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In this paper, the classical Poisson risk model is considered. The claims are supposed to be modeled by heavy-tailed distributions, so that the moment generating function does not exist. The attention is focused on the probability of ruin. We first provide a nonparametric estimator of an upper bound of the ruin probability by Willmot and Lin. Then, its asymptotic behavior is studied. Asymptotic confidence intervals are studied, as well as bootstrap confidence intervals. Results for possibly unstable models are also obtained.

Introduction and preliminaries

The interest of actuarial mathematics in ruin probabilities dates back to the seminal paper by [START_REF] Lundberg | Approximerad Framställning av Sannolikhetsfunktionen[END_REF]. Since then, several contributions have been given, the main trouble being the difficulty in finding a general expression for the probability of ruin (except for a few special cases).

We consider here the classical risk model, where claims occur as a Poisson process. The assumptions on which such a model rests are listed below.

A1. The claim sizes X 1 , X 2 , . . . are positive independent and identically distributed (i.i.d.) random variables (r.v.'s), with common distribution function (d.f.) F (x) = P (X 1 ≤ x), finite mean µ = E(X 1 ) and finite, positive, variance σ 2 = V ar(X 1 ). A2. The inter-arrival times T 1 , T 2 , . . . between consecutive claims are i.i.d. exponentially distributed r.v.s, with mean µ T = E(T 1 ) = 1/λ. A3. The two sequences (X i ; i ≥ 1), (T i ; i ≥ 1) are independent. A4. The initial capital is x > 0, and the premium income is linear in time with rate c. For the sake of simplicity, and without loss of generality, in the sequel we will assume that c = 1 (otherwise, it is enough to refer to the transformed claims

X i = X i /c).
The function of interest is the ruin probability Ψ(x), namely the probability that the company will be ruined if the claims will exceed its available resources. Almost all statistical analysis of the ruin probability in risk business are based on the assumption that the moment generating function (m.g.f.) of the claim size distribution is finite for some positive real argument.

The Lundberg model outline before possess a natural counterpart in queueing theory, where claims are replaced by service times. In that framework, the Lundberg model (with c = 1) essentially corresponds to the M/G/1 model, with i.i.d. exponential inter-arrival times and general i.i.d. service times. The ruin probability Ψ(x) turns out to be the probability that the equilibrium waiting time is greater than x. Because of this correspondence, all results obtained in this paper are immediately applicable to queueing models.

The main result in evaluating Ψ(x) is the celebrated Lundberg's inequality. Assume that there exists a positive u such that:

∞ 0 e ux dF (x) < ∞
Then, Lundberg's inequality states an exponential bound in the initial capital x:

Ψ(x) ≤ e -Rx ∀ x ≥ 0 (1)
for an appropriate, positive, R, such that x -1 log Ψ(x) → -R as x goes to infinity. Statistical analysis of R under assumptions A1-A4 is in [START_REF] Gaver | Nonparametric estimation of the probability of a long delay in the m/g/1 queue[END_REF], under the additional assumption that λ is known. See also [START_REF] Pitts | Confidence bound for the adjustment coefficient[END_REF], as well as the references therein, for the general case of non-exponential inter-arrival times. Sequential analysis of R is in [START_REF] Conti | A nnonparametric sequential test with power 1 for the ruin probability in some risk models[END_REF].

In many practical cases the claim size distribution is well described by d.f.'s for which the above condition of existence of the m.g.f. is not satisfied. As a consequence, Lundberg's inequality does not hold. A case of practical relevance is when claims are modelled by heavy-tailed distributions, such as Pareto, log-gamma, lognormal or heavy-tailed Weibull distributions, that do not have exponential moments. In this case, a condition of "high claims" is met. High claims occur with relatively small probability, and are difficult to predict because they are not generally caused by man-made disasters. Moreover, it has a significant influence on the behavior of the whole model. Under high claims, the ruin probability is (expected to be) considerably larger than the classical case of finite m.g.f.. For this reason, it is of interest to provide a statistical analysis of the ruin probability when the upper bound (1) does not hold.

