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Abstract The response of a structure to medium-frequency vibrations is
highly dependent on several phenomena. One of these, the behavior of joints
between substructures, is essential because it controls the distribution of the
power injected into the structure and governs most of the dissipative effects.
This paper introduces a new method for the identification of joint parame-
ters from experimental vibration data, inspired by previous works on finite
element model updating using the error in the constitutive relation. Since
such numerical techniques are not suitable for the medium-frequency range,
in which the finite element mesh must be refined, our work uses the numer-
ical framework of the variational theory of complex rays, which is a Trefftz
approach entirely dedicated to the calculation of medium-frequency vibra-
tions at very low cost. The main scope of this paper is the presentation of
the formulation and its validation against actual and numerically-simulated
experimental results.

1 Introduction

Predicting the behavior of complex structures is very important for both en-
gineers and scientists. Among the various types of problems, the response to
medium-frequency vibration loading poses several specific difficulties. Such
problems are frequently encountered, for instance, in the aviation industry
and in aerospace engineering.

The first difficulty in the medium-frequency range is due to an insuf-
ficient knowledge of some physical phenomena the structure depends on,
or to the impossibility of taking their level of complexity into account in
reasonable calculations. For example, dissipative phenomena play a very
important role in the response of a vibrating structure, not only in the
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medium-frequency range but also at low and high frequencies. These are
due, in part, to internal material dissipation governed by very small-scale
phenomena, which do not lend themselves to the use of available micro-
scopic models in structural calculations. Classically, material damping is
simulated using viscous or hysteretic damping. But a large part of the dissi-
pation, which can represent up to eighty or ninety percent of the total energy
loss, takes place at interfaces between substructures [7,20], such as bolted,
(spot-)welded or riveted joints. Most of the local phenomena involved are
known only very approximately. Moreover, they are nonlinear and highly
dependent on the geometric and material properties as well as on the loading
conditions at the interface. A classical way of obtaining a reliable response
consists in using a simple model whose parameters are derived from exper-
imental data through an identification method. The objective of this paper
is to introduce an updating method dedicated to the improvement of joint
models used in medium-frequency vibrations. The vast number of possible
strategies for doing this falls into two categories: direct methods (also called
identification methods) and indirect (or parametric) methods. Depending
on the category, different quantities can be used to built a cost function for
the comparison of experimental and numerical solutions: input residuals [2,
9], output residuals [24,17] or energy residuals [23,1]. Our approach is an
updating method based on the error in the constitutive relation [12], which
was originally used to quantify finite element approximation errors.

A second type of difficulty encountered in medium-frequency calcula-
tions is due to the small-wavelength phenomena involved in the response of
the structure in this frequency range. In the low-frequency range, where the
wavelengths are more-or-less comparable to the size of the structure, the
local description of the motion requires only a small number of degrees of
freedom. Finite element methods, often in conjunction with modal synthe-
sis, are the most common techniques used for the resolution of low-frequency
problems, but in order to avoid approximation errors known as the pollution
effect[10] the cost of these techniques increases dramatically with the fre-
quency. When the frequencies are very high, the description of the structure
can be averaged within a frequency range and/or on a spatial patch, and
statistical strategies, such as Statistical Energy Analysis (SEA) [19], can be
used to achieve good simulations at very low cost: typically, one unknown is
used per subsystem (its energy). In the medium-frequency range, however,
the basic assumptions of the SEA must be relaxed because the structure still
has modal behavior. Therefore, medium-frequencies constitute an interest-
ing field for many numerical researchers. Some of the proposed approaches
(e.g. the discontinuous enrichment method [8], the generalized finite ele-
ment method [26], Trefftz methods [11] or boundary element methods [3])
use techniques based on the finite element framework. In the SEA cate-
gory, one should mention the works on wave intensity analysis [18] and on
power flow analysis [21]. Our approach uses the Variational Theory of Com-
plex Rays (VTCR) [14], a Trefftz method which enables the calculation of
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medium-frequency vibrations at relatively low and frequency-independent
cost.

This paper deals with a new method for updating joint models in the
medium-frequency range. Our identification method is based on the error
in the constitutive relation, which was initially developed for the valida-
tion of finite element calculations. The transposition of this concept to the
improvement of finite element models based on experimental data [15] pro-
duced robust results compared to other parametric updating techniques
such as input or output error methods. In the context of medium-frequency
vibrations, our objective was, for the reasons described above, to avoid using
finite element techniques. Therefore, the original formulation was adapted
to the VTCR framework. The principle consists in a domain decomposition
approach in which the joint to be identified is separated from the reliable
substructures. The reliable information is satisfied exactly, whereas a weak
solution of the unreliable information is sought through the minimization of
a residual. This residual is used as a cost function in an iterative correction
process, leading to an inverse problem.

The paper is structured as follows: in the second section, we introduce
the notations and present the available numerical and experimental infor-
mation sets. The equations are split into two groups depending on their
reliable or unreliable status. In the third section, we build an admissibility
space in order to satisfy the reliable equations exactly. Since our numerical
approach for the calculation of medium-frequency vibrations is not stan-
dard, we also review the numerical framework of the VTCR. In the fourth
section, we present the details of the inverse problem of the minimization of
a cost function constructed from the unreliable equations. Finally, in the last
section, we present examples of joint identification in which the experimen-
tal data were simulated numerically (with the exception of the last example,
which uses actual experimental data). We conclude that the identification
process is robust and that the resolution is inexpensive. These encouraging
results should now be confirmed on larger structures using actual experi-
mental data, which is what we are currently working on.

