution for the polarized vacuum in a no-photon QED model[END_REF][START_REF] Hainzl | Existence of atoms and molecules in the meanfield approximation of no-photon quantum electrodynamics[END_REF][START_REF] Ph | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF] and Sok [START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF][START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF].

The derivation of the BDF model from QED is explained in [START_REF] Chaix | From quantum electrodynamics to mean-field theory: I. the Bogoliubov-Dirac-Fock formalism[END_REF] and [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF]Appendix]: we refer the reader to these papers for full details.

In QED, an electronic system is described by a state in the fermionic Fock space F el [START_REF] Thaller | The Dirac Equation[END_REF]Chapter 10] on which (formally) acts the Hamiltonian HQED [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF]Appendix]. The mean-field approximation consists to restricting the study to Hartree-Fock type states, called BDF states. They are fully characterized by their one-body density matrix (1pdm) which are orthogonal projectors of H.

For instance, the projector P 0 -:= χ (-∞,0) (D0) is the 1pdm of the vacuum state Ω0 ∈ F el : it must be thought of as the infiniter Slater determinant f1 ∧ f2 ∧ • • • where (fi) i≥1 is an orthonormal basis (BON) of Ran(P 0 -). A projector P defines a BDF state iff P -P 0 -is Hilbert-Schmidt (i.e. its integral kernel is square integrable). We take P 0 -as a reference state and define a renormalized Hamiltonian : HQED : by a procedure of normal ordering relative to P 0 - [START_REF] Chaix | From quantum electrodynamics to mean-field theory: I. the Bogoliubov-Dirac-Fock formalism[END_REF][START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF]. The energy ΩP , : HQED : ΩP of a state ΩP , turns out to be a function of the reduced density matrix (r1pdm) Q := P -P 0 -. Formally this function is

E ν BDF (Q) := Tr D0Q -αD(ν, ρQ) + α 2 D(ρQ, ρQ) -Q 2 Ex , (2) 
where α > 0 is the fine structure constant, ν is the external density of charge, ρQ(x) := Tr C 4 Q(x, x) is the density of Q, with Q(x, y) the integral kernel of Q, and:

D(ν, ν) = ν 2 C := 4π R 3 | ν(k)| 2 |k| 2 dk and Q 2 Ex := R 3 ×R 3 |Q(x, y)| 2 |x -y| dxdy. (3) 
The hat in ν denotes the Fourier transform and D(ν, ν) < +∞ is the Coulomb energy of ν: it coincides with ν(x) * ν(y)

|x-y| dxdy whenever this integral makes sense. We also write

C := ν ∈ S ′ (R 3 ), ν measurable and | ν(k)| 2 |k| 2 dk < +∞ . (4) 
In [START_REF] Cancès | A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case[END_REF] we recognize the kinetic energy, the interaction energy with ν, the direct term α 2 D(ρQ, ρQ) and the exchange termα 2 Q 2 Ex . A priori this formula makes sense only when Q and D0Q are trace-class and the variational problem is ill-defined.

An ultraviolet cut-off Λ > 0 is necessary. Following [START_REF] Ph | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF], we replace D0 by

D := D0 1 - ∆ Λ 2
with domain H 3/2 (R 3 , C 4 ), and only consider states Q such that Tr |D| |Q| 2 < +∞.

By adapting [START_REF] Cancès | A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case[END_REF], we get a well-defined energy E ν BDF (defined in the next section). Remark 1. We use the terms Direct space and Fourier space: a function that depends on position variables (such as a wave function ψ(x) or a 1pdm Q(x, y)) is in Direct space, while its Fourier transform that depends on momentum variables is in Fourier space (such as ψ(p) or Q(p, q)). Remark 2. Other choices of cut-off are possible. This one, the smooth cut-off, is convenient for the study of functions in Direct space. In [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF][START_REF] Hainzl | Self-consistent solution for the polarized vacuum in a no-photon QED model[END_REF][START_REF] Hainzl | Existence of atoms and molecules in the meanfield approximation of no-photon quantum electrodynamics[END_REF] Hainzl et al. have chosen the sharp cut-off, replacing L 2 (R 3 , C 4 ) by its subspace HΛ made of squareintegrable functions whose Fourier transform vanishes outside the ball B R 3 (0, Λ). Remark 3. We still have χ (-∞,0) (D) = P 0 -. We also write P 0 + := χ (-∞,0) (D 0 ) = Id-P 0 the projector on its positive spectral subspace. Notation 1. For an operator Q, we define RQ by its integral kernel:

RQ(x, y) := Q(x, y) |x -y| , x, y ∈ R 3 × R 3 , x = y. (5) 
Moreover for any ρ ∈ C we write

vρ := ρ * 1 |•| . (6) 

Existence of minimizers

For a r1pdm Q = P -P 0 -, the charge of the system is given by its so-called P 0 --trace Tr P 0 -(Q), defined by

Tr P 0 - (Q) := Tr P 0 -QP 0 -+ Tr P 0 + QP 0 + . (7) 
It coincides with the usual trace for trace-class operators and is well-defined for r1pdm because of their structure. Indeed as a difference of orthogonal projectors Q satisfies:

P 0 + (P -P 0 -)P 0 + -P 0 -(P -P 0 -)P 0 -= (P -P 0 -) 2 . (

A minimizer for E ν BDF among states with charge M ∈ N is interpreted as a ground state of the system with M electrons in the presence of ν. For q ∈ R, the infimum of the BDF energy on the charge sector QΛ(q) := {Q : Tr P 0 -(Q) = q} is written E ν (q). A sufficient condition for the existence of a minimizer for E ν (q) is the validity of binding inequalities at level q [9, Theorem 1]. This result is stated for the sharp cut-off, however it is possible to adapt its proof to get this Theorem:

Theorem 1. Let 0 ≤ α < 4
π , Λ > 0, ν ∈ C and q ∈ R. Then the following assertions are equivalent:

1. the binding inequalities hold: ∀ k ∈ R\{0}, E ν (q) < E ν (q -k) + E 0 (k), 2. each minimizing sequence (Qn) n≥1 for E ν (q) is precompact in QΛ(q) and converges, up to a subsequence, to a minimizer for E ν (q). If ν = 0, this result holds up to translation.

If q is an integer, then we can only consider k ∈ Z\{0} in the first assertion.

Checking binding inequalities is a difficult task. Hainzl et al. checked them in some cases with non-vanishing ν [9, Theorems 2 and 3]. [START_REF] Hainzl | Existence of atoms and molecules in the meanfield approximation of no-photon quantum electrodynamics[END_REF]Theorem 3] states that for ν ∈ L 1 (R 3 , R+) ∩ C, there exists a minimizer for E ν (M ) provided that M -1 < ν under technical assumptions on α, Λ.

In [START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF], the existence of a ground state for E 0 (1) is proved, still under technical assumptions on α, Λ. It is remarkable that an electron can bind alone without any external potential: this is due to the vacuum polarisation. The electron creates a hole in the Dirac sea that allows it to bind. This effect causes a charge screening: from far away the charge of the electron appears smaller as it is surrounded by the hole.

Let Q be a minimizer for E 0 (1), then its density ρQ is integrable [START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF], and we have the charge renormalisation formula:

ρQ = 1 × Z3 ≈ 1 × 1 1 + 2 3π α log(Λ) = 1. ( 9 
)
Here Z3 is the renormalisation constant. This inadequacy is possible because the minimizer is not trace-class (hence the mere fact that ρQ is integrable is non-trivial). We emphasize that these results were proved with the sharp cut-off, but the proofs can be adapted in the present case.

Our purpose in this paper is to study the variational problem E 0 (2), that is two electrons in the vacuum. We recall that an electron does not see its own field, but in the case of two electrons any electron feel the field induced by the other resulting to a repulsive force. If the vacuum polarisation is not strong enough to counterbalance this repulsion, then there is no minimizer for E 0 (2). This constitutes our main Theorem.

Theorem 2. There exist α0, Λ0, L0 such that if α ≤ α0, Λ ≥ Λ0 and α log(Λ) ≤ L0, then there is no minimizer for E 0 (2).

Remark 4. This result is proved in the case of the smooth cut-off, and we expect it to be true for the sharp one but we were unable to show it.

We prove it ad absurdum. Let us give the main ideas. Along this paper we suppose that there exists a minimizer Q for E 0 (2). Such a minimizer satisfies a self-consistent equation [9, Proposition 1], [START_REF] Ph | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF] and can be decomposed as follows:

Q = |ψ1 ψ1| + |ψ2 ψ2| + γ, (10) 
where the ψj 's are eigenvectors of the so-called mean-field operator:

DQ := D + α vρ Q -RQ , (11) 
where for a density ρ ∈ C and an operator Q, we define

RQ(x, y) := Q(x, y) |x -y| , x, y ∈ R 3 and vρ := ρ * 1 |•| . (12) 
For short we will also write

BQ := vρ Q -RQ. ( 13 
)
By studying E 0 (2) ≤ 2E 0 (1), we get a priori information on the ψj's. In particular we show that the subspace Span(ψ1, ψ2) splits as follows

Span(ψ1, ψ2) = Ch1 ⊥ ⊕ Ch2, hj L 2 = 1,
where h1 and h2 are essentially two bump functions which are some distance Rg away from each other. The operator γ is also localised around each hj such that the energy

E 0 BDF (Q) can be written E 0 BDF (Q) = 2E 0 (1) + θ12
, where θ12 > 0 in our range of parameters (α, Λ).

Roughly speaking the BDF energy should be the sum of the BDF energy of these two parts plus the interaction energy. This interaction energy is too big to ensure E 0 (2) is attained.

Remark 5. Throughout this paper, we work in the regime where α and Λ satisfy these conditions: α ≤ α0, α log(Λ) := L ≤ L0 and Λ ≥ Λ0 > 0 for small constants α0, L0, Λ -1 0 . K is some constant independent of those numbers while K(λ) means a constant depending on the quantity λ. Symbols o(•),O(•) and Θ(•) are to be understood in this regime.

The paper is organised as follows. In the next section we properly define our model and give a priori estimates about E 0 (2) and its hypothetical minimizer in Lemma 1. This Lemma is proved in Section 5.

Then in Section 3, we study the Pekar-Tomasevitch functional to exploit these results (Propositions 3, 4 and 5). These Propositions are proved in Appendix B.

Section 4 is devoted to introduce important tools of the proof: the Cauchy expansion (part 4.1) and useful inequalities (part 4.3). We recall in part 4.2 the form of the density of a minimizer.

Section 6 is dedicated to prove Theorem 2. We show how the energy is distributed in Direct space (Proposition 6). This enables us to prove Theorem 2 (part 6.3). To this end we first study the localisation of the "real" electrons' wave functions (Lemma 7, proved in Appendix C). We then show how this enables us to get localisation of the energy of a minimizer (Lemma 8, proved in this Section but using Appendix D). For the sake of clarity we explain in Remark 16 how Appendix D is used to prove Lemma 8.

We have postponed the most technical proofs in the appendices. In Appendix A, we prove Proposition 1 and Lemma 6. This last Lemma shows estimates on a minimizer by bootstrap arguments. Maybe the most difficult results lie in Appendices C and D, dedicated to prove localisation estimates in Direct space. Acknowledgment: The author wishes to thank Éric Séré and Mathieu Lewin for useful discussions and helpful comments. This work was partially supported by the Grant ANR-10-BLAN0101 of the French Ministry of research.

Presentation of the model

Remark 6 (Fourier transform). In this paper, the Fourier transform is defined on L 1 (R 3 ) by the formula:

∀ f ∈ L 1 (R 3 ), f (p) := 1 (2π) 3/2 R 3 f (x)e -ip•x dx.
Notation 2 (Splitting w.r.t. P 0 ± ). For an operator Q and e1, e2 ∈ {+, -} we write Q e 1 e 2 := P 0 e 1 QP 0 e 2 . Notation 3 (Schatten classes). We recall that for 1 ≤ p ≤ ∞, the set of compact operators whose singular values form a sequence in ℓ p is denoted by Sp(HΛ) [START_REF] Simon | Trace Ideals and their Applications[END_REF][START_REF] Simon | Trace Ideals and their Applications[END_REF]. The case p = 2 (resp. p = 1) corresponds to Hilbert-Schmidt operators (resp. traceclass operators).

Those Banach spaces satisfy Hölder-type inequalities [START_REF] Reed | Methods of Modern Mathematical Physics, volume I-II[END_REF]. We also recall the Kato-Seiler-Simon inequalities [START_REF] Simon | Trace Ideals and their Applications[END_REF]:

∀ 2 ≤ p ≤ ∞, ∀ f, g ∈ L p (R 3 ), f (x)g(-i∇) Sp ≤ (2π) -3/p f L p g L p . ( 14 
)
Furthermore we write B(HΛ), the set of bounded linear endomorphisms on HΛ.

Notation 4 (On D0 and D). We write sp for D 0 (p) √ 1+|p| 2 the action of sign(D0) in the Fourier space. The function 1 + |p| 2 is also written E(p) and Ep :

= 1 + |p| 1 (1 + |p| 2 /Λ 2 ).
Throughout this paper

ε[Λ] = εΛ := 1 log(Λ) and a[Λ] := 1 + ε[Λ] 2 . (15) 
We have

|D0| 1+ε Λ ≤ E(Λ) ε |D| ≤ (1 + e)|D|, Λ ≥ e = exp(1). (16) 

The BDF energy

Let ν be an external charge density in C and α, Λ > 0 be given. We want to extend (2): the result is the BDF energy (24) below.

Following [START_REF] Ph | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF] we define the set:

QKin := Q ∈ S2, |D| 1/2 Q, Q|D| 1/2 ∈ S2, |D| 1/2 Q ++ |D| 1/2 , |D| 1/2 Q --|D| 1/2 ∈ S1 . (17) 
The kinetic energy functional is defined on QKin by the following formula

Tr P 0 - (DQ) := Tr(|D| 1/2 (Q ++ -Q --)|D| 1/2 ). (18) 
It coincides with Tr(DQ) when DQ is trace-class. We will work in the subset of this space defined by:

K := {Q ∈ QKin, -P 0 -≤ Q ≤ P 0 + } ⊂ Q ∈ QKin, Q * = Q , (19) 
the closed convex hull (under that norm) of the difference of two orthogonal projectors:

P -P 0 -. We also define Q1 the Hilbert space of Q(x, y) ∈ L 2 (R 3 × R 3 , C 4 ) such that Q 2 Q 1 := (Ep + Eq)| Q(p, q)| 2 dpdq < +∞. ( 20 
)
The definition of the density ρQ must coincide with the usual one when Q is (locally)

trace-class and ρQ must be of finite Coulomb norm: ρQ C < +∞. For Q in S P 0 -1 , ρQ is defined by duality:

∀ V ∈ C ′ , QV ∈ S P 0 - 1 and Tr P 0 - (QV ) = V , ρQ C ′ ×C . (21) 
We have the following proposition (proved in Appendix A).

Proposition 1. The map Q ∈ S P 0 - 1 → ρQ ∈ C is continuous and: ρQ C |D0| a[Λ] Q ++ |D0| a[Λ] S 1 + |D0| a[Λ] Q --|D0| a[Λ] S 1 + log(Λ) |D0| a[Λ] Q S 2 . ( 22 
)
Thanks to Kato's inequality (60), the exchange term is well-defined [1]

2 π |Q(x, y)| 2 |x -y| dxdy ≤ Tr(|D0|Q 2 ) = Tr{|D0| 1/2 Q 2 |D0| 1/2 } and for Q ∈ K : ≤ Tr{|D0| 1/2 (Q ++ -Q --)|D0| 1/2 } ≤ Tr P 0 - (DQ), (23) 
The BDF energy is defined as follows:

E ν BDF (Q) := Tr P 0 - (DQ) -αD(ν, ρQ) + α 2 D(ρQ, ρQ) - |Q(x, y)| 2 |x -y| dxdy , Q ∈ K. ( 24 
) Any charge sector Q(q) := {Q ∈ K, Tr P 0 - (Q) = q} leads to a variational problem E ν BDF (q) := inf Q∈Q(q) EBDF(Q). (25) 
By Lieb's variational principle [9, Proposition 3], a minimizer Q for E ν (M ) with M ∈ Z is necessarily a difference of two projectors P -P 0 -.

Form of a minimizer

To simplify, from this point we assume that ν = 0. For an integer M ∈ N, let Q be a ground state for E 0 (M ), then necessarily Q = P -P 0 -, where P is an orthogonal projector.

The study of the first and second derivative gives more information: we have DQ, P = 0, and [9, Proposition 1]

P = χ (-∞,µ] DQ , 0 < µ < 1, (26) 
where we recall the mean-field operator is defined in [START_REF] Lenzmann | Uniqueness of ground states for pseudo-relativistic Hartree equations[END_REF]. We decompose Q with respect to the positive and negative spectrum:

N := χ (0,µ] (DQ) and πvac = γ + P 0 -:= χ (-∞,0) (DQ), (27) 
where πvac (resp. n) is interpreted as the polarized vacuum (resp. as the real electrons).

If αM is small enough, then we can show that Tr P 0 -(γ) = 0 and thus N has rank M [START_REF] Hainzl | Existence of atoms and molecules in the meanfield approximation of no-photon quantum electrodynamics[END_REF][START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF]. We will recall the proof below.

In the present case, a minimizer for E 0 (2) can be written as in (26)-( 27). For small enough α, we have

N = |ψ1 ψ1| + |ψ2 ψ2|, DQψj = µjψj , 0 < µ2 ≤ µ1 = µ < 1, j ∈ {1, 2}. (28) 
These equations constitutes the starting point of our proof: they enable us to get estimates on the Sobolev norms of the ψj 's. More precisely we will prove Lemma 1.

Before stating it, let us recall the Pekar-Tomasevitch functional:

EPT(ψ) := ∇ψ 2 L 2 - |ψ(x)| 2 |ψ(y)| 2 |x -y| dxdy, ∀ ψ ∈ H 1 .
It describes the energy of a single electron in its own hole. In the case of M electrons, the energy is [START_REF] Frank | Stability and absence of binding for multi-polaron systems[END_REF]:

∀ 0 ≤ Γ ≤ 1, Tr Γ = M, E U PT (Γ) := Tr -∆ -ρΓ 2 C + U ρΓ 2 C -Γ 2 Ex , (29) 
where U > 0 is some number. By scaling we can assume U = 1 but -ρΓ 2 C has to be replaced by U -1 : this last number measures the strength of the polarisation.

