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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Low Complexity Regularization
of Linear Inverse Problems

Samuel Vaiter, Gabriel Peyré and Jalal Fadili

Abstract Inverse problems and regularization theory is a central theme in imaging

sciences, statistics and machine learning. The goal is to reconstruct an unknown

vector from partial indirect, and possibly noisy, measurements of it. A now stan-

dard method for recovering the unknown vector is to solve a convex optimization

problem that enforces some prior knowledge about its structure. This chapter de-

livers a review of recent advances in the field where the regularization prior pro-

motes solutions conforming to some notion of simplicity/low-complexity. These

priors encompass as popular examples sparsity and group sparsity (to capture the

compressibility of natural signals and images), total variation and analysis sparsity

(to promote piecewise regularity), and low-rank (as natural extension of sparsity

to matrix-valued data). Our aim is to provide a unified treatment of all these regu-

larizations under a single umbrella, namely the theory of partial smoothness. This

framework is very general and accommodates all low-complexity regularizers just

mentioned, as well as many others. Partial smoothness turns out to be the canonical

way to encode low-dimensional models that can be linear spaces or more general

smooth manifolds. This review is intended to serve as a one stop shop toward the un-

derstanding of the theoretical properties of the so-regularized solutions. It covers a

large spectrum including: (i) recovery guarantees and stability to noise, both in terms

of ℓ2-stability and model (manifold) identification; (ii) sensitivity analysis to pertur-

bations of the parameters involved (in particular the observations), with applications

to unbiased risk estimation ; (iii) convergence properties of the forward-backward

proximal splitting scheme, that is particularly well suited to solve the corresponding

large-scale regularized optimization problem.
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1 Inverse Problems and Regularization

In this chapter, we deal with finite-dimensional linear inverse problems.

1.1 Forward Model

Let x0 ∈ RN be the unknown vector of interest. Suppose that we observe a vector

y ∈ RP of P linear measurements according to

y = Φx0 +w, (1)

where w ∈ RP is a vector of unknown errors contaminating the observations. The

forward model (1) offers a model for data acquisition that describes a wide range

of problems in data processing, including signal and image processing, statistics,

and machine learning. The linear operator Φ : RN → RP, assumed to be known, is

typically an idealization of the acquisition hardware in imaging science applications,

or the design matrix in a parametric statistical regression problem. The noise w can

be either deterministic (in this case, one typically assumes to know some bound on

its ℓ2 norm ‖w‖), or random (in which case its distribution is assumed to be known).

Except in Sections 4.4 and 5.3 where the noise is explicitly assumed random, w is

deterministic throughout the rest of the chapter. We refer to [191] and [22] for a

comprehensive account on noise models in imaging systems.

Solving an inverse problem amounts to recovering x0, to a good approximation,

knowing y and Φ according to (1). Unfortunately, the number of measurements

P can be much smaller than the ambient dimension N of the signal. Even when

P = N, the mapping Φ is in general ill-conditioned or even singular. This entails

that the inverse problem is in general ill-posed. In signal or image processing, one

might for instance think of Φ as a convolution with the camera point-spread func-

tion, or a subsampling accounting for low-resolution or damaged sensors. In med-

ical imaging, typical operators represent a (possibly subsampled) Radon transform

(for computerized tomography), a partial Fourier transform (for magnetic resonance

imaging), a propagation of the voltage/magnetic field from teh dipoles to the sen-

sors (for electro- or magneto-encephalography). In seismic imaging, the action of

Φ amounts to a convolution with a wavelet-like impulse response that approximates

the solution of a wave propagation equation in media with discontinuities. For re-

gression problems in statistics and machine learning, Φ is the design matrix whose

columns are P covariate vectors.
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1.2 Variational Regularization

As argued above, solving an inverse problem from the observations (1) is in general

ill-posed. In order to reach the land of well-posedness, it is necessary to restrict the

inversion process to a well-chosen subset of RN containing the plausible solutions

including x0; e.g. a linear space or a union of subspaces. A closely related proce-

dure, that we describe next, amounts to adopting a variational framework where the

sought-after solutions are those where a prior penalty/regularization function is the

smallest. Though this approach may have a maximum a posteriori Bayesian inter-

pretation, where a random prior is placed on x0, this is not the only interpretation.

In fact, we put no randomness whatsoever on the class of signals we look for. We

will not elaborate more on these differences in this chapter, but the reader may refer

to [119] for an insightful discussion.

The foundations of regularization theory can be traced back to the pioneering

work of the Russian school, and in particular of Tikhonov in 1943 when he pro-

posed the notion of conditional well-posedness. In 1963, Tikhonov [217, 218] intro-

duced what is now commonly referred to as Tikhonov (or also Tikhonov-Phillips)

regularization, see also the book [219]. This corresponds, for λ > 0, to solving an

optimization problem of the form

x⋆ ∈ Argmin
x∈RN

1

2λ
‖Φx− y‖2 + J(x). (Py,λ )

1.2.1 Data fidelity

In (Py,λ ), ‖Φx− y‖2
stands for the data fidelity term. If the noise happens to be ran-

dom, then using a likelihood argument, an appropriate fidelity term conforming to

the noise distribution can be used instead of the quadratic data fidelity. Clearly, it is

sufficient then to replace the latter by the negative log-likelihood of the distribution

underlying the noise. Think for instance of the Csiszár’s I-divergence for Poisson

noise. We would also like to stress that many of the results provided in this chapter

extend readily when the quadratic loss in the fidelity term, i.e. µ 7→ ‖y− µ‖2
, is re-

placed by any smooth and strongly convex function, see in particular Remark 13. To

make our exposition concrete and digestible, we focus in the sequel on the quadratic

loss.

1.2.2 Regularization

The function J : RN → R is the regularization term which is intended to promote

some prior on the vector to recover. We will consider throughout this chapter that

J is a convex finite-valued function. Convexity plays an important role at many lo-

cations, both on the recovery guarantees and the algorithmic part. See for instance

Section 6 which gives a brief overview of recent algorithms that are able to tackle



4 Samuel Vaiter, Gabriel Peyré and Jalal Fadili

this class of convex optimization problems. It is however important to realize that

non-convex regularizing penalties, as well as non-variational methods (e.g. greedy

algorithms), are routinely used for many problems such as sparse or low-rank re-

covery. They may even outperform in practice their convex counterparts/relaxation.

It is however beyond the scope of this chapter to describe these algorithms and the

associated theoretical performance guarantees. We refer to Section 2.1 for a brief

account on non-convex model selection approaches.

The scalar λ > 0 is the regularization parameter. It balances the trade-off between

fidelity and regularization. Intuitively, and anticipating on our theoretical results

hereafter, this parameter should be adapted to the noise level ‖w‖ and the known

properties of the vector x0 to recover. Selecting optimally and automatically λ for a

given problem is however difficult in general. This is at the hear of Section 5, where

unbiased risk estimation strategies are shown to offer a versatile solution.

Note that since Φ is generally not injective and J is not coercive, the objective

function of (Py,λ ) is neither coercive nor strictly convex. In turn, there might be

existence (of minimizers) issues, and even if minimizers exist, there are not unique

in general.

Under mild assumptions, problem (Py,λ ) is formally equivalent to the con-

strained formulations

min{J(x) ; ‖y−Φx‖6 ε} , (P1
y,ε )

min{‖y−Φx‖ ; J(x)6 γ} , (P2
y,γ )

in the sense that there exists a bijection between each pair of parameters among

(λ ,ε,γ) so that the corresponding problems share the same set of solutions. How-

ever, this bijection is not explicit and depends on y, so that both from an algorithmic

point of view and a theoretical one, each problem may need to be addressed sep-

arately. See the recent paper [60] and references therein for a detailed discussion,

and [154, Theorem 2.3] valid also in the non-convex case. We focus in this chap-

ter on the penalized/Tikhonov formulation (Py,λ ), though most of the results stated

can be extended to deal with the constrained ones (P1
y,ε ) and (P2

y,γ ) (the former is

known as the residual method or Mozorov regularization and the latter as Ivanov

regularization in the inverse problems literature).

The value of λ should typically be an increasing function of ‖w‖. In the special

case where there is no noise, i.e. w = 0, the fidelity to data should be perfect, which

corresponds to considering the limit of (Py,λ ) as λ → 0+. Thus, assuming that

y ∈ Im(Φ), as is the case when w = 0, it can be proved that the solutions of (Py,λ )

converge to the solutions of the following constrained problem [217, 198]

x⋆ ∈ Argmin
x∈RN

J(x) subject to Φx = y. (Py,0)
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1.3 Notations

For any subspace T of RN , we denote PT the orthogonal projection onto T , xT =
PT (x) and ΦT =Φ PT . For a matrix A, we denote A∗ its transpose, and A+ its Moore-

Penrose pseudo-inverse. For a convex set E , aff(E) denotes its affine hull (i.e. the

smallest affine space containing it), and lin(E) its linear hull (i.e. the linear space

parallel to aff(E)). Its relative interior ri(E) is the interior for the topology of aff(E)
and rbd(E) is its relative boundary. For a manifold M , we denote TM (x) the tangent

space of M at x ∈ M . A good source on smooth manifold theory is [144].

A function J :RN →R∪{+∞} is said to be proper if it is not identically +∞. It is

said to be finite-valued if J(x)∈R for all x∈RN . We denote dom(J) the set of points

x where J(x) ∈ R is finite. J is said to be closed if its epigraph {(x,y) ; J(x)6 y} is

closed. For a set C ⊂ RN , the indicator function ιC is defined as ιC(x) = 0 if x ∈ C

and ιC(x) = +∞ otherwise.

We recall that the subdifferential at x of a proper and closed convex function

J : RN →R∪{+∞} is the set

∂J(x) =
{

η ∈ RN ; ∀δ ∈RN , J(x+ δ )> J(x)+ 〈η , δ 〉
}
.

Geometrically, when J is finite at x, ∂J(x) is the set of normals to the hyper-planes

supporting the graph of J and tangent to it at x. Thus, ∂J(x) is a closed convex

set. It is moreover bounded, hence compact, if and only if x ∈ int(dom(J)). The

size of the subdifferential at x ∈ dom(J) reflects in some sense the degree of non-

smoothness of J at x. The larger the subdifferential at x, the larger the “kink” of the

graph of J at x. In particular, if J is differentiable at x, then ∂J(x) is a singleton and

∂J(x) = {∇J(x)}.

As an illustrative example, the subdifferential of the absolute value is

∀x ∈ R, ∂ | · |(x) =
{

sign(x) if x 6= 0,
[−1,1] otherwise.

(2)

The ℓ1 norm

∀x ∈ RN , ‖x‖1 =
N

∑
i=1

|xi|

is a popular low-complexity prior (see Section 2.3.1 for more details). Formula (2)

is extended by separability to obtain the subdifferential of the ℓ1 norm

∂ ‖·‖1 (x) =
{

η ∈ RN ; ‖η‖∞ 6 1 and ∀ i ∈ I, sign(ηi) = sign(xi)
}

(3)

where I = supp(x) = {i ; xi 6= 0}. Note that at a point x ∈RN such that xi 6= 0 for all

i, ‖·‖1 is differentiable, and ∂ ‖·‖1 (x) = {sign(x)}.
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2 Low Complexity Priors

A recent trend in signal and image processing, statistics and machine learning is to

make use of large collections of so-called “models” to account for the complicated

structures of the data to handle. Generally speaking, these are manifolds M (most

of the time linear subspaces), and hopefully of low complexity (to be detailed later),

that capture the properties of the sought after signal, image or higher dimensional

data. In order to tractably manipulate these collections, the key idea underlying this

approach is to encode these manifolds in the non-smooth parts of the regularizer J.

As we detail here, the theory of partial smoothness turns out to be natural to provide

a mathematically grounded and unified description of these regularizing functions.

2.1 Model Selection

The general idea is thus to describe the data to recover using a large collection of

models M = {M }M∈M, which are manifolds. The “complexity” of elements in

such a manifold M is measured through a penalty pen(M ). A typical example is

simply the dimensionality of M , and it should reflect the intuitive notion of the

number of parameters underlying the description of the vector x0 ∈ M that one

aims at recovering from the noisy measurements of the form (1). As popular ex-

amples of such low complexity, one thinks of sparsity, piecewise regularity, or low

rank. Penalizing in accordance to some notion of complexity is a key idea, whose

roots can be traced back to the statistical and information theory literature, see for

instance [162, 2].