2 Review of the information available for the inverse problem

For the sake of simplicity, let us express the problem in the classical three-
dimensional framework. Let Ω be a structure composed of two substructures
Ω1 and Ω2 connected by a joint denoted Γ (see Figure 5). The available
information is of two types. On the one hand, through the modeling process
of the actual structure, we have the equations of the continuous model,
which can be solved either theoretically (if possible) or numerically. On the
other hand, tests provide an experimental model, which is imperfect in the
sense that it is incomplete and contains measurement noise. Usually, a linear
elastic vibration problem at a fixed angular frequency ω is described using
complex quantities whose harmonic parts with respect to time reduce to
zero in the subsequent equations.
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Fig. 1 The reference problem for a structure Ω

2.1 The available information

Governing equations of the continuous model

Let ui and σi denote respectively the displacement field and the stress
field of Substructure Ωi. The governing equations to be satisfied consist
of substructure equations and interface equations. Displacements uid are
prescribed on a part ∂uΩi of the substructure boundary ∂Ωi, while the
complementary part ∂FΩi = ∂Ωi − (∂uΩi ∪ Γ ) is subjected to prescribed
surface forces Fid. In the absence of body forces, the dynamic equilibrium
equation and the constitutive relation between ui and σi involve the mass
density ρi and the Hooke’s tensor Ki. Then, over the substructures Ωi,
(ui, σi) must satisfy:

(ui, σi) ∈ [H1(Ωi)]
3 ⊗ [L2(Ωi)]

6 set of finite energy fields

div σi = −ρi ω2ui within Ωi

σi = (1 + j ηi)Ki : ε(ui) within Ωi

ui = uid over ∂uΩi

σi · ni = Fid over ∂FΩi

(1)

where ε is the strain operator classically defined as the symmetric part
of the gradient of the displacement fields. Here, structural dissipation
is introduced into the constitutive law under assumption of hys-
teretic damping, and ηi designates the structural loss factor (also
called structural damping in this paper) which can depend on the
angular frequency ω. Note that other models of internal damping
could have been used here.

In the case of a perfect interface, Γ is described through the equations
of static equilibrium of the strain fields and continuity of the displacements.
Here, in order to take more realistic situations into account, the behavior of
Interface Γ will be modeled by its own dynamic equilibrium equation and
constitutive law:

σ1 · n1 + σ2 · n2 = −ω2µ um over Γ

σm = −k (u2 − u1) over Γ
(2)



Title Suppressed Due to Excessive Length 5

where um and σm represent the mean values of displacements and stresses
over Γ :

um =
u1 + u2

2
over Γ

σm =
σ1 · n1 − σ2 · n2

2
over Γ

(3)

In the general three dimensional case µ and k represent respec-
tively the mass and the stiffness per unit area of the interface
and can take into account dissipative behavior by including an
imaginary part. (However it should be noted that in the applica-
tions treated at the end of this paper µ and k are given per unit
length since the substructures are two dimensional). Contrary to the
substructure case, it is difficult to link one’s knowledge of the interface to
geometric and material parameters alone because of the complexity of the
phenomena localized in the joint’s behavior (friction, heating, abrasion. . . )
Therefore, the interface’s parameters must be identified using experimental
results.

Experimental information

In order to obtain an inverse problem, additional information is sought
through an experimental study of the vibrational response of the structure,
so that the problem becomes overspecified. Let ã denote the experimental
value of some quantity a. This complex representation takes into account
both the magnitude and the phase. Whatever form the measurement takes,
we will assume that the measured quantities are:

– the angular frequency ω̃,
– the excitation forces F̃d,
– the displacements ũ(X̃n) at several locations X̃n within the structure.

Moreover, let us consider that these measurements are based on assumed
locations X̃n and on assumed measurement orientations θ̃n of the measure-
ment points. These assumptions may be satisfied only approximately or may
be limited to a certain precision.

The measurement process can be viewed as a projection of the real
displacement field ũ(X) onto points X̃n in the directions θ̃n. Let Π̃u

(eXn, eθn)

denote the corresponding projector:

Π̃u

(eXn, eθn)
: ũ 7−→ ũ(X̃n) · θ̃n (4)

Finally, one must also take into account the location X̃F and orientation
θ̃F of the excitation. Let Π̃F

(eXF, eθF)
denote the projector associated with the

measurement of the excitation.
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2.2 Partitioning between reliable and unreliable information

Our method for updating the interface model is based on the modified er-
ror method presented in [12] in the context of identification. This approach
consists in dividing the available information into two groups by separat-
ing the (relatively) reliable quantities from the unreliable quantities. The
distinction between the two groups depends on the problem being treated:
thus, the engineer’s experience can be of great importance for this step.

Concerning the continuous model, considering one’s knowledge of the
material and the large domain of validity of simplified models (beams,
plates, shells,. . . ), the substructures will be assumed to be modeled properly
and their material and geometric parameters to be known precisely. This
information will be assumed to be reliable. Conversely, the equations of an
interface can be viewed as a global behavior model whose parameters are
known only very imperfectly. Therefore, these equations will be considered
to be unreliable information.

Similarly, the experimental data are split into two groups. In general,
the angular frequency ω̃ is measured very precisely. In this paper, we will
assume that the main errors come from the unavoidable noise which affects
the magnitude of the measurements. The values of F̃d and ũ(X̃n) will be

considered questionable, whereas the locations X̃n and orientations θ̃n of
the measurement points as well as the location X̃F and orientation θ̃F of
the exciting forces will be considered to be known with sufficient precision.
Table 1 summarizes the categorization of the different types of information.