In this paper, a specific value U = U0(α, Λ) is considered:

U -1 0 = 1 -Z3(α, Λ)
where Z3 is the renormalisation constant that we have mentionned in the introduction. Its precise expression is given below (57).

We write E U PT (M ) the infimum of the Pekar-Tomasevitch energy on the set {0 ≤ Γ ≤ 1, Tr Γ = M }, with U = U0. Remark 7. We assume that U0 > 2Uc, where Uc is the critical value above which, there is no minimizer for E U PT (M ) for any integer M ≥ 2. This important result is proved in [START_REF] Frank | Stability and absence of binding for multi-polaron systems[END_REF].

For unitary wave functions φ1 ⊥ φ2, we also write

E U PT (φ1 ∧ φ2) := E U PT 2 j=1 |φj φj| .
Lemma 1. In the regime of Remark 5, let Q = N + γ be a minimizer for E 0 (2), decomposed as in (26)-(28).

Let c be α(1 -Z3(α, Λ)) -1 where Z3 is defined in (57). We write ψj the scaling of ψj by c: ψj

(x) := c 3/2 ψj(cx), x ∈ R 3 ,
Then we have the following:

E 0 BDF (1) = 1 + 1 2c 2 EPT(1) + O(αc -2 ), E 0 BDF (2) = E 0 BDF (Q) = 2 + 1 2c 2 EPT,U 0 (ψ1 ∧ ψ2) + O(αc -2 ). (30) 
We split each ψj into an upper spinor ϕj and a lower one χj , both in

L 2 (R 3 , C 2 ). We write nj = |ψj | 2 (resp nj = |ψj | 2 ) and n = n1 + n2 (resp n = n1 + n2). Then we have µj = 1 + ∇ϕj 2 L 2 2c 2 - 1 c 2 D(nj , n) + O(αc -2 ), (31) 
in particular:

(1 -µj )c 2 1. (32) 
Estimate (32) follows from (47)-(48). This quantitative error O(αc -2 ) gives a priori information about the ψj 's thanks to [START_REF] Lieb | Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation[END_REF][START_REF] Frank | Stability and absence of binding for multi-polaron systems[END_REF] (see the next Section).

Notation 5. Throughout this paper, we will use the following notations.

Nj = |ψj ψj | N = N1 + N2, nj = |ψj | 2 n = n1 + n2, γ ′ = Q = = γ + N, ρ ′ γ = ργ + n. (33) 
When we add an underline Nj etc. we mean the scaled object by c = (α(1

-Z3)) -1 . Writing Oc : φ(x) ∈ L 2 → c 3/2 φ(cx), we have ψj = Ocψj, Nj := OcNj O -1 c , γ = OcγO -1 c .
3 The Pekar-Tomasevitch functional 

Thanks to [START_REF] Lieb | Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation[END_REF], one knows that there exists but one minimizer for EPT(1) up to a phase and to translation in L 2 (R 3 , C). This minimizer can be chosen positive radially symmetric and decreasing. It is also smooth and with exponential falloff. As ∇|φ| 2 ≤ |∇φ| 2 [START_REF] Lieb | Analysis[END_REF], there holds the same in L 2 (R 3 , C 4 ). The set of minimizers is a manifold P ≃ S 7 × R 3 where S 7 is the unit sphere of C 4 . There also holds coercivity inequality [START_REF] Lenzmann | Uniqueness of ground states for pseudo-relativistic Hartree equations[END_REF]:

Proposition 2. Let φ ∈ H 1 with φ L 2 = 1 and let φ ∈ P such that: φ -φ H 1 = inf f ∈P φ -f H 1 ,
then there exists κ > 0 such that (at least in a neighborhood of P): EPT(φ) -EPT(1) ≥ κ φ -φ 2 H 1 . Notation 6. We write P0 ⊂ P the submanifold of P made of minimizers with center 0 ∈ R 3 : it is isomorphic to S 7 .

We are interested in E U PT [START_REF] Cancès | A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case[END_REF], with U = U0 > 2Uc, where Uc is the critical value above which there is no mminimizers for EPT(2) [START_REF] Frank | Stability and absence of binding for multi-polaron systems[END_REF]: in particular EPT(2) = 2EPT(1) (the proof of [START_REF] Frank | Stability and absence of binding for multi-polaron systems[END_REF] also applies for spinor-valued functions). If we choose U0 > 2Uc:

∀Ψ ∈ L 2 a (R 3 × R 3 ), Ψ L 2 = 1 : EPT(Ψ) -2EPT(1) ≥ U0 2 (D(ρΨ, ρΨ) -Tr(γΨR[γ ψ ])) (34 
) where we recall ρΨ is the density of Ψ and γΨ is its one-body density matrix.

There holds Lieb's variational principle:

E U PT (2)
is also the infimum of E U PT over Slater determinant h1 ∧ h2 with hj ∈ H 1 and hj , h k = δ jk .

Let us consider such a state Ψ = h1 ∧ h2. The plane Span(h1, h2) can be defined with other orthonormal families: U(2) acts on the set S[Ψ] of those families:

a c b d , h1 h2 ∈ U(2) × S[Ψ] → ah1 + bh2 ch1 + dh2 ∈ S[Ψ], (35) 
The first vector is written (m • h)1 and the second is written

(m • h)2.
Characteristic length For Ψ = h1 ∧ h2 we define the inverse dΨ of the characteristic length R12(Ψ):

dΨ := inf m∈SU(2) D(|(m • h)1| 2 , |(m • h)2| 2 ) = R12(Ψ) -1 . (36) 
Let φ0 ∈ P0 be the radially symmetric and positive function (with φ0(x) parallel to ( 1 0 0 0 ) * for instance). Let φx 0 = τx 0 φ0 be its translation by x0 ∈ R 3 . We have:

∀x0, |x0| ≥ 1 : |x0|×D(|φ0| 2 , |φx 0 | 2 ) ≤ sup |z|≥1 |z| |φ0(x)| 2 |φz(y)| 2 |x -y| 2 dxdy := Y0 < +∞. ( 37 
)
Geometric length For a Slater determinant Ψ = h1 ∧ h2 where h1 and h2 satisfy D(|h1| 2 , |h2| 2 ) = dΨ, we define the geometric length Rg as follows.

Let φ (j) ∈ P be the closest function of P to hj in H 1 . Each φ (j) is radial with respect to some vector zj ∈ R 3 , we set Rg(Ψ) := |z1 -z2| (or the smallest of such |z1 -z2|): it should be seen as the interparticle distance. Remark 8. The geometric length Rg does not appear in the energy and R12 = d -1

Ψ may be much smaller. 

∀Ψ = h1 ∧ h2 : ∆2E = E U PT (Ψ) -2EPT(1) < a0 ⇒ ∆2E dΨ ≥ b. ( 38 
)
Proposition 4. There exist a ′ 0 > 0 and b ′ > 0 such that:

∀Ψ = h1 ∧ h2 : ∆2E < a ′ 0 ⇒ |Ψ(x, y)| 2 |x -y| dxdy ≥ b ′ Rg . ( 39 
)
More precisely: For any 0 < λ let B λ j be B(zj, λRg) and

B λ := B λ 1 × B λ 2 ∪ B λ 2 ∪ B λ 1 .
Then there exist a λ > 0, k λ > 0 such that

∀Ψ = h1 ∧ h2 : ∆2E < a λ ⇒ (x,y)∈B λ |Ψ(x, y)| 2 |x -y| dxdy ≥ k λ Rg (40)
Remark 9. It is not possible to replace R -1 g by dΨ. To prove Proposition 4, we need to compare R12(Ψ) and Rg.

On the relation between R 12 (Ψ) and R g

Let us consider an almost minimizer for E U PT (2):

Ψ = h1 ∧ h2, E U PT (2) -E U PT (2) a0 ≪ 1, U big enough. ( 41 
)
We suppose that D(|h1| 2 , |h2| 2 ) = dΨ and write φj the closest function to hj in P. We write δj = hj -φj. By Propositions 2 and 3 we have:

dΨ = 1 R 12 ε0 and δ1 2 H 1 + δ2 2 H 1
a0.

We will here compare R12 and Rg (defined as |z1 -z2| where zj is the center of φj).

As φj(• -zj) is radial and smooth then:

0 < inf x∈R 3 (|φj| 2 * 1 |•| )(x) (|φj| 2 * 1 |•| 2 )(x) 1/2 ≤ sup x∈R 3 (|φj| 2 * 1 |•| )(x) (|φj | 2 * 1 |•| 2 )(x) 1/2 < +∞. ( 42 
)
By Newton's Theorem [START_REF] Lieb | Analysis[END_REF], writing |φ0| 2 = |φj (• -zj)| 2 we have:

∀ x ∈ R 3 , (|φ0| 2 * 1 |•| )(x) = 1 |x| |y|≤|x| |φ0(y)|dy + |y|≥|x| |φ0(y)| 2 |y| dy ≤ 1 |x| . ( 43 
)
As a consequence, for sufficiently small a0:

|D(Re(δ * 1 φ1), |δ2| 2 )| δ1 L 2 D(|φ1| 2 , |δ2| 2 ), |D(Re(δ * 1 φ1), |φ2| 2 )| δ 1 L 2 Rg , (44) 
where we used Cauchy-Schwarz inequality:

x |δ1(x) * φ1(x)| dx |x-y| ≤ δ1 L 2 { x |φ1(x)| 2 dx |x-y| 2 } 1/2
. Thus there holds the following. Proposition 5. Let Ψ be as in (41). We write δ = j δj : there exists κ > 0 such that for sufficiently small a0 > 0:

dΨ ≥ (1 -κ √ a0) D(|φ1| 2 , |φ2| 2 ) + D(|δ1| 2 , |φ2| 2 ) + D(|φ1| 2 , |δ2| 2 ) + D(|δ1| 2 , |δ2| 2 ), |h 1 (x)| 2 |h 2 (y)| 2 |x-y| 2 dxdy 1 R 2 g + δ L 2 δ H 1 Rg + δ 2 L 2 δ H 1 , (45) 
Remark 10. In particular R12 = O(Rg). Moreover for sufficiently small a0, we have

∆1E := j EPT(hj) -EPT(1) = Θ( δ 2 H 1 ).
With the help of Proposition 3, we get the following estimates:

|h1(x)| 2 |h2(y)| 2 |x -y| 2 dxdy a 3 0 . ( 46 
)
3.3 On the decomposition of ψ 1 ∧ ψ 2

In our problem, we consider a couple (a0, b) described in Lemma 3, and we choose (α, Λ) such that U0 ≥ (2 + 1)Uc.

We consider Ψ = ψ1 ∧ ψ2 of Lemma 1. We have: E U PT (ψ1 ∧ ψ2) α and dΨ α. This result and the estimate of Remark 10 lead to the following Lemma. Lemma 2. For (k, k ′ ) = (1, 2) or (2, 1) and ψ k (x) = c -3/2 ψ k (x/c), we have

|ψ k ′ | 2 * 1 |•| × ψ k -(ψ * k ′ ψ k ) * 1 |•| × ψ k ′ 2 L 2 1 c 2 |h1(x)| 2 |h2(y)| 2 |x -y| 2 dxdy α 3 c 2 .
Proof: Indeed the quantity in the l.h.s. of (2) corresponds to the squared L 2 -norm of (ρΨ

* 1 |•| ψ k -R[γΨ]ψ k )
where Ψ := ψ1 ∧ ψ2. Then we decompose ψ k with respect to an orthonormal family (h1, h2) with h1 ∧ h2 = Ψ and D(|h1| 2 , |h2| 2 ) = dΨ.

We recall that ψ1 and ψ2 are eigenvectors of the mean-field operator with eigenvalues µ1 and µ2. In the case µ1 = µ2 we cannot choose ψ1 = h1 and ψ2 = h2.

From the estimation of the µj 's (31) we may ask whether the quantity

FE (ψ k ) := EPT(ψ k ) -D(|ψ k | 2 , |ψ k ′ | 2 ) ( 47 
)
is negative and away from 0 or not. As

h k = φ k + δ k with φ k ∈ P and δ k H 1 = O( √ ∆2E
) a simple computation shows that:

∀(a, b) ∈ C 2 ∩ S 3 : FE (ah1 + bh2) = 3 2 EPT(1) + O((∆2E ) 1/4 ). (48) 
4 Technical tools

The Cauchy expansion

In this part we use the functions s•, E(•) and E• and numbers ε λ , a[Λ] defined in Notation 4. We recall Ineq. [START_REF] Lieb | Analysis[END_REF]. The results stated here follow from [START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF][START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF]. Let γ be the operator defined by:

γ = χ (-∞,0) (D + α(v ρ -R Q )) -P 0 -, ( Q, ρ) ∈ Q1 × C.
For instance we can take γ of (27). Provided that Q Kin, ρ C are small enough, by Lemma 3 we have

|D + α(v ρ -R Q )| ≥ |D| 1 -α( ρQ C + Q Ex) = |D|(1 + o(1)).
As a result we can expand g in power of α, this is the Cauchy expansion [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF]:

         γ = +∞ j=1 α j Qj Q, ρ , Qj Q, ρ := -1 2π ∞ -∞ dω D + iω R Q -v[ ρ] 1 D + iω j . (49) We can further expand each Qj into j j=0 Q k,j-k Q, ρ Q where each Q k,j-k is poly- nomial in R Q (resp. v[ρ Q ]) of degree k (resp. j -k).
The respective densities of Q k,j-k and Qj are written ρ k,j-k and ρj.

Convergence of the series (49) In [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF][START_REF] Ph | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF], Hainzl et al. proved that this series is well-defined and in [START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF][START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF] the functions

(Q k,j-k , ρ k,j-k )[•, •] are studied in several norms.
It is possible to adapt the proofs to show that these functions are multilinear continuous in Q1 × C or more generally in the banach spaces Xw = Qw × Cw, defined by the following norms:

||Q|| 2 Qw := (Ep + Eq)w(p -q)| Q(p, q)| 2 dpdq and ρ 2 Cw := w(k) |k| 2 | ρ(k)| 2 dk, (50) 
where √ w : R 3 → [1, +∞) is a weight function satisfying some sub-additive assumptions.

Furthermore the growth of the norms

(Q k,j-k , ρ k,j-k ) B(Xw )
is also polynomial: it follows that there exists some radius A(α, Λ, w) such that

( Q, ρ) ∈ BX w (0, A) → γ := +∞ j=1 α j Qj Q, ρ , ρ γ ∈ BX g (0, A),
is well-defined and contractant.

The main ingredients of the proof are the following inequalities:

P 0 ± v ρ P 0 ∓ 1 |D 0 | a[Λ] S 2 log(Λ) ρ C R Q 1 |∇| 1/2 S 2 Q Ex , v ρ 1 |D 0 | a[Λ] S 6 ρ C v ρ 1 |∇| 1/2 B ρ C (51) 
In the l.h.s. the first estimate follows from a simple computation in Fourier space [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF][START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF], and the second one is an application of the KSS inequality ( 14). In the r.h.s. the first is proved below (Lemma 3) and the last follows from an homogeneous Sobolev inequality (59). We will say no more about these results and refer the reader to the cited articles and to [START_REF] Sok | Modèle de champ moyen en électrodynamique quantique[END_REF].

On the minimizers: equation and density

The results of this part are proved in [START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF].

Let Q = γ +N be a minimizer for E 0 (M ) with M ∈ {1, 2}. It satisfies Eq. ( 26)-( 27) and rank N = M for α sufficiently small. We recall:

γ = χ (-∞,0) (DQ) -P 0 -. (52) 
In [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF][START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF][START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF], a fixed-point scheme is used to see γ as a fixed point of some function F (1) (with parameter N ). This scheme enables us to get estimates on γ and N . By the Cauchy expansion, Eq. ( 52) is rewritten as follows:

Id -αQ1,0[•] γ ′ = N + αQ0,1 ρ ′ γ + +∞ j=2 α j Qj γ ′ , ρ ′ γ .
In [START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF], it is proved that the linear operator Id-αQ1,0[•] is a continuous endomorphism for Qg and Sp (1 ≤ p ≤ 2) provided that α log(Λ) ≤ L0 is small enough. Its inverse T is written and it has a uniform bound for all those Banach spaces. This gives

γ = αT[Q1,0(N )] + αT[Q0,1(ρ ′ γ )] + +∞ j=2 α j T Qj[γ ′ , ρ ′ γ ] . (53) 
In [START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF], the density αρ Q0,1(ρ ′ γ ) is computed and we have:

αρ Q0,1(ρ ′ γ ) = -fΛ * ρ ′ γ ,
where fΛ ∈ L 1 with norm fλ L 1 L.

Remark 11. For the smooth cut-off, the same proof applies for | • | ℓ fΛ. For any fixed integer ℓ, there exists

K(ℓ) > 0 such that, if α ≤ K(ℓ) then | • | ℓ fΛ L 1 ≤ |x| 2(1+ℓ) (1 + |x| 2 )| fΛ(x)| 2 dx dx |x| 2 (1 + |x| 2 ) 1/2 , α. (54) 
The same results hold for

FΛ := F -1 fΛ 1 + fΛ = +∞ j=1 (-1) j+1 f * j Λ (55) provided that α ≤ K ′ (ℓ) with a smaller bound K ′ (ℓ) ≤ K(ℓ). We write τj[•] := ρ TQj[•] and τ k,j-k [•] := ρ TQ k,j-k [•]
. There holds:

ργ = -FΛ * n + (δ0 -FΛ) * ατ1,0[N ] + +∞ j=2 α j τj[γ ′ , ρ ′ γ ] , = -FΛ * n + (δ0 -FΛ) * ατ1,0[N ] + α 2 τ2[γ ′ , ρ ′ γ ] . (56) 
We have ργ ∈ L 1 with ργ = -FΛ(0) × M . The renormalisation constant Z3 is

Z3 := 1 -FΛ(0) = 1 1 + fΛ(0) ≈ 1 1 + 2 3π α log(Λ)
and

U0 := 1 FΛ(0) . ( 57 
)
We also recall [START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF] ∀

k, k ′ ∈ B R 3 (0, 2) : |FΛ(k) -FΛ(k ′ )| α|k -k ′ | (58) 
we will use below with k ′ = 0.