In this paper, we deal with "high claims" modelled by heavy-tailed distributions. The basic idea consists in considering an appropriate approximation of Ψ(x) ("for x large") and estimate this approximation. Clearly, classical risk theory has to be adapted to this new case. Refinements and generalizations of the inequality (1) have been considered by several authors; see, for instance, [START_REF] Gerber | Martingales in risk theory[END_REF], [START_REF] Ross | Bounds on the delay distribution in gi/g/1 queues[END_REF], [START_REF] Stoyan | Comparison methods for queues and other stochastic models[END_REF], [START_REF] Willmot | Lundberg bounds on the tails of compound distributions[END_REF], but they are still based exponential bounds.

We can actually mention not so many works devoted to bounds of ruin probabilities that can be applied to claim size distributions with no exponential moments. The following list, although incomplete, contains the most important papers. An interesting approach to the problem consists in constructing general bound for Ψ(x) without the Cramér-Lundberg condition or other similar conditions; see, for example, De [START_REF] De Vylder | Bounds for classical ruin probabilities[END_REF], [START_REF] Broeckx | Ordering of risks and ruin probabilities[END_REF]. A different approach simply consists in relaxing the Cramér-Lundberg condition by considering functions different from the exponential function. Following [START_REF] Willmot | Refinements and distributional generalizations of lundberg's inequality[END_REF], [START_REF] Willmot | A non-exponential generalization of an inequality arising in queueing and insurance risk[END_REF], [START_REF] Willmot | On the relationship between bounds on the tails of compound distributions[END_REF], [START_REF] Lin | Tail of compound distributions and excess time[END_REF], [START_REF] Cai | Some improvements on the lundberg's bound for the ruin probability[END_REF], [START_REF] Willmot | Simplified bounds on the tails of compound distributions[END_REF], we could consider a "new worse than used" d.f. of claims, and then derive either upper or lower bounds for Ψ(x).

An excellent monograph is the volume by [START_REF] Willmot | Lundberg approximations for compound distributions with insurance applications[END_REF]. It is devoted to approximations and bounds for the tail of compound distributions (i.e. distributions of random sums). Random sums are of primary importance in insurance, as well as in other areas of applied probability, such as queueing theory. Bounds in the book by [START_REF] Willmot | Lundberg approximations for compound distributions with insurance applications[END_REF] are motivated by the classical Lundberg exponential inequalities, which applies to ruin probabilities. They simply replace the exponential term, involved in the classical bound, by the tail of a distribution which possesses a thicker tail than the exponential one, such as a Pareto-type tail. The connection to compound distributions is through the interpretation of the ruin probability as the tail probability of a compound geometric distribution.

In the sequel, we will consider first the Pareto bound introduced by Willmot (1994), [START_REF] Willmot | Lundberg approximations for compound distributions with insurance applications[END_REF], as a suitable approximation of Ψ. Then, we will study statistical inference problems for such bound.

The paper is structured as follows. We first describe, in Section 2, the Pareto upper bound introduced by [START_REF] Willmot | Refinements and distributional generalizations of lundberg's inequality[END_REF], and adapt it to an insurance context. Then, in Section 3, we introduce a nonparametric estimator for such a bound and study its asymptotic behavior. The behavior of our estimator is also considered in the particular case of unstable model in Section 4.

Bounds for the ruin probability

Let N be a r.v. taking non-negative values, let p k = P (N = k), and let (Y i ; i ≥) be a sequence of i.i.d. r.v.s (independent of N ) having common d.f. H. Denote further by a n the quantity (essentially, the survival function of N ):

a n = P (N > n) = ∞ k=n+1 p k n = 0, 1, 2, . . . .
Our next assumptions refers to the moments of H, and to the possibility of bounding the (right) tail of H.