Within this setting, the inverse problem associated to the measurements (1) is

solved by restricting the inversion to an optimal manifold as selected by pen(M ).
Formally, this would correspond to solving (Py,λ ) with the combinatorial regular-

izer

J(x) = inf{pen(M ) ; M ∈M and x ∈ M } . (4)

A typical example of such a model selection framework is that with sparse sig-

nals, where the collection M corresponds to a union of subspaces, each of the form

M =
{

x ∈ RN ; supp(x)⊆ I
}
.

Here I ⊆ {1, . . . ,N} indexes the supports of signals in M , and can be arbitrary. In

this case, one uses pen(M ) = dim(M ) = |I|, so that the associated combinatorial

penalty is the so-called ℓ0 pseudo-norm

J(x) = ‖x‖0 = |supp(x)|= |{i ∈ {1, . . . ,N} ; xi 6= 0}|. (5)

Thus, solving (Py,λ ) is intended to select a few active variables (corresponding to

non-zero coefficients) in the recovered vector.
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These sparse models can be extended in many ways. For instance, piecewise

regular signals or images can be modeled using manifolds M that are parameterized

by the locations of the singularities and some low-order polynomial between these

singularities. The dimension of M thus grows with the number of singularities,

hence the complexity of the model.

Literature review. The model selection literature [17, 11, 18] proposes many the-

oretical results to quantify the performance of these approaches. However, a major

bottleneck of this class of methods is that the corresponding J function defined in (4)

is non-convex, and even not necessarily closed, thus typically leading to highly in-

tractable combinatorial optimization problems. For instance, in the case of the ℓ0

penalty (5) and for an arbitrary operator Φ , (Py,λ ) is known to be NP-hard, see

e.g. [168].

It then appears crucial to propose alternative strategies which allow to deploy fast

computational algorithms. A first line of work consists in finding stationary points

of (Py,λ ) using descent-like schemes. For instance, in the case of the ℓ0 pseudo-

norm, this can be achieved using iterative hard thresholding [20, 124], or iterative

reweighting schemes which consist of solving a sequence of weighted ℓ1- or ℓ2-

minimization problems where the weights used for the next iteration are computed

from the values of the current solution, see for instance [189, 49, 72] and references

therein. Another class of approaches is that of greedy algorithms. These are algo-

rithms which explore the set of possible manifolds M by progressively, actually

in a greedy fashion, increasing the value of pen(M ). The most popular schemes

are matching pursuit [161] and its orthogonal variant [180, 73], see also the com-

prehensive review [169] and references therein. The last line of research, which is

the backbone of this chapter, consists in considering convex regularizers which are

built in such away that they promote the same set of low-complexity manifolds M.

In some cases, the convex regularizer proves to be the convex hull of the initial

(restricted) non-convex combinatorial penalty (4). But these convex penalties can

also be designed without being necessarily convexified surrogates of the original

non-convex ones.

In the remainder of this section, we describe in detail a general framework that

allows model selection through the general class of convex partly smooth functions.

2.2 Encoding Models into Partly Smooth Functions

Before giving the precise definition of our class of convex priors, we define formally

the subspace Tx.

Definition 1 (Model tangent subspace). For any vector x ∈ RN , we define the

model tangent subspace of x associated to J

Tx = lin(∂J(x))⊥,
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In fact, the terminology “tangent” originates from the sharpness property of Defini-

tion 2(ii) below, when x belongs to the manifold M .

When J is differentiable at x, i.e. ∂J(x) = {∇J(x)}, one has Tx = RN . On the

contrary, when J is not smooth at x, the dimension of Tx is of a strictly smaller

dimension, and J essentially promotes elements living on or close to the affine space

x+Tx.

We can illustrate this using the ℓ1 norm J = ‖·‖1 defined in (2). Using formula (3)

for the subdifferential, one obtains that

Tx =
{

u ∈ RN ; supp(u)⊆ supp(x)
}
,

which is the set of vector having the same sparsity pattern as x.

Toward the goal of studying the recovery guarantees of problem (4), our central

assumption is that J is a partly smooth function relative to some manifold M . Partial

smoothness of functions was originally defined [146]. Loosely speaking, a partly

smooth function behaves smoothly as we move on the manifold M , and sharply if

we move normal to it. Our definition hereafter specializes that of [146] to the case

of finite-valued convex functions.

Definition 2. Let J be a finite-valued convex function. J is partly smooth at x rela-

tive to a set M containing x if

(i) (Smoothness) M is a C2-manifold around x and J restricted to M is C2

around x.

(ii) (Sharpness) The tangent space TM (x) is Tx.

(iii) (Continuity) The set-valued mapping ∂J is continuous at x relative to M .

J is said to be partly smooth relative to a set M if M is a manifold and J is partly

smooth at each point x ∈ M relative to M . J is said to be locally partly smooth at

x relative to a set M if M is a manifold and there exists a neighbourhood U of x

such that J is partly smooth at each point of M ∩U relative to M .

Remark 1 (Uniqueness of M ). In the previous definition, M needs only to be de-

fined locally around x, and it can be shown to be locally unique, see [130, Corol-

lary 4.2]. In the following we will thus often denote Mx any such a manifold for

which J is partly smooth at x.

Taking once again the example of J = ‖·‖1, one sees that in this case, Mx = Tx

because this function is polyhedral. Section 2.3.6 bellow defines fonctions J for

which Mx differs in general from Tx.

2.3 Examples of Partly Smooth Regularizers

We describe below some popular examples of partly smooth regularizers that are

widely used in signal and image processing, statistics and machine learning. We
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first expose basic building blocks (sparsity, group sparsity, anti-sparsity) and then

show how the machinery of partial smoothness enables a powerful calculus to create

new priors (using pre- and post-composition, spectral lifting, and positive linear

combinations).

2.3.1 ℓ1 Sparsity

One of the most popular non-quadratic convex regularization is the ℓ1 norm

J(x) = ‖x‖1 =
N

∑
i=1

|xi|,

which promotes sparsity. Indeed, it is easy to check that J is partly smooth at x

relative to the subspace

Mx = Tx =
{

u ∈ RN ; supp(u)⊆ supp(x)
}
.

Another equivalent way to interpret this ℓ1 prior is that it is the convex enveloppe

(restricted to the ℓ2-ball) of the ℓ0 pseudo-norm (5), in the sense that the ℓ1-unit ball

is the convex hull of the restriction of the unit ball of the ℓ0-pseudo norm to the

ℓ2-unit ball.

Literature review. The use of the ℓ1 norm as a sparsity-promoting regularizer

traces back several decades. An early application was deconvolution in seismol-

ogy [61, 197, 212]. Rigorous recovery results began to appear in the late 1980’s

[81, 80]. In the mid-1990’s, ℓ1 regularization of least-square problems has been

popularized in the signal processing literature under the name basis pursuit [58] and

in the statistics literature under the name Lasso [213]. Since then, the applications

and understanding of ℓ1 minimization have continued to increase dramatically.

2.3.2 ℓ1 − ℓ2 Group Sparsity

To better capture the sparsity pattern of natural signals and images, it is useful to

structure the sparsity into non-overlapping groups B such that
⋃

b∈B b= {1, . . . ,N}.

This group structure is enforced by using typically the mixed ℓ1 − ℓ2 norm

J(x) = ‖x‖1,B = ∑
b∈B

‖xb‖ , (6)

where xb = (xi)i∈b ∈ R|b|. Unlike the ℓ1 norm, and except the case |b| = 1 for all

b ∈ B, the ℓ1 − ℓ2 norm is not polyhedral, but is still partly smooth at x relative to

the linear manifold

Mx = Tx = {u ; suppB(u)⊆ suppB(x)} where suppB(x) =
⋃

{b ; xb 6= 0} .
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Literature review. The idea of group/block sparsity has been first proposed

by [127, 126, 31] for wavelet block shrinkage, i.e. when Φ = Id. For over-determined

regression problems of the form (1), it has been introduced by [9, 244]. Group spar-

sity has also been extensively used in machine learning in e.g. [7] (regression and

mutiple kernel learning) and [175] (for multi-task learning).The wavelet coefficients

of a natural image typical exhibit some group structure, see [160] and references

therein on natural image modeling. Indeed, edges and textures induce strong depen-

dencies between coefficients. In audio processing, it has proved useful to structure

sparsity in multi-channel data [121]. Group sparsity is also at the heart of the so-

called multiple measurements vector (MMV) model, see for instance [69, 57]. It is

possible to replace the ℓ2 norm with more general functionals, such as ℓp norms for

p > 1, see for instance [225, 171, 237].

2.3.3 ℓ∞ Anti-sparsity

In some cases, the vector to be reconstructed is expected to be flat. Such a prior can

be captured using the ℓ∞ norm

J(x) = ‖x‖∞ = max
i∈{1,...,n}

|xi|.

It can be readily checked that this regularizer is partly smooth (in fact polyhedral)

relative to the subspace

Mx = Tx = {u ; uI = ρxI for some ρ ∈ R} , where I = {i ; xi = ‖x‖∞} .

Literature review.

The ℓ∞ regularization has found applications in computer vision, such as for

database image retrieval [137]. For this application, it is indeed useful to have a

compact signature of a signal x, ideally with only two values ±‖x‖∞ (thus achiev-

ing optimal anti-sparsity since dim(Tx) = 1 in such a case). An approach proposed

in [138] for realizing this binary quantification is to compute these vectors as so-

lutions of (Py,λ ) for J = ‖·‖∞ and a random Φ . A study of this regularization is

done in [108], where an homotopy-like algorithm is provided. The use of this ℓ∞

regularization is also connected to Kashin’s representation [157], which is known to

be useful in stabilizing the quantization error for instance. Others applications such

as wireless network optimization [211] also rely on the ℓ∞ prior.

2.3.4 Synthesis Regularizers

Sparsity or more general low-complexity regularizations are often used to model

coefficients α ∈ RQ describing the data x = Dα in a dictionary D ∈ RN×Q of Q

atoms in RN . Given a partly smooth function J0 : RQ → R, we define the following

synthesis-type prior J : RN →R as the pre-image of J0 under the linear mapping D
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J(x) = min
α∈RQ

J0(α) s.t. Dα = x

Since J0 is bounded below and convex, J is convex. If D is surjective (as in most

cases with redundant dictrionaries), then J is also finite-valued. The initial opti-

mization (Py,λ ) can equivalently been solved directly over the coefficients domain

to obtain x⋆ = Dα⋆ where

α⋆ ∈ Argmin
α∈RQ

1

2λ
‖y−ΦDα‖2 + J0(α) (7)

which can be interpreted as a regularized inversion of the operator ΦD using the

prior J0.

It is possible to study directly the properties of the solutions α⋆ to (7), which

involves directly partial-smoothness of J0. A slightly different question is to under-

stand the behavior of the solutions x⋆ = Dα⋆ of (Py,λ ), which requires to study

partial smoothness of J itself. In the case where D is invertible, both problems are

completely equivalent.

Literature review. Sparse synthesis regularization using J0 = ‖·‖1 is popular

in signal and image processing to model natural signals and images, see for in-

stance [160, 207] for a comprehensive account. The key problem to achieve good

performance in these applications is to design a dictionary to capture sparse repre-

sentations of the data to process. Multiscale dictionaries built from wavelet pyra-

mids are popular to sparsely represent transient signals with isolated singularities

and natural images [159]. The curvelet transform is known to provide non-adaptive

near-optimal sparse representation of piecewise smooth images away from smooth

edges (so-called cartoon images) [34]. Gabor dictionaries (made of localized and

translated Fourier atoms) are popular to capture locally stationary oscillating sig-

nals for audio processing [3]. To cope with richer and diverse contents, researchers

have advocated to concatenate several dictionaries to solve difficult problems in

signal and image processing, such as component separation or inpainting, see for

instance [99]. A line of current active research is to learn and optimize the dictio-

nary from exemplars or even from the available data themselves. We refer to [97,

Chapter 12] for a recent overview of the relevant literature.

2.3.5 Analysis Regularizers

Analysis-type regularizers (following the terminology introduced in [98]) are of the

form

J(x) = J0(D
∗x) ,

where D ∈ RN×Q is a linear operator. Such a prior controls the low complexity (as

measured by J0) of the correlations between the columns of D and the signal x. If J0

is partly smooth at z = D∗x for the manifold M 0
z , then it is shown in [146, Theorem

4.2] that J is partly smooth at x relative to the manifold
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Mx =
{

u ∈ RN ; D∗u ∈ M
0
z

}

provided that the following transversality condition holds [144, Theorem 6.30(a)]

Ker(D)∩TM 0
z
(z)⊥ = {0} ⇐⇒ Im(D∗)+TM 0

z
(z) = RN .