Some inequalities

-Let us recall some Sobolev inequalities in R 3 :

f L 6 ∇f L 2 , f L 4 |∇| 3/4 f L 2 , f L 3 |∇| 1/2 f L 2 (59) 
The last one gives v ρ

1 |∇| 1/2 B ρ C for ρ ∈ C.
-We also recall Kato's inequality and Hardy's inequality:

       R 3 |φ(x)| 2 |x| dx ≤ π 2 |∇|φ , φ , R 3 |φ(x)| 2 |x| 2 dx ≤ 4 (-∆)φ , φ . (60) 
-The following Lemma gives estimates about the operator RQ.

Lemma 3. Let Q(x, y) be an operator of finite exchange term and ρ of finite Coulomb energy, then:

           1 |∇| 1/2 RQ S 2 = Tr(R * Q 1 |∇| RQ) ≤ dy |y| 2 |y -e| 2 2 Tr(Q * RQ), |Q(x, y)| 2 |x -y| dxdy = Tr(Q * RQ) ≤ π 2(2π) 3 |u|| Q(u + k/2, u -k/2)| 2 dudk, vρ 1 |∇| 1/2 B ρ C .
In particular

(vρ -RQ)f L 2 ( ρ C + Q Ex) |∇| 1/2 f L 2 .
Proof: The proof for

1 |∇| 1/2 RQ S 2
is just an application of the Cauchy-Schwarz inequality once we remark that |∇| -1 is the convolution by Const/| • | 2 [START_REF] Lieb | Analysis[END_REF]. For the last inequality we write s = x+y 2 and t = x -y and A(s, t) := Q(s + t/2, s -t/2) a.e. By Kato's inequality:

|Q(x, y)| 2 |x -y| dxdy = |A(s, t)| 2 |t| dsdt ≤ π 2 ds |∇|A(s, •) , A(s, •) ≤ π 2 |u|| Q(u + k/2, u -k/2)|dudk.
Those inequalities are true at least for Q(x, y) in the Schwartz class S(R 3 × R 3 ), we conclude by density.

-To end this part we give estimates about D.

We have

Id -spsq = sp(sp -sq) = (sp -sq)sq and |Id -spsq| ≤ |sp -sq| = D0(p) E(p) - D0(p) E(q) + D0(p) -D0(q) E(q) ≤ 2|p -q| max(E(p), E(q)) . (61) 
Notation 7. The symbol e will always stand for any unitary vector in R 3 . Remark 12. There holds (cf [START_REF] Lieb | Analysis[END_REF] for the expression of (a 2 -∆) -1 ):

1 |D0| (x -y) = 2 π +∞ 0 dω |D0| 2 + ω 2 (x -y) = 2 π +∞ 0 e -Eω |x-y| |x -y| dω = Cnst K 1 (|x-y|) |x-y|
where K1 is the modified Bessel function [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF].

5 Proof of Proposition 1

5.1 A priori estimates on a minimizer for E 0 (2)
This part is devoted to prove (63).

Let us say γ ′ = γ + N is a minimizer for E 0 (2) written as in ( 26)-( 27). First we prove (28). There holds a priori estimates [START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF]:

1 2 Tr -∆(1 -∆ Λ 2 ) |D0| (γ ′ ) 2 + α 2 ρ ′ γ 2 C ≤ E (γ ′ ) -2 + α 2 Tr(γ ′ R[γ ′ ]) ≤ απ 4 Tr(|∇|(γ ′ ) 2 )
where we have used

|D| -1 ≥ 1 2 -∆ 1- ∆ Λ 2 |D 0 |
. It follows that:

Tr -∆(1 -∆ Λ 2 ) |D0| (γ ′ ) 2 + α ρ ′ γ 2 C ≤ Kα.
As in [START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF], we can apply a fixed point scheme on (γ, ργ) with the help of the selfconsistent equation (in Q1 × C for instance). This gives:

γ Q 1 √ Lα ρ ′ γ C + α |∇| 1/2 γ ′ S 2 and ργ C L ρ ′ γ C + √ Lα |∇| 1/2 γ ′ S 2 .
Hence |Tr0(γ)| ≤ γ S 2 < 1 and Tr0(γ) = 0 as shown in [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF]. This proves

Tr(N ) = Tr0(N ) = Tr0(γ ′ ) -Tr0(γ) = 2.
Let (ψi) 1≤i≤2 be a basis of orthonormal eigenvectors of χ0,µ(D γ ′ ) with eigenvalues 0 < µ1 ≤ µ2 < 1. We write Nj := |ψj ψj| and |nj := ψj | 2 . From the equation satisfied by ψj

(D + α(v[ργ + n] -R[γ + N ]))ψj = µj ψj (62)
we get the following.

Lemma 4. Let γ ′ and (ψj)j be as above in the regime of Remark 5. Then there holds:

   1 (2π) 3 |p| 2 Λ -2 (2 + |p| 2 Λ 2 ) + (1 + |p| 2 Λ 2 ) | ψj (p)| 2 dp ≤ Dψj 2 L 2 -1 and Dψj 2 L 2 -1 ≤ α ργ C nj C + α γ S 2 R[Nj ] S 2 + α B γ ′ 1 |∇| 1/2 B |∇| 1/2 ψj L 2 2 .
As a consequence we also have:

Tr(-∆(1 -∆ Λ 2 + ∆ 2 Λ 4 )N ) c -2 . ( 63 
)
It suffices to use the inequalities in the r.h.s. of (51) in Eq. ( 62).

Remark 13. Compared to the case of E 0 (1) there is an additional term (vn -RN )ψj that has been neglected in -2αRe BN ψj , ψj : this term is non-positive.

Notation 8. From now on, we write

v jk = (ψ * j ψ k ) * 1 |•| and vj := vjj and define a jk := v k ψj -v kj ψ k L 2 .

Proof of Lemma 1: estimate of E 0 (1)

We compute the energy of a particular test function Q ′ 0 = Q0 + N0, defined as follows [START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF]. First, we take φCP = φ1 a minimizer for EPT(1) in L 2 (R 3 , C) (e.g. real-valued and positive centered in 0, cf [START_REF] Lieb | Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation[END_REF]). Then let ψ1 be:

ψ1 := t ( φ1 0 0 0 ) ∈ L 2 (R 3 , C 4 ). (64) 
Then, we define ψ 1 c := c -3/2 ψ1(c -1 (•)) where c -1 := α 2 FΛ(0) and

N 0 := |ψ 1 c ψ 1 c |, Q0 + P 0 -= Π0 := χ-∞,0 D + α (ρQ 0 + n0) * 1 |•| -(RQ 0 + R N 0 ) , n0 := |ψ 1 c | 2 , ψ0 := 1 1-Π 0 ψ 1 c 2 L 2 (ψ 1 c -Π0ψ 1 c
).

We have used the fixed point scheme of Section 4.1 to define Q0. We also write

N0 := |ψ0 ψ0|, Q ′ 0 := Q0 + N0, B0 := (ρQ 0 + n0) * 1 |•| -α(RQ 0 + R N 0 ), DQ 0 := D + αB0.
The test function Q ′ 0 is the difference between the orthogonal projections Π0 + N0 and P 0 -. Following the same method as in [START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF], the following estimates hold.

Q0 Qw 2 α n0 Cw 2 c -1/2 Q0 Qw 1 c -1 ρQ 0 Cw 2 Lc -1/2 Q0 S 2 αc -1/2 R N 0 S 2 c -1 (65) 
where w1(p -q) = E(p -q) and w2(p -q) = E(p -q) 2 . As shown previously in [START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF][START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF] there holds

EBDF(Q ′ 0 ) = Dψ0 , ψ0 -α 2 Tr0(B[Q0]Q0) -1 2 (Tr(|D + αB0|Q 2 0 ) -Tr(|D|Q 2 0 )) + α 2 D(ρ[Q0] + n0, ρ[Q0] + n0) -Tr(Q ′ 0 R[Q ′ 0 ]) (66) 
Estimate of the density ρ Q0 By Section 4.2, we write

ρ Q ′ 0 = (δ0 -FΛ) * (n0 + t[N 0] + α 2 τ2), (67) 
= (δ0 -FΛ) * n0 + τrem. (68) 
We have

(δ0 -FΛ) * n0 * 1 |•| L ∞ ≤ π 2 (1 + FΛ L 1 ) |∇|ψ 1 c , ψ 1 c ∇ψ 1 c L 2 = O(c -1 ).
We use Ineq. (51) to estimate the norm τrem C of the remainder τrem.

The traces in (66) By Lemma 3, we can estimate D + αB0 -D and get the following [START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF].

Lemma 5. There holds:

|δTr| := Tr |D + αB[Q ′ 0 ]|γ 2 0 -|D|Q 2 0 { Q0 2 B + α( Q0 Kin + τrem C )} Q0 2 Kin + α{ τrem C + ∇ψ 1 c L 2 } Q0 2 S 2 αc -3 + αc -1 × α 2 c -1 αc -3 . ( 69 
)
Dψ 0 , ψ 0 in (66) There holds

(1 -Π0)ψ 1 c = -Q0ψ 1 c + P 0 + ψ 1 c . Then Dψ 1 c , ψ 1 c = DQ0ψ 1 c , Q0ψ 1 c -2Re P 0 + Q0ψ 1 c , P 0 + ψ 1 c + |D|P 0 + ψ 1 c , ψ 1 c |D|P 0 + ψ 1 c , ψ 1 c = 1 + 1 2 ∇ψ 1 c 2 L 2 + O(c -4 ).
Then thanks to Lemma 3:

|D| 1/2 Q0ψ 1 c L 2 ≤ |D| 1/2 Q0 1 |∇| 1/2 B |∇| 1/2 ψ 1 c L 2 and |D| 1/2 Q0ψ 1 c L 2 αc -1 . As Q0 = αQ1[Q ′ 0 , ρ ′ Q 0 ] + α 2 Q2[Q ′ 0 , ρ ′ Q 0 ] and that Q1 = Q +- 1 + Q -+ 1 : P 0 + Q0ψ 1 c = αQ +- 1 P 0 -ψ 1 c + α 2 P 0 + Q2ψ 1 c .
Therefore:

α 2 |D| Q2ψ 1 c , P 0 + ψ 1 c ≤ α 2 |∇| 1/2 ψ 1 c 2 L 2 |D| |∇| 1/2 Q2 1 |∇| 1/2 B α 2 c -1 × c -1 = O(α 2 c -2 ) α |D|Q +- 1 P 0 -ψ 1 c , P 0 + ψ 1 c ≤ α |D| 1/2 Q +- 1 1 |∇| 1/2 B |∇| 1/2 P 0 -ψ 1 c L 2 |D| 1/2 ψ 1 c L 2 αc -1/2 × c -3/2 = O(αc -2 ).
Hence:

D(1 -Π0)ψ 1 c , (1 -Π0)ψ 1 c /(1 -Π0ψ 1 c 2 L 2 ) = 1 + 1 2 ∇ψ 1 c 2 L 2 + O(αc -2 ). ( 70 
)
The potential energy in (66) By the same methods we prove:

α 2 2D(ρ[Q0], n0) -D(ρ[Q0], n0) -Re(2Tr(Q0R[N0]) -Tr(Q0R[N 0])) = -α 2 D( FΛ * n0, n0) + O(α 2 c -3/2 ). (71) 
For instance by Cauchy-Schwarz inequality followed by Hardy inequality:

D ρ[Q0], (P 0 + ψ 1 c ) * (Q0ψ 1 c ) ≤ ρ[Q0] C × 4 1/4 ∇ψ 1 c 1/2 L 2 Q0ψ L 2 = O(c -3 ).
By Ineq. (58), there holds:

- α 2 D( FΛ * n0, n0) = - 1 2c D(n0, n0) + O(α 2 c -2 + c -1 n0 2 L 2 ) = O(α 2 c -2 ); indeed: n0 L 2 = ψ 1 c 2 L 4 |∇| 3/4 ψ 1 c 2 L 2 .
As a consequence:

E 0 BDF (1) ≤ EBDF(Q0 + N0) = 1 + EPT(φ1) 2c 2 + O(αc -2 ). ( 72 
)
We have proved the inequality the ≤ part. For the ≥ part, it suffices to take a real minimizer and with the same estimates as above and [START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF] we prove similar estimates. That there exists a minimizer for E 0 (1) follows from Theorem 1, using the same method as in [START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF]. We have proved E 0 (1) < 1, then by Lieb's variational principle we get that for any 0 < q < 1, E 0 (q) > qE 0 (1), hence the binding inequalities holds for 0 < q < 1. For q ∈ [0, 1] c , binding inequalities hold for sufficiently small α. We refer to [START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF] for more details.

Similar estimates apply for E 0 (2), in particular we have

E 0 (2) ≤ 2E 0 (1) ≤ 2 + E PT (φ 1 ) 2c 2
+ O(αc -2 ).

Study of a minimizer γ

′ for E 0 (2) Bootstrap argument We write x 2 := Tr(-∆(1 -∆ Λ 2 + ∆ 2 Λ 4 )N )
. By Lemma 4, we have x 2 c -2 . This fact enables us to use the method of [START_REF] Esteban | Nonrelativistic limit of the Dirac-Fock equations[END_REF][START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF].

We scale ψj by c: ψj (x) = c 3/2 ψj (cx) and scale γ accordingly: γ(x, y) = c 3 γ(cx, cy). Then writing LA := (1 -∆/A 2 ), the wave function ψj satisfies:

(c 2 β -icα • ∇)ψj + αcL -1 cΛ (v[ρ[γ] + n] -R[g + N ])ψj = c 2 µj L -1 cΛ ψj . (73) 
Splitting ψj between upper spinor ϕj and lower spinor χj both in L 2 (R 3 , C 2 ), this gives:

χ1 L 2 + χ2 L 2 c -1 .
Going back to ψj one gets Dψj , ψj = 1 + O(c -2 ) and it shows that for j = 1, 2: 0 < (1 -µj )c 2 ≤ K thanks to the equation (28). As

0 ≤ c 2 (1 -L -1 cΛ ) = -c 2 ∆ c 2 Λ 2 -∆ ≤ -∆ Λ 2 , then (74) 
c 2 (µj LcΛ -1)ϕj = c 2 (µj -1)ϕj + c 2 ∆ c 2 Λ 2 -∆ ϕj = c 2 (µj -1)ϕj + O L 2 c Λ thanks to Lemma 1 (O L 2 means in L 2 -norm).
We can get another estimate: in the spirit of [START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF][START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF] we can use bootstrap argument with the norms

||Q|| 2 Qw = E(p -q) 2k (E(p + q))| Q(p, q)| 2 dpdq and ρ 2 Cw = E(k) 2 | ρ(k)| 2 |k| 2 dk,
to get the following statement: Lemma 6. For any fixed k ∈ N * , there exists α (k) > 0 such that for α ≤ α (k) , ψj with j = 0, 1, 2 is in H k/2 with norms O(1) and

||γ0||Q w , ||γ||Q w , ρ[γ] Cw , ρ[γ0] Cw 1.
It is supposed α log(Λ) ≤ L0. There also holds:

∆ψ L 2 min(c -1 (c -1 + Λ -1 ), c -3/2 ), χ L 2 c -1 and ∇χ L 2 c -1 ,
The estimation of EBDF(γ ′ ) is proven with the help of the estimate ∆ψ L 2 c -3/2 as shown in the (technical) proof of Lemma 6 in Appendix A.2. Remark 14. By Estimate (63) we can prove that n, γ, ργ have estimates of the same kind of those stated in (65) [START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF][START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF]: we have

n C c -1/2 , ργ C Lc -1/2 , RN j S 2 c -1 , |D| 1/2 γ S 2 c -1 , γ S 2 αc -1/2 .
(75) There also holds nj L 2 c -3/2 .

By Lemma 6, we get: ργ L 2 Lc -3/2 . Following [START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF] we can prove ργ ∈ L 1 and ργ L 1 L.

Estimate on c 2 (1µ j ) Using estimates on ∇ϕj and ∇χj (Lemma 6) together with Ineq. (58), we get the following estimate from (28):

µj = 1 + ∇ϕj 2 L 2 2c 2 - 1 c 2 D(nj , n) + O(αc -2 ). (76) 
With ( 47)-( 48), we get:

(1 -µj)c 2 ≤ -3 2 EPT(1) + O(α 1/4 ) 1. ( 77 
)
6 Localisation of minimizers in Direct space

6.1 Decay estimates on the ψ j 's

It is known ψ1 ∧ ψ2 can be split into two almost minimizers of Choquard-Pekar energy h1 and h2: h1 ∧ h2 = ψ1 ∧ ψ2. For j ∈ {1, 2}, we write φj ∈ P the closest Pekar minimizer to hj and its center is written zj. We write

Rg := |z1 -z2|. (78) 
By Section 3, we have:

M 2 (ψ1 ∧ ψ2) := |ψ1 ∧ ψ2(x, y)| 2 |x -y| dxdy 1 Rg . ( 79 
)
Our aim is to show decay estimates far away from z1 and z2. Up to translations, we assume the mean zm = z 1 +z 2 2 is 0.

Localisation functions Let ξ1 ≥ 0 be some radial Schwartz function in S(R 3 )

satisfying |x| ≤ 1 ⇒ ξ1(x) = 1 and |x| ≥ 2 ⇒ ξ1(x) = 0. We define ξA(x) := ξ1( x A ) for any A > 0 and θA := 1 -ξ 2 A . For any x ∈ R 3 we write d(x) := min{|x -z1|, |x -z2|}. ( 80 
)
Let H be the plane {x

: |x -z1| = |x -z2|} ; the function d(•) is differentiable in R 3 \ {z1, z2} ∪ H . For any A ≫ Rg and 0 < λ < 2 we define η λ Rg (x) := 1 -ξ 2 λRg (x -z1) -ξ 2 λRg (x -z2) 1/2 . ( 81 
)
We define λ0 > 0, defined by the formula

λ0Rg = C 0 L where C0(L, Rg) > 1 is chosen large. ( 82 
)
The function η λ Rg can be seen as the dilation of η λ

1 := 1 -ξ 2 λ (• -e1) -ξ 2 λ (• -e2) by Rg where ej := z j -zm Rg .
At last we define:

η (λ) cRg (x) := 1 -ξ 2 cλRg (x -cz1) -ξ 2 cλRg (x -cz2), (83) 
we use it in Section D.2.3.