A5. The moments of Y i s exist up to order m (where m > 0). In symbols:

E(Y j i ) = ∞ 0 x j dH(x) < ∞ ∀ j ≤ m. A6. There is k 0 > 0 satisfying ∞ 0 (1 + k 0 x) m+1 dH(x) = 1 φ (2)
where φ < 1 is a positive number such that:

a n+1 ≤ φ a n n = 0, 1, 2, . . . (3) Define next the random sum S N = Y 1 +• • •+Y N , and let G(x) = P (S N ≥ x).
The following bounds are obtained by combining Corollaries 6.2.1 and 6.2.3 in [START_REF] Willmot | Lundberg approximations for compound distributions with insurance applications[END_REF].

Proposition 1 Under conditions A5, A6, the following inequality

G(x) ≤ 1 -p 0 φ (1 + k 0 x) -m , x ≥ 0 holds.
Consider now the classical Poisson risk model. As already explained in the Introduction, X i denotes the i-th claim size and T i denotes the i-th inter-arrival time. The m.g.f. of the d.f. F of the X i 's does not exist. From now on, throughout this section, we assume that the model is stable, i.e. that the parameter ρ = (λ µ) -1 is strictly smaller than 1 (recall that c is assumed equal to 1). Let

F I (x) = 1 µ x 0 y dF (y)
be the integrated tail distribution and denote by F * k I the k-fold convolution of the d.f. F I (with F * 0 I = 0 for every positive x). The d.f. F I is absolutely continuous w.r.t. F , with Radon-Nikodym derivative dF I (x)/dF (x) = x/µ.

As well known, under the assumption of the Cramér-Lundberg model and if ρ < 1, the probability of ruin Ψ can be expressed as a compound geometric tail probability by mean of the so-called Pollaczeck-Khinchine formula (see, e.g., Feller (1971), Grandell (1990) or Embrechts and Veraverbeke (1982) ). In symbols:

Ψ(x) = ∞ k=1 (1 -ρ)ρ k F * k I (x) x ≥ 0. ( 4 
)
Apart for a few special cases, (4) cannot be expressed in a closed form. Hence, it is fairly natural to resort to some (possibly simple) bound of (4). Assume that the moments of F I exist up to order m > 0, i.e. that ∞ 0

x m dF I (x) < ∞.

(5)

Clearly, ( 5) is fulfilled if and only if the moments of the claim size distribution exist up to order m + 1, i.e. if

E(X m+1 ) = ∞ 0 x m+1 dF (x) < ∞
Now, for the geometric distribution with p k = (1 -ρ)ρ k , (k = 0, 1, 2, . . .), we may write

a n+1 = ∞ k=n+2 p k = ∞ k=n+2 (1 -ρ)ρ k = ρ ∞ k=n+2 (1 -ρ)ρ k-1 = ρ ∞ k=n+1 (1 -ρ)ρ k = ρ a n (6)
that clearly implies φ = ρ. Furthermore, from elementary properties of the geometric distribution, it is not difficult to see that p 0 = 1 -ρ.

Finally, suppose there exists a positive k 0 satisfying assumption A6 with H = F I , namely:

∞ 0 (1 + kx) m dF I (x) = 1 ρ . (7) 
From Proposition 1 it is immediate to draw the following result.

Proposition 2 Under conditions A1-A4, if assumptions A5, A6 hold when H = F I , and if ρ < 1, then the inequality

Ψ(x) ≤ Ψ U = (1 + kx) -m (8) 
holds for every non-negative x.

Inequality (8) provides a useful approximation of Ψ(x) (namely, Ψ(x) ≈ Ψ U (x)), to be used when the m.g.f. of the claim size d.f. does not exist. The problem we deal with in next section is the construction of a nonparametric point estimator of Ψ U (x) in (8).

Basic statistical analysis

Suppose the observed data n are i.i.d. inter-arrival times T 1 , . . . , T n and n i.i.d. claim sizes X 1 , . . . , X n . The two sequences (T i ; i ≥ 1), (X i ; i ≥ 1) are assumed to satisfy conditions A1-A4, again with c = 1. As far as claim size distribution is concerned, we do not assume any specific parametric model for F . Our unique parametric assumption is that T i s are i.i.d. exponential r.v.s, with unknown parameter λ.