Literature review. A popular example is when J0 = ‖·‖1 and D∗ a finite-difference

discretization of the derivative of a 1-D signal or a 2-D image. This defines the

anisotropic total variation semi-norm, which promotes piecewise constant signals

or images [196]. The 2-D isotropic total variation semi-norm can be interpreted as

taking J0 = ‖·‖1,2 with blocks of size two. A comprehensive review of total vari-

ation regularization can be found in [52]. TV regularization has been extended in

several ways to model piecewise polynomial functions, see in particular the Total

Generalized Variation prior [26].

One can also use a wavelet dictionary D which is shift-invariant, such that the

corresponding regularization J can be seen as a kind of multi-scale total variation.

This is typically the case of the Haar wavelet dictionary [208]. When using higher

order wavelets, the corresponding priors favors models M composed of discrete

piecewise polynomials.

The Fused Lasso [214] corresponds to J0 being the ℓ1-norm and D is the con-

catenation of the identity and the adjoint of a finite-difference operator. The cor-

responding models M are composed of disjoint blocks over which the signals are

constant.

Defining a block extracting operator D∗x = (xb)b∈B allows to re-write the group

ℓ1 − ℓ2 norm (6), even with overlapping blocks (i.e. ∃(b,b′) ∈ B2 with b∩ b′ 6=
/0), as J = J0 ◦D∗ where J0 = ‖·‖1,2 without overlap, see [139, 182, 245, 32]. To

cope with correlated covariates in linear regression, analysis-type sparsity-enforcing

prior were proposed in [118, 193] using J0 = ‖·‖∗ the nuclear norm (as defined in

Section 2.3.6).

For unitary D, the solutions of (Py,λ ) with synthesis and analysis regularizations

are obviously the same. In the general case (e.g. D overcomplete), however, these

two regularizations are different. Some authors have reported results comparing

these two priors for the case where J0 is the ℓ1 norm [98, 199]. A first discussion on

the relation and distinction between analysis and synthesis ℓ1-sparse regularizations

can be found in [98]. But only very recently, some theoretical recovery results and

algorithmic developments on ℓ1- analysis regularization (so-called cosparse model)

have began to be developed, see e.g. [167, 230].

2.3.6 Spectral Functions

The natural extension of low-complexity priors to matrix-valued data x ∈ RN0×N0

(where N = N2
0 ) is to impose the low-complexity on the singular values of the ma-

trix. We denote x =Ux diag(Λx)V
∗
x an SVD decomposition of x, where Λx ∈R

N0
+ . If

j : RN0 → R is a permutation-invariant closed convex function, then one can con-
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sider the function

J(x) = j(Λx)

which can be shown to be a convex function as well [147]. When restricted to the

linear space of symmetric matrices, j is partly smooth at Λx for a manifold mΛx
, if

and only if J is partly smooth at x relative to the manifold

Mx =
{

U diag(Λ)U∗ ; Λ ∈ mΛx
,U ∈ ON0

}
,

where ON0
⊂ RN0×N0 is the orthogonal group. The proof of this assertion can be

found in [70, Theorem 3.19], which builds upon the work of [71] on manifold

smoothness transfer under spectral lifting. This result can be extended to non-

symmetric matrices by requiring that j is an absolutely permutation-invariant closed

convex function, see [70, Theorem 5.3].

Literature review. The most popular spectral prior is obtained for j = ‖·‖1. This

defines the nuclear norm, or 1-Schatten norm, as

J(x) = ‖x‖∗ = ‖Λx‖1 . (8)

It can be shown that the nuclear norm is the convex hull of the rank function with

respect to the spectral norm ball, see [102, 133]. It then corresponds to promoting a

low-rank prior. Moreover, the nuclear norm can be shown to be partly smooth at x

relative to the set [148, Example 2]

Mx = {u ; rank(u) = rank(x)}

which is a manifold around x.

The nuclear norm has been used in signal and image processing, statistics

and machine learning for various applications, including low rank matrix com-

pletion [205, 190, 40], principal component pursuit [36], model reduction [103],

and phase retrieval [45]. It is also used for some imaging applications, see for in-

stance [152].

2.3.7 Mixed Regularizations

Starting from a collection of convex functions {Jℓ}ℓ∈L , L = {1, . . . ,L}, it is possi-

ble to design a convex function as

Jℓ(x) = ∑
ℓ∈L

ρℓJℓ(x),

where ρℓ > 0 are weights. If each Jℓ is partly smooth at x relative to a manifold M ℓ
x ,

then it is shown in [146, Corollary 4.8] that J is also partly smooth at x for

Mx =
⋂

ℓ∈L

M
ℓ
x ,
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with the proviso that the manifolds M ℓ
x intersect transversally [144, Theorem 6.30(b)],

i.e. the sum of their respective tangent spaces TM ℓ
x
(x) spans the whole ambient

space RN .

Literature review. A popular example is to impose both sparsity and low rank of a

matrix, when using J1 = ‖·‖1 and J2 = ‖·‖∗, see for instance [114, 177].

2.3.8 Separable Regularization

Let {Jℓ}ℓ∈L , L = {1, . . . ,L}, be a family of convex functions. If Jℓ is partly smooth

at xℓ relative to a manifold M ℓ
xℓ

, then the separable function

J ({xℓ}ℓ∈L ) = ∑
ℓ∈L

Jℓ(xℓ)

is partly smooth at (x1, . . . ,xL) relative to M 1
x1
×·· ·×M L

xL
[146, Proposition 4.5].

Literature review. One fundamental problem that has attracted a lot of interest in

the recent years in data processing involves decomposing an observed object into a

linear combination of components/constituents xℓ, ℓ∈L = {1, . . . ,L}. One instance

of such a problem is image decomposition into texture and piece-wise-smooth (car-

toon) parts. The corresponding forward model can be cast in the form (1), where

x0 =

(
x1

x2

)
, x1 and x2 are the texture and cartoon components, and Φ = [Id Id]. The

decomposition is then achieved by solving the variational problem (Py,λ ), where J1

is designed to promote the discontinuities in the image, and J2 to favor textures; see

[206, 6, 184] and references therein. Another example of decomposition is principal

component pursuit, proposed in [36], to decompose a matrix which is the superpo-

sition of a low-rank component and a sparse component. In this case J1 = ‖·‖1 and

J2 = ‖·‖∗.

3 ℓ2 Stability

In this section, we assume that J is a finite-valued convex function, but it is not

assumed to be partly smooth.

The observations y are in general contaminated by noise, as described by the for-

ward model (1). It is thus important to study the ability of (Py,λ ) to recover x0 to

a good approximation in presence of such a noise w, and to assess how the recon-

struction error decays as a function of the noise level. In this section, we present a

generic result ensuring a so-called “linear convergence rate” in terms of ℓ2-error be-

tween a recovered vector and x0 (see Theorem 1), which encompasses a large body

of literature from the inverse problems community.
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3.1 Dual Certificates

It is intuitively expected that if (Py,λ ) is good at recovering an approximation of x0

in presence of noise, then (Py,0) should be able to identify x0 uniquely when the

noise vanishes, i.e. y = Φx0. For this to happen, the solution to (Py,0) has to satisfy

some non-degeneracy condition. To formalize this, we first introduce the notion of

dual certificate.

Definition 3 (Dual certificates). For any vector x ∈ RN , the set of dual certificates

at x is defined as

D(x) = Im(Φ∗)∩∂J(x) .

The terminology “dual certificate” was introduced in [40]. One can show that the

image by Φ∗ of the set of solutions of the Fenchel-Rockafellar dual to (Py,0) is

precisely D(x).
It is also worth noting that x0 being a solution of (Py,0) for y = Φx0 is equiva-

lent to D(x0) 6= /0. Indeed, this is simply a convenient re-writing of the first order

optimality condition for (Py,0).

To ensure stability of the set of minimizers (Py,λ ) to noise perturbing the ob-

servations Φx0, one needs to introduce the additional requirement that the dual cer-

tificates should be strictly inside the subdifferential of J at x0. This is precisely the

non-degeneracy condition mentioned previously.

Definition 4 (Non-degenerate dual certificates). For any vector x ∈RN , we define

the set of non-degenerate dual certificates of x

D̃(x) = Im(Φ∗)∩ ri(∂J(x)) .

3.2 Stability in ℓ2 Norm

The following theorem, proved in [101], establishes a linear convergence rate valid

for any regularizer J, without any particular assumption beside being a proper closed

convex function. In particular, its does not assume partial smoothness of J. This

generic result encompasses many previous works, as discussed in Section 3.3.

Theorem 1. Assume that

Ker(Φ)∩Tx0
∩= {0} and D̃(x0) 6= /0 (9)

and consider the choice λ = c‖w‖, for some c > 0. Then we have for all minimizers

x⋆ of (Py,λ )

‖x⋆− x0‖2 6C‖w‖ , (10)

where C > 0 is a constant (see Remark 4 for details).
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In plain words, this bound tells us that the distance of x0 to the set of minimizers

of (Py,λ ) is within a factor of the noise level, which justifies the terminology “linear

convergence rate”.

Remark 2 (The role of non-smoothness). The injectivity of Φ when restricted to Tx0

is intimately related to the fact that J is non-smooth at x0. The higher the degree of

non-smoothness, the lower the dimension of the subspace Tx0
, and hence the more

likely the restricted injectivity. If J is smooth around x0 (e.g. quadratic regularizers),

however, the restricted injectivity condition cannot be fulfilled, unless Φ is itself in-

jective. The reason is that Tx0
is the whole RN at the smoothness points. For smooth

regularizations, it can be shown that the convergence rate is slower than linear, we

refer to [198] for more details.

Remark 3 (Uniqueness). One can show that condition (9) implies that x0 is the

unique solution of (Py,0) for y = Φx0. This condition however does not imply in

general that (Py,λ ) has a unique minimizer for λ > 0.

Remark 4 (Stability constant). The result (10) ensures that the mapping y 7→ x⋆ (that

might be set-valued) is C-Lipschitz-continuous at y = Φx0. Condition D̃(x0) 6= /0

is equivalent to the existence of some η ∈ D̃(x0). The value of C (in fact an upper-

bound) can be found in [101]. It depends on Φ , Tx0
, c and the chosen non-degenerate

dual certificate η . In particular, the constant degrades critically as η gets closer to

the relative boundary of D̃(x0), which reflects the intuition of how far is η from

being a non-degenerate certificate.

Remark 5 (Source condition). The condition D(x0) 6= /0 is often called “source con-

dition” or “range condition” in the literature of inverse problems. We refer to the

monograph [198] for a general overview of this condition and its implications. It

is an abstract condition, which is not easy to check in practice, since exhibiting a

valid non-degenerate certificate is not trivial. We give in Section 4.1 further insights

about this in the context of compressed sensing. Section 4.1 describes a particular

construction of a good candidate (the so-called linearized pre-certificate) for being

such an η ∈ D̃(x0), and it is shown to govern stability of the manifold Mx0
for partly

smooth regularizers.

Remark 6 (Infinite dimension). It is important to remind that, in its full general form,

Theorem 1 only holds in finite dimension. The constant C indeed may depend on the

ambient dimension N, in which case the constant can blow-up as the discretization

grid of the underlying continuous problem is made finer (i.e. as N grows). We detail

below some relevant literature where similar results are shown in infinite dimension.
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3.3 Related Works

3.3.1 Convergence Rates

For quadratic regularizations of the form J = ‖D∗·‖2
for some linear operator D∗,

the ℓ2-error decay can be proved to be O(
√

‖w‖), which is not linear, see [198,

Chapter 3] for more details and extensions to infinite dimensional Hilbert spaces.

For non-smooth priors, in [30], the authors show the Bregman distance between x⋆

and x0 exhibits a linear convergence rate for both the Lagrangian (Py,λ ) and the

constrained (P1
y,ε) problems under the source condition D(x0) 6= 0. These results

hold more generally over infinite dimensional Banach spaces. They have been sub-

sequently generalized to ill-posed non-linear inverse problems by [192] and [134].