Lemma 7. • For each λ0 ≤ λ < 2 -1 , there exists K λ such that:

∀ A > 0, d(x) 2 ξ 2 A (x)(η λ Rg (x)) 2 |D0| 1/2 ψ1(x) 2 + |D0| 1/2 ψ2(x) 2 dx ≤ K λ
(84) Moreover we can choose (K λ ) λ to be nonincreasing and K λ 0 is (uniformly) bounded in the regime α, L, Λ -1 small. • For any 2λ0 ≤ λ < 2 -1 the same holds for d

(2) A,λ := d(x) 2 ξAη (λ) cRg : d(x) 4 ξ 2 A (x)(η (λ) cRg ) 2 (x) |D0| 1/2 ψ1(x) 2 + |D0| 1/2 ψ2(x) 2 dx ≤ K ′ λ , (85) 
where

K ′ λ > K λ depends on λ, K λ , ξ1. • We can replace |D0| 1/2 ψj by ψj above.
Remark 15. This is a weak estimate due to the presence of

v k ψj -v kj ψ k .
This proposition is proved in Appendix C.1.

Localisation operators

We want to prove that minimizers are localised in space around the centers z1, z2 of the electrons. To this end we use localisation operators of [START_REF] Hainzl | Existence of atoms and molecules in the meanfield approximation of no-photon quantum electrodynamics[END_REF][START_REF] Lewin | On the binding of polarons in a mean-field quantum crystal[END_REF] with respect to the functions ξ cλRg and η

(λ)
cRg introduced in the previous Section (6.1). By Lemma 7 we know that the wave functions ψ1 and ψ2 are localized near z1 and z2. By scaling, it follows that ψ1 and ψ2 are localized near cz1 and cz2. We consider:

ξ (λ) 1 (x) := ξ cλRg (x -cz1) and ξ (λ) 2 (x) := ξ cλRg (x -cz2), X (λ) 1 := (ξ (λ) 1 ) ++ + (ξ (λ) 1 ) --and X (λ) 2 := (ξ (λ) 2 ) ++ + (ξ (λ) 2 ) --,
and localise γ ′ :

ξ (λ) 1 • [γ ′ ] := X (λ) 1 (γ ′ )X (λ) 1 , ξ (λ) 2 • [γ ′ ] = X (λ) 2 (γ ′ )X (λ) 2 .
We define the set

B λ := B(cz1, cλRg)×B(cz2, cλRg) ∪ B(cz2, cλRg)×B(cz2, cλRg) ⊂ R 3 ×R 3 . (86)
Our aim in this section is to prove: Proposition 6. If γ ′ is a minimizer of E 0 (2) in the regime α, L, Λ -1 small then:

E 0 BDF (γ ′ ) = E 0 BDF (ξ 3 -1 1 •[γ ′ ])+E 0 BDF (ξ 3 -1 2 •[γ ′ ])+ α 2 (x,y)∈B 3 -1 |ψ1 ∧ ψ2(x, y)| 2 |x -y| dxdy+O 1 c 2 Rg . ( 87 
) Moreover:        Tr0(ξ ( 1 3 ) j • [γ ′ ]) = 1 + εj, εj = o(1), j = 1, 2, Tr0(ξ ( 1 3 ) 1 • [γ ′ ]) + Tr0(ξ ( 1 3 ) 2 • [γ ′ ]) = 2 + O 1 c 2 Rg . ( 88 
)
Assuming this Proposition -proved in Subsection (6.5) -we can prove Theorem 2.

Proof of Theorem 2

By Proposition 4, for sufficiently small α, L, there holds:

α 2 (x,y)∈B 3 -1 |ψ1 ∧ ψ2(x, y)| 2 |x -y| dxdy ≥ L -1 c 2 KgRg ,
for some constant Kg > 1 independent of α, Λ in the regime of Remark 5. This gives:

EBDF(γ ′ ) ≥ E 0 BDF (1 + ε1) + E 0 BDF (1 + ε2) + L -1 Kgc 2 Rg + O 1 c 2 Rg .
We know that the function E 0 BDF (•) : R → R is uniformly Lipschitz with constants 1 and this function is concave on each interval [M, M + 1] where M ∈ Z [9, Corollary 3 mutatis mutandis]. Furthermore we may assume ε1 = -ε2 > 0 up to an error

O 1 c 2 Rg
. The case ε1, ε2 < 0 is easily excluded by concavity of

E 0 BDF in [0, 1] because E 0 BDF (0) = 0 and 2E 0 BDF (1) ≥ E 0 BDF (2).
Then:

E 0 BDF (1 + ε1) + E 0 BDF (1 -ε1) ≥ ε1E 0 BDF (2) + (1 -ε1)EBDF(1) + (1 -ε1)EBDF(1) ≥ ε1E 0 BDF (2) + (1 -ε1)(2E 0 BDF (1)) ≥ (1 -ε1 + ε1)E 0 BDF (2) = E 0 BDF (2).
Thus taking FΛ(0) = Θ(α log(Λ)) sufficiently small, the quantity L -1 is big enough to compensate the error term O 1 c 2 Rg . We get the desired contradiction:

E 0 BDF (2) = EBDF(γ ′ ) ≥ E 0 BDF (2) + 1 c 2 RgK ′ g > E 0 BDF (2) 
.

Localisation of the energy of the vacuum γ

Lemma 8. For λ0 ≤ λ < 2 -1 big enough ( e.g. λ = 1 12 , 1 6 , 1 3 ) there holds:

η (λ) cRg ργ C L cλRg and η (λ) cRg |D| 1/2 γ S 2 , η (λ) cRg |D0| 1/2 γ S 2 1 c λRg . (89) 
This part comes after lots of technicalities: we put together results of Lemma 7, Propositions 7, 8, 9, Remark 18 and the known estimates of Remark 14. We refer the reader to Remark 16 for explanation.

Here we assume that L is small enough in such a way that λ0Rg = O(L -1 ) is big enough. Lemma 8 gives that for all λ0 ≤ λ < 2 -1 :

η (λ) cRg ργ C ≤ ǫ1 cλRg + ǫ2 η (λ/2) cRg ργ C , ǫ1, ǫ2 = O(L). (90) 
We recall that λ0Rg := C 0 L with C0(L, Rg) > 1 to be chosen. Up to taking a bigger C0: C0 ≤ C0 < 6C0 we assume λ0 = 2 -J 0 , J0 ∈ N. Taking ℓ0 := c C 0 3L as unity of length, we define the sequences (um), (vm), (wm) by the formulae:

         u0 = v0 = w0 = η (λ 0 ) cRg ργ C , um := η (2 m λ 0 ) cRg ργ C , vm = 2 m/2 um, wm+1 := ǫ1 2 ℓ0 + ǫ2 √ 2wm (91) 
It is clear from (90) that vm+1 ≤ ǫ1 2 ℓ0 + ǫ2 √ 2vm. Thus we have:

∀m ∈ N * : vm ≤ wm = w∞ + (2 1/2 ǫ2) m (w0 -w∞)
where w∞ = ǫ1(2/ℓ0) 1/2 (1 -ǫ2 √ 2) -1/2 is well defined provided ǫ2 < 2 -1/2 . In particular:

∀m ∈ N * : um ≤ ǫ1 √ 2 √ 2 m ℓ0 + ( √ 2ǫ2) m √ 2 m η (λ 0 ) cRg ργ C - ǫ1 √ 2 √ ℓ0(1 -ǫ2 √ 2)
It remains to evaluate at m = J0: this gives η

(3 -1 )
cRg ργ C . Similarly the case m = J0 -1 corresponds to 6 -1 etc. By Hardy-Littlewood-Sobolev inequality [START_REF] Lieb | Analysis[END_REF]Theorem 4.3]:

η (λ 0 ) cRg ργ C ≤ |ργ | C ργ L 6/5 ργ 2 3 L 1 ργ 1 3 L 2 Lc -1/2 .
For η

(λ)
cRg |D| 1/2 γ S 2 it suffices to use this result, Proposition 8 with Lemma 7. Remark 16. The following holds.

1. Lemma 7 states that each ψj is localized around its center czj , 2. we give in Remark 14 estimates on the norms of γ,N, ργ and n. In particular the densities have the "correct behaviour" in L 1 , L 2 and Coulomb norms. We call these estimates: "non-localized estimates".

The other cited results are used of as follows. We remark that η

(λ) cRg = η (λ) cRg η ( λ 2 )
cRg . Proposition 8 gives an estimate of η

(λ) cRg |D| 1/2 γ S 2 and η (λ) cRg |D0| a γ S 2 (where a ∈ {2 -1 , a[Λ]}) in terms of η (λ) cRg v[ρ ′ γ ] L 2 , η (λ) cRg γ Ex, η (λ) 
cRg RN S 2 and η

(λ) cRg v[ρ ′ γ ] L 6 ,
and in terms of the non-localized estimates (with the "correct behaviour" with respect to cλRg, that is as in (89)). Below, we shorten: non. loc. est. w. the c. b. Proposition 9 gives an estimate of η

(λ) cRg ∇v[ργ] L 2 in terms of η (λ) cRg |D0| 1/2 γ S 2 and η (λ) cRg ργ C = ρ[η (λ) cRg γη ( λ 2 ) cRg ] C ,
and in terms of the non. loc. est. w. the c. b. Furthermore, it gives an estimate of η Thanks to Lemma 7, the term η

(λ) cRg RN Ex (resp. η (λ)
cRg n C ) is proved to be of order (c 2 λRg) -1 (resp. (cλRg) -1/2 ). Finally Proposition 7 together with Remark 18 gives an estimate of ρ[η

(λ) cRg γη ( λ 2 ) cRg ] C in terms of η ( λ 2 ) cRg P 0 ± γ S 2 , η (λ) 
cRg P 0 ± γ S 2 , and in terms of the non. loc. est. w. the c. b. The presence of P 0

± is harmless as we can check from the proofs.

Proof of Proposition 6

We consider each term of the BDF energy and write 1 = (η

( 1 3 ) cRg ) 2 + (ξ ( 1 3 ) 1 
) 2 + (ξ

( 1 3 ) 
2 ) 2 . We use once again Lemma 7, Proposition 8 and Remark 14. We treat one after the other the case of N and γ. We write

(ξ (λ) ) 2 := (ξ (λ) 1 ) 2 + (ξ (λ) 2 ) 2 .
The function ζ refers to ξ (λ) or η (λ) cRg .

Kinetic energy

Kinetic energy for γ :

Tr (η ( 1 3 ) cRg )|D| 1/2 γ 2 |D| 1/2 ≤ (η ( 1 3 ) cRg )|D| 1/2 γ 2 S 2 1 c 2 Rg Tr ζ ±∓ |D| 1/2 γ 2 |D| 1/2 ≤ ζ ±∓ B |D| 1/2 γ 2 S 2 1 c 3 λRg 20
Kinetic energy for N : We recall the following equalities: Dψj = µj -αBψj and

(vn -RN )ψ1 = v2ψ1 -v21ψ2 = O L 2 (α 3/2 c -1
) . Thus, we have:

η ( 1 3 ) cRg Dψj , η ( 1 3 
)

cRg ψj = η ( 1 3 ) cRg (µj -αB)ψj , η ( 1 3 
)

cRg ψj | η ( 1 3 ) cRg Dψj , η ( 1 3 
)

cRg ψj | ≤ (1 + α v[ρ ′ γ ] L ∞ ) η ( 1 3 
)

cRg ψj 2 L 2 + α η ( 1 3 
)

cRg ψj L 2 ( (η ( 1 3 ) cRg )Rγ ψj L 2 +α v kj L ∞ η ( 1 3 
)

cRg ψ k L 2 ) 1 R 4 g + α γ Ex cR 3 g = o(c -2 R -1 g ).
We write :

(ξ ( 1 3 
)

) 2 = (P 0 + + P 0 -)(ξ ( 1 3 
)

)(P 0 + + P 0 -)(ξ ( 1 3 
)

)(P 0 + + P 0 -), we have to show that ξ ε 1 ε 2 ξ ε 2 ε 3 Dψj , ψj is O(c -2 R -1
g ) whenever ε1 = ε2 or ε2 = ε3. We recall that P 0 -ψj L 2 and α Bψj L 2 are O(c -1 ). The operator (ξ ( 13

) ) +-(ξ ( 1 3 ) ) -+ is O(c -2 R -2 g ) in • B -norm.
Except for the corresponding term, we have ε1 = -or ε3 = -, leading to an upper bound:

O (ξ ( 1 3 ) ) +- B ( P 0 -ψj L 2 + α Bψj L 2 ) = O 1 c 2 Rg .
Similar estimates lead to (88). The estimates ε1, ε2 = o(1) follow from the fact that

n = |ψ1| 2 + |ψ2| 2 = |h1| 2 + |h2| 2 , where the hj 's satisfy h1 ∧ h2 = ψ1 ∧ ψ2 = Ψ and D |h1| 2 , |h2| 2 = dΨ.
In fact, this o( 1) is an O(α + e -KRg ).

Direct term

On the outside: η (λ) cRg . By Lemma 7 and Kato's inequality (Appendix A):

(η (λ) cRg ) 2 n C 1 c 1/2 λ 2 R 2 g .
On the inside: ξ ( 1 3 ) . We remark the following:

(ξ ( 1 3 ) ) 2 = (ξ ( 1 3 ) ) 2 (η ( 1 12 ) cRg ) 2 + (ξ ( 1 12 
) ) 2 = (η

( 1 12 ) cRg ) 2 -(η ( 1 12 ) cRg ) 2 (η ( 1 3 ) cRg ) 2 + (ξ ( 1 12 
) ) 2 (ξ ( 1 3 
) ) 2 = (η

( 1 12 ) cRg ) 2 -(η ( 1 3 ) cRg ) 2 + (ξ ( 1 12 
) ) 2 .

(92) Thus:

D (ξ ( 1 3 
) ) 2 ργ, (η

( 1 3 ) cRg ) 2 ρ ′ γ ≤ (η ( 1 3 ) cRg ) 2 ργ C ( (η ( 1 3 ) cRg ) 2 ργ C + (η ( 1 12 ) cRg ) 2 ρ ′ γ C ) +|D((ξ ( 1 12 
) ) 2 ργ, (η

( 1 3 ) cRg ) 2 ρ ′ γ )| ργ L 1 ρ ′ γ L 1 cRg + o L cRg .
We treat D (ξ

( 1 3 ) 1
) 2 ργ, (ξ

( 1 3 ) 1 ) 2 ρ ′ γ in a similar way: it is O L cRg .
We have proved so far:

D(ρ ′ γ , ρ ′ γ ) = D((ξ ( 1 3 ) 1 ) 2 ρ ′ γ , (ξ ( 1 3 ) 1 ) 2 ρ ′ γ ) + D((ξ ( 1 3 ) 2 ) 2 ρ ′ γ , (ξ ( 1 3 ) 2 ) 2 ρ ′ γ )
+2D((ξ

( 1 3 ) 1 ) 2 n, (ξ ( 1 3 ) 2 ) 2 n) + O L cRg .
In appendix D we prove the following Lemma.

Lemma 9. For j = 1, 2, we have:

D (ξ ( 1 3 ) 1 ) 2 ρ ′ γ , (ξ ( 1 3 ) 1 ) 2 ρ ′ γ = D ρ ξ ( 1 3 ) j • γ ′ , ρ ξ ( 1 3 ) j • [γ ′ ] + O L cRg .

Exchange term

By Lemma 7 and Kato's inequality (60):

Tr (η (λ) cRg ) 2 N RN j η (λ) cRg ψj 2 L 2 Tr |∇|N 1 c(λRg) 2 = o α λ 2 cRg .
With the same trick used before, we have:

|γ ′ (x, y)| 2 |x -y| dxdy = ((η ( 1 3 ) cRg (x)) 2 +(ξ 1 3 (x)) 2 ) |γ ′ (x, y)| 2 |x -y| ((η ( 1 3 ) cRg (y)) 2 +(ξ 1 3 (y)) 2 )dxdy.
We use Kato's inequality as usual to get:

η (λ) cRg γ ′ Ex |D0| 1/2 η (λ) cRg γ ′ S 2 ≤ [|D0| 1/2 , η (λ) cRg ] 1 |D 0 | 1/2 B |D0| 1/2 γ ′ S 2 + η (λ) cRg |D0| 1/2 γ ′ S 2 , 1 c λRg .
Using trick (92), we get

|γ ′ (x, y)| 2 |x -y| dxdy = ξ 1 3 1 γ ′ 2 Ex + ξ 1 3 2 γ ′ 2 Ex + 2 (ξ 1 3 1 (x)) 2 |γ ′ (x, y)| 2 |x -y| (ξ 1 3 2 (y)) 2 dxdy +O γ 2 S 2 cRg + Tr (η ( 1 3 ) cRg ) 2 N RN + η ( 1 12 
)

cRg γ ′ 2 Ex .
Now let us show that for j = 1, 2:

ξ 1 3 j γ ′ 2 Ex = ξ 1 3 j • [γ ′ ] 2 Ex + O 1 (cRg) 2 . ( 93 
)
It suffices to use Kato's inequality and Eq. ( 94), we have:

|D0| 1/2 ξ +-Q S 2 ≤ 1 2π +∞ -∞ dω |D0| 1/2 D0 + iω α • ∇ξ 1 D0 + iω Q S 2 ∇(ξ cλRg ) L ∞ Q S 2 +∞ -∞ dω E(ω) 3/2 Q S 2 cλRg .

A Estimates

A.1 [V, P 0 -] and proof of Proposition 1

For any smooth complex valued function V , there holds [START_REF] Ph | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF]:

[V, P 0 -] = - i 2π +∞ -∞ 1 D0 + iη α • ∇V dη D0 + iη . (94) 
Thanks to the KSS inequality as shown in [START_REF] Cancès | A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case[END_REF], provided smoothness of V (∇V ∈ L p ) then this operator is Sp(L 2 (R 3 , C 4 )) for p > 3.

The integral kernel of its Fourier transform [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF] is:

F [V, P 0 -]; p, q = i 2(2π) 3/2 1 E(p) + E(q) (αj ∂j V (p -q) -spαj ∂jV (p -q)sq). ( 95 
)
We prove Proposition 1 by duality, following [START_REF] Ph | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF]. Let V be in

S(R 3 ), Q ∈ S P 0 - 1 (we recall that 2a[Λ] = 1 + 1 log(Λ) ), then
Tr0(QV ) = Tr(P 0 + Q(P 0 + + P 0 -)V P 0 + ) + Tr(P 0 -Q(P 0 + + P 0 -)V P 0 -).