Our goal is to construct a nonparametric estimator of Ψ U (x). In view of (8), the main problem consists in defining an estimator of k 0 .

To simplify the notation, let B(k, m) be defined as

B(k, m) = µ ∞ 0 (1 + kx) m dF I (x) = ∞ 0 x (1 + kx) m dF (x) = E [X 1 (1 + kX 1 ) m ] . (9) 
Throughout the present section, we will always suppose that the stability condition ρ < 1 is met. The function

G(k, m) = 1 µ B(k, m) -1/ρ (10) is strictly increasing in k, with G(0, m) = 1 -1/ρ < 0 and G(k, m) ↑ ∞ as k ↑ ∞.
Hence, as H = F I , k 0 is the unique root of the equation G(k, m) = 0. On the basis of our sample data, it is natural to estimate λ by its maximum likelihood estimator (MLE, for short)

λ = T -1 (11)
where T is the sample average of inter-arrival times:

T = 1 n n i=1 T i .
As a "natural" estimator of ρ, we then take:

ρ = X/T (12)
where X is the sample average of claim sizes:

X = 1 n n i=1 X i .
Next step consists in constructing an estimator of B(k, m). First of all, let F (x) be the empirical distribution function (e.d.f., for short) of the claim sizes:

F (x) = 1 n n i=1 I (X i ≤x)
where

I (X i ≤x) = 1 if X i ≤ x 0 if X i > x . (13) 
Hence, a "natural" estimator of F I (x) is

F I (x) = 1 X x 0 y d F (y) = 1 n X n i=1 X i I (X i ≤x) (14) 
Note that F I (x) corresponds to a discrete distributions giving mass

X i /(X 1 + • • • + X n ) to each sample claim size X i , i = 1, . . . , n.
On the basis of ( 14), it is not difficult to construct the following estimator of B(k, m):

B(k, m) = X ∞ 0 (1 + kx) m d F I (x) = 1 n n i=1 X i (1 + kX i ) m (15)
as well as the following estimator of (10):

G(k, m) = 1 X B(k, m) - 1 ρ . ( 16 
)
Now, G(k, m) is strictly increasing in k, with G(0, m) = 1 -1/ ρ and G(k, m) ↑ ∞ as k increases. Hence, if ρ < 1, the the equation G(k, m) = 0 possesses only one root, k n , say. On the other hand, if ρ ≥ 1, the the equation G(k, m) = 0 possesses no root. In the sequel, we will then define k n , our estimate of k 0 , as

k n = inf{k > 0 : G n (k, m) ≥ 0}. ( 17 
)
Note that k n > 0 whenever ρ < 1, and k n = 0 whenever ρ ≥ 1.

Lemma 1 In assumptions A1-A4 are fulfilled, and if A5, A6 are satisfied by F I , then G n (k, m) tends to G(k, m) with probability one, for every fixed, non-negative k:

G n (k, m) a.s. → G(k, m) as n → ∞, ∀ k ≥ 0. ( 18 
)
Proof See Appendix.

In next proposition, the strong consistency of the estimator k n is shown.

Proposition 3 Under the assumptions of Lemma 1, we have

k n a.s. → k 0 (19)
as the sample size n goes to infinity.

Proof See Appendix.

Next step consists in proving the asymptotic normality of k n , under appropriate additional assumptions. We begin by some preliminary lemmas, that are worth for proving the main result of the present section (Proposition 5).

Lemma 2 Suppose that k * n lies in between k n and k 0 , and let

G (j) (k, m) (G (j) n (k, m)) be the jth derivative of G(k, m) (G n (k, m)) w.r.t. k (j = 1, 2).
Under the assumptions of Lemma 1, we have:

G (j) n (k * n , m) a.s. → G (j) (k 0 , m) as n → ∞. ( 20 
)
Proof See Appendix.

From the multidimensional central limit theorem for sums of i.i.d. random vectors, (see, e.g., [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF], p. 28) it is then easy to prove the following further lemma, which is of considerable importance for all subsequent developments.