It is important to observe that in order to prove convergence rates in terms of ℓ2-

error, as done in (10), it is necessary to strengthen the source condition to its non-

degenerate version, i.e. D̃(x0) 6= 0.

In [155], the authors consider the case where J is a ℓp norm with 16 p6 2 and es-

tablish convergence rates of ‖Φx0 −Φx⋆‖ in O(‖w‖) and of ‖x⋆− x0‖ in O(
√
‖w‖).

[117] prove Theorem 1 for J = ‖·‖1. They show that the non-degeneracy condition

is also necessary for linear convergence, and draw some connections with the re-

stricted isometry property (RIP), see below. Under a condition that bears similarities

with (9), linear convergence with respect to J, i.e. J(x⋆− x0) = O(‖w‖), is proved

in [116] for positively homogeneous regularizers. This result is equivalent to The-

orem 1 but only when J is coercive, which precludes many important regularizers,

such as for instance analysis-type regularizers including total variation.

3.3.2 RIP-based Compressed Sensing

The recovery performance of compressed sensing (i.e. when Φ is drawn from suit-

able random ensembles) for J = ‖·‖1 has been widely analyzed under the so-called

restricted isometry property (RIP) introduced in [42, 43, 47]. For any integer k > 0,

the k-th order restricted isometry constant of a matrix Φ is defined as the smallest

δk > 0 such that

(1− δk)‖x‖2
6 ‖Φx‖2

6 (1+ δk)‖x‖2 ,

for all vectors x such that ‖x‖0 6 k. It is shown [42] that if δ2k + δ3k < 1, then for

every vector x0 with ‖x0‖0 6 k, there exists a non-degenerate certificate [46, Lemma

2.2], see also the discussion in [117]. In turn, this implies linear convergence rate,

and is applied in [43] to show ℓ2-stability to noise of compressed sensing. This was

generalized in [35] to analysis sparsity J = ‖D∗·‖1, where D is assumed to be a tight

frame, structured sparsity in [35] and matrix completion in [190, 39] using J = ‖·‖∗.

The goal is then to design RIP matrices Φ with constants such that δ2k + δ3k (or a

related quantity) is small enough. This is possible if Φ is drawn from an appropriate

random ensemble for some (hopefully optimal) scaling of (N,P,k). For instance, if

Φ is drawn from the standard Gaussian ensemble (i.e. with i.i.d. zero-mean standard



18 Samuel Vaiter, Gabriel Peyré and Jalal Fadili

Gaussian entries), there exists a constant C such that the RIP constants of Φ/
√

P

obey δ2k + δ3k < 1 with overwhelming probability provided that

P >Ck log(N/k) , (11)

see for instance [47]. This result remains true when the entries of Φ are drawn inde-

pendently from a subgaussian distribution. When Φ is a structured random matrix,

e.g. random partial Fourier matrix, the RIP constants of Φ/
√

P can also satisfy the

desired bound, but at the expense of polylog terms in the scaling (11), see [105] for

a comprehensive treatment. Note that in general, computing the RIP constants for a

given matrix is an NP-hard problem [10, 220].

3.3.3 RIP-less Compressed Sensing

RIP-based guarantees are uniform, in the sense that the recovery holds with high

probability for all sparse signals. There is a recent wave of work in RIP-less analy-

sis of the recovery guarantees for compressed sensing. The claims are non-uniform,

meaning that they hold for a fixed signal with high probability on the random

matrix Φ . This line of approaches improves on RIP-based bounds providing typ-

ically sharper constants. When Φ is drawn from the Gaussian ensemble, it is proved

in [195] for J = ‖·‖1 that if the number of measurements P obeys P >Ck log(N/k)
for some constant C > 0, where k = ‖x0‖0, then condition (9) holds with high prob-

ability on Φ . This result is based on Gordon’s comparison principle for Gaussian

processes and depends on a summary parameter for convex cones called the Gaus-

sian width. Equivalent lower bounds on the number of measurements for matrix

completion from random measurements by minimizing the nuclear norm were pro-

vided in [48] to ensure that (9) holds with high probability. This was used to prove

ℓ2-stable matrix completion in [37].

The authors in [54] have recently showed that the Gaussian-width based approach

leads to sharp lower bounds on P required to solve regularized inverse problems

from Gaussian random measurements. For instance, they showed for J = ‖·‖1 that

P > 2k log(N/k) (12)

guarantees exact recovery from noiseless measurements by solving (Py,0). An over-

head in the number of measurements is necessary to get linear convergence of the

ℓ2-error in presence of noise by solving (P1
y,ε ) with ε = ‖w‖, i.e. x0 is feasible. Their

results handle for instance the case of group sparsity (6) and the nuclear norm (8).

In the polyhedral case, it can be shown that (12) implies the existence of a non-

degenerate dual certificate, i.e. (9), with overwhelming probability. The Gaussian

width is closely related to another geometric quantity called the statistical dimen-

sion in conic integral geometry. The statistical dimension canonically extends the

linear dimension to convex cones, and has been proposed in [4] to deliver reliable

predictions about the quantitative aspects of the phase transition for exact noiseless

recovery from Gaussian measurements.
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To deal with non-Gaussian matrix measurements (such as for instance partial

Fourier matrices), [123] introduced the “golfing scheme” for noiseless low-rank ma-

trix recovery guarantees using J = ‖·‖∗. The golfing scheme is an iterative procedure

to construct an (approximate) non-degenerate certificate. This construction is also

studied in [38] for noiseless and noisy sparse recovery with J = ‖·‖1. In another

chapter of this volume [221], the author develops a technique, called the “bowling

scheme”, which is able to deliver bounds on the number of measurements that are

similar with the Gaussian width-based bounds for standard Gaussian measurements,

but the argument applies to a much wider class of measurement ensembles.

4 Model Stability

In the remainder of this chapter, we assume that J is finite-valued convex and locally

partly smooth around x0, as defined in Section 2.2. This means in particular that the

prior J promotes locally solution which belong to the manifold M = Mx0
. In the

previous section, we were only concerned with ℓ2 stability guarantees and partial

smoothness was not necessary then. Owing to the additional structure conveyed by

partial smoothness, we will be able to provide guarantees on the identification of the

correct M =Mx0
by solving (Py,λ ), i.e. whether the (unique) solution x⋆ of (Py,λ )

satisfies x⋆ ∈ M . Such guarantees are of paramount importance for many appli-

cations. For instance, consider the case where ℓ1 regularization is used to localize

some (sparse) sources. Then x⋆ ∈ M means that one perfectly identifies the correct

source locations. Another example is that of the nuclear norm for low-rank matrix

recovery. The correct model identification implies that x⋆ has the correct rank, and

consequently that the eigenspaces of x⋆ have the correct dimensions and are close

to those of x0.

4.1 Linearized Pre-certificate

We saw in Section 3.2 that ℓ2-stability of the solutions to (Py,λ ) is governed by the

existence of a non-degenerate dual certificate p∈ D̃(x0). It turns out that not all dual

certificates are equally good for stable model identification, and toward the latter,

one actually needs to focus on a particular dual certificate, that we call “minimal

norm” certificate.

Definition 5 (Minimal norm certificate). Assume that x0 is a solution of (Py,0).

We define the “minimal-norm certificate” as

η0 = Φ∗ argmin
Φ∗ p∈∂J(x0)

‖p‖ . (13)
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A remarkable property, stated in Proposition 1 below, is that, as long as one is

concerned with checking whether η0 is non-degenerate, i.e. η0 ∈ ri(∂J(x0)), one can

instead use the vector ηF defined below, which can be computed in closed form.

Definition 6 (Linearized pre-certificate). Assume that

Ker(Φ)∩Tx0
= {0}. (14)

We define the “linearized pre-certificate” as

ηF = Φ∗ argmin
Φ∗ p∈aff(∂J(x0))

‖p‖ . (15)

Remark 7 (Well-posedness of the definitions). Note that the hypothesis that x0 is a

solution of (Py,0) is equivalent to saying that D(x0) is a non-empty convex compact

set. Hence in (13), the optimal p is the orthogonal projection of 0 on a non-empty

closed convex set, and thus η0 is uniquely defined. Similarly, the hypothesis (14)

implies that the constraint set involved in (15) is a non-empty affine space, and thus

ηF is also uniquely defined.

Remark 8 (Certificate vs. pre-certificate). Note that the only difference between (13)

and (15) is that the convex constraint set ∂J(x0) is replaced by a simpler affine

constraint. This means that ηF does not always qualify as a valid certificate, i.e.

ηF ∈ ∂J(x0), hence the terminology ”pre-certificate” used. This condition is actually

at the heart of the model identification result exposed in Theorem 2.

For now on, let us remark that ηF is actually simple to compute, since it amounts

to solving a linear system in the least-squares sense.

Proposition 1. Under condition (14), one has

ηF = Φ∗Φ+,∗
Tx0

ex0
where ex0

= PTx0
(∂J(x0)) ∈ RN . (16)

Remark 9 (Computating ex). The vector ex appearing in (16) can be computed in

closed form for most of the regularizers discussed in Section 2.2. For instance,

for J = ‖·‖1, ex = sign(x). For J = ‖·‖1,B, it reads ex = (eb)b∈B, where eb =
xb/‖xb‖ if xb 6= 0, and eb = 0 otherwise. For J = ‖·‖∗ and a SVD decomposition

x =Ux diag(Λx)V
∗
x , one has ex =UxV

∗
x .

The following proposition, whose proof can be found in [231], exhibits a precise

relationship between η0 and ηF . In particular, it implies that ηF can be used in place

of η0 to check whether η0 is non-degenerate, i.e. η0 ∈ ri(∂J(x0)).

Proposition 2. Under condition (14), one has

ηF ∈ ri(∂J(x0)) =⇒ ηF = η0,

η0 ∈ ri(∂J(x0)) =⇒ ηF = η0.
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4.2 Model Identification

The following theorem provides a sharp sufficient condition to establish model se-

lection. It is proved in [231]. It encompasses as special cases many previous works

in the signal processing, statistics ans machine learning literatures, as we discuss in

Section 4.5.1.

Theorem 2. Let J be locally partly smooth at x0 relative to M = Mx0
. Assume that

Ker(Φ)∩Tx0
= {0} and ηF ∈ ri(∂J(x0)). (17)

Then there exists C such that if

max(λ ,‖w‖/λ )6C, (18)

the solution x⋆ of (Py,λ ) from the measurements (1) is unique and satisfies

x⋆ ∈ M and ‖x0 − x⋆‖= O(max(λ ,‖w‖)). (19)

Remark 10 (Linear convergence rate vs. model identification). Obviously, the as-

sumptions (17) of Theorem 2 imply those of Theorem 1. They are of course stronger,

but imply a stronger result, since uniqueness of x⋆ and model identification (i.e.

x⋆ ∈ M ) are not guaranteed by Theorem 1 (which does not even need J to be

partly smooth). A chief advantage of Theorem 2 is that its hypotheses can be eas-

ily checked and analyzed for a particular operator Φ . Indeed, computing ηF only

requires solving a linear system, as clearly seen from formula (16).

Remark 11 (Minimal signal-to-noise ratio). Another important distinction between

Theorems 1 and 2 is the second assumption (18). In plain words, it requires that the

noise level is small enough and that the regularization parameter is wisely chosen.

Such an assumption is not needed in Theorem 2 to ensure linear convergence of

the ℓ2-error. In fact, this condition is quite natural. To see this, consider for instance

the case of sparse recovery where J = ‖·‖1. If the minimal signal-to-noise ratio is

low, the noise will clearly dominate the amplitude of the smallest entries, so that

one cannot hope to recover the exact support, but it is still possible to achieve a low

ℓ2-error by forcing those small entries to zero.

Remark 12 (Identification of the manifold). For all the regularizations considered

in Section 2.3, the conclusion of Theorem 2 is even stronger as it guarantees that

Mx⋆ = M . The reason is that for any x and nearby points x′ with x′ ∈ Mx, one has

Mx′ = Mx.

Remark 13 (General loss/data fidelity). It is possible to extend Theorem 2 to account

for general loss/data fidelity terms beyond the quadratic one, i.e. 1
2
‖y−Φx‖2

. More

precisely, this result holds true for loss functions of the form F(Φx,y), where F :

RP ×RP → R is a C2 strictly convex function in its first argument, ∇F is C1 in the

second argument, with ∇F(y,y) = 0, where ∇F is the gradient with respect to the

first variable. In this case, the expression (16) of ηF becomes simply
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ηF = Γ (PT Γ PT )
+ex0

where

{
T = Tx0

Γ = Φ∗∂ 2F(Φx0,Φx0)Φ ,

and where ∂ 2F is the Hessian with respect to the first variable (which is a positive

definite operator). We refer to [231] for more details.