Continuous model Experimental model

Reliable Reliable

Substructure geometry and material Angular frequency eω

Substructure equations: Locations of the measurement points eXn

- boundary conditions Orientations of the measurement points eθn

- dynamic equilibrium equation Locations of the prescribed forces eXF

- constitutive law Orientations of the prescribed forces eθF

Unreliable Unreliable

Interface equations Magnitudes of the displacements eu( eXn)

- dynamic equation (µ) Magnitudes of the prescribed forces eFd

- constitutive law (k)

Table 1 The reliable and unreliable information for the inverse problem

Depending on the type of problem being treated, other choices can be
made: in [4], the dissipation error enabled the elastic part of the constitutive
law to be considered reliable in order to identify the damping phenomena.
In [22], highly corrupted measurement data were used to identify the vis-
coplastic behavior in dynamics.
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Fig. 2 The substructured problem

The key to the method is to seek a compromise solution for the above
equations in the sense that this solution satisfies the reliable equations ex-
actly, but satisfies the other equations of the continuous and experimental
models only approximately. Then, this solution enables us to identify which
among all the unreliable equations is the most inexactly satisfied and to
adjust its parameters, which leads to the inverse problem. The numerical
strategy we chose in order to solve this problem at a low and predictable
cost is a Trefftz approach, called the variational theory of complex rays,
in which all the boundary equations are combined into a single variational
form. In order to treat the substructures and their interfaces separately, we
will now introduce a substructured version of this technique.

2.3 The interface quantities

The principle, which was first introduced in [6] for the calculation of dissipa-
tive and heterogeneous joints, is based on a condensation approach in which
the interface is treated like an actual substructure with its own equations,
parameters, unknowns and discretization. Figure 2 illustrates the proposed
substructured approach. Let wi and Si denote respectively the interface’s
displacement and stress unknowns relative to Substructure Ωi. (One un-
known is defined for each side of Interface Γ .)

The continuous problem is composed of two parts. First, the interface
equations (2) and (3) (i.e. the unreliable equations) yield:

S1 + S2 = −ω2µ
w1 + w2

2
over Γ

S1 − S2

2
= −k (w2 − w1) over Γ

(5)

Then, the substructure equations (i.e. the reliable equations) are com-
pleted in order to ensure compatibility between the substructure unknowns
(ui, σi) and the interface unknowns (wi, Si). Among several possibilities,
we chose a condensation approach in which the interface quantities wi and
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Si are prescribed on the part ∂Γ Ωi of the boundary:

div σi = −ρi ω2ui within Ωi

σi = (1 + j ηi)Ki : ε(ui) within Ωi

ui = uid over ∂uΩi

σi · ni = Fid over ∂FΩi

ui = wi over ∂Γ Ωi

σi · ni = Si over ∂Γ Ωi

(6)

With this substructuring technique, we can deal with the reliable sub-
structures in any desired numerical framework without taking the interface
equations into account. Now, we will go through the schemes we chose to
solve each group of equations.

3 Satisfaction of the reliable information

3.1 The reliable equations of the model

The numerical approach used to solve Equations (6) is the VTCR [13]. This
method was developed as a very inexpensive approach to medium-frequency
vibration problems, which would otherwise be very cumbersome due to the
medium-frequency framework and to the iterative procedures classically en-
countered in identification problems. A key feature of the VTCR which
turns out to be very convenient for our strategy is that it allows the local
equations of the substructure to be satisfied exactly. This enables us to build
shape functions which have a strong physical meaning. The boundary con-
ditions on the substructures are introduced through a variational approach
and satisfied by discretized shape functions, resulting in a finite-dimension
problem.

Construction of admissible fields

The construction of VTCR shape functions is detailed in [16]. Here,
we will limit ourselves to a brief description. The displacement/stress pair
vi = (ui, σi) is chosen in the spaces of the finite-energy fields Ui × Si in
order to satisfy both the local equilibrium equation and the substructure’s
constitutive law exactly.

Si
ad =

{
(ui, σi) ∈ Ui × Si such that

∣∣∣∣
div σi = −ρi ω2ui

σi = (1 + j ηi)Ki : ε(ui)

}
(7)

Such solutions are sought as two-scale approximation solutions:

ui(X) = Ui(X, k) ek(ω)·X within Ωi (8)
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Fig. 3 Examples of VTCR complex rays for a rectangular plate

where Ui is the large scale of the quantities which is assumed to vary slowly,
and the exponential part ek(ω)·X corresponds to the small scale, i.e. the
oscillating part of the vibration. Note that the wave number k is in-
troduced in a complex form: the imaginary part of k gives an
oscillating term and the real part of k - which is negative - stands
for the evanescent part of the wave together with the extenuation
due to the structural damping. The reason for not putting this
non-oscillating part in Ui is that it will be analytically known,
whereas Ui will remain an unknown in the problem.

The use of this approximation in Equations (7) leads to the domain of
definition of k(ω). For instance, the application to the vibrations of isotropic
plates in bending yields:

(1 + j ηi)Ei h2
i

12 (1 − ν2
i )

∆∆ui = ρi ω2 ui (9)

where Ei, νi and hi denote the Young’s modulus, Poisson’s ratio and thick-
ness of the plate respectively. Then, the complex wave number k must satisfy
the classical dispersion equation:

|k|4 =
12 (1 − ν2

i ) ρi ω2

(1 + j ηi)Ei h2
i

(10)

For plates, these functions describe the vibration solutions in an un-
bounded plane, a half-plane or a quadrant (see Figure 3). The oscillat-
ing part of what we call complex rays is known explicitly. Consequently,
Ui(X, k) vary very slowly and can be described by only a few unknowns.