The operator

Q +-|D0| a[Λ] 1 |D 0 | a[Λ] [P 0 -, V ] is in S1: indeed thanks to (95) we have | V (p -q)| 2 |p -q| 2 dpdq E(p) 1+ 1 log(Λ) (E(p) + E(q)) log(Λ) ∇V 2 L 2 showing 1 |D 0 | a[Λ] [P 0 -, V ] S 2 log(Λ) ∇V L 2 .
This also treats the case

Q -+ V +-∈ S1. Then we have Q ++ V ++ = Q ++ |D0| a[Λ] 1 |D 0 | a[Λ] V ++ ∈ S1. Indeed |D0| a[Λ] Q ++ |D0| a[Λ] ∈ S1 and 1 |D 0 | a[Λ] V ++ ∈ S6 with norm O((log(Λ)) 1/6 ∇V L 2 ). Then 1 |D 0 | a[Λ] V ++ 1 |D 0 | a[Λ] ∈ S6 with norm O( ∇V L 2 ). So: Tr(Q ++ V ++ ) = Tr |D0| a[Λ] |D0| a[Λ] Q ++ |D0| a[Λ] |D0| a[Λ] V ++ = Tr {|D0| a[Λ] Q ++ |D0| a[Λ] }{ 1 |D 0 | a[Λ] }V ++ 1 |D 0 | a[Λ] = O |D0| a[Λ] Q ++ |D0| a[Λ]
S 1 ∇V L 2 . The same holds for Q --V --. This ends the proof. Remark 17. In Appendix D we do analogous estimates but with an additional localisation operator.

We adapt [2, Lemma 5]:

Lemma 10. Let p be in (3, +∞] and V a smooth function with ∇V ∈ L p . Then for any 0 < a < 1:

[|D0| a , V ] 1 |D 0 | a ∈ Sp. (96) 
To prove it we use [17, p. 87]

∀ x > 0, 0 < a < 1 : x a = sin(aπ) π +∞ 0 ds s 1-a x x + s . (97) 
A.2 Proof of Lemma 6

Proof: Let us explain the bootstrap argument.

-We show that Tr((-∆) a+1 N ) 1. As a consequence:

|∇| a nj L 2 ≤ a ℓ=0 K(ℓ, a) |∇| ℓ F -1 (| ψj |) L 4 |∇| a-ℓ F -1 (| ψj )| L 4 a ℓ=0 K(ℓ, a) |∇| ℓ+3/4 F -1 (| ψj |) L 2 |∇| a-ℓ+3/4 F -1 (| ψj |) L 2 K(a).
-As shown in [START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF], (γ ′ , ρ ′ γ ) is the fixed point of some function F (1) in a ball of Xa:

Xa = {(Q, ρ) ∈ S2×S ′ : E(p-q) 2a E(p+q)| Q(p, q)| 2 < +∞ and E(k) a |k| 2 | ρ(k)| 2 < +∞}.
-We multiply by |D0| (a+3)/2 the equation D0ψj = L -1 Λ (µjψj -αB γ ′ ψj) and we show that Tr((-∆) a+2 N ) 1. We have to deal with [|D0| (a+3)/2 , v]ψj and [|D0| (a+3)/2 , R]ψj: it suffices to compute in Fourier space and to use Taylor's formula on the function

E(•) (a+3)/2 .
Proof of the estimates Here as Tr(-∆N ) 1, the fixed point method can be applied on Xa=1.

Indeed n L 2 |∇| 3/2 √ n L 2 1. We get that |p -q|E(p + q)| γ(p, q)| 2 dpdq 1.
Let us show the assumption on the H 2 -norm of ψj. There holds f (-i∇)Dψj = f (-i∇)(µj -αB[γ])ψj for any f ≥ 0. Taking the L 2 -norm we have to deal with

[f (-i∇), R γ ′ ] and [f (-i∇), v[ρ(γ ′ )]]. For f (-i∇) = |∇| 1/2 there holds [|∇| 1/2 , vρ]ψ 2 L 2 | ρ(p -q)| 2 |p -q| 2 dpdq |q| 2 E(q) 2 dqE(q) 2 |q|| ψ(q)| 2 [|∇| 1/2 , RQ]ψ 2 L 2 |p -q|| Q(p, q)| 2 dpdq |∇| 1/2 ψ 2 L 2 |∇| 1/2 D0ψ = µ |∇| 1/2 L Λ ψ -α |∇| 1/2 L Λ Bψ = O L 2 (1) a priori |∇| 1/2 Bψ = [|∇| 1/2 , B]ψ + B 1
|∇| 1/2 |∇|ψ and:

|∇|(1-∆)ψ1 , ψ1 -|∇|ψ1 , ψ1 αc -1 v2ψ1-v21ψ2 L 2 +c -3 +α 2 c -2 = O(c -3 +αc -1 a12).
We get Tr(|D0| 3 N ) 1 and by the fixed-point Theorem:

γ 2 Q = E(p -q) 2 E(p + q)| γ(p, q)| 2 dpdq 1.
Notation 9. The star in • * Q means that we replace E(p -q) 2 E(p + q) by |p -q| 2 |p + q|. Using the methods of [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF][START_REF] Sok | Existence of ground state of an electron in the BDF approximation[END_REF] we have:

                     γ * Q c -1/2 ρ ′ γ L 2 + α( γ ′ * Q ) + α( ρ ′ γ L 2 + γ ′ * Q ) +∞ k=1 √ k(αK( ρ ′ γ C + γ ′ Q 1 )) k , [∇, γ] S 2 α( ρ ′ γ L 2 + N * Q ) + α( ρ ′ γ L 2 + γ ′ * Q ) +∞ k=1 √ k(αK( ρ ′ γ C + γ ′ Q 1 )) k , ργ L 2 L n L 2 + c -1/2 γ ′ * Q + α( ρ ′ γ L 2 + γ ′ * Q ) +∞ k=1 √ k(αK( ρ ′ γ C + γ ′ Q 1 )) k .
Therefore

γ ′ * Q = O(c -2 ), [∇, γ] S 2 = O(αc -3/2 ) and ργ L 2 = O(Lc -3/2 +c -2 +c -1 ( √ αa12)).
For f (-i∇) = ∂ k with k = 1, 2, 3 we have:

∂ k RQψ = [∂ k , R[Q]]ψ + RQ∂ k ψ and ∂ k vψ = (∂ k v)ψ + v(∂ k ψ) [∂ k , RQ]ψ L 2 = R([∂ k , Q])ψ L 2 ≤ [∂ k , Q] S 2 ∇ψ L 2 and RQ∂ k ψ L 2 ≤ Q S 2 ∆ψ L 2 vρ(∂ k ψ) L 2 ≤ vρ L 6 ∂ k ψ L 3 ρ C |∇| 3/2 ψ L 2 ≤ ρ C ∇ψ L 2 ∆ψ L 2 (∂ k vρ)ψ 2 L 2 | ρ(k)| 2 |k| 2 dkdq |q| 2 (1 + |q| 2 ) [ ∇ψ 2 L 2 + ∆ψ 2 L 2 ] 3 k=1 ( ∂ k Dψ 2 L 2 ) -∇ψ 2 L 2 ≤ (µ 2 -1) ∇ψ 2 L 2 + 6αµ ∇ψ L 2 B[γ ′ ]ψ L 2 + α 2 ∇B[γ ′ ]ψ 2 L 2 Tr(∆ 2 (1 -∆ Λ 2 + ∆ 2 Λ 4 )N ) αa12c -1 + c -3 .
This gives ∆ψj 2

L 2
αc -2 and in particular:

c 2 (1 -L -1 cΛ )ψj L 2 = O √ αc Λ 2 .
As a consequence we have:

∇χj L 2 = iσ • ∇χj L 2 = O(c -1 ). (98) 
Thanks to those estimates, we get:

EBDF(γ + N ) = 2 + EPT(ψ1 ∧ ψ2) 2c 2 + O(α 2 c -3/2 + c -3 ). ( 99 
)
We recall that 1 -L -1 Λ = -∆ Λ 2 -∆ . Thanks to Section B there holds

D(n 1 , n 2 ) -D(ψ1 * ψ2, ψ1 * ψ2) c -1 and a12 α 3/2 c -1 .
From this point we get better estimate on ∆ψ 2 L 2 c -3 but this is still unsatisfactory. Let us be more precise about µ = (D + αB)ψ , ψ and χ:

(1 + µ1)χ1 = -iσ • ∇φ1 -µ∆ Λ 2 -∆ χ1 + α L Λ (vρ γ χ1 + (v2χ1 -v21χ2) -(Rγ ψ1) ↓ ) = 1 1+µ (-iσ • ∇φ1 + X (r) 1 ) = -iσ • ∇ 2 φ1 + O L 2 (c -2 /Λ + c -2 ) Dψ , ψ = D0ψ , ψ -∆ Λ 2 βψ , ψ + ∆ Λ 2 -iα • ∇ψ , ψ = 1 -2 χ 2 L 2 + 2Re -iσ • ∇ϕ , χ + O ∇ψ 2 L 2 Λ 2 + ∆ϕ L 2 ∇χ L 2 Λ 2 = 1 + 2 1+µ 1 -1 1+µ ∇ϕ 2 L 2 + Re 2 1+µ 1 -2 1+µ Re -iσ • ∇ϕ , X (r) + O 1+ ∆ϕ L 2 c 2 Λ 2 = 1 + 1 2 ∇ϕ 2 L 2 + O(c -4 + c -2 Λ -2 (1 + ∆ϕ L 2 )
). Then:

L -1 Λ ψ 2 L 2 = 1 + O(c -2 Λ -2 + ∆ψ 2 L 2 /Λ 4 ) ∇L -1 Λ ψ 2 L 2 = ∇ψ 2 L 2 + O( ∆ψ L 2 /(cΛ 2 ) + ∆ψ 2 L 2 /Λ 2 ) -2αµRe 1-∆ L Λ Bψ , ψ = -2αµ Bψ , ψ + O(α Bψ L 2 ∆ψ L 2 /Λ 2 ) -iα∇Bψ L 2 [∇, B]ψ L 2 + B∇ψ L 2 = O(c -3/2 + ∆ψ 1/2 L 2 c -1 + ∆ψ L 2 c -1/2
). and thus:

(1 -∆)ψ , (1 -∆)ψ = µ 2 1-∆ L 2 Λ ψ , ψ -2αµRe 1-∆ L Λ Bψ , ψ + D 0 L Λ Bψ 2 L 2 = 1 + 2(µ -1 -α Bψ , ψ ) + ∇ψ 2 L 2 +O(c -2 (c -2 + Λ -2 ) + ∆ψ L 2 c 2 Λ 2 + ∆ψ 2 L 2 (Λ -2 + α 2 c -1
)). From (62) and the expression of D0ψj , we have ∇ψj 2 L 2 = -2αRe Bψj , ψj . We conclude ∆ψ 2

L 2 c -2 (c -2 + Λ -2 ) and ∆ψ 2 L 2 min c -3 , c -2 (c -2 + Λ -2 .

B Proofs of Section 3

B.1 Proof of Proposition 3

Reductio ad absurdum.

We assume this is false and take a non-increasing sequence (aj) j≥0 tending to 0 such that there exists Ψj that does not satisfy (38) with b = aj: ∆2E < aj and ∆ 2 E d Ψ < aj. In particular (Ψj)j is a minimizing sequence for EPT [START_REF] Cancès | A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case[END_REF]. By geometrical methods [START_REF] Lewin | Geometric methods for nonlinear many-body quantum systems[END_REF] we see that Ψj can be decomposed in two pieces of mass one, each piece tending to a minimizer for EPT [START_REF] Bach | On the stability of the relativistic electron-positron field[END_REF]. Indeed it is clear that (Tr(-∆γΨ j ))j is bounded and that there is no vanishing for (ρΨ j ) j≥0 . If we follow a bubble [START_REF] Lewin | Derivation of Pekar's polarons from a microscopic of quantum crystals[END_REF] of ρΨ j (one of the biggest) let us show its mass is 1 at the limit. By scaling, for any 0 < λ < 1 we have EPT(λ) ≥ λ 3 EPT(1), where EPT(λ) is defined as the infimum of EPT over non-negative one-body density matrix whose trace is λ.

Up to following a bubble and extracting a subsequence there holds with Ψj = h1,j ∧ h2,j :

|h1,j ∧ h2,j h1,j ∧ h2,j | ⇀g G00 ⊕ G11 ⊕ G22, 2 j=0
Tr(Gjj ) = 1 and Tr(G00) < 1.

We recall that each Gjj is a density matrix in (L 2 ) ∧(j) . Following [12, part 5]:

Gjj = Tr(Gjj ) Gjj lim inf j→+∞ E U PT (Ψj) = E U PT (2) ≥ 2 j=0 (E U PT (Gjj ) + Tr(Gjj)E U PT (2 -j)) ≥ 2 j=0 Tr(Gjj )(E U PT ( Gjj ) + E U PT (2 -j)) ≥ E U PT (2).
As not all particles are lost (we follow a bubble) either G11 = 0 or G22 = 0. In the case G2,2 = 0, [START_REF] Frank | Stability and absence of binding for multi-polaron systems[END_REF] enables us to say E U PT ( G22) > EPT [START_REF] Cancès | A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case[END_REF]. So G22 = 0 and G11 = 0. Thanks to [START_REF] Lieb | Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation[END_REF] and Lieb's variational principle (we may assume G11 = Tr(G11)|φ φ|) there holds EPT(G11) ≥ (Tr(G11)) 3 EPT(1), then necessarily Tr(G11) = 1.

As a consequence there is exactly two bubbles in (ρΨ j )j, there exist a decomposition Ψj = h1,j ∧ h2,j and a sequence (z1,j; z2,j )j of (R 3 ) 2 such that (up to extraction) 1. h k,j , h ℓ,j = δ kℓ and |z1,j -z2,j|

→ j→∞ +∞, 2. h k,j (• -z k,j ) H 1 → j→∞ φj,∞ where φj,∞ ∈ P is radial.
Then it suffices to compute: E U PT (Ψj) with this decomposition:

E U PT (Ψj ) = E U PT (h1,j ) + E U PT (h2,j ) -D(|h1,j | 2 , |h2,j | 2 ) + U 2 |h1,j ∧ h2,j (x, y)| 2 dxdy |x -y| = E1 + E2 + U 2 W12 -D12 ≥ U 4 W12 + 2EPT(1)
. The last equality holds because we have U > 2Uc. Let us write ∆1E := EPT(h1,j ) + EPT(h2,j ) -2EPT(1).

Then:

-aj < ∆1E -D12 < aj and ∆1E ≥ κ 2 k=1 h k,j -φ k,j 2 H 1
where φ k,j ∈ P is the closest function to h k,j in H 1 (Proposition 2). We may assume that D12 = dΨ j because minimizing this quantity corresponds to minimizing ∆1E . In particular:

|∆1E -D12| < aj = o j→+∞ (D12) ⇒ ∆1E ∼ j→+∞ D12 ≫ aj.
Indeed, let us say that D12 > dΨ j , then (f k,j (• -z k ))j still converges to φj,∞, in particular (∆1E )j converges to 0. But if

(f ′ 1,j , f ′ 2,j )j is a decomposition with D ′ 12 = dΨ j , then ∆ ′ 1 E ≤ ∆1E and dist(f ′ k,j , P) → j→+∞ 0.
From now we will drop the subscript j for convenience and suppose D12 = dΨ j .

Notation 10. We introduce

h k = (h k -φ k ) + φ k = δ k -φ k in |h k | 2
and in h1 * h2. We use the convention

δ L 2 := δ1 L 2 + δ2 L 2 , δ H 1 := δ1 H 1 + δ2 H 1 .
We recall that an element of P has an exponential falloff with respect to its center. For some constant ε > 0, there holds:

|h k | 2 = |δ k | 2 + |φ k | 2 + 2Re(δ * k φ k ) h1 * h2 * = δ * 1 δ2 + φ * 1 φ2 + δ * 1 φ2 + φ * 1 δ2 h1 * h2 2 C = δ * 1 φ2 2 C + φ * 1 δ2 2 C + O ( δ1 L 2 δ2 L 2 )(R -1 g + δ L 2 (1 + ∇δ L 2 ) + e -εRg ) D12 = D(|φ1| 2 , |φ2| 2 ) + D(|δ1| 2 , |φ2| 2 ) + D(|φ1| 2 , |δ2| 2 ) +O δ L 2 Rg + δ1 L 2 δ2 L 2 ( δ L 2 (1 + ∇δ L 2 ) + e -εRg ) Thus: ajU -1 D12 -h1 * h2 2 C 1 Rg + O j→+∞ ( δ 3 L 2 )
and

1 Rg = O j→+∞ (ajU -1 + δ 3 L 2 ).
As j → +∞, thanks to the coercivity inequality (2) there holds

D12 ∼ ∆1E = Θ( δ1 2 H 1 + δ2 2 H 1 ) and 1 Rg = o j→+∞ (D12).
Studying more precisely M 2 (h1 ∧ h2) := |h1 ∧ h2(x, y)| 2 dxdy |x-y| :

M 2 (h1 ∧ h2) = M 2 (δ1 ∧ φ2) + M 2 (φ1 ∧ δ2) + O j→+∞ (R -1 g + δ 3 L 2 ) = o j→+∞ (D12) D12 = D(|δ1| 2 , |φ2| 2 ) + D(|φ1| 2 , |δ2| 2 ) + o j→+∞ (D12) δ1 2 H 1 + δ2 2 H 1 .
(100) We can easily exclude the case δ1, δ2 = 0 for then it is clear M 2 (φ1∧φ2) D(|φ1| 2 , |φ2| 2 ) thanks to φ1 , φ2 = 0. Say then that δ1 H 1 ≥ δ2 H 1 : δ1 = 0. The case δ2 = 0 and δ1 = 0 is an easy adaptation of what follows, we treat it later. As there holds

|φ2| 2 * 1 |•| (x) ≤ 1 |x-z 2 |
where z2 is the center of φ2, Estimate (100) is true only if there lies a mass of δ1 near z2: the quantity δ * 1 φ2 2 C must compensate D(|δ1| 2 , |φ2| 2 ). Eventually the same phenomena occurs for δ2 around z1 the center of φ1. Up to extraction:

δ k (• -z k ) δ k H 1 ⇀ H 1 ℓ k ,
and (ℓ1, ℓ2) = (0, 0). Indeed up to contraction there is convergence in L 2 loc and if ℓ k = 0 then for all r > 0 and (i1, i2) ∈ (1, 2), (2, 1)

lim sup j→+∞ |δi 1 (x)| 2 δi 1 2 H 1 |φi 2 | 2 * 1 | • | (x)dx ≤ 1 r +lim sup j→+∞ |x-z i 2 |≤r |δi 1 (x)| 2 δi 1 2 H 1 |φ2| 2 * 1 | • | (x)dx = 1 r ,
this would contradict (100). Then as we have:

lim j→+∞ M 2 δ1 δ1 H 1 ∧ φ2 = lim j→+∞ 1 D12 M 2 δ1 ∧ φ2 = 0, then necessarily ℓ1 = ε1φ2,∞ with |ε1| ≤ 1. Furthermore, either δ2 H 1 = o j→+∞ ( δ1 H 1 )
or δ2

H 1 = Θ j→+∞ ( δ1 H 1 ).
-In the first case then δ2 2 H 1 = o j→+∞ (D12) and ℓ1 = 0. We get a contradiction by computing:

0 = h1 * h2 = φ * 1 φ2 + δ * 1 φ2 + φ * 1 δ2 + δ * 1 δ2 = O j→+∞ (e -εRg ) + δ * 1 φ2 + O j→+∞ ( δ2 L 2 (1 + δ1 L 2 )) = δ * 1 φ2 + o j→+∞ ( δ1 H 1 ).
-In the second case we also get

lim j→+∞ δ2 -2 H 1 M 2 (δ2 ∧ φ1) and ℓ2 = ε2φ1,∞, |ε2| ≤ 1. Writing for k = k ′ : h k = φ k + ε k δ k H 1 φ k ′ + h (r)
k , up to extraction the following holds:

0 = h1 * h2 = O j→+∞ (e -εRg ) + ε * 1 δ1 H 1 + ε2 δ2 H 1 + (h (r) 1 ) * h2 + h1 * h (r) 2 (h (r) 1 ) * h2 = (h (r) 1 ) * φ2 + (h (r) 1 ) * (ε1 δ1 H 1 φ1) + (h (r) 1 ) * h (r) 2 = o j→+∞ ( δ1 H 1 ) + O j→+∞ ( δ1 2 H 1 ) + O j→+∞ ( δ1 H 1 δ2 H 1 ). The o j→+∞ ( δ1 H 1 ) comes from the L 2 loc -convergence to 0 of h (r) 1 (•-z 2 ) δ 1 H 1
and the uniform shape of the φ2(• -z2)'s. In particular:

ε * 1 δ2 H 1 = -ε2 δ1 H 1 + o j→+∞ ( δ H 1 ).
Writing ε1 δ1 H 1 = a and ε2 δ2 H 2 = b = -a * + (δa) :

h1 = φ1 + aφ2 + h (r) 1 h (r) 1 = δ1 -aφ2 h2 = φ2 -a * φ1 + (δa)φ1 + h (r) 2 h (r) 2 = δ2 -bφ2.
We apply

1 -|a| 2 a * -a 1 -|a| 2 with 1 -|a| 2 =: s g1 g2 = φ1(s + |a| 2 -a(δa)) + φ2(a(s -1)) + sh (r) 1 -ah (r) 2 φ2(s + |a| 2 ) + φ1(a * (1 -s) + (δa)s) + sh (r) 2 + a * h (r) 1
,

replacing s = 1 -|a| 2 2 + O j→+∞ (|a| 4
) and neglecting the term O H 1 (|a| 3 ):

g1 g2 = φ1(1 + |a| 2 2 -a(δa)) + h (r) 1 -ah (r) 2 + O H 1 (|a| 3 ) (1 + |a| 2 2 )φ2 + φ1((δa)(1 -|a| 2 2 )) + h (r) 2 + a * h (r) 1 + O H 1 (|a| 3 )
.

By L 2 loc -convergence, it is clear that D(|φ k | 2 , |h (r) k ′ | 2 ) = o j→+∞ ( δ k ′ 2 H 1 ) for (k, k ′ ) equal to (1, 2) or (2, 1). Using δa = o j→+∞ ( δ H 1 )
, at last we have:

D(|g1| 2 , |g 2 | 2 ) D(|φ1| 2 , |φ2| 2 ) + o j→+∞ ( δ 2 H 1 ) = o j→+∞ ( δ 2 H 1 ) = o j→+∞ (D12 = dΨ),
which gives the desired contradiction.

-Let us treat at last the case δ1 = 0 and δ2 = 0. Then as before:

D(|h1| 2 , |φ2| 2 ) = D(|δ1| 2 , |φ2| 2 ) + O 1+ δ 1 L 2 Rg = D(|δ1| 2 , |φ2| 2 ) + o j→+∞ (D12).
Then necessarily there lies some mass of δ1 near z2 and:

δ1(• -z2) δ1 H 1 ⇀ H 1 ℓ1 = 0.
As before necessarily: ℓ1 = ε1φ2,∞ with 0 < |ε1| ≤ 1. But this contradicts:

0 = h1 * φ2 = δ * 1 φ2 + φ * 1 φ2 = δ * 1 φ2 + O j→+∞ (e -εRg ).

B.2 Proof of Proposition 4

The proof is similar to that of Proposition 3: by contradiction we assume the existence of (aj)j decreasing to 0 together with (Ψj = h1 ∧h2) with E U PT (Ψj) < aj and M 2 (Ψj) < ajRg;j. We re-use the same notations of the previous Subsection.

Thanks to Proposition 5 we know that dΨ j is bounded from below by

(1 -κ a ′ 0 ) D(|φ1| 2 , |φ2| 2 ) + D(|δ1| 2 , |φ2| 2 ) + D(|φ1| 2 , |δ2| 2 ) + D(|δ1| 2 , |δ2| 2 ) As (h k;j (• -z k;j ))j tends to φ k,∞ ∈ P in H 1 for k = 1, 2, then for any A > 0: lim j→+∞ B(z k,j ,A) |h k,j (x)| 2 dx = B(z k,j ,A) |φ k,∞ (x)| 2 dx.
For any 2 -1/2 < λ < 1 let A λ > 0 be the number such that the last integral with A = A λ is equal to λ. We have:

|x-y|<Rg +2A λ |h1 ∧ h2(x, y)| 2 |x -y| dxdy ≥ 2 Rg + 2A λ |x-y|<Rg +2A λ |h1(x)| 2 |h2(y)| 2 dxdy - 2 Rg + 2A λ dxh * 1 h2(x) y∈B(x,Rg +2A λ ) h * 2 h1(y)dy lim inf j→+∞ |x-y|<Rg+2A λ |h1 ∧ h2(x, y)| 2 |x -y| dxdy ≥ 2 Rg +2A λ (λ 2 -2 -1 ).
We used the following trick: if

h * 1 h2 = 0 where h k L 2 = 1, then for any Borelian set B: B h * 1 h2 ≤ 1 2 .
The more precise result has the same proof: in the limit there holds similar inequality: for sufficiently small a > 0, λRg > Aε where

|x|≤Aε |φ(x)| 2 dx = ε, ε > 2 -1/2 , φ ∈ P0.
We conclude with the same argument.

C Localisation in Direct space: the ψ j 's

C.1 Proof of Lemma 7

Notation 11. For convenience here we write V • ϕ k := v ′ γ ϕ k -RN ϕ k (and a similar expression for χ k ). The function r k := Rγ ψ k is split into its upper part r k,↑ := (Rγ ψ k ) ↑ and its lower part r k,↓ both in L 2 (R 3 , C 2 ).

Moreover we write:

P k (-∆) := c 2 (1 -µ 2 k L -2 cΛ ) -∆ and yc := L -1 cΛ = c 2 Λ 2 c 2 Λ 2 -∆ .
The operator P k (-∆) can be rewritten as follows: with

a k := c 2 (1 -µ k ) and b := cΛ then c 2 (1 -µ k y 2 c ) -∆ = a k (1 + µ k ) -∆ 1 + µ k c 2 -a k c 2 Λ 2 b 2 b 2 -∆ + µ 2 k Λ 2 b 2 b 2 -∆ 2 2 = (a k (1 + µ k ) -∆) 1 + 1 -a k (1+µ k ) a k (1+µ k )-∆ µ k c 2 -a k c 2 Λ 2 b 2 b 2 -∆ + µ 2 k Λ 2 b 2 b 2 -∆ 2 2 (101) Proof We remark that n(x) = |h1(x)| 2 + |h2(x)| 2 = |ψ1(x)| 2 + |ψ2(y)| 2 .
Thanks to (47)-(48), there holds:

(D + αB)ψ k = (1 + 3E PT(1) 2c 2 + O(α 1/4 c -2 ))ψ k . (102) 
Up to applying some m ∈ SU(2) to ψ1 ψ2 , we consider ψ k = h k with the following:

(c 2 β -icα • ∇h k ) + αcyc(V • h k -Rγ h k ) = (c 2 -3E PT (1)
2

)ych k + O(α 1/4 ych)
We write a = -3E PT (1) 2 and the additional term O(α 1/4 ych) = δ k h.

-We now rewrite (73) once again: by substitution, we get:

     ϕ k = αcyc 1 + µ k yc P k (-∆) (V • ϕ k -r k,↑ ) + αyc P k (-∆) iσ • ∇ V • χ k -r k,↓ χ k = α yc P k (-∆) iσ • ∇(V • ϕ k -r k,↑ ) + αyc c 2 (1 -µ k yc) cP k (-∆) V • χ k -r k,↓ (103) 
There holds similar equation for h k but with additional terms 1 αc (δ k h) ↑ with -r k,↑ and

1 αc (δ k h) ↓ with -r k,↓ .
There holds:

αc(1 -µ k yc) = αc(1 -µ k ) + αcµ k (1 -yc).
For any A ≥ Γ(Rg)Rg, we multiply each term by |D0| 1/2 and then by

d A,λ (•) defined by d(•)ξA(•)η λ Rg .
We take the L 2 -norm, let us show estimates independent of A (but depending on ξ1):

d A,λ |D0| 1/2 ψ k L 2 ≤ K λ + ε (λ) E 1/2 A,λ |D0| 1/2 ψ k L 2 , with ε (λ) < 1.
This will end the proof, the family (K λ ) λ depending on (ε (λ) ) λ and the latter being nonincreasing in λ ∈ (λ0, 2 -1 ).

We prove the estimation of d

A,λ |D0| 1/2 ψj L 2 with j = 1, 2 by the same method: we need finiteness of d(•)η

(λ/2) cRg |D0| 1/2 ψ k L 2 with k = 1,
2 and of |x -y|γ S 2 . We refer to Appendix C for more details.

-In Appendix C, we show:

|d A,λ (x) -d A,λ (y)| |x -y|. (104) 
Let us first multiply (103) by |D0| 1/2 : let F j,k :=

|D 0 | 1/2 ∂ j P k (-∆) and F 0,k := |D 0 | 1/2 P k (-∆)
. It is clear that they are bounded (convolution) operators, we show in Appendix C that

| • |F j,k L 1 1, j ∈ {1, 2, 3}, k ∈ {1, 2}. (105) 
The function associated to yc is a Yukawa potential Yc [16, Section 6.23]:

Yc(x -y) = π 2 (cΛ) 2 e -cΛ|x-y| |x -y| , in particular | • |Yc L 1 1 cΛ . The idea is to take first the commutator [d A,λ , F j,k ] and [d A,λ , yc]. Then we study d A,λ v̟ k (̟ k ∈ {ϕ k , χ k }) and d A,λ r ↑/↓ . Estimate of αc V • ϕ k L 2 , αc V • χ k L 2
We use the same method for both cases.

We recall the following:

vγ = -FΛ * n + (δ0 -FΛ) * (tN -α 2 τ2) * 1 | • | = -FΛ * n * 1 | • | + ρrem * 1 | • | .
By (58):

αc FΛ * n * 1 |•| (x) ≤ n * 1 |•| (x) + αc ( FΛ -FΛ(0)δ0) * vn(x) ≤ n * 1 |•| (x) + O 1 √ c .
We used f L ∞ f L 1 , split the integral in Fourier space at level 2c and used Cauchy-Schwarz inequality. By Appendix A.2 and Proposition 5:

αcρrem * 1 |•| (x) αc(c 1/2 ρrem C + c 3/2 ρrem L 2 ) αc 3/2 (αc -1 + α 2 c -1 ) + αc 5/2 (c -2 + c -1 (α(a12 + a21)) 1/2 ) α √ log(Λ) + 1 √ log(Λ) + α 5/4 √ log(Λ) 1 √ log(Λ)
.

We recall a jk = v k ψ k -v kj ψ k L 2 and by Proposition 5 we know it is O(c -1 α 3/2 ). We decompose each ψj in sum of h1, h2: ψ k = c k1 h1 + c k2 h2. Then:

vγ ψ k = vγ (c k1 h1 + c k2 h2) (vn -RN )ψ k = c k1 (v |h 2 | 2 h1 -v h * 2 h 1 h2) + c k2 (v |h 1 | 2 h2 -v h * 1 h 2 h1). We write h k = δ k + φ k where φ k ∈ P: as in Section B δ k 2 H 1 α. By fast decay of the φ k 's: (|φ k | 2 * 1 |•| (x)) 2 = Θ(|φ k | 2 * 1 |•| 2 (x)) and for |x| 1 this is O( 1 |x-z k | 2 ). In particular for |x| > λRg v |h k | 2 (x) 1 + δ k L 2 |x -z k | + |∇|δ k , δ k 1 λRg + α,
we choose C0 > 1 such that αc λRg < 1 -ε0 where 0 < ε0 < 1 is fixed (for instance 2 -1 ). By Cauchy-Schwarz inequality we have v h

* 1 h2 (x), v h * 2 h1 (x) = O( δ L 2 ). It follows that αc d A,λ V • ϕ k L 2 ε ′ (λ) d A,λ ϕ k L 2 , with 0 < ε ′ (λ) < 1.

Estimate of αcd

A,λ R γψ k |[d A,λ , Rγ ](x, y)| |γ(x, y)| so: αc [d A,λ , R γ]ψ k L 2 αc γ S 2 ψ k L 2 α 2 c 1/2 = O( α √ log(Λ)
).

Rγ d A,λ ψ k 2 L 2 Tr(γRγ) |∇|d A,λ ψ k , d A,λ ψ k c -1 |D0| 1/2 d A,λ ψ k 2 L 2 .
By Lemma [START_REF] Hainzl | Non-perturbative mass and charge renormalization in relativistic no-photon quantum electrodynamics[END_REF],

[|D0| 1/2 , d A,λ ]|D0| -1/2 is a bounded operator (with norm O( ∇d A,λ L ∞ ))
and at last we get:

αc d A,λ Rγ ψ k L 2 αc 1/2 (1 + d A,λ |D0| 1/2 ψ k L 2 ) and αc 1/2 = O 1 log(Λ)
.

We know deal with the case of d

A,λ R γψ k , using (108), proved below. The aim is to prove:

d (2) A,λ R γψ k L 2 |x -y|γ S 2 + γ S 2 d(•)η (λ/2) cRg ψ k L 2 +c 1/2 γ Ex( ψ k L 2 + d(•)η (λ/2) cRg ψ k L 2 ). (106) 
First of all we use Taylor's formula (108) to get:

[d (2) 1,λ , R γ]ψ k L 2 |x -y|γ S 2 + γ S 2 d(•)η (λ/2) cRg ψ k L 2 .
Let us prove at the end |x -y|γ

S 2 = c -1 |x -y|γ S 2 αc -1 .
There remains R γd (2)

A,λ ψ k L 2 |D0| 1/2 d (2) 
A,λ ψ k L 2 . We commute: using (97), there holds

[|D0| 1/2 , d (2) 
A,λ ] = 1 2 -1/2 π +∞ 0 s 1/4 ds 1 -∆ + s [-∆, d (2) ] 1 1 -∆ + s , [-∆, d (2) 
] = (-∆d (2) ) -

2 3 j=1
(∂jd (2) )∂j.

First ∆d (2)

L ∞ 1.
Then thanks to (108):

(∂jd (2) )

∂ j 1-∆+s ψ k L 2 d(•)η (λ/2) cRg ∂ j 1-∆+s ψ k L 2 |x -y|F -1 ( p j 1+s+|p| 2 ) L 1 ψ k L 2 + d(•)η (λ/2) cRg ψ k L 2 1+s 1 1 + s ( ψ k L 2 + d(•)η (λ/2) cRg ψ k L 2 ).
To end this section we prove |x -y|γ S 2 , |x -y||D| 1/2 γ S 2 α. This is almost trivial: for each j ∈ {1, 2, 3} we consider (xj -yj)γ(x, y) and use the Cauchy expansion of γ. For each Q 0,k , k ∈ [|1, 5|], we replace at least one P 0 ε v ′ γ P 0 -ε as in (94) ( [START_REF] Ph | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF]) and write:

xj

-yj = xj -ℓ (1) 
j + ℓ (1) j -ℓ (2) 
j + • • • + ℓ (n) j -yj .
For each convolution operator |D| 1/2 D+iη (x -y), P 0 ε D+iη (x -y), 1 D 0 +iω (x -y), multiplying by (xj -yj) corresponds to take the derivative ∂j in Fourier space enabling us to take KSS inequalities [START_REF] Lewin | On the binding of polarons in a mean-field quantum crystal[END_REF] under the integral sign. Indeed we have:

|∂jE 1/2 p | E 1/6 p , |∂j 1 
E ( p)+iη | 1 |Ep+iη| 1+3 -1 , |∂j 1 E(p)+iω | 1 E(ω 2 )+|p| 2 , |∂jP 0 ε (p)| 1 E(p) .
Then operators of type ρ *

1 |•| or α k ∂ k (ρ * 1 |•|
) remains unchanged while operators of type (xj -yj )RQ(x, y) are trivially Hilbert-Schmidt. This end the proof ; the biggest term comes from Q1,0((xj -yj)γ ′ (x, y)).