4.3 Sharpness of the Model Identification Criterion

The following proposition, proved in [231], shows that Theorem 2 is in some sense

sharp, since the hypothesis ηF ∈ ri(∂J(x0)) (almost) characterizes the stability of

M .

Proposition 3. We suppose that x0 is the unique solution of (Py,0) for y = Φx0 and

that

Ker(Φ)∩Tx0
= {0}, and ηF /∈ ∂J(x0). (20)

Then there exists C > 0 such that if (18) holds, then any solution x⋆ of (Py,λ ) for

λ > 0 obeys x⋆ /∈ M .

In the particular case where w = 0 (no noise), this result shows that the manifold

M is not correctly identified when solving (Py,λ ) for y = Φx0 and for any λ > 0

small enough.

Remark 14 (Critical case). The only case not covered by neither Theorem 2 nor

Proposition 3 is when ηF ∈ rbd(∂J(x0)), where rbd stands for the boundary relative

to the affine hull. In this case, one cannot conclude, since depending on the noise

w, one can have either stability or non-stability of M . We refer to [230] where an

example illustrates this situation for the 1-D total variation J = ‖D∗
DIF·‖1

, where

D∗
DIF is a finite-difference discretization of the 1-D derivative operator.

4.4 Probabilistic Model Consistency

Theorem 2 assumes a deterministic noise w, and the operator Φ is fixed. For appli-

cations in statistics and machine learning, it makes sense to rather assume a random

model for both Φ and w. The natural question is then to assert that the estimator

defined by solving (Py,λ ) is consistent in the sense that it correctly estimates x0

and possibly the model Mx0
as the number of observations P →+∞. This requires

to handle operators Φ with an increasing number of rows, and thus to also assess

sensitivity of the optimization problem (Py,λ ) to perturbations of Φ (and not only

to (w,λ ) as done previously).

To be more concrete, in this section, we work under the classical setting where

N an x0 are fixed as the number of observations P → +∞. The data (ϕi,wi) are

assumed to be random vectors in RN ×R, where ϕi is the i-th row of Φ for i =
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1, . . . ,P. These vectors are supposed independent and identically distributed (i.i.d.)

samples from a joint probability distribution such that E(wi|ϕi) = 0, finite fourth-

order moments, i.e. E
(
w4

i

)
< +∞ and E

(
‖ϕi‖4

)
< +∞. Note that in general, wi

and ϕi are not necessarily independent. It is possible to consider other distribution

models by weakening some of the assumptions and strengthening others, see e.g.

[143, 246, 7]. Let us denote Γ = E(ϕ∗
i ϕi) ∈ RN×N , where ϕi is any row of Φ . We

do not make any assumption on the invertibility of Γ .

In this setting, a natural extension of ηF defined by (16) in the deterministic case

is

η̃F = Γ Γ +
Tx0

ex0

where ΓTx0
= PTx0

Γ PTx0
, and we use the fact that ΓTx0

is symmetric and Im(Γ +
Tx0

)⊂
Tx0

. It is also implicitly assumed that Ker(Γ )∩ Tx0
= {0} which is the equivalent

adaptation of the restricted injectivity condition in (17) to this setting.

To make the discussion clearer, the parameters (λ = λP,Φ = ΦP,w = wP) are

now indexed by P. The estimator x⋆P obtained by solving (PλP,yP
) for yP = ΦPx0 +

wP is said to be consistent for x0 if,

lim
P→+∞

Pr(x⋆P is unique) = 1

and x⋆P → x0 in probability. The estimator is said to be model consistent if

lim
P→+∞

Pr(x⋆P ∈ M ) = 1,

where M = Mx0
is the manifold associated to x0.

The following result, whose proof can be found in [231], guarantees model con-

sistency for an appropriate scaling of µP. It generalizes several previous works in

the statistical and machine learning literature as we review in Section 4.5.1.

Theorem 3. If

Ker(Γ )∩Tx0
= {0} and η̃F ∈ ri(∂J(x0)), (21)

and

λP = o(P) and λ−1
P = o(P−1/2). (22)

Then the estimator x⋆P of x0 is model consistent.

4.5 Related Works

4.5.1 Model Consistency

Theorem 2 is a generalization of a large body of results in the literature. For the

Lasso, i.e. J = ‖·‖1, to the best of our knowledge, this result was initially stated



24 Samuel Vaiter, Gabriel Peyré and Jalal Fadili

in [107]. In this setting, the result (19) corresponds to the correct identification of

the support, i.e. supp(x⋆) = supp(x0). Condition (21) for J = ‖·‖1 is known in the

statistics literature under the name “irrepresentable condition” (generally stated in a

non-geometrical form), see e.g. [246]. [143] have shown estimation consistency for

Lasso for fixed N and x0 and asymptotic normality of the estimates. The authors in

[246] prove Theorem 3 for J = ‖·‖1, though under slightly different assumptions on

the covariance and noise distribution. A similar result is established in [141] for the

elastic net, i.e. J = ‖·‖1 +ρ ‖·‖2
2 for ρ > 0. In [7] and [8], the author proves Theo-

rem 3 for two special cases, namely the group Lasso and nuclear norm minimization.

Note that these previous works assume that the asymptotic covariance Γ is invert-

ible. We do not impose such an assumption, and only require the weaker restricted

injectivity condition Ker(Γ )∩T = {0}. In a previous work [230], we have proved

an instance of Theorem 2 when J(x) = ‖D∗x‖1, where D ∈ RN×Q is an arbitrary

linear operator. This covers as special cases the discrete anisotropic total variation

or the fused Lasso. This result was further generalized in [229] when J belongs to

the class of partly smooth functions relative to linear manifolds M , i.e. M = Tx.

Typical instances encompassed in this class are the ℓ1 − ℓ2 norm, or its analysis ver-

sion, as well as polyhedral gauges including the ℓ∞ norm. Note that the nuclear norm

(and composition of it with linear operators as proposed for instance in [118, 193]),

whose manifold is not linear, does not fit into the framework of [229], while it is

covered by Theorem 2. Lastly, a similar result is proved in [90] for a continuous

(infinite dimensional) sparse recovery problem over the space of Radon measures

normed by J the total variation of a measure (not to be confused with the total vari-

ation of functions). In this continuous setting, an interesting finding is that, when

η0 ∈ ri(∂J(x0)), η0 is not equal to ηF but to a different certificate (called “vanishing

derivative” certificate in [90]) that can also be computed by solving a linear system.

4.5.2 Stronger Criteria for ℓ1

Many sufficient conditions have been proposed in the literature to ensure that ηF

is a non-degenerate certificate, and hence to guarantee stable identification of the

support (i.e. model). We illustrate this here for J = ‖·‖1, but similar reasoning can

be carried out for ‖·‖1,B or ‖·‖∗.

The strongest criterion makes use of mutual coherence, first considered in [78]

µ(Φ) = max
i6= j

|〈ϕi, ϕ j〉|

where each column ϕi of Φ are assumed normalized to a unit ℓ2 norm. Mutual

coherence measures the degree of ill-conditioning of Φ through the correlation of

its columns (ϕi)16i6N . Mutual coherence is always lower-bounded by
√

N−P
P(N−1) ,

and equality holds if and only if (ϕi)16i6N is an equiangular tight frame, see [210].

Finer variants based on cumulative coherences have been proposed in [120, 24].

To take into account the influence of the support I = supp(x0) of the vector x0 to
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recover, Tropp introduced in [222] the Exact Recovery Condition (ERC), defined as

ERC(I) =
∥∥∥Φ∗

Ic Φ+,∗
I

∥∥∥
∞,∞

= max
j/∈I

∥∥Φ+
I ϕ j

∥∥
1

where ‖·‖∞,∞ is the matrix operator norm induced by the ℓ∞ vector norm, ΦI =
(ϕi)i∈I and Ic is the complement of the set I. ΦI is assumed injective which, in view

of Section 2.3.1, is nothing but a specialization to ℓ1 of the restricted injectivity

condition in (17). A weak ERC criterion, which does not involve matrix inversion,

is derived in [85]

wERC(I) =

max
j∈Ic

∑i∈I |〈ϕi, ϕ j〉|

1−max
j∈I

∑i6= j∈I |〈ϕi, ϕ j〉|
.

Given the structure of the subdifferential of the ℓ1 norm, it is easy to check that

ηF ∈ ri(∂J(x0)) ⇐⇒ IC(x0) =
∥∥∥Φ∗

Ic Φ+,∗
I sign(x0,I)

∥∥∥
∞
< 1.

The right hand side in the equivalence is precisely what is called the irrepresentable

condition in statistics and machine learning. Clearly, IC(x0) involves both the sign

vector and the support of x0. The following proposition gives ordered upper bounds

of IC(x0) in terms of the cruder criteria ERC, wERC and mutual coherence. A more

elaborate discussion of them can be found in [160].

Proposition 4. Assume that ΦI is injective and denote k = |I|= ‖x0‖0. Then,

IC(x0)6 ERC(I)6 wERC(I)6
kµ(Φ)

1− (k− 1)µ(Φ)
.

4.5.3 Linearized Pre-certificate for Compressed Sensing Recovery

Stable support identification has been established in [240, 83] for the Lasso problem

when Φ is drawn from the Gaussian ensemble. These works show that for k = ‖x0‖0,

if

P > 2k log(N)

then indeed ηF ∈ ri(∂J(x0)), and this scaling can be shown to be sharp. This scaling

should be compared with (12) ensuring that there exists a non-degenerate certificate.

The gap in the log term indicates that there exists vectors that can be stably recovered

by ℓ1 minimization in ℓ2-error sense, but whose support cannot be stably identified.

Equivalently, for these vectors, there exists a non-degenerate certificate but it is not

ηF .

The pre-certificate ηF is also used to ensure exact recovery of a low-rank matrix

from incomplete noiseless measurements by minimizing the nuclear norm [40, 48].

This idea is further generalized by [41] for a family of decomposable norms (in-

cluding in particular ℓ1-ℓ2 norm and the nuclear norm), which turns to be a subset of



26 Samuel Vaiter, Gabriel Peyré and Jalal Fadili

partly smooth regularizers. In these works, lower bounds on the number of random

measurements needed for ηF to be a non-degenerate certificate are developed. In

fact, these measurement lower bounds combined with Theorem 2 allow to conclude

that matrix completion by solving (Py,λ ) with J = ‖·‖∗ identifies the correct rank

at high signal-to-noise levels.

4.5.4 Sensitivity Analysis

Sensitivity analysis is a central theme in variational analysis. Comprehensive mono-

graphs on the subject are [23, 166]. The function to be analyzed underlying prob-

lems (Py,λ ) and (Py,0) is

f (x,θ ) =

{
1

2λ ‖y−Φx‖2 + J(x) if λ > 0,
ιHy

(x)+ J(x) if λ = 0,
, (23)

where Hy = {y ; Φx = y} and where the parameters are θ = (λ ,y,Φ) for λ > 0.

Theorems 2 and 3 can be understood as a sensitivity analysis of the minimizers of f

at a point (x = x0,θ = θ0 = (0,Φx0,Φ)).
Classical sensitivity analysis of non-smooth optimization problems seeks con-

ditions to ensure smoothness of the mapping θ 7→ xθ where xθ is a minimizer of

f (·,θ ), see for instance [194, 23]. This is usually guaranteed by the non-degenerate

source condition and restricted injectivity condition (9), which, as already exposed

in Section 3.2, ensure linear convergence rate, and hence Lipschitz behavior of this

mapping. The analysis proposed by Theorem 2 goes one step further, by assess-

ing that Mx0
is a stable manifold (in the sense of [241]), since the minimizer xθ

is unique and remains in Mx0
for θ close to θ0. Our starting point for establishing

Theorem 2 is the inspiring work of Lewis [146] who first introduced the notion of

partial smoothness and showed that this broad class of functions enjoys a powerful

calculus and sensitivity theory. For convex functions (which is the setting consid-

ered in our work), partial smoothness is closely related to U −V -decompositions

developed in [145]. In fact, the behavior of a partly smooth function and of its mini-

mizers (or critical points) depend essentially on its restriction to the manifold, hence

offering a powerful framework for sensitivity analysis theory. In particular, critical

points of partly smooth functions move stably on the manifold as the function un-

dergoes small perturbations [149]. A important and distinctive feature of Theorem 2

is that, partial smoothness of J at x0 relative to M transfers to f (·,θ ) for λ > 0, but

not when λ = 0 in general. In particular, [146, Theorem 5.7] does not apply to prove

our claim.
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5 Sensitivity Analysis and Parameter Selection

In this section, we study local variations of the solutions of (Py,λ ) considered as

functions of the observations y. In a variational-analytic language, this corresponds

to analyzing the sensitivity of the optimal values of (Py,λ ) to small perturbations

of y seen as a parameter. This analysis will have important implications, and we

exemplify one of them by constructing unbiased estimators of the quadratic risk,

which in turn will allow to have an objectively-guided way to select the optimal

value of the regularization parameter λ .