Variational form of the boundary conditions

The boundary conditions on ∂Ωi are satisfied weakly for any test func-
tion δvi through the following variational equation, which expresses the
compatibility of Substructure Ωi with the prescribed interface forces Si:

Compatibility of Substructure Ωi with the interface
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Find vi ∈ Si
ad such that:

Ai(δvi, vi) + Bi(δvi, Si) = Li(δvi) ∀ δvi ∈ Si
ad

(11)

where Ai and Bi are nonsymmetrical bilinear operators defined by:

Ai(δvi, vi) = Re

{
−jω

[∫

∂uΩi

(δσi · ni) · u
∗
i dl +

∫

∂FΩi

(σi · ni) · δu
∗
i dl

+

∫

∂Γ Ωi

(σi · ni) · δu
∗
i dl

]}
(12)

Bi(δvi, Si) = Re

{
jω

[∫

∂Γ Ωi

Si · δu
∗
i dl

]}
(13)

and Li is a linear form given by:

Li(δvi) = Re

{
−jω

[∫

∂uΩi

(δσi · ni) · u
∗
id dl +

∫

∂FΩi

Fid · δu∗
i dl

]}
(14)

Re(a) and a∗ designate respectively the real part and the conjugate
of a complex quantity a. This variational formulation can be viewed as
the expression of the balance of the virtual powers at the boundary of
Substructure Ωi. Let us note that the use of the real part Re(−jω) is not an
approximation because the imaginary part would lead to exactly the same
system. The variational form (11) is equivalent to the substructure problem
(6) under the following conditions which, in practice, are not restrictive [14]:

– the substructure reference problem (6) has a solution,
– Hooke’s tensor Ki is positive definite,
– the structural damping ratio ηi is strictly positive.

3.2 The reliable experimental data

Now, we will define a cost function in order to quantify the satisfaction of
the unreliable equations. We will compare the numerical solution and the
experimental solution using the projector Π̃u

(eXn, eθn)
defined in 2.1. In order

to ensure that the measurement points and their orientations are reliable,
we define the corresponding projectors Πu for the numerical model and
choose the same points X̃n and orientations θ̃n:

Πu

(eXn, eθn)
: u 7−→ u(X̃n) · θ̃n (15)

The reliable location X̃F and orientation θ̃F of excitation force F̃ are
applied by prescribing the corresponding force in the numerical simulation.
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Finally, the measured angular frequency ω̃ is enforced precisely by set-
ting exactly the same value in the VTCR simulation. Therefore, both the
variational formulation (11) and the construction of admissible complex rays
(7) use the experimental value ω = ω̃ of the frequency.

4 Construction of the cost function from the unreliable
information

The unreliable information on the models will be satisfied only approxi-
mately through a compromise solution obtained by minimizing a cost func-
tion composed of two terms: an interface residual (which quantifies the
satisfaction of the interface equations) and a measurement term (which
represents a distance between the experimental and numerical solutions).

4.1 The interface residual

The interface residual E2
int, also called the model error, is obtained as an

L2 error in the interface equations (5):

E2
int(w, w) =

1

N1

∫

Γ

∥∥∥∥S1 + S2 + ω2µ
w1 + w2

2

∥∥∥∥
2

dl

+
1

N2

∫

Γ

∥∥∥∥
S1 − S2

2
+ k (w2 − w1)

∥∥∥∥
2

dl (16)

where N1 and N2 are normalisation/weighting parameters used to balance
the two terms of the interface error. Let us note that this residual is a
quadratic form of the unknowns wi and Si. For the purpose of this paper,
N1 and N2 were chosen equal to 1.

If the interface error is zero, the solution satisfies the interface equa-
tions exactly. From a technical point of view, this residual is polluted by
approximation errors (essentially discretization errors) due to the numeri-
cal resolution of the problem. Then, the magnitude of the residual must be
compared to the discretization error of the VTCR.

4.2 The measurement term

The measurement term is constructed as a distance between the numerical
and experimental results obtained by Projectors Π and Π̃ respectively:

E2
mes(v, v) =

∥∥∥Πu(u) − Π̃u(ũ)
∥∥∥

2

u

+
∥∥∥ΠF(u) − Π̃F(ũ)

∥∥∥
2

F

=
∑

n

∣∣∣u(X̃n) · θ̃n − ũ(X̃n) · θ̃n

∣∣∣
2

u

+
∣∣∣Fd − F̃d

∣∣∣
2

F

(17)
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The norms are chosen such that the two terms are balanced. Finally, the
measurement term is adjusted in order to be expressed in the same units as
the interface term.

If this error is zero, the numerical solution matches the experimental
solution exactly. In practice, this residual is inevitably polluted by mea-
surement noise.

4.3 The final direct and inverse problems

The solution of the modified problem is obtained by minimizing the cost
function, which is the weighted sum of the two residuals defined previously:

E2
mod = (1 − r)E2

int + r E2
mes (18)

E2
mod is also called the modified residual because in the absence of the

measurement term it would be equivalent to the continuous reference prob-
lem. Parameter r can be used to assign greater confidence to the interface
error or to the measurement error depending on the precision of the exper-
imental setup and one’s knowledge of the interface’s behavior.

The final problem consists in minimizing this residual over the unreliable
information while satisfying all the reliable equations:

The modified problem

Find (ui, σi, wi, Si) such that:

• (ui, σi, wi, Si) satisfy the admissible equations (11),

• (ui, σi, wi, Si) minimize the modified residual (18).

(19)

If r = 0, the solution does not depend on the experimental data. If
r = 1, the solution does not take into account the proposed interface model.
In all other cases, the solution is a compromise among the sets of unreliable
equations. An often used value for r is about 0.8. This will be our choice in
the rest of the paper.