Lemma 3 Under the same assumptions of Lemma 1, and if ρ < 1, and if

C(k 0 , 2m) = ∞ 0 x 2 (1 + k 0 x) 2m dF (x) < ∞, (21) 
the sequence of (three-dimensional) random vectors

√ n(B n (k 0 , m) -B(k 0 , m)), √ n(X -µ), √ n(T -λ -1 ); n ≥ 1
tends in distribution, as n goes to infinity, to a (three-dimensional) normal random vector, with null mean vector and covariance matrix:

Σ =   σ 11 σ 12 σ 13 σ 12 σ 22 σ 13 σ 11 σ 23 σ 33   (22) 
where σ ij = σ ji , and

σ 11 = V ar(X 1 (1 + k 0 X 1 ) m ) = C(k 0 , 2m) -B(k 0 , m) 2 , σ 22 = V ar(X 1 ) = σ 2 , σ 33 = V ar(T 1 ) = λ -2 σ 12 = Cov(X 1 , X 1 (1 + k 0 X 1 ) m ) = C(k 0 , m) -µ B(k 0 , m) σ 13 = σ 23 = 0.
Proposition 4 Under the same assumptions of Lemma 1, and if ρ < 1, the sequence of r.v.s

√ n (G n (k 0 , m) -G(k 0 , m)) , n ≥ 1 (23)
tends in distribution, as n goes to infinity, to a normal variate with zero mean and variance

σ 2 G = a T Σa, (24) 
where

a =   µ -1 -B(k 0 , m)/µ 2 -λ µ λ 2   . (25) 
Proof See Appendix.

We are now in a position to prove the main result of the present section, i.e. the asymptotic normality of k n (if properly rescaled) Proposition 5 Under the same assumptions of Lemma 1, if ρ < 1, and if

G (1) (k 0 , m) = 0, the sequence of r.v.s √ n(k n -k 0 ), n ≥ 1
tends in distribution to a normal variate with zero mean, and variance:

σ 2 k = G (1) (k 0 , m) -2 σ 2 G ( 26 
)
where σ 2 G is given by (24). Proof See Appendix.

On the basis of the estimate k n , it is of course possible to construct the following, simple estimator of Ψ U (x), the upper bound of the ruin probability in (8):

Ψ U (x) = (1 + k n x) -m (27) 
From Proposition 3 and Proposition 5, using again the delta method, it is easy to obtain the following further result, establishing the asymptotic normality of Ψ U (x).

Proposition 6 Under the same assumptions of Proposition 5, the sequence of r.v.s

√ n Ψ U (x) -Ψ U (x) , n ≥ 1 (28)
tends in distribution to a normal variate with zero mean and variance

σ 2 U = m x (1 + k 0 x) -(m+1) 2 σ 2 k ( 29 
)
as n goes to infinity.

In order to construct an asymptotic confidence interval for Ψ U (x), we need a consistent estimator of its asymptotic variance σ 2 U in (29). Let σ 2 U be defined exactly as σ 2 U , except that the unknown quantities k 0 , µ, λ, B(k 0 , m), C(k 0 , 2m), G (1) (k 0 , m) are replaced by their consistent estimators

k n , X, λ, B n (k n , m), C n (k n , j) (j = m, 2m), G (1) 
n (k n , m), respectively, where

C n (k n , j) = 1 n n i=1 X 2 i (1 + k n X i ) j .
In Proposition 7, whose proof is immediate, an asymptotic confidence interval of size 0 < α < 1 for Ψ U (x) is provided.

Proposition 7 Under the assumptions of Proposition 5, as n → ∞, the following results hold true.