As argued in Section 4.5.4, assessing the recovery performance by solving (Py,λ )

for w and λ small amounts to a sensitivity analysis of the minimizers of f in (23)

at (x = x0,θ = θ0 = (0,Φx0,Φ)). This section involves again sensitivity analysis

of (23) to perturbations of y but for λ > 0. Though we focus our attention on sensi-

tivity to y, our arguments extend to any parameters, for instance λ or Φ .

Similarly to the previous section, we suppose here that J is a finite-valued convex

and partly smooth function. For technical reasons, we furthermore assume that the

partial smoothness manifold is linear, i.e. Mx = Tx. We additionally suppose that

the set of all possible models T = {Tx}x∈RN is finite. All these assumptions hold

true for the regularizers considered in Section 2.3, with the notable exception of the

nuclear norm, whose manifolds of partial smoothness are non-linear.

5.1 Differentiability of Minimizers

Let us denote x⋆(y) a minimizer of (Py,λ ) for a fixed value of λ > 0. Our main goal

is to study differentiability of x⋆(y) and find a closed-form formula of the derivative

of x⋆(y) with respect to the observations y. Since x⋆(y) is not necessarily a unique

minimizer, such a result means actually that we have to single out one solution

x⋆(y), which hopefully should be a locally smooth function of y. However, as J is

non-smooth, one cannot hope for such a result to hold for any observation y ∈ RP.

For applications to risk estimation (see Section 5.3), it is important to characterize

precisely the smallest set H outside of which x⋆(y) is indeed locally smooth. It

turns out that one can actually write down an analytical expression of such a set H ,

containing points where one cannot find locally a smooth parameterization of the

minimizers. This motivates our definition of what we coin a “transition space”.

Definition 7 (Transition space). We define the transition space H as

H =
⋃

T∈T

bd(HT ),

where bd(C) is the boundary of a set C, and

HT =
{

y ∈ RP ; ∃x ∈ T̃ , λ−1Φ∗
T (Φx− y) ∈ rbd(∂J(x))

}
.
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where T̃ =
{

x ∈RN ; Tx = T
}

.

The set H contains the observations y ∈ RP such that the model subspace Tx̃(y)

associated to a well chosen solution x̃(y) of (Py,λ ) is not stable with respect to

small perturbations of y. In particular, when J = ‖·‖1, it can be checked that H

is a finite union of hyperplanes and when J = ‖·‖1,2 it is a semi-algebraic set (see

Definition 8). This stability is not only crucial to prove smoothness of x̃(y), it is also

important to be able to write down an explicit formula for the derivative, as detailed

in the following theorem whose proof is given in [227].

Theorem 4. Let y 6∈ H and x⋆ a solution of (Py,λ ) such that

KerΦT ∩KerD2JT (x
⋆) = {0} (Ix⋆)

where T = Tx⋆ . Then, there exists an open neighborhood V ⊂ RN of y, and a map-

ping x̃ : V → T such that

1. for every ȳ ∈ V , x̃(ȳ) is a solution of (Pλ ,ȳ), and x̃(y) = x⋆ ;

2. the mapping x̃ is C1(V ) and

∀ ȳ ∈ V , Dx̃(ȳ) = (Φ∗
T ΦT +λ D2JT (x

⋆))−1ΦT .

Here D2JT is the Hessian (second order derivative) of J restricted to T . This Hessian

is surely well-defined owing to partial smoothness, see Definition 2(i).

5.2 Semi-algebraic Geometry

Our goal now is to show that the set H is in some sense “small” (in particular

to show that it has zero Lebesgue measure), which will entail differentiability of

y 7→ x⋆ Lebesgue almost everywhere. For this, additional geometrical structure on

J is needed. Such a rich class of functions is provided by the notion of a semi-

algebraic subset of RN to be defined shortly. Semi-algebraic sets and functions have

been broadly applied to various areas of optimization. The wide applicability of

semi-algebraic functions follows largely from their stability under many mathe-

matical operations. In particular, the celebrated Tarski-Seidenberg theorem states,

loosely, that the projection of a semi-algebraic set is semi-algebraic. These stability

properties are crucial to obtain the following result, proved in [227].

Definition 8 (Semi-algebraic set and function). A set E is semi-algebraic if it is a

finite union of sets defined by polynomial equations and (possibly strict) inequali-

ties. A function f : E → F is semi-algebraic if E and its graph {(u, f (u)) ; u ∈ E}
are semi-algebraic sets.

Remark 15 (From semi-algebraic to o-minimal geometry). The class of semi-alge-

braic functions is large, and subsumes, for instance, all the regularizers J described
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in Section 2.3. The qualitative properties of semi-algebraic functions are shared

by a much bigger class called functions definable in an o-minimal structure over

R, or simply definable functions. O-minimal structures over R correspond in some

sense to an axiomatization of some of the prominent geometrical properties of semi-

algebraic geometry [68] and particularly of the stability under projection. For ex-

ample, the function J(x) = ∑i |xi|s, for an arbitrary s > 0, is semi-algebraic only for

rational s ∈ Q, while it is always definable in an o-minimal structure [236]. Due to

the variety of regularizations J that can be formulated within the framework of o-

minimal structures, all our results stated in this section apply to definable functions,

see [227] for a detailed treatment.

Semi-algebraic functions are stable for instance under (sub)differentiation and

projection. These stability properties are crucial to obtain the following result,

proved in [227].

Proposition 5. If J is semi-algebraic, the transition space H is semi-algebraic and

has zero Lebesgue measure.

5.3 Unbiased Risk Estimation

A problem of fundamental practical importance is to automatically adjust the pa-

rameter λ to reach the best recovery performance when solving (Py,λ ). Parameter

selection is a central theme in statistics, and is intimately related to the question of

model selection, as introduced in Section 2.1.

We then adopt a statistical framework in which the observation model (1) be-

comes

Y = Φx0 +W (24)

where W is random noise having an everywhere strictly positive probability density

function, assumed to be known. Though the forthcoming results can be stated for

a large family of distributions, for the sake of concreteness, we only consider the

white Gaussian model where W ∼ N (0,σ2IdP×P), with known variance σ2.

Under the observation model (24), the ideal choice of λ should be the one which

minimizes the quadratic estimation risk EW (‖x⋆(Y )− x0‖2). This is obviously not

realistic as x0 is not available, and in practice, only one realization of Y is observed.

To overcome these obstacles, the traditional approach is to replace the quadratic risk

with an some estimator that solely depends on Y . The risk estimator is also expected

to enjoy nice statistical properties among which unbiasedness is highly desirable.

However, it can be shown, see e.g. [100, Section IV], that the quadratic risk

EW (‖x⋆(Y )− x0‖2) cannot be reliably estimated on Ker(Φ). Nonetheless, we may

still obtain a reliable assessment of the part that lies in Im(Φ∗) = Ker(Φ)⊥ or any

linear image of it. For instance, the most straightforward surrogate of the above risk

is the so-called prediction risk EW (‖µ(Y )− µ0‖2), where

µ0 = Φx0 and µ(y) = Φx⋆(y),



30 Samuel Vaiter, Gabriel Peyré and Jalal Fadili

where x⋆(y) is any solution of (Py,λ ). One can easily show that µ(y) ∈ RP is

well-defined as a single-valued mapping and thus does not depend on the partic-

ular choice of x⋆(y), see [227]. Consequently, Theorem 4 shows that y 7→ µ(y) is a

C1 mapping on RP \H .

5.4 Degrees of Freedom

The degrees of freedom (DOF) quantifies the model “complexity” of a statistical

modeling procedure [95]. It is at the heart of several risk estimation procedures.

Therefore, in order to design estimators of the prediction risk, an important step is

to get an estimator of the corresponding DOF.

Definition 9 (Empirical DOF). Suppose that y 7→ µ(y) is differentiable Lebesgue

almost everywhere, as is the case when it is Lipschitz-continuous (Rademacher’s

theorem). The empirical number of degrees of freedom is defined as

df(y) = div(µ)(y) = tr(Dµ(y)),

where the derivative is to be understood in the weak sense, i.e. to hold Lebesgue

almost everywhere (a.e.).

An instructive example to get the gist of this formula is the case where µ is the

orthogonal projection onto some linear subspace V . We then get easily that df(y) =
dim(V ), which is in agreement with the intuitive notion of the number of DOF.

The following result delivers the closed-form expression of df(y), valid on a

full Lebesgue measure set, for µ(y) = Φx⋆(y) and x⋆(y) an appropriate solution

of (Py,λ ). At this stage, it is important to realize that the main difficulty does

not lie in showing almost everywhere differentiability of µ(y); this mapping is

in fact Lipschitz-continuous by classical arguments of sensitivity analysis applied

to (Py,λ ). Rather, it is the existence of such a formula and its validity Lebesgue a.

e. that requires more subtle arguments obtained owing to partial smoothness of J.

For this, we need also to rule out the points y where (Ix⋆ ) does not hold. This is the

rationale behind the following set.

Definition 10 (Non-injectivity set). We define the Non-injectivity set G as

G =
{

y /∈ H ; (Ix⋆) does not hold for any minimizer x⋆ of (Py,λ )
}
.

Theorem 5. For every y /∈ H ∪G , there is x⋆ such that (Py,λ ) holds and

df(y) = tr(∆x⋆(y)) where ∆x⋆(y) = ΦT ◦ (ΦT
∗ΦT +λ D2JT (x

⋆))−1 ◦ΦT
∗, (25)

were T = Tx⋆ .

Remark 16 (Non-injectivity set). It turns out that G is in fact empty for many reg-

ularizers. This is typically the case for J = ‖·‖1 [84], J = ‖D∗·‖1 [228], and the
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underlying reasoning can be more generally extended to polyhedral regularizers.

The same result was also shown for J = ‖·‖1,2 in [232]. More precisely, in all these

works, it was shown that for each y /∈ H , there exists a solution x⋆ of (Py,λ ) that

fulfills (Ix⋆ ). The proof is moreover constructive allowing to build such a solution

starting from any other one.

5.5 Stein Unbiased Risk Estimator (SURE)

We now have all necessary ingredients at hand to design an estimator of the predic-

tion risk.

Definition 11. Suppose that y 7→ µ(y) is differentiable Lebesgue almost every-

where, as is the case when it is Lipschitz-continuous. The SURE is defined as

SURE(y) = ‖y− µ(y)‖2 + 2σ2 df(y)−Pσ2. (26)

In this definition, we have anticipated on unbiasedness of this estimator. In fact,

this turns out to be a fundamental property owing to the celebrated lemma of

Stein [209], which indeed asserts that the SURE (26) is an unbiased estimator of the

prediction risk. Therefore, putting together Theorem 5, Proposition 5 and Stein’s

lemma, we get the following.

Theorem 6. Suppose that J is semi-algebraic and G is of zero Lebesgue measure.

Then,

EW (SURE(Y )) = EW (‖µ(Y )− µ0‖2)

where (25) is plugged into (26), and µ(Y ) = Φx⋆(Y ).

Remark 17 (Parameter selection). A practical usefuleness of the SURE is its ability

to provide an objectively guided way to select a good λ from a single observation y

by minimizing SURE(y). While unbiasedeness of the SURE is guaranteed, it is hard

to control its variance and hence its consistency. This is an open problem in general,

and thus little can be said about the actual theoretical efficiency of such an empirical

parameter selection method. It works however remarkably well in practice, see the

discussion in Section 5.6.5 and references therein.