The calculated solution and the magnitudes of the terms of the residual
depend on the assumed values of the interface’s mass and stiffness param-
eters µ and k. The inverse problem consists in finding the optimum values
of these interface parameters. Then, the calculated residual becomes a cost
function in an optimization scheme:

The inverse problem

Find the optimum interface parameters popt = (µopt, kopt) such that:

popt minimizes the cost function E2
mod(p) (20)
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This step is nonlinear and can be solved by classical optimization schemes,
such as Newton methods.

4.4 Discretization of the problem

The previous problem must be solved numerically. This section describes
the discretization process which leads to a finite-dimension problem.

Discretization of the substructure unknowns (u, σ)

The discretization of the substructure unknowns (u, σ) is obtained by
using a subspace of the admissibility space Sad defined in Equations (7).
Following Equation (8), these admissible solutions are decomposed accord-
ing to a small scale ek(ω)·X and a large scale U(X, k), which becomes the
unknown. First, we assume in this paper that the large scale U varies suffi-
ciently slowly with respect to the spatial coordinates that it can be consid-
ered to remain constant with respect to X. Let us note that according to
previous papers on the VTCR this assumption gives very accurate results,
but other possible descriptions (e.g. a polynomial dependence with respect
to X [14]) have also been studied.

Discretization involves making assumptions about the variation of the
large scale U with respect to the propagation direction k. For example, in
the case of interior complex rays, real part of k follows a curve Cint which
is a circle of radius k0 (see Figure 4 left) given by:

k4
0 =

3 ρ (1 − ν2)

E h2
(21)

For edge and corner complex rays, the corresponding loci of k are denoted
Cedg and Ccor. The continuous description of the displacement field u is
given by:

u(X) =

∫

k(α)∈ Cint∪Cedg∪Ccor

U(k(α)) · ek(α)·X dα (22)

Then, curve Cint is split into Nu non-overlapping angular sectors denoted
Ci = [αi, αi+1]. The discretized description of the large scale U is chosen
to be constant over each angular sector Ci. For example, Figure 4 (right)
shows an approximation in which Cint is composed of eight equal angular
sectors. Then, the displacement can be approximated by the following finite
dimension approximation uh:

uh ∈ Sh
ad ⇔ uh(X) =

Nu∑

i=1

[
Ui ·

∫

α∈Ci

ek(α)·X dα

]
=

Nu∑

i=1

Ui · Φi(X)

(23)
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0
k

Fig. 4 Locus of admissible k for interior VTCR modes (left); discretized repre-
sentation of the amplitude U(k) (right)

where Φi is a known shape function. This choice retains for k an integral
representation in which no propagation direction is missing. As in the case
of finite elements, the representation can be enriched by refining the mesh
over Cint, i.e. by increasing the number of angular sectors Nu, which is very
similar to the h-method. Another option would be to choose a more complex
representation (e.g. linear or quadratic) for a particular sector, which can
be viewed as a VTCR equivalent of the p-method. Let us note that the
final representation of u also involves shape functions Φi relative to edge
and corner complex rays which are obtained in a very similar way. Previous
studies showed that if such local modes are missing the medium-frequency
response cannot be calculated correctly.

Discretization of the interface unknowns (w, S)

In order to obtain a finite-dimension formulation, the interface quan-
tities (w, S) must also be discretized. Since (w, S) are equivalent to the
substructure quantities (u, σ), it seems natural to choose to represent them
using the same type of approximation space. From a theoretical point of
view, one could seek wh in the same approximation space Sh

ad as uh or
in a subspace of Sh

ad. For example, one could omit some modes which are
far removed from Interface Γ . According to our personal experience, such
omissions could lead to inaccurate results in certain situations. In practice,
they would not be worthwhile anyway since the number of complex rays
remains quite reasonably small (less than 100 complex rays per substruc-
ture unknown, plus the same number for the associated interface quantity).
Consequently, in this paper, wh will be sought in the same way as uh, but
the interface shape functions will be denoted Ψi to indicate that they can



Title Suppressed Due to Excessive Length 15

be different from the substructure shape functions Φi:

wh ∈ Sh
ad ⇔ wh(X) =

Nw∑

i=1

Wi · Ψi(X) (24)

4.5 The associated matrix problems

Applying the previous discretizations (23) and (24) to the substructure/inter-
face compatibility equations (11), one gets the following linear system which
expresses substructure admissibility:

KA
k, l Ul + KB

k, l Wl = Fk (25)

where the matrix terms come from the operators involved in the variational
formulation (11):

KA
k, l = A(Φk, Φl)

KB
k, l = B(Φk, Ψl)

Fk = L(Φk)

(26)

By defining the complete vector of the unknowns YT =
[
UT WT

]
and

by assembling the complete admissibility matrix Kadm =
[
KA KB

]
, the

previous admissibility system can be rewritten as:

Kadm
k, l Yl = Fk (27)

Similarly, the residual terms E2
mod, E2

int and E2
mes inherit the following

form from Equations (16), (17) and (18):

E2
mod = (1 − r)E2

int + r E2
mes

=
(1 − r)

2
YT Kint Y +

r

2
YT Kmes Y =

1

2
YT Kmod Y

(28)

with the notations:

Kint
i, j = 2 E2

int(Ψi, Ψj)

Kmes
i, j = 2 E2

mes(Φi, Φj)

Kmod
i, j = (1 − r)Kint

i, j + r Kmes
i, j

(29)

Matrix form of the modified problem (19)

The solution Ys of the modified problem is obtained by minimizing the
previous quadratic residual E2

mod under the admissibility constraints (27).
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This is done by introducing Lagrange multipliers λ, leading to the following
linear problem:

[
Kmod KadmT

Kadm 0

]
·

[
Ys

λs

]
=

[
0
F

]
(30)

Due to the choice of the VTCR as the numerical framework, the total
number of unknowns remain very reasonable. Let us note that the admissi-
bility matrix Kadm is independent of the interface parameters and can be
calculated once and for all. This is very interesting economically since the
inverse problem is part of an iterative scheme to identify the joint parame-
ters.