C.2 Proof of (104) and variation for d So we may assume that d(x) = |x -z1| and d(y) = |y -z1|, and in this case we can write:

d A,λ (x) = F λ (d(x))ξA(x) := d(x) 1 -ξ λR 2 g (d(x)) GA(|x -zm|)
the same holds for y. We will write F λ (•) for x → F λ (d(x)) for convenience. There holds

∇d A,λ (x) = ∇F λ (x) ξA(x) + F λ (x)( ∇ξ1(x/A) A ),
and as we have chosen A ≫ Rg we may assume that if ∇ξA(x) = 0, then |x -zm| = Θ(d(x)). By simple computation:

|∇d A,λ (x)| 1 + | • |∇ξ1 L ∞ + | • |∇η λ 1 L ∞ . (107) 
2. For x, y ∈ Eε, ε = 1, 2 (say E1) and A ≫ Rg, there holds:

d (2) A,λ (x) -d (2) 
A,λ (y) = |x -z1|2 ξA(x)η 

(λ) cRg (x) -|y -z1| 2 ξA(y)η (λ) cRg (y) = |y -z1| 2 η (λ) cRg (y) A ∇ξ1( y A ) + ξ A (y) cλRg ∇(η 1 1 )( y cλRg ) • (x -y) +ξA(y)η
R 3 |x||F(x)|dx ≤ |x| 4 E(x) 2 |F(x)| 2 dx dx |x| 2 E(x) 2 1/2 .
To prove | • |F ∈ L 1 it suffices to check all integrals on the right side converge: in Fourier space, we have to prove:

∆ F 2 L 2 + ∇∆ F 2 L 2 < +∞.
Applying this method for F j,k (x -y) :=

|D 0 | 1/2 ∂ j P k (-∆) (x -y): F j,k (p) = E(p) 1/2 pj a k + |p| 2 1 + µ 2 k |p| 2 Λ 2 (a k + |p| 2 ) 2b 4 + b 2 |p| 2 (b 2 + |p| 2 ) 2 -1
where we recall b = cΛ, a k = c 2 (1 -µ k ). From this expression, it is easy to see that for ℓ = 1, 2, 3 and m = 1, 2 we have

∂ m ℓ F j,k
The constant depends on a k but for sufficiently small α, L, Λ -1 then a k > ε0 > 0.

2. By the same method we can show that:

R 3 |x| 2 |F(x)|dx ≤ |x| 6 E(x) 2 |F(x)| 2 dx dx |x| 2 E(x) 2 1/2
, enabling us to treat d 

ζ 2 ρQ -ρ[ζ ++ Qζ ++ + ζ --Qζ --] C ≤ Fest[Λ, ζ, Q], (109) 
with

Fest[Λ, ζ, Q] = ( log(Λ) ∇ζ L 3 + ∇ζ L ∞ )( ζP 0 ± |D0| a[Λ] Q S 2 + ∇ζ L ∞ Q S 2 ) + ∇ζ 2 L 6 |D0| a[Λ] Q S 2 + log(Λ)( ζQ ±∓ |D0| a[Λ] ζ S 2 + ζQ ±∓ S 2 ∇ζ L ∞ ) + log(Λ) ∇ζ L ∞ ( ∇ζ L ∞ Q ±± S 1 + ζ|D0| a[Λ] Q ±± S 1 ) +(log(Λ)) 1/6 ∇ζ 2 L ∞ |D0| a[Λ] Q ±± S 1 .
(110) Moreover there holds for ε = ±:

ρ[ζ εε Qζ εε ] C ≤ [ζ εε , |D0| a[Λ] ] B Q εε S 1 + ζ εε Q εε |D0| a[Λ] ζ εε S 1 ∇ζ L ∞ Q εε S 1 + ζ εε Q εε |D0| a[Λ] ζ εε S 1 . (111) 
Remark 18. 1. In the case Q = Π -P 0 -with Π * = Π 2 = Π then (cf [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF]):

Q 2 = Q ++ -Q --≥ Q ++ .
As shown in [START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF] we can consider an orthonormal family of eigenvectors of Q 2 that split into those in Ran(P 0 + ) and those in Ran(P 0 -). It is then clear that:

ζ ++ Q ++ |D0| a[Λ] ζ ++ S 1 ≤ ζQ ++ |D0| a[Λ] ζ S 1 ≤ ζ|D0| a[Λ] Q S 2 ζQ S 2
2. There is also an analogous estimate if we choose two different functions ζ1, ζ2, that is with ζ1ζ2ρ(Q) = ρ(ζ1Qζ2). The same proof shows also localisation estimates, but we have to "polarize" the inequalities just like for a quadratic form and its associated bilinear form.

Proof: We prove it by duality. Let V be some Schwartz function: we study Tr0(ζQζV ).

By symmetry we just treat (ζQζV ) ++ . There holds:

P 0 + ζQζV P 0 + = P 0 + ζ(P 0 + + P 0 -)Q(P 0 + + P 0 -)ζ(P 0 + + P 0 -)V P 0 + = ζ ++ Q ++ ζ ++ V ++ + ζ ++ Q ++ ζ +-V -+ + ζ ++ Q +-ζ -+ V ++ + ζ ++ Q +-ζ --V -+ +ζ +-Q -+ ζ ++ V ++ + ζ +-Q -+ ζ +-V -+ + ζ +-Q --ζ -+ V ++ + ζ +-Q --ζ --V -+ .
We first show those operators are trace-class and then prove (109).

Remark 19. We recall that by Sobolev inequality:

V L 6 ∇V L 2 . Moreover |D0| -a[Λ] V S 2 log(Λ) V L 2 .
As shown in Appendix A:

ζ -+ = i 2π +∞ -∞ 1 D0 + iη α • ∇ζ P 0 + dη D0 + iη . ( 112 
)
It can be rewritten as:

ζ -+ = i 2 +∞ 0 e -s|D 0 | P 0 -α • ∇ζP 0 + e -s|D 0 | ds, (113) 
by writing

1 E(p)+E(q) =
+∞ 0 e -s(E(p)+E(q)) in the kernel of its Fourier transform cf Appendix A.

ζ ++ Qζ ++ V ++ :

ζ ++ Qζ ++ V ++ = ζ ++ (Q ++ ζ ++ |D0| a[Λ] ) 1 |D0| a[Λ] V ++ and (Q ++ ζ ++ |D0| a[Λ] ) ∈ S1, 1 |D 0 | a[Λ] V ++ ∈ S6 with norm O((log(Λ)) 1/6 ∇V L 2
) by the KSS inequality [START_REF] Lewin | On the binding of polarons in a mean-field quantum crystal[END_REF]. We write

ζQ ++ ζ ++ |D0| a[Λ] S 1 ≤ ζQ ++ S 1 [ζ ++ , |D0| a[Λ] ] B + ζQ ++ |D0| a[Λ] ζ S 1 ζQ ++ S 1 ∇ζ L ∞ + ζQ ++ |D0| a[Λ] ζ S 1 .
In general whenever there is Q ++ or Q --we can easily estimate.

|Tr(ζ ++ Q ++ ζ +-V -+ )| = |Tr(V -+ 1 |D 0 | a[Λ] |D0| a[Λ] ζ ++ Q ++ ζ +-)| log(Λ) ∇V L 2 ∇ζ L ∞ ( ∇ζ L ∞ Q ++ S 1 + ζ|D0| a[Λ] Q ++ S 1 ), |Tr(ζ +-Q --ζ -+ V ++ )| ≤ 1 |D 0 | a[Λ] V S 6 ζ +- B Q --ζ -+ |D0| a[Λ] S 1 (log(Λ)) 1/6 ∇V L 2 ∇ζ 2 L ∞ Q --|D0| a[Λ] S 1 , |Tr(ζ +-Q --ζ --V -+ )| log(Λ) ∇V L 2 ∇ζ L ∞ ( ∇ζ L ∞ Q -- S 1 + ζ|D0| a[Λ] Q -- S 1 ). The term ζ +-Q -+ ζ +-V -+ : ζ +-Q -+ ζ +-V -+ S 1 ≤ ζ -+ S 6 Q +-|D0| a[Λ] S 2 1 |D 0 | a[Λ] ζ -+ V ++ S 3 1 |D 0 | a[Λ] ζ -+ V ++ S 3 3 j=1 1 2π +∞ -∞ 1 |D 0 | a[Λ] (D 0 +iη) ∂jζ P 0 + D 0 +iη V S 3 dη 3 j=1 ∂jζ L 6 V L 6 1 E(•) 5/8 2 L 6 +∞ -∞ dη E(η) 5/4 , ζ -+ S 6 ∇ζ L 6 . The term ζ ++ Q +-ζ --V -+ : |Tr(ζ ++ Q +-ζ --V -+ )| log(Λ) ∇V L 2 ( ζQ +-|D0| a[Λ] ζ S 2 + ζQ +- S 2 ∇ζ L ∞ ).
The terms ζ +-Q -+ ζ ++ V ++ and ζ ++ Q +-ζ -+ V ++ These operators are difficult to handle. We use Lemma 10 (Appendix A). First:

ζ +-Q -+ ζ ++ V ++ = ζ +- 1 |D0| ε Λ 4 |D0| ε Λ 4 Q -+ ζ ++ |D0| 1 2 + ε Λ 4 1 |D0| 1 2 + ε Λ 4 V ++ ∈ S1, with norm O((log(Λ)) 3/2 ∇ζ L 3 V L 6 |D0| a[Λ] Q S 2
). We used the KSS inequality and Hölder-type inequality for Sp. Similarly we can show that

ζ ++ Q +-ζ -+ V ++ ∈ S1.
Then by density of S1 in S2, we approximate |D0|

ε Λ 4 Q -+ ζ ++ |D0| 1 2 + ε Λ 4
by traceclass operators enabling us to say that:

Tr(ζ +-Q -+ ζ ++ V ++ ) = Tr |D0| ε Λ 4 Q -+ ζ ++ |D0| 1 2 + ε Λ 4 1 |D0| 1 2 + ε Λ 4 V ++ ζ +-1 |D0| ε Λ 4 . Let us show that Q -+ ζ ++ V ++ ζ +-∈ S1. It suffices to show 1 |D 0 | a[Λ] V ++ η +-∈ S2.
We go in Fourier space and used formula (113) to show [V, P 0 + e -sE|D 0 | ] ∈ S2.

F ([V, P 0 + e -sE|D 0 | ]; p, q) = 1 (2π) 3/2 V (p -q) P 0 + (q)e -sE(q) -P 0 -(p)e -sE(p) ; then (cf Appendix A) P 0 + (q)e -sE(q) -P 0 -(p)e -sE(p) = (P 0 + (q) -P 0 + (p))e -sE(q) + P 0 + (p)(e -sE(q) -e -sE(p) )

P 0 + (q) -P 0 + (p) |p -q| max(E(p), E(q)) e -sE(q) -e -sE(p) = s|E(p) -E(q)| |e -sE(q) -e -sE(p) | s|E(p) -E(q)| ≤ s|p -q| min(e -sE(p) , e -sE(q) )
≤ s|p -q|(e -sE(p) + e -sE(q) ).

By easy computation:

[V, P 0 + e -sE|D 0 | ] S 2 s -1/2 e -s/ √ 2 ∇V L 2 : +∞ s=0 [V, P 0 + e -s|D 0 | ]α • ∇ζe -s|D 0 | S 2 ds ∇ζ L ∞ ∇V L 2
+∞ 0 e -s ds s 1/2 . At last there remains to show:

A[V, ζ] = +∞ 0 e -s|D 0 | |D0| a[Λ] P 0 + V α • ∇ζ P 0 -e -s|D 0 | ds ∈ S2,
as in Appendix A it suffices to go in Fourier space and remark V ∂jζ

L 2 ≤ V L 6 ∂j ζ L 3 : A[V, ζ] S 2 log(Λ) V ∇ζ L 2 log(Λ) V L 6 ∂j ζ L 3 .
The case of ζ ++ Q +-ζ -+ V ++ is similar: first we prove by density that

Tr(ζ ++ Q +-ζ -+ V ++ ) = Tr(ζ -+ V ++ ζ ++ Q +-),
and we get in fine

ρ[ζ ++ Q +-ζ -+ V ++ ] C + ρ[ζ -+ Q +-ζ -+ V ++ ] C ( log(Λ) ∇ζ L 3 + ∇ζ L ∞ )( ζP 0 + |D0| a[Λ] Q S 2 + ∇ζ L ∞ Q S 2 ). (114) 

D.2 Estimates on the localised operator γ

Here γ is the vacuum part of a (hypothetical) minimizer of E 0 BDF (2) or a minimizer of E 0 BDF (1). Our aim is to prove: Proposition 8. Let ζ be a smooth function with:

∇ζ L ∞ , ∂j ∂ k ζ L ∞ < +∞, j, k ∈ {1, 2, 3} ζv ′ L 6 , ζ∇v ′ L 2 , ζγ Ex, ζRN S 2 < +∞.
Then there holds:

ζ|D| 1/2 γ S 2 c -1/2 ζ∇v ′ L 2 + α( ζγ Ex + ζRN S 2 ) +α 2 ( ζ∇v ′ L 2 + ζv ′ L 6 + ζγ Ex + ζRN S 2 ) 2 + ∇ζ L ∞ + 1≤j,k≤3 ∂j∂ k ζ L ∞ α( ρ ′ γ C + |∇| 1/2 γ ′ S 2 ) . (115) 
The same holds for ζ|D0| a γ S 2 with a ∈ { 1 2 , a[Λ]}. We can replace ζγ Ex + ζRN S 2 by γ ′ Ex and put P 0 ± γ instead of γ.

D.2.1 Idea of the proof

We will focus on the Cauchy expansion of γ: γ = +∞ j=1 α j Qj(γ ′ , ρ ′ γ ).

As shown in [START_REF] Ph | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF][START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF][START_REF] Sok | Modèle de champ moyen en électrodynamique quantique[END_REF], we substitute P 0 ± (ρ ′ γ * 1 |•| )P 0 ∓ by its expression (94) whenever it is necessary (in Q0,1, Q0,3, Q0,5)

We multiply γ by |D0| a (or |D| 1/2 ) and then by ζ. We consider |D 0 | a D+iη (or |D| 1/2 D+iη ) as a whole operator and we then commute ζ with this operator and maybe some P 0 ε and 1 D 0 +iω (if it was necessary to use (94)) in order to stick ζ with a vρ

′ γ * 1 |•| , a R ′ γ or a ∂jρ ′ γ * 1 |•| (if ( 
94) was used). For instance in the case of Q0,1:

Q +- 0,1 = +∞ -∞ |D| 1/2 P 0 + D + iη v ′ P 0 - D + iη = i 2π R×R |D| 1/2 D + iη 1 D0 + iω α • ∇v ′ P 0 - D0 + iω dηdω D + iη . (116) 
We multiply by ζ and under the integral sign:

ζ |D| 1/2 D + iη 1 D0 + iω α • ∇v ′ = ζ, |D| 1/2 D + iη 1 D0 + iω α • ∇v ′ + |D| 1/2 D + iη ζ, 1 D0 + iω α • ∇v ′ + |D| 1/2 D + iη 1 D0 + iω ζα • ∇v ′ .
(117) We treat the first two terms in Section D.2.2. For the latter we go in Fourier space and up to a constant the kernel of its Fourier transform is:

E 1/2 p Ep + Eq P 0 + (p) E(p) + E(q) F (ζα • ∇v ′ ; p -q) P 0 -(q).
In particular its Hilbert-Schmidt norm is O( log(Λ) ζ∇v ′ ργ L 2 ). Doing the same for the other Q k,ℓ , we get terms with commutators treated in D.2.2 and other terms with ζv ′ ργ , ζα • ∇v ′ and ζR γ ′ = R ζγ ′ . In particular taking the • S 2 under the integral sign, we get the following estimates on those terms.

O c -1/2 ζ∇v ′ L 2 + α ζγ ′ Ex + α 2 ( ζ∇v ′ L 2 + ζv ′ L 6 + ζγ ′ Ex ) 2 . ( 118 
)
Remark 20. The term ζγ ′ Ex is due to Ineq. (51) (l.h.s). Moreover we can deal with γ and N in γ ′ differently. Indeed as RN ∈ S2, ζγ ′ Ex can be replaced by

K( ζγ Ex + ζRN S 2 ). Remark 21. The term T [ζ, v ′ ] := ζα • ∇v ′ appears in P 0 -ε v ′ P 0 ε , that equals up to a multiplicative constant to +∞ ω=-∞ dω D0 + iω T [ζ, v ′ ] P 0 ε D0 + iω .
Up to a constant its Fourier transform is

P 0 -ε (p) T (p -q)P 0 ε (q) E(p) + E(q) ,
and we deal with this term as P 0 -ε (p) v ′ (p -q) P 0 ε (q) in [START_REF] Hainzl | Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation[END_REF][START_REF] Sok | Charge renormalisation in a mean-field approximation of QED[END_REF][START_REF] Sok | Modèle de champ moyen en électrodynamique quantique[END_REF].

D.2.2 Commutating ζ

We recall here that [ζ, P 0 ε ] is treated in (94), Appendix A. In the same spirit of Lemma 10, we have the following Lemma. Lemma 11. Let η ∈ R and ζ smooth with

∇ζ L ∞ , ∂j∂ k ζ L ∞ < +∞, k, j ∈ {1, 2, 3}.
Then there holds:

ζ, |D| 1/2 D + iη |D + iη| 7/12 B ∇ζ L ∞ + 1≤j,k≤3 ∂j∂ k ζ L ∞ .
Remark 22. We can do the same with |D0| a[Λ] or |D0| 1/2 instead of |D| 1/2 by using the following formula [17, p. 87]:

|D0| a = sin(aπ) π +∞ s=0 ds s 1-a |D0| |D0| + s , a = a[Λ], 1/2.
Here we show the proof for |D| 1/2 because it enables us to localise the kinetic energy. But we can replace every |D0| a[Λ] by |D| 1/2 and vice-versa.