Remark 18 (Projection risk). The SURE can be extended to unbiasedly estimate

other risks that the prediction one. For instance, as argued in Section 5.3, one can

estimate the so-called projection risk defined as EW (‖PKer(Φ)⊥(x
⋆(Y )−x0)‖2). This

is obviously better that the prediction risk as a surrogate for the estimation risk.
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5.6 Related Works

5.6.1 Sensitivity Analysis

In Section 4.5.4, we reviewed the relevant literature pertaining to sensitivity analysis

for partly smooth functions, which is obviously very connected to Theorem 4. See

also [21] for the case of linear optimization over a convex semi-algebraic partly

smooth feasible set, where the authors prove a sensitivity result with a zero-measure

transition space. A distinctive feature of our analysis toward proving unbiasedness

of the SURE is the need to ensure that sensitivity analysis can be carried out on a

full Lebesgue measure set. In particular, it necessitates local stability of the manifold

Mx⋆ associated to an appropriate solution x⋆, and this has to hold Lebesgue almost

everywhere. Thus the combination of partial smoothness and semi-algebraicity is

the key.

5.6.2 Risk Estimators

In this section, we put emphasis on the SURE as an unbiased estimator of the pre-

diction risk. There are other alternatives in the literature which similarly rely on

estimator of the DOF. One can think for instance of the generalized cross-validation

(GCV) [115]. Thus our results apply equally well to such risk estimators. Exten-

sions of the SURE to independent variables from a continuous exponential family

are considered in [135]. [100] generalizes the SURE principle to continuous multi-

variate exponential families, see also [181, 228] for the multivariate Gaussian case.

The results described here can be extended to these setting as well, see [227].

5.6.3 Applications of SURE in Statistics and Imaging

Applications of SURE emerged for choosing the parameters of linear estimators

such ridge regression or smoothing splines [150]. After its introduction in the

wavelet community through the SURE-Shrink estimator [79], it has been exten-

sively used for various image restoration problems, e.g. with sparse regularization

[19, 238, 186, 55, 181, 33, 156, 187, 188] or with non-local means [234, 89, 76,

235].

5.6.4 Closed-form Expressions for SURE

For the Lasso problem, i.e. J = ‖·‖1, the divergence formula (25) reads

df(y) = |supp(x⋆)|,
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where x⋆ is a solution of (Py,λ ) such that (Ix⋆ ) holds, i.e. Φsupp(x⋆) has full rank.

This result is proved in [247] for injective Φ and in [84] for arbitrary Φ . This result

is extended to analysis ℓ1-sparsity, i.e. J = ‖D∗·‖1, in [216, 228]. A formula for

the DOF in the case where x⋆(y) is the orthogonal projection onto a partly smooth

convex set C is proved in [142]. This work extends that of [164] which treats the

case where C is a convex polyhedral cone. These two works allow one to compute

the degrees of freedom of estimators defined by solving (P2
y,γ ) in the case where

Φ is injective. [128] studied the DOF of the metric projection onto a closed set

(non-necessarily convex), and gave a precise representation of the bias when the

projection is not sufficiently differentiable.

A formula of an estimate of the DOF for the group Lasso, i.e. J = ‖·‖1,2 when Φ
is orthogonal within each group was conjectured in [244]. An estimate is also given

by [202] using heuristic derivations that are valid only when Φ is injective, though

its unbiasedness is not proved. [226] derived an estimator of the DOF of the group

Lasso and proved its unbiasedness when Φ is injective. Closed-form expression of

the DOF estimate for denoising with the nuclear norm, i.e. Φ = Id and J = ‖·‖∗,

were concurrently provided in [77, 44].

5.6.5 Numerical Methods for SURE

Deriving the closed-form expression of the DOF is in general challenging and has to

be addressed on a case by case basis. The implementation of the divergence formula

such as (25) can be computationally expensive in high dimension. But since only the

trace of the Jacobian is needed, it is possible to speed up these computations through

Monte-Carlo sampling, but at the price of mild approximations. If the Jacobian is not

known in closed-form or prohibitive to compute, one may appeal to finite-difference

approximations along Monte Carlo sampled directions [243, 201], see [111, 186] for

applications to imaging problems.

In practice, the analytical formula (25) might be subject to serious numerical

instabilities, and thus cannot always be applied safely when the solution x⋆ is only

known approximately. Think for instance of the case where x⋆ is approximated by

an an iterate computed after finitely-many iterations of an algorithm as detailed in

Section 6. A better practice is then to directly compute the DOF, hence the SURE,

recursively from the iterates themeselves, as proposed by [238, 112, 75].

6 Proximal Splitting for Structured Optimization

Though problems (Py,λ ), (Py,0), (P1
y,ε ) or (P2

y,γ ) are non-smooth, they enjoy

enough structure to be solved by efficient algorithms. The type of algorithm to be

used depends in particular on the properties of J. We first briefly mention some

popular non-smooth optimization schemes in Section 6.1, and focus our attention

on proximal splitting schemes afterwards.
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6.1 Convex Optimization for Regularized Inverse Problems

6.1.1 (Sub)-gradient Descent

Consider for example problem (Py,λ ). This is a convex composite optimization

problem where one of the functions is smooth with a Lipschitz-continuous gradi-

ent. If J were smooth enough, then a simple gradient (or possibly (quasi-)Newton)

descent method could be used. However, as detailed in Section 2.2, low-complexity

regularizers J are intended to be non-smooth in order to promote models M of low

intrinsic dimension, and J is precisely non-smooth transverse to M . One can think

of replacing gradients by subgradients (elements of the subdifferential), since J is

assumed finite-valued (hence closed) convex, which are bounded. This results in a

subgradient descent algorithm which is guaranteed to converge but under stringent

assumptions on the descent step-sizes, which in turn makes their global convergence

rate quite slow, see [172].

6.1.2 Interior Point Methods

Clearly, the key to getting efficient algorithms is to exploit the structure of the op-

timization problems at hand while handling non-smoothness properly. For a large

class of regularizers J, such as those introduced in Section 2.3, the corresponding

optimization problems can be cast as conic programs. The cone constraint can be

enforced using a self-concordant barrier function, and the optimization problem can

hence be solved using interior point methods, as pioneered by [174], see also the

monograph [25]. This class of methods enjoys fast convergence rate. Each itera-

tion however is typically quite costly and can become prohibitive as the dimension

increases.

6.1.3 Conditional Gradient

This algorithm is historically one of the first method for smooth constrained convex

optimization (a typical example being (P2
y,γ )), and was extensively studied in the

70’s. It is also known as Frank-Wolfe algorithm, since it was introduced by [106]

for quadratic programming and extended in [88]. The conditional gradient algorithm

is premised on being able to easily solve (at each iteration) linear optimization prob-

lems over the feasible region of interest. This is in contrast to other first-order meth-

ods, such as forward-backward splitting and its variants (see Section 6.3), which

are premised on being able to easily solve (at each iteration) a projection problem.

Moreover, in many applications the solutions to the linear optimization subprob-

lem are highly structured and exhibit particular sparsity and/or low-rank properties.

These properties have renewed interest in the conditional gradient method to solve

sparse recovery (ℓ1 and total variation), low-rank matrix recovery (nuclear norm
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minimization), anti-sparsity recovery, and various other problems in signal process-

ing and machine learning; see e.g. [62, 136, 200, 87, 129].

6.1.4 Homotopy/Path-following

Homotopy and path-following-type methods have been introduced in the case of ℓ1-

minimization to solve (Py,λ ) by [176]. They were then adapted to analysis ℓ1, i.e.

J = ‖D∗·‖1, in [215], and ℓ∞ regularization, ‖·‖∞, in [108]. One can in fact show that

these methods can be applied to any polyhedral regularization (see [233]), because

these methods only rely on the crucial fact that the solution path λ 7→ x⋆λ , where x⋆λ is

a solution of (Py,λ ), is piecewise affine. The LARS algorithm [96] is an accelerated

version of homotopy which computes an approximate homotopy path for J = ‖·‖1

along which the support increases monotonically along the course of iterations. In

the noiseless compressed sensing case, with Φ drawn from the Gaussian ensemble,

it is shown in [82] that if x0 is k-sparse with P > 2k log(N), the homotopy method

reaches x0 in only k iterations. This k-solution property was empirically observed

for other random matrix ensembles, but at different thresholds for P. In [158], the

authors proved that in the worst case, the number of segments in the solution path

is exponential in the number of variables, and thus the homotopy method can then

take as many iterations to converge.

As for interior points, the cost per iteration of homotopy-like methods, without

particular ad hoc optimization, scales badly with the dimension, thus preventing

them to be used for large-scale problems such as those encountered in imaging.

This class of solvers is thus a wise choice for problems of medium size, and when

high accuracy (or even exact computation up to machine precision for the homotopy

algorithm) is needed. Extensions of these homotopy methods can deal with progres-

sive changes in the operator Φ or the observations y, and are thus efficient for these

settings, see [5].

6.1.5 Approximate Message Passing

In the last five years, ideas from graphical models and message passing and approx-

imate message passing algorithms have been proposed to solve large-scale prob-

lems of the form (Py,λ ) for various regularizers J, in particular ℓ1, ℓ1 − ℓ2 and the

nuclear norm. A comprehensive review is given in [165]. However, rigorous con-

vergence results have been proved so far only in the case in which Φ is standard

Gaussian, though numerical results show that the same behavior should apply for

broader random matrix ensembles.
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6.2 Proximal Splitting Algorithms

Proximal splitting methods are first-order iterative algorithms that are tailored to

solve structured non-smooth (essentially convex) optimization problems. The first

operator splitting method has been developed from the 70’s. Since then, the class

of splitting methods have been regularly enriched with increasingly sophisticated

algorithms as the structure of problems to handle becomes more complex.

To make our discussion more concrete, consider the general problem of minimiz-

ing the proper closed convex function

f = h+
K

∑
k=1

gk ◦Ak

where h : RN →R is convex and smooth, the Ak : RN →RNk are linear operators and

gk : RNk →R are proper closed convex functions for which the so-called proximity

operator (to be defined shortly) can be computed easily (typically in closed form).

We call such a function gk “simple”.

Definition 12. The proximity operator of a proper closed convex function g is de-

fined as, for γ > 0

proxγg(x) = argmin
u∈RN

1

2
‖x− u‖2 + γg(u).

The proximal operator generalizes the notion of orthogonal projection onto a non-

empty closed convex set C that one recovers by taking g = ιC.

Proximal splitting algorithms may evaluate (possibly approximately) the indi-

vidual operators (e.g. gradient of h), the proximity operators of the gk’s, the linear

operators Ak, all separately at various points in the course of iteration, but never

those of sums of functions nor composition by a linear operator. Therefore, each it-

eration is cheap to compute for large-scale problems. They also enjoy rigorous con-

vergence guarantees, stability to errors, with possibly quantified convergence rates

and iteration complexity bounds on various quantities. This justifies their popularity

in contemporary signal and image processing or machine learning, despite that their

convergence is either sublinear or at best linear.

It is beyond the scope of this Chapter to describe thoroughly the huge literature

on proximal spliting schemes, as it is a large and extremely active research field in

optimization theory. Good resources and reviews on the subject are [16, 13, 64, 178].

We instead give a brief classification of the most popular algorithms according to

the class of structured objective functions they are able to handle:

• Forward-Backward (FB) algorithm [163, 179, 66]. It is designed to minimize (6.2)

when h has a Lipschitz-continuous gradient, K = 1, A1 = Id, and g1 is sim-

ple. There are accelerated (optimal) variants of FB, such as the popular Nes-

terov [173] or Fista [15], but the convergence of the iterates is not longer guaran-
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teed for these schemes. FB and its variants are good candidates to solve (Py,λ ).

We will further elaborate on FB in Section 6.3.

• Douglas-Rachford (DR) algorithm [86, 153]. It is designed to minimize (6.2) for

h = 0, K = 2, Ak = Id and gk is simple for k = 1,2. It can be easily extended to

the case of K > 2 by either lifting to a product space, see e.g. [63], or through

projective splitting [94]. DR can be used to solve (Py,0), (P1
y,ε ) or (P2

y,γ ) for

certain operators Φ .

• Generalized Forward-Backward (GFB) algorithm [185]. It can handle the case of

an arbitrary K with Ak = Id, gk simple and h has a Lipschitz-continuous gradient.

It can be interpreted as hybridization of FB scheme and the DR scheme on a

product space.