Matrix form of the inverse problem (20)

Since the interface matrix Kmod depends on the assumed mass and stiff-
ness parameters p = (µ, k) of the interface, so does the solution Ys of the
modified problem. Then, the inverse problem consists in finding the op-
timum parameters which minimize the modified residual used as the cost
function:

Find the optimum interface parameters popt = (µopt, kopt) such that:

popt minimize the cost function E2
mod(p) =

1

2
Ys(p)

T
Kmod(p) Ys(p)

(31)
Currently, this nonlinear step is carried out using classical optimization

schemes.

5 Application: identification of joint parameters using
numerically simulated experimental data

5.1 Numerical example: identification of a joint between two plates

The first example consists of two plates connected by a complex interface.
For the sake of simplicity, the joint is assumed to have perfectly rigid Kirch-
hoff shear behavior, so we need to identify only the joint’s bending moment
behavior. The joint model used here takes into account a joint stiff-
ness k, and a joint dissipation which is introduced in the form of
a joint loss factor denoted by ζ. Note that ζ pertains to the joint
damping and one should not confuse with internal damping η of
substructures. The aim of this section is to show an application
of identification of joint’s parameter k with the method which has
been introduced in the previous part. The influence of assumed
joint damping ζ on the identification results will also be stud-
ied. The identification of ζ is not described here since it will be
adressed in a forthcoming paper.
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Lx x Ly = 1 m x 1 m

h = 0.0007 m

ρ = 7800 kg.m− 3

E = 210E9 Pa

ν = 0.3

η = 0.01

Fig. 5 Example of two plates connected by a joint to be identified

The exact experimental values of the joint’s parameters are given in
Table 2.

First example Second example Third example

Measurement noise - ± 20 % ± 20 %
Joint stiffness (N.m) 101.5 101.5 101.5

Exact joint damping 0.1 0.1 0.1 and 10
Assumed joint damping 0.1 0.1 variable

Table 2 Experimental (numerically simulated) values of the interface parameters

For example, let us consider a fixed frequency equal to a resonance fre-
quency 155 Hz which leads to several wavelengths along the characteris-
tic dimension of the structure. The first plate is subjected to prescribed
Kirchhoff shear while the second plate is clamped rigidly (see Figure 5).
The experimental data were obtained by VTCR simulation. In order to
get reliable experimental information, we chose to simulate field measure-
ments (as opposed to point measurements) using the measurement mesh
represented on the figure. Indeed, in the medium-frequency range, classi-
cal measurement techniques (essentially point measurements) would not be
useful because they would give only very local information. This type of
measurement usually implies intrusive techniques which would modify the
local behavior of the structure. (At high frequencies, the response is very
sensitive to additional masses or stiffnesses.) Also, the structure is very sen-
sitive to various parameters (not only joint parameters, but also geometric
parameters): therefore, a local representation would provide unreliable in-
formation which could be polluted by very local modes likely to appear in
this frequency range. On the contrary, field measurements can lead to very
rich experimental information using nonintrusive tools such as laser vibrom-
eter. VTCR simulations were carried out using 100 degrees of freedom per
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Fig. 6 Cost function, interface error and measurement term as functions of the
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Fig. 7 Cost function, interface error and measurement term as a function of the
interface stiffness, with exact assumed interface damping and ± 20 % noise

plate: 64 interior complex rays, 9 edge complex rays per edge, and 0 corner
complex rays. The interface unknowns were discretized in the same way.
The final number of DOFs in the linear system (30) was 400. The parame-
ter r which balances the two terms of the cost function was set equal to the
classical value 0.8.

The first result represents an ideal case in which the measurements are
built without noise and the assumed interface damping is equal to the exact
value. Figure 6 shows the evolution of the residual E2

mod as a function of
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of the error in assumed interface damping and a slightly dissipative joint (ζ = 0.1,
± 20% noise)

the joint stiffness parameter k. The vertical dotted line corresponds to the
actual stiffness kex. This curve shows that the minimization process easily
leads to the exact value of the interface parameter kex. The interface error
E2

int and the measurement term E2
mes are also shown. We can observe that

the latter is numerically zero for the exact value kex due to the absence
of noise. However, the interface error is minimum for kex, but is not zero:
this minimum value represents the approximation error due to the VTCR
numerical framework. The discretization which was chosen yields an order
of magnitude of the error between 10−3 and 10−2.

The second calculation was performed in the presence of measurement
noise. Each measured value was polluted by a uniformly distributed white
noise. The corresponding curves are given in Figure 7. Despite the noise,
the minimum of the cost function E2

mod points to the exact value of kex.
This due to two reasons: the cost function represents a compromise between
the experiment and the interface model which regularizes the identification
process, and the field measurements induce a sort of averaging process which
stabilizes the identification against noise. The only difference from the ideal
case is that the measurement term is no longer zero, but represents the noise
level injected into the measurements.

The last cases were calculated in the presence of errors in the inter-
face damping coefficient ζ. Figures 8 and 9 show the evolution of the cost
function with the interface stiffness for a slightly dissipative joint and for
a highly dissipative joint. One can observe two types of results: if the joint
dissipation is small (9% of the total dissipated energy, Figure 8), the mini-
mum of the cost function is not polluted by the error in the joint damping
parameter, even if this error is huge. Conversely, if the joint dissipation is
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Fig. 9 Cost function as a function of the interface stiffness, with different values
of the error in assumed interface damping and a highly dissipative joint (ζ = 10,
± 20% noise)

large (68% of the total dissipated energy, Figure 9) it becomes impossible to
obtain a proper identified stiffness. This can be explained by the fact
that on this particular example both the interface stiffness and
the interface damping govern the distribution of energy between
the plates. In the presence of an error in joint damping, the iden-
tified interface stiffness tends to readjust the energy distribution
to counterbalance the effect of the erroneous interface damping
factor.