(i) σ 2 U a.s. → σ 2 U ; (ii) √ n ( Ψ U (x) -Ψ U (x)
)/ σ U tends in distribution to a normal standard variate;

(iii) If z α denotes the α-th quantile of the normal standard distribution, then a confidence interval for Ψ U (x), of asymptotic size (1 -α), is given by

[ Ψ U (x) -z α/2 σ U / √ n, Ψ U (x) + z α/2 σ U / √ n]. (30) 
4 The case of unstable models

We have worked so far under the assumption of stability of the model, namely ρ < 1. Virtually all papers concerned with statistical analysis of ruin models are actually based on the a priori assumption that the model under consideration is stable. Hence, it is of interest to study how robust are the result of statistical analysis when the hypothesis of stability is dismissed. Furthermore, in our opinion the case ρ "close" to 1 is of special importance, since it corresponds to the possibility of severely high claims. In this section, we deal with statistical analysis of possibly unstable models, where the assumption ρ < 1 is dismissed. First of all, consider again the function ( 10), extended now to the case ρ ≥ 1,

G(k, m) = 1 µ B(k, m) -1 ρ if ρ < 1 0 if ρ ≥ 1
and denote by k 0 the smallest positive root of the equation G(k, m) = 0:

k 0 = inf{k > 0 : G(k, m) ≥ 0}.
The value of k 0 is different according to the value of ρ: k 0 > 0 if ρ < 1 and k 0 = 0 if ρ ≥ 1. Furthermore, it is not difficult to see that in the case k 0 = 0, (24) reduces to:

σ 2 G = λ 2 ρ 4 (σ 2 + µ 2 ). (31) 
We first deal with the case ρ = 1, which is more difficult (and more interesting, as well) than the case ρ > 1. The following proposition contains the main result of the present section.

Proposition 8 Assume that G (1) (0, m) = 0, and that all hypotheses of Lemma 3 are met, except the stability assumption ρ < 1. Define in this case σ 2 k as

σ 2 k = G (1) (0, m) -2 σ 2 G = G (1) (0, m) -2 λ 2 ρ 4 (σ 2 + µ 2 ). (32) 
If ρ = 1, we then have If ρ = 0, then G(0, m) = 0, G(δ, m) > 0 for every positive δ. The same technique used in the case ρ < 1 allows us to prove that for every positive δ we have k n ∈ [0, δ] for all n sufficiently large, with probability one, and this is enough to establish (19). Finally, the case ρ > 1 can be dealt with similarly. Now, it is not difficult to prove that Y n converges in probability to G (1) (0, m) as n increases. In is enough to take into account that I (ρ<1) converges in probability to a r.v. which takes the values 0, 1 both with probability 1/2, and that (G

lim n→∞ P ( √ n k n ≥ x) = 1 if x < 0 1 -Φ(x/σ k ) if x > 0 where Φ(•) is the standard normal distribution function. Proof See Appendix. If ρ > 1, then √ n k n tends
(1) n (k * n , m) -G (1) 
n (0, m)) converges in probability to zero. Hence, we may conclude that I (ρ<1) (G (1)

n (k * n , m) -G (1) 
n (0, m)) converges to zero in probability, too. If x < 0, then (1/ρ -1) I (ρ<1) is greater than x with probability 1. Since G 

  in law to a random variate degenerate at the point zero. It is enough to take into account the consistency of ρ and the relationships:lim n→∞ P ( √ n k n = 0) = lim n→∞ P (ρ ≥ 1) = 1.(33) 

  from relationship (40) we get the equality1 ρ -1 I (ρ<1) = Y n k n (41)whereY n = G (1) n (0, m) I (ρ≥1) + G (1) n (k * n , m) I (ρ<1) (42) = G (1) n (0, m) (1 -I (ρ<1) ) + G (1) n (k * n , m) I (ρ<1) = G (1) n (0, m) + I (ρ<1) (G (1) n (k * n , m) -G (1)n (0, m)).

  n , m) is positive, we then obtainlim n→∞ P ( √ nk n ≥ x) = 1 ∀x < 0. (43)On the other hand, if x > 0, by observing that, as n goes to infinity, k * n converges with probability 1 to k 0 = 0 and that / V ar(1/ρ) > x/σ k = 1 -Φ(x/σ k ) ∀x > 0.