• Alternate Direction Method of Multipliers (ADMM) algorithm [104, 109, 110,

113]. It is adapted to minimize (6.2) for h = 0, K = 2 with A1 = Id and A2 is

injective. It can be shown [110, 93] that ADMM is equivalent to DR applied to

the Fenchel-Rockafellar dual problem minu g∗1 ◦−A∗
2(u)+ g∗2(u), where g∗k is the

Legendre-Fenchel conjugate of gk. While DR applies when g1 and g2 ◦A2 are

simple, ADMM is a better alternative whereas both g1 ◦−A∗
2 and g∗2 are simple.

Extension to the case K > 2 was proposed for instance in [92].

• Dykstra algorithm [91]. It is able to solve the case where h(x) = ‖x− y‖2
, Ak = Id

and the gk are simple functions. It was initially introduced by [91]in the case

where the gk are indicator functions of closed convex sets, and is generalized

in [12] to arbitrary convex functions. It is also extended in [51, 14] to the case

where h is a Bregman divergence.

• Primal-Dual schemes. Recently, primal-dual splitting algorithms have been pro-

posed to minimize (6.2) in its full generality, and even more complex objectives,

see for instance [56, 223, 203, 29, 53, 65, 67, 239]. Primal-dual schemes can be

used to solve (Py,λ ), (Py,0), (P1
y,ε ) or (P2

y,γ ).

6.3 Finite Model Identification with Forward Backward

The FB algorithm is a good candidate to solve (Py,λ ) when J is simple. Starting

from some x(0) ∈ RN , the FB iteration applied to (Py,λ ) reads

x(n+1) = Proxτnλ J

(
x(n)+ τnΦ∗(y−Φx(n))

)
,

where the step-size sequence should satisfy 0 < τ 6 τn 6 τ < 2/‖Φ‖2
to ensure

convergence of of the sequence x(n) to a minimizer of (Py,λ ).

In fact, owing to partial smoothness of J, much more can be said about the iterates

of the FB algorithm. More precisely, after a finite number of iterations, Forward-

Backward algorithm correctly identifies the manifold M . This is made formal in

the following theorem whose proof can be found in [151].

Theorem 7. Under the assumptions of Theorem 2, x(n) ∈ M for n large enough.
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This result sheds some light on the convergence behavior of this algorithm in the

favorable case where condition (14) holds and (‖w‖/λ ,λ ) are sufficiently small.

In fact, it is shown in [151] that FB identifies in finite time the manifold of any

non-degenerate minimizer x⋆. As a corollary, if condition (14) holds at x0 and

(‖w‖/λ ,λ ) are sufficiently small, then we recover Theorem 7. These results shed

light on the typical convergence behavior of FB observed in such circumstances

(e.g. in compressed sensing problems).

Remark 19 (Local linear convergence). The FB generally exhibits a global sublinear

O(1/n) convergence rate in terms of the objective function. However, under partial

smoothness of J, it is shown in [151] that once the active manifold is identified, the

FB algorithm enters a local linear convergence regime (Q-linear in general and R-

linear if M is a linear manifold), whose rate can be characterized precisely in terms

of the condition number of ΦTx0
.

6.4 Related Works

Finite support identification and local R-linear convergence of FB to solve (Py,λ )

is established in [27] under either a very restrictive injectivity assumption, or a non-

degeneracy assumption that is a specialization of ours to the ℓ1 norm. A similar

result is proved in [125]. The ℓ1 norm is a partly smooth function and is therefore

covered by Theorem 7. [170] proved Q-linear convergence of FB to solve (Py,λ )

with a data fidelity satisfying restricted smoothness and strong convexity assump-

tions, and J a so-called convex decomposable regularizer. Again, the latter falls

within the class of partly smooth functions, and their result is then subsumed by our

analysis.

For general programs, a variety of algorithms, such as proximal and projected-

gradient schemes were observed to have the finite identification property of the ac-

tive manifold. In [132, 130], the authors have shown finite identification of mani-

folds associated to partly smooth functions via the (sub)gradient projection method,

Newton-like methods, and the proximal point algorithm. Their work extends that of

e.g. [242] on identifiable surfaces from the smooth constrained convex case to a gen-

eral non-smooth setting. Using these results, [131] considered the algorithm [224]

to solve (6.2) when h is C2, K = 1, A1 = Id, and g1 is simple and partly smooth,

but not necessarily convex, and proved finite identification of the active manifold.

However, the convergence rates remain an open problem in all these works.

7 Summary and Perspectives

In this chapter, we have reviewed work covering a large body of literature on the reg-

ularization of linear inverse problems. We also showed how these previous works

can be all seen as particular instances of a unified framework, namely sensitivity
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analysis for minimization of convex partly smooth functions. We believe this gen-

eral framework is the one that should be adopted as long as one is interested in

studying fine properties and guarantees of these regularizers, and in particular when

the stability of the low-complexity manifold associated to the data to recover is at

stake.

This analysis is however only the tip of the iceberg, and there is actually a flurry

of open problems to go beyond the theoretical results presented in this chapter. We

list here a few ones that we believe are important avenues for future works:

• Non-convexity and/or non-finiteness: in this chapter, for the sake of simplicity, we

focused on smooth convex fidelity terms and finite-valued convex regularizers.

All the results stated in this chapter extend readily to proper lower semicontin-

uous convex regularizers, since any such a function is subdifferentially regular.

Generalizations of some of the results to non-convex regularizers is possible as

well, though some regularity assumptions are needed. This is of practical impor-

tance to deal with settings where Φ is not a linear operator, or to impose more

agressive regularization (for instance when using ℓp functional with 0 6 p < 1

instead of the ℓ1 norm). There are however many difficulties to tackle in this

case. For instance, regularity properties that hold automatically for the convex

case have to be either imposed or proved. Another major bottleneck is that some

of the results presented here, if extended verbatim, will only assess the recovery

of a stationary/critical point. The latter is not a local minimum in general, and

even less global.

• Dictionary learning: a related non-convex sensitivity analysis problem is to un-

derstand the recovery of the dictionary D in synthesis regularization (as defined

in Section 2.3.4) when solving problems of the form

min
{αk}k,D∈D

∑
k

1

2
‖y−ΦDαk‖2 +λ J0(αk)

where the (yk)k are a set of input exemplars and D stands for the set of constraints

imposed on the dictionary to avoid trivial solutions. Such a non-convex varia-

tional problem is popular to compute adapted dictionaries, in particular when

J0 = ‖·‖1, see [97] and references therein. Although the dictionary learning prob-

lem has been extensively studied when J0 = ‖·‖1, most of the methods lack of

theoretical guarantees. The theory of dictionary learning is only beginning to de-

velop, see e.g. [122, 140, 204, 1]. Tackling other regularizers, including analysis

ℓ1 of the form J = J0 ◦D∗ is even more difficult, see e.g. [183, 59] for some

computational schemes.

• Infinite dimensional problems: we dealt in this chapter with finite-dimensional

vector spaces. It is not straightforward to extend these results to infinite-dimen-

sional cases. As far as ℓ2-stability is concerned, the constants involved in the

upper bounds depend on the dimension N, and the scaling might diverge as

N → +∞. We refer to Section 3.3 for previous works on convergence rates of

Tikhonov regularization in infinite-dimensional Hilbert or Banach spaces. Ex-

tending Theorem 2 for possibly non-reflexive Banach spaces is however still
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out of reach (non-reflexivity is a typical degeneracy when considering low-

complexity regularization). There exists however some extensions of classical

stability results over spaces of measures, such as weak convergence [28], exact

recovery [50, 74] and stable support recovery [90].

• Compressed sensing: as highlighted in Sections 3.3.3 and 4.5.3, the general ma-

chinery of partly smooth regularizers (and the associated dual certificates) is

well adapted to derive optimal recovery bounds for compressed sensing. Un-

fortunately, this analysis has been for now only applied to norms (‖·‖1, ‖·‖1,B,

‖·‖∗ and ‖·‖∞). Extending this framework for synthesis and analysis regularizers

(see Sections 2.3.4 and 2.3.5) is a difficult open problem.

• Convergence and acceleration of the optimization schemes: Section 6.3 showed

how partial smoothness can be used to achieve exact manifold identification af-

ter a finite number of iterations using the FB algorithm. This in turn implies a

local linear convergence of the iterates, and raises the hope of acceleration using

either first-order or second-order information fo the function along the identi-

fied manifold (in which we recall it is C2). Studying such accelerations and their

guarantees as well as extending this idea other proximal splitting schemes is thus

of practical importance to tackle more complicated problems such as e.g. (Py,0),

(P1
y,ε) or (P2

y,γ ).
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185. H. Raguet, J. Fadili, and G. Peyré. Generalized forward–backward splitting. SIAM Journal

on Imaging Sciences, 6(3):1199–1226, 2013.

186. S. Ramani, T. Blu, and M. Unser. Monte-Carlo SURE: a black-box optimization of regular-

ization parameters for general denoising algorithms. Image Processing, IEEE Transactions

on, 17(9):1540–1554, 2008.

187. S. Ramani, Zhihao Liu, J. Rosen, J.-F. Nielsen, and J.A. Fessler. Regularization parameter

selection for nonlinear iterative image restoration and mri reconstruction using GCV and

SURE-based methods. Image Processing, IEEE Transactions on, 21(8):3659–3672, Aug

2012.

188. S. Ramani, J. Rosen, Z. Liu, and J. A. Fessler. Iterative weighted risk estimation for nonlinear

image restoration with analysis priors. In Computational Imaging X, volume 8296, pages

82960N–82960N–12, 2012.

189. B.D. Rao and K. Kreutz-Delgado. An affine scaling methodology for best basis selection.

Signal Processing, IEEE Transactions on, 47(1):187–200, Jan 1999.

190. B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix

equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

191. R. Refregier and F. Goudail. Statistical Image Processing techniques for Noisy Images - An

application Oriented Approach. Kluwer, 2004.

192. E. Resmerita. Regularization of ill-posed problems in Banach spaces: convergence rates.

Inverse Problems, 21(4):1303, 2005.

193. E. Richard, F. Bach, and J.-P. Vert. Intersecting singularities for multi-structured estimation.

In International Conference on Machine Learning, Atlanta, États-Unis, 2013.

194. R. T. Rockafellar and R. Wets. Variational analysis, volume 317. Springer, Berlin, 1998.

195. M. Rudelson and R. Vershynin. On sparse reconstruction from Fourier and Gaussian mea-

surements. Communications on Pure and Applied Mathematics, 61(8):1025–1045, 2008.

196. L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algo-

rithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.

197. F. Santosa and W.W. Symes. Linear inversion of band-limited reflection seismograms. SIAM

Journal on Scientific and Statistical Computing, 7(4):1307–1330, 1986.

198. O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen. Variational methods

in imaging, volume 167. Springer, 2009.

199. I. W. Selesnick and M. A. T. Figueiredo. Signal restoration with overcomplete wavelet trans-

forms: comparison of analysis and synthesis priors. In Proceedings of SPIE, volume 7446,

page 74460D, 2009.

200. S. Shalev-Shwartz, A. Gonen, and O. Shamir. Large-scale convex minimization with a low-

rank constraint. In ICML, 2011.

201. X. Shen and J. Ye. Adaptive model selection. Journal of the American Statistical Association,

97(457):210–221, 2002.

202. V. Solo and M. Ulfarsson. Threshold selection for group sparsity. In Acoustics Speech and

Signal Processing (ICASSP), IEEE International Conference on, pages 3754–3757. IEEE,

2010.



Low Complexity Regularization of Linear Inverse Problems 49

203. M. V. Solodov. A class of decomposition methods for convex optimization and monotone

variational inclusions via the hybrid inexact proximal point framework. Optimization Meth-

ods and Software, 19(5):557–575, 2004.

204. D. A. Spielman, H. Wang, and J. Wright. Exact recovery of sparsely-used dictionaries.

Journal of Machine Learning Research, pages 1–35, 2012.

205. N. Srebro. Learning with matrix factorizations. PhD thesis, MIT, 2004.

206. J.-L. Starck, M. Elad, and D.L. Donoho. Image decomposition via the combination of sparse

representatntions and variational approach. IEEE Trans. Image Processing, 14(10):1570–

1582, 2005.

207. J.-L. Starck, F. Murtagh, and J. M. Fadili. Sparse image and signal processing: wavelets,

curvelets, morphological diversity. Cambridge University Press, 2010.
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