5.2 Numerical example: identification of four joints connecting four plates

The second structure, shown in Figure 10, consists of four identical plates
connected by four different joints. The objective of this section is to check
whether our method enables one to find out where the main modeling errors
are localized. Indeed, an industrial structure consists of many substructures
and joints. In such a case, the number of interface parameters which need
to be identified can be very large. A possible strategy, which was already
validated for the improvement of finite element models [5], consists in seek-
ing the most poorly modeled zones. Only the elements in these zones are
marked for correction, which reduces the number of parameters in the op-
timization process. After a first correction step, another localization step is
carried out and if other elements show significant errors they are marked
and corrected, too, and so on.

Table 3 summarizes the value of each joint parameter for the real struc-
ture and for the assumed initial structure. In this example, the interface
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Lx x Ly = 1 m x 1 m

h = 0.0007 m

ρ = 7800 kg.m− 3

E = 210E9 Pa

ν = 0.3

η = 0.01

Fig. 10 Example of four plates connected by four joints to be identified

log k (N.m) Γ1 Γ2 Γ3 Γ4

Experimental 0.5 4.5 2 1.5
Numerical (start) 2.00 2.00 2.00 2.00

Table 3 Experimental (numerically simulated) and assumed initial stiffnesses

damping coefficients are set to zero and are not sought for correction. With
four joints connecting the substructures, the interface residual is defined as
the sum of the residuals E2

Γi
of each joint equation:

E2
int = α1 E2

Γ1
+ α2 E2

Γ3
+ α3 E2

Γ4
+ α4 E2

Γ4
(32)

where αi are weighting coefficients which enable us to increase the confidence
level in some joints which are known more precisely (e.g. joints which have
already been tested). If all the interfaces are equally poorly known, one takes
αi = 1

Nint
, Nint being the number of joints in the structure. The VTCR

calculations required 864 degrees of freedom. Each substructure unknown
was discretized into 48 interior complex rays, 13 edge complex rays per
edge and 1 corner ray per corner. We chose to underdiscretize the interface
unknowns by using 0 interior complex rays, 13 edge complex rays per edge
and 1 corner ray per corner. The measurements were field measurements
produced with a mesh size equal to 0.1 m. The experimental results were
perturbed by ± 10 % uniform white noise.

Table 4 summarizes the results of the identification process. The first
residual calculation identified Γ1 and Γ2 as being modeled very poorly, while
the error in the other two joints was small. The first stiffness was corrected:
the optimum value decreased (1.36) and the error on Γ1 was reduced signifi-
cantly. Then, Γ2 was selected as the most erroneous joint and was corrected
to a nearly exact stiffness (2.94 instead of 3.00). In the third correction step,
the first joint was selected again and, this time, the identified stiffness be-
came virtually exact (0.99 instead of 1.00). After another small correction
of Γ2, the total residual remained practically constant. This was also the
case of the subsequent steps, which are not represented in the table because
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Initial Step 1 Step 2 Step 3 Step 4

log ki E2

Γi
log ki E2

Γi
log ki E2

Γi
log ki E2

Γi
log ki E2

Γi

(N.m) % (N.m) % (N.m) % (N.m) % (N.m) %
Γ1 2.00 8.61 1.36 1.85 1.36 1.14 0.99 0.21 0.99 0.22
Γ2 2.00 7.85 2.00 11.57 2.94 0.78 2.94 0.85 3.02 0.77

Γ3 2.00 0.62 2.00 0.86 2.00 0.23 2.00 0.23 2.00 0.23
Γ4 2.00 0.67 2.00 0.13 2.00 0.15 2.00 0.11 2.00 0.11

E2

mod 2.27 % 1.74 % 0.88 % 0.84 % 0.83 %

Table 4 Iterative correction steps for the structure with four joints. The values
in bold mark the joint selected for correction at each step

no correction was made. It is impossible to obtain better parameters than
those produced in the fourth step. With this level of error (0.83 %) the main
contribution to the cost function is that of the measurement term, which
represents the level of measurement noise in the experimental results.

5.3 Example: identification of a joint from actual experimental data

In this final section, we present a first application using actual experimental
data. The structure is a steel plate folded in the middle. The folding pro-
cess introduces a local thickness variation along the fold line. The resulting
“joint” was modeled by a line spring whose unknown stiffness we wanted
to identify. For the purpose of the measurements, the structure was simply
supported by two needles along the joint and loaded by a third needle: see
Figure 11 (left). We chose this experimental setup in order to avoid any dis-
sipation other than structural (material and interface). The dissipation due
to air movement was neglected since the order of magnitude of the displace-
ments was 10−5 m. The excitation needle was equipped with an impedance
head in order to measure both the force and the acceleration at this point.
Throughout the test, we checked that the force was always positive, thus
ensuring that contact was maintained. In order not to perturb the structural
response, contact-free measurements of the surface vibration velocity field
were carried out using an OMETRON laser vibrometer driven by a PULSE
system [25].

Figure 11 (left) shows the measurement mesh, which consisted of 18x18
points distributed equally over the vertical plate. No measurement was taken
for the horizontal plate, except at the excitation point. Figure 12 shows
the displacement field obtained at 550 Hz, which is a resonance peak (see
Figure 11, right). One can observe that a few points experience noise due
to the measurement process. At this stage, no attempt was made to smooth
the measurement data: the erroneous measurements were used in the same
way as those of the other points in the measurement term of the updating
process.