There is also:

Lemma 12. There exists K > 0 such that for any η ∈ R and any smooth function ζ with ∇ζ L ∞ < +∞:

ζ, 1 D0 + iω (x -y) ≤ ∇ζ L ∞ e -E(η)/2(x-y) |x -y| . (119) 
Remark 23. We recall that up to some constant 1 a 2 -∆ (x -y) = π 2 e -a|x-y| |x-y| [START_REF] Lieb | Analysis[END_REF]. -The interesting fact here is that by taking the commutator of ζ and some function of -i∇ we gain some exponent for η or ω. Thus by using KSS inequalities under the integral sign we get the following estimates for the term with commutators:

O ∇ζ L ∞ + 1≤j,k≤3 ∂j ∂ k ζ L ∞ α( ρ ′ γ C + |∇| 1/2 γ S 2 + ∇N S 2 ) (120) 
Proof of Lemma 11:

We decompose ζ = ζ ++ + ζ +-+ ζ -+ + ζ --. We write for each term ζ εε ′ , ε, ε ′ ∈ {+, -}: ζ εε ′ , |D| 1/2 D + iη = [ζ εε ′ , |D| 1/2 ] 1 D + iη + |D| 1/2 ζ εε ′ , 1 D + iη .
It follows that:

|D| 1/2 ζ εε ′ , 1 D + iη = |D| 1/2 P 0 ε D + iη [D, ζ] P 0 ε ′ D + iη . ( 121 
)
The term |D| 1/2 ζ εε ′ , 1

D+iη

By simple computation we have:

[D, ζ] = 1 - ∆ Λ 2 (-iα • ∇ζ) + (-∆ζ) Λ 2 D0 + 2∇ζ • ∇D0 Λ 2 = (-iα • ∇ζ) - 3 j=1 ∂j Λ 2 (-iα • ∇∂jζ) -2(∂ 2 j ζ) D0 Λ 2 +(-∆ζ) D0 Λ 2 - 3 j=1 ∂j Λ (-iα • ∇ζ) ∂j Λ -(∂jζ) D0 Λ . (122) 
Then there holds:

|D0| Λ|D| 1/3 B 1. (123) 
Thus substituting in (121), on the right of derivatives of ζ, there is still an operator D+iη for some KSS inequality. This enables us to get a finite integral over the s variable:

+∞ 0 √ sds (1 + s) 2/3 1 (1 + s) 11/12 < +∞.
At last:

[ζ +-, |D| 1/2 ] 1 D + iη = - 1 π +∞ 0 √ sds P 0 + |D| + s (ζD + Dζ) P 0 - |D| + s 1 D + iη = - 1 π +∞ 0 √ sds P 0 + |D| + s (2ζD + [D, ζ]) P 0 - |D| + s 1 D + iη .
The term with [D, ζ] is dealt with as before. There remains:

+∞ 0 √ sds |D| + s ζ +-D |D| + s 1 D + iη . (124) 
We write (cf (94)): Proof of lemma 12: This is straightforward because everything is computable:

ζ +-= P 0 + [ζ, P 0 -] = P 0 + 2π +∞ -∞ dω D + iω [D, ζ] 1 D + iω , (125) 
1 D0 + iη = D0 -iη E(η) 2 -∆ . However 1 E(η) 2 -∆ (x -y) = e -E(η)|x-y| 4π|x -y| so it is clear that: 1 D0 + iη (x -y) e -E(η)|x-y|/2 |x -y| 2 .
In Direct space we use |ζ(

x) -ζ(y)| ≤ ∇ζ L ∞ |x -y| and ζ, 1 D0 + iω (x -y) ∇ζ L ∞ e -E(η)/2(x-y) |x -y| D.2.3 Localisation of ∇v ρ ′ γ and R N We recall that η (λ)
cRg is the following function:

η (λ) cRg (x) := 1 -ξ 2 cλRg (x -cz1) -ξ 2 cλRg (x -cz2) -1/2 , λ0 < λ < 2 -1 .
We will take λ0 ≤ λ ≤ 3 -1 (λ0(L, Rg) is defined in (82)). More generally except for 

η (λ) cRg ∂v L 2 , η (λ 
                                 η (λ) cRg R[Nj]
(λ) cRg )vρ L 2 ρ L 1 ∇|∇|θ 1 1 L 2 (cλRg) -1/2 , η (λ) cRg ∂jvρ L 2 η (λ) cRg ρ η (λ/2) cRg C + ρ L 1 ∇θ 1 1 1/4 L ∞ (cλRg) 1/2 + ∇θ 1 1 L ∞ (cλRg) 3/4 + ρ 1/6 L 2 ρ 5/6 L 1 ∇θ 1 1 3/4 L ∞ (cλRg) 1/2 + ρ L 1 1 + ∇θ 1 1 L ∞ (cλRg) 1/2 .
(126) Moreover if we write γ = αQ0,1 + αQ1,0 + α 2 Q2, ρN = n we also have: The term η (λ) cRg v L 6 We use the Sobolev inequality:

η (λ) cRg v L 6 (∇η (λ) cRg )v L 2 + η (λ) cRg ∇v L 2 .
We get a term η (∇η

(λ) cRg )v 2 L 2 = |∇η (λ) cRg | 2 |v| 2 ≤ (|∇η (λ) cRg | 2 ) * (|v| 2 ) * (|∇η (λ) cRg | 2 ) * (x) ρ 2 L 1 |x| 2 dx ρ 2 L 1 ∇ (|∇η (λ) cRg | 2 ) * 2 L 2 = ρ 2 L 1 ∇( |∇η (λ) cRg | 2 ) * 2 L 2 ρ 2 L 1 ∇|∇η (λ) cRg | 2 L 2 ρ 2 L 1 ∇|∇|θ 1 1 2 L 2 cλRg .
-For the term η 

The last term will give η We We use now the properties of the function η

(λ)
cRg . It is easy to see that no matter where y ∈ R 3 is, this last integral is O((cλRg) -1 K(θ 1 1 )). Indeed let Ext be the domain defined by Ext = {y ∈ R 3 : f (y) := dist(y, {η So it suffices to show |•| FΛ L 1 α to end the proof: this is precisely (54)-(55), applied with ℓ = 1 to FΛ (true if α is less than some K(ℓ = 1)).

D.2.4 Proof of Lemma 9

We write ξ instead of ξ

( 1 3 ) j
and Q instead of γ ′ for convenience. First remark: for any ε, ε ′ ∈ {+, -}:

P 0 ε ξP 0 ε QP 0 ε ′ ξP 0 ε ′ = [P 0 ε , ξ]Q ε ε ′ [ξ, P 0 ε ′ ] + [P 0 ε , ξ]Q ε ε ′ ξ + ξQ ε ε ′ [ξ, P 0 ε ′ ] + ξQ ε ε ′ ξ. ( 130 
)
This gives the error term between ξQξ and ξ[Q]. We estimate their density as in Section D.1, that is by duality. Second remark: ∂jξ (λ) = (∂jξ)η (λ/2) cRg . As in this section, by using (94), it is clear that

[P 0 ε , ξ]Q ε ε ′ [ξ, P 0 ε ′ ] C |D0| a[Λ] Q S 2 ξ 2 L 6 |D0| a[Λ] Q S 2 (cRg) 2 .
We can drop terms involving the density of these operators.

We write:

ξ +-= i 2π +∞ -∞ 1 D0 + iω (η (λ/2) cRg ) 2 (α • ∇ξ) dω D0 + iω .
We commute η So taking KSS inequalities under the integral sign we obtain for instance:

Tr P 0 -ξQξ +-V P 0 -= Tr P 0 -ξQη

(λ/2) cRg ξ +-η (λ/2) cRg V P 0 - +O V L 6 Q|D0| 1/2 S 2 ∇ξ L 3 ∇η (λ/2) cRg L ∞ R dω E(ω/2) 5/4 +O ∇η (λ/2) cRg 2 L ∞ V L 6 ∇ξ L 3 Q S 2 R dω E(ω/2) 2 .
There remains the first trace. First of all, for any V Schwartz, we can show as in Section D.1 that the operator is trace-class with norm controlled by log(Λ) ∇(ξη

(λ/2) cRg V ) L 2 |D0| 1/2 η (λ/2) cRg Q +- S 2 + ∇ξ L ∞ ∇(η (λ/2) cRg V ) L 2 QP 0 + η (λ/2) cRg S 2 .
We have a priori ∇(ξη

(λ/2) cRg V ) L 2 η (λ/2)
cRg ∇V L 2 + ∇(ξη

(λ/2) cRg ) L 3 V L 6 .
In particular:

[P 0 ε , ξ]Q ε ε ′ ξ C log(Λ) |D0| 1/2 η (λ/2) cRg Q ε ′ ε S 2 L cλRg .
We use now the fact that we want the trace for a particular V , namely ρ (∇η

(λ/2) cRg ) (ξ 2 ρ ′ γ ) * 1 |•| L 2 √ 2 λcRg ρ ′ γ L 1 √ 2 λcRg .
Then we write (ξ

2 ρ ′ γ ) * 1 |•| = ρ ′ γ * 1 |•| -((η (λ) cRg ) 2 ρ ′ γ ) * 1 |•| and η (λ/2) cRg ∇ (ξ 2 ρ ′ γ ) * 1 |•| L 2 ∇((η (λ) cRg ) 2 ρ ′ γ ) * 1 |•| L 2 + η (λ/2) cRg ∇(ρ ′ γ ) * 1 |•| L 2 (η (λ) cRg ) 2 ρ ′ γ C + 3 j=1 η (λ/2) cRg ∂jv ′ ργ L 2 ,
and those terms are dealt with Propositions 9 and 8.

Putting everything together, we get an error term of order:

log(Λ) × 1 c Rg × 1 cRg = O L cRg .

3. 1

 1 Decoupling of almost minimizers for E U 0 PT

Proposition 3 .

 3 There exist a0 > 0 and b = b(a0) > 0 such that

  cRg vρ γ L 6 in terms of η (λ) cRg ∇vρ γ L 2 and of the non. loc. est. w. the c. b. The term η (λ) cRg γ Ex is controlled by η (λ) cRg |D0| 1/2 γ S 2 and by the non. loc. est. w. the c. b.

1 .

 1 We recall that ξ1 is a radial smooth function with ξ1(x) = 1 for |x| ≤ 1 and ξ1(x) = 0 for |x| ≥ 2. We study d A,λ := d(•)ξA(•)η λ Rg (•). First remark to be done: H = {x : |x -z1| = |x -z2|} splits the space into two halfspaces E1 (set of points closest to z1) and E2. Let sH be the orthogonal symmetry with respect to H: sH(z1) = z2. If x ∈ E1 and y ∈ E2, then |d(x) -d(y)| = |x -z1| -|sH(y) -z1| ≤ |x -sH(y)| ≤ |x -y|. Moreover d A,λ (y) = d A,λ (sH (y)) and d A,λ (x) -d A,λ (y) = d A,λ (x) -d A,λ (sH(y)) .

  cRg (y) y -z1 , x -y + |y -z1| 2 + O |x -y| 2 = O d(y)η (λ/2) cRg (y)|x -y| + |x -y| 2 .cRg and the O(•) depends on ξ1, η1 1 . This estimate enables us to consider commutators with|D 0 | 1/2 σ•∇ P k (-∆)and yc := (cΛ) 2 (cΛ) 2 -∆ , as shown in the next section.C.3 Proof of (105) and variation for d

1 .

 1 For any borelian function F:

D

  Localisation in Direct space: γ We recall we explain in Remark 16 how we use the technical results proved here: Propositions 7, 8 and 9. D.1 Estimates on the localised density Let Q ∈ K and 0 ≤ ζ ≤ 1 a smooth function (e.g. ξ λRg or η λ Rg ). Our aim is to give a semi-quantitative estimate of the localisation of the function ζ 2 ρQ = ρ ζQζ around the support of ζ. Proposition 7. Let Q and ζ be as above, then we have:

  and substitute ζ +-by this expression in (124). We must compensate |D 0 | Λ on the left side of ζ and |D 0 |D Λ on its right side: we use 1 |D+iω| 1/3 on the left side and {|D + iω| 1/2 |D + iη| 5/12 (|D| + s) 5/12 } -1 on the right side: there remains 1 |D+iη| 7/12 for some KSS inequality and: s) 19/12 E(ω) 7/6 < +∞.

) cRg v L 6 ,Proposition 9 .

 69 the estimates are true with ζ instead of η (λ) cRg in the case where ζ is ζ(x) = ζ0(x/A) with 0 ≤ ζ0 ≤ 1 fixed . This part gives estimates with respect to ζ0 and A. Notation 12. We write θ 1 1 (x) := 1 -ξ 2 1 (x), it is clear that ∇η Let γ + N be a minimizer for E 0 (2) (or E 0 (1)), ρ ∈ L 1 ∩ L 2 ( e.g. ρ = ργ , ρN ) and λ0 ≤ λ < 2 -1 . With the previous notations, there holds:

1 L 3 L 1 .cRg ) 2 2 [

 13122 ∞ ( n C + αρ1,0 + α 2 ρ2 L 6/5 ) +L η (λ) cRg n C + η (λ) cRg (αρ1,0 + α 2 ρ2) C . Proof: We will write vρ = v for convenience. (x)|ψj(x)| 2 |ψj (y)| 2 |x -|D0| 1/2 , η (λ) cRg ]γ S 2 + η (λ) cRg |D0| 1/2 γ S 2 ∇η (λ) cRg L ∞ |D0| 1/2 γ S 2 + η (λ) cRg |D0| 1/2 γ S 2 ,and we can treat η(λ) cRg |D0| 1/2 γ S 2 as η (λ) cRg |D0| a[Λ] γ S 2 .

  cRg ∇v L 2 we will treat later.-For the term (∇η(λ) cRg )v L 2 , we use the fact that ρ * 1 |•| is L 3w with weak norm of order ρ L 1[START_REF] Stein | Singular Integrals and Differentiability of Functions[END_REF] and we use rearrangement inequalities[START_REF] Lieb | Analysis[END_REF]:|f g| ≤ |f | * |g| * and ∇|f | * L 2 ≤ ∇|f | L 2 .

  cRg ∂jv L 2 , we write:η (λ) cRg ∂jv(x) = (yj -xj) |x -y| 3 (η (λ) cRg (x)η (y) cRg )ρ(y)dy + (η (λ) cRg ρ) * ∂j 1 | • | .

2 L 1 √A 2 ( 1 L 2 c

 21212 cRg ρ C . From this point, due to the particular form of η the first term of (128). More generally we take ζ(x) = ζ0(x/A) and we use the properties of η (λ) cRg at the very end. Taking the squared norm we have:ρ(x)ρ(x)dxdy (ζ(t) -ζ(x))(ζ(t) -ζ(y))(tj -xj)(tj -yj) |t -x| 3 |t -y| 3 dt. We split at level |x -y| = √ A: first if |x -y| ≥ √ A, then |x-y|≥ √ A |ρ(x)||ρ(y)| |x -y| 1/2 ∇ζ 1/∞ dt |t| 7/4 |t -e| 7/4 If |x -y| ≤ √ A then there holds |x -y| ∇ζ L ∞ ≤ ∇ζ0 L ∞ , thus ζ(x) = ζ(y) + ζ(x) -ζ(y) and we substitute in the integral over t. We split R 3 in three: |t -x| < |x -y|/2, |t -y| < |x -y|/2 and the remainder domain. a. For the first ball B(x, |x -y|/2) = Bx: Bx |ζ(x) -ζ(t)||ζ(y) -ζ(t)| |t -x| 2 |t -y| 2 same holds for the ball By. c. For the remainder domain Cxy: c.1. we first deal with the term (ζ(y) -ζ(x)(ζ(t) -ζ(y)):t∈Cxy dt |(ζ(x) -ζ(y))(ζ(t) -ζ(y))| |x -t| 2 |y -t| 2 ≤ ( ∇ζ0 L ∞ ) 3/2 A dt |x -t| 2 |y -t| 3/∇ζ0 L ∞ ) 3/2 A 1 |x -y| 1/2 -1/2 .

6 / 5 .

 65 (λ) cRg = 1}) > 2cλRg}. c.2.1. If y ∈ Ext, then it is clear that the previous integral is an O (cλRg) 3 f (y) 4 = O 1 cλRg . c.2.2. Else we split R 3 at level |t -y| = 2cλRg:Proof of (127) To begin with we remark that by the Hardy-Littlewood-Sobolev inequality[START_REF] Lieb | Analysis[END_REF]: ρ C ρ L Then we use formula (56) of ργ . We writeη (λ) cRg (x) FΛ * ρ(x) = y (η (λ) cRg (x)η(λ) cRg (y)) FΛ(x -y)ρ(y)dy + FΛ * (η (λ) cRg ρ)(x).

(λ/ 2 )

 2 cRg with (D0 + iω) -1 on the right and on the left. As shown before there holds:

  [ξQξ] * 1 |•| . So as in Proposition 9, the function (ξ 2 ρ ′ γ ) * 1 |•| is in L 3 w and

  The • B -norm of derivatives of ζ are O( ∇ζ L ∞ + ∆ζ L ∞ ).

	1 |D+iη| 2/3 available for some KSS inequality. The • B -norm of the operator on their left is O(E -1/6 η ). The term [ζ εε ′ , |D| 1/2 ] 1 By symmetry it suffices to study ζ ++ and ζ +-D+iη First: [ζ ++ , |D| 1/2 ] 1 D+iη = 1 π +∞ 0 √ sds P 0 + D + s [D, ζ] P 0 + D + s 1 D + iη .
	Once again, if we replace [D, ζ] by its expression in (122), we see that taking |D+iη| -1/4 from 1 D+iη , there remains |D+iη| 1/4

  Ex ∇θ 1 1 L ∞ (cλRg) -1 |D0| 1/2 γ S 2 + η

	2 S 2 cRg γ (λ) ∇ψj 2 L 2 (η (λ) (λRg) 2 c 2 -1 , cRg ) 2 (x)|ψj(x)| 2 dx x (λ) cRg |D0| 1/2 γ S 2 , (λ) η η cRg vρ L 6 (∇η (λ) cRg )vρ L 2 + η (λ) cRg ∇vρ L 2 ,
	(∇η

  used above the Hardy-Littlewood-Sobolev inequality [16, Theorem 4.3]. c.2. At last we must handle the term (ζ(t) -ζ(x)) 2 : -ζ(y)) 2 (tj -yj )(tj -xj) |x -t| 3 |y -t| 3 dt.As t ∈ Cxy we can replace |x -t| -2 by K|y -t| -2 .

		ρ(x)ρ(y)dxdy			
	|x-y|≤	√ A				
		t∈Cxy	(ζ(t) -ζ(y)) 2 |t -y| 4	dt ≤	t	(ζ(t) -ζ(y)) 2 |t -y| 4	dt.

t∈Cxy (ζ(t)

L 2 1.