Next, observe first that when ρ = 1 σ U reduces to

As a simple consequence of Proposition 7, using the delta method we have the following further result, whose proof is immediate.

Proposition 9 Under the same assumptions as in Proposition 8, the following results hold true.

(i) If ρ = 1, then

where σ U is given by (34).

(ii) If ρ > 1, then √ n ((1 + k n x) -m -1) ≥ x) converges in law to a random variate degenerate at the point zero.

Proposition 8 shows that the asymptotic normality of k n only holds under the stability condition ρ < 1. In order to study how this result affects the behaviour of the confidence interval for Ψ U (x) (30), let σ 2 U be defined exactly as in Section 3. When ρ = 1, we have again

→ σ 2

U

as n goes to infinity. As a consequence, we may establish the following further results.

Proposition 10 Under the assumptions of Lemma 1, and if and if G (1) (k 0 , m) = 0, then:

(i) If ρ < 1, the confidence interval (30) has asymptotic level 1-α, as n increases;

(ii) If ρ = 1, the confidence interval (30) has asymptotic level 1 -α/2, as n increases;

(ii) If ρ > 1, the confidence interval (30) has asymptotic level 1, as n increases.

On the basis of Proposition 10, we may conclude that the confidence interval (30) has asymptotic level not smaller than 1 -α as n goes to infinity. Hence, it is a conservative confidence interval of level 1 -α for Ψ U (x).

Appendix

Proof of Lemma 1 From the strong law of large numbers, it is immediate to see that

as n goes to infinity. Relationship (18) easily follows from ( 35)-( 37).

Proof of Proposition 3 Suppose first that ρ < 1. The function G(•, m) is strictly increasing in a neighborhood of k 0 . Hence, there exists δ > 0 such that

Hence, the set of all sequences (t i ; i ≥ 1) and (x i ; i ≥ 1) of inter-arrival times and claims such that

as n → ∞ uniformly in [k 0 -δ, k 0 + δ] does have probability 1, as a consequence of Lemma 1. Consider now two sequences (t i ; i ≥ 1), (x i ; i ≥ 1) in this set. For every > 0, there exists n 0 , which depends on , (t i ; i ≥ 1) and (x i ; i ≥ 1), such that

for every n ≥ n 0 . These two last relationships imply that, for every δ > 0, there exists n 0 (depending on δ, (t i ; i ≥ 1) and (x i ; i ≥ 1), such that

which allows to establish (19) as the sample size n tends to infinity.

Proof of Lemma 2 For the sake of simplicity, we confine ourselves to the case j = 1, the case j = 2 being similar. First of all, observe that G (1) (k, m) is increasing w.r.t. k. If k n ∈ (k 0 -, k 0 + ), where 0 < < k 0 , because of k n a.s.

→ k 0 , we may write

It suffices to take into account that

n (k 0 -, m) By the strong law of large number, we then obtain

As a consequence, it seen that

for every non-negative k, so that for all sufficiently large n

which implies, in its turn, relationship (20).

Proof of Proposition 4

In the first place, it is possible to write

Now, an elementary application of the delta-method (see, e.g., [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF], p. 118 ff.) shows that

so that, as a consequence of Slutsky theorem [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF], p. 19) we may conclude that the limit distribution of (23) coincide with the limit distribution of

Finally, the use of Lemma 3 ends the proof.

Proof of Proposition 5 Taking into account that G n (k n , m) = G(k 0 , m) = 0, a first order Taylor expansion of G n (k n , m) at the point k 0 , gives the equality

where k * n lies in the interval having extremes k 0 , k n . From (39) we then get

The conclusion of Theorem 3.2 is now an immediate consequence of Proposition 4 and Lemma 2.

Proof of Proposition 8

The assumption ρ = 1 implies that the equation G(k, m) = 0 possesses only the root k 0 = 0. Observing that k n is equal to zero iff ρ ≥ 1 (and ρ < 1 then k n > 0), we have first 

where k * n lies in the interval having extremes (0, k n ). Taking into account that