Due to the folding process, the connection between the two plates was
unknown and was initially assumed to be very stiff (k0 = 105 N.m). In
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Fig. 12 The experimental displacement field at 550 Hz

this example, since there were no contact phenomena at the interface be-
tween the plates, the joint’s damping was not taken into account. Table 5
summarizes the reliable and unreliable information for this identification
example.

Continuous model Experimental model

Reliable Reliable

Substructure geometry and material Angular frequency eω = 550 Hz

Lx = Ly = 0.2 m h = 0.0007 m Locations of the measurement points eXn

E = 210 Gpa ν = 0.3 Orientations of the measurement points eθn

ρ = 7, 800 kg.m−3 η = 0.0001 Applied force eFd

Unreliable Unreliable

Interface constitutive law (k) Magnitudes of the displacements eu( eXn)

Table 5 Reliable and unreliable information for the inverse problem
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Fig. 13 Initial (left) and updated (right) numerical models

The simulation produced the results shown in Figure 13 (left) with a
residual error of about 37 %. As in the previous examples, the joint’s equa-
tions were subjected to the updating process, which returned an identified
stiffness equal to kopt = 102.4 N.m and a final error of about 8.8 %. One
should note that no measurement regularization was performed. In fact,
regularization came from the field measurements (which generated a large
amount of data) and from the balance between the two terms of the cost
function. The optimization process enabled us to improve the joint’s stiff-
ness: Figure 13 (right) shows the response of the updated structure, which
is very close to the experimental response. The cost function is shown in
Figure 14.

If we had wanted to take damping into account, we could not have
identified a damping coefficient at this frequency. This is due to the fact that
in this situation the energy dissipated in the joint is negligible compared
to the power injected into the structure: most of the energy is dissipated
by the plate’s material. Therefore, even a slight imprecision in the plate’s
damping coefficient η given by the manufacturer would have completely
polluted the identification of the joint’s damping. For a successful joint
damping identification, the material damping at this resonance frequency
should be known very precisely.

6 Conclusion

This paper presents the theoretical foundations of an identification method
dedicated to the modeling of joints in the medium-frequency range. This
approach is based on two main concepts. First, the information is treated
according to its level of reliability: the reliable equations are satisfied exactly
while the unreliable equations lead to a mixed experimental-numerical resid-
ual whose minimum is a compromise among these unreliable equations. Sec-
ond, the formulation was tailored to the variational theory of complex rays,
a numerical framework which presents advantages in the medium-frequency
range. This was achieved through the introduction of interface unknowns
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using a domain decomposition method. The problem’s discretized formula-
tion, which we presented in detail, leads to a very reasonably small matrix
system. This approach was validated on two numerical examples: the iden-
tification of a joint in a folded plate and the identification of four different
joints connecting four plates. The identification method leads to an accurate
simulated stiffness and appears to be very robust in the presence of mea-
surement noise. When other sources of modeling errors are present in the
structure (in our case, the joint’s damping), the robustness of the method
seems to depend on the influence of this erroneous parameter. The last ex-
ample was based on actual experimental results. The identification method
gave promising results for joint’s stiffness, even though the use of more
complex joint behavior should lead to an even better response. Identifica-
tion of joint’s damping will be adressed in a forthcoming paper.
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16. P. Ladevèze, P. Rouch, H. Riou, and X. Bohineust. Analysis of medium-
frequency vibrations in a frequency range. Jnl of Comp. Acoustic, 11(2):255–
283, 2003.

17. S. Lammens, M. Brughmans, J. Leuridan, W. Heylen, and P. Sas. Application
of a FRF based model updating technique for the validation of a finite element
model of components of the automotive industry. In Proc. Design Engineering

Technical Conferences, pages 1191–1200, Boston, 1995. ASME Conferences.

18. R. S. Langley. A wave intensity technique for the analysis of high frequency
vibrations. Journal of Sound and Vibration, 159:483–502, 1992.

19. R. Lyon and R. Dejong. Theory and Application of Statistical Energy Analysis.
Butterworth Heinemann, Newton, MA, 2nd edition, 1995.

20. B.K. Nanda and A.K. Behera. Study of damping in layered and jointed
structures with uniform pressure distribution at the interface. Journal of

Sound and Vibration, 226(4):607–624, 1999.

21. S. H. Nefske, D. J. Ans Sung. Power flow finite element analysis of dynamic
systems: Basic theory and application to beams. ASME Publication NCA,
3:47–54, 1987.

22. H.M. Nguyen, O. Allix, and P. Feissel. Application of the CRE for parameter
identification in nonlinear dynamics with corrupted measurements. In IACM,



Title Suppressed Due to Excessive Length 27

editor, 7th World Congress on Computational Mechanics, California, USA,
2006.

23. R. Pascual, J.C. Golinval, and M. Razeto. A frequency domain correlation
technique for model correlation. In Proc. IMAC XV, pages 587–592, Orlando,
Florida, 1998. S.E.M. Editor.

24. J. Piranda, G. Lallement, and S. Cogan. Parametric correction of finite el-
ement models by minimization of an output residual: Improvement of the
sensitivity method. In Proc. IMAC IX, pages 363–368, Firenze, Italy, 1991.
S.E.M. Editor.

25. Bruel & Kjær. PULSE Sound and Vibration Multi-analyser.
http://www.bksv.com/.

26. T. Strouboulis, I. Babuska, and R. Hidajat. The generalized finite element
method for Helmholtz equation: Theory, computations and open problems.
Comput. Meth. Appl. Mech. Engrg., 195:4711–4731, 2006.


