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partial information for stochastic volatility models
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Abstract

This paper studies the question of filtering and maximizing terminal wealth from
expected utility in a stochastic volatility models. The special feature is that the only
information available to the investor is the one generated by the asset prices and,
in particular, the return processes cannot be observed directly and assumed to be
modelled by a stochastic differential equation. Using stochastic non-linear filtering
and change of measure techniques, the partial observation context can be trans-
formed into a full information context such that coefficients depend only on past
history of observed prices (filters processes). The main difficulty is that these filters
are valued in infinite-dimensional space: it satisfy a stochastic partial differential
equations named "Kushner-Stratonovich equations". We also show that we need
to introduce an a priori models for the trend and the stochastic volatility in order
to evaluate the filters processes. The dynamic programming or maximum principle
are still applicable and the associated Bellman equation or Hamiltonian system are
now in infinite dimension.

Keywords 0.1. Partial information, stochastic volatility, utility maximization, non-
linear filtering, Kushner-Stratonovich, infinite dimensional systems, dynamic program-
ming.

1 Introduction

The aim of a model in finance is to be able to predict, in the probabilistic sense, the
evolution of the movements of a financial stock. The interest is to build a investment
quantitative strategies or to cover a financial product against the fluctuations in the
market. Louis Bachelier introduced the use in finance of the stochastic process now called
"Brownian motion", in order to answer the questions about the price of derivatives. He
proposed that the asset is modeled by a Brownian motion with a trend. After that,
several attempts of modeling have subsequently been introduced.

Many practicioners in today’s financial industry believe that most stock prices and
indices are best modeled by continuous time stochastic processes, and in particular by
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diffusion processes. In the early 1970’s Black, Scholes and Merton were the first to
acknowledge this fact, by modeling the asset by a geometric Brownian motion where the
stock’s mean rate of return and volatility are constants. But the problem of this model is
that the parameters are constant. So, a natural generalization of this model was to model
the volatility by a stochastic process. The most popular stochastic volatility model is the
Heston model (1993) where the volatility is modeled by a square root process introduced
in finance by Cox Ingersoll and Ross (1985) in a very general context.

The basic problem of mathematical finance is the problem of an economic agent
who invests in a financial market so as to maximize the expected utility of his terminal
wealth. In the framework of continuous time model, the utility maximization problem
has been studied for the first time by Merton (1971) in a Black-Scholes environment
(full information) via the Hamilton-Jaccobi-Bellman equation and dynamic programming.
As in financial market models, we do not have in general a complete knowledge of all
the parameters, which may be driven by unobserved random factors. So, we are in
the situation of the utility maximization problem with partial observation, which has
been studied extensively in the literature by Detemple (1986), Feldman(1986), Lakner
(1995, 1998) and Karatzas ans Xue (1991), etc.

In order to solve this problem with partial observation, the common way is to use
the stochastic non-linear filtering and change of measure techniques, so as the partial
observation context can be transformed into a full information context. Then it is possible
to solve this problem either with the martingale approach or via dynamic programming
approach. Models with incomplete information have been investigated by Dothan and
Feldman using dynamic programming methods in a linear Gaussian filtering, Lakner [2]
has solved the partial optimization problem via martingale approach and worked out
the special case of the linear Gaussian filtering. Pham and Quenez [4] treated the case
of partial information stochastic volatility model where they have combined stochastic
filtering techniques and a martingale duality approach to characterize the value function
and the optimal portfolio of the utility maximization problem. They have considered two
cases studied by Lakner and Karatzas-Zhao to resolve the filtering problem. Firstly, they
have assumed that the risk of the model are Gaussian processes modeled by a system of
linear stochastic differential equations. Secondly, they have assumed that the risks are
unobservable independent random variables with known probability distribution.

In our paper, we will be also interested by optimal investment problem under partial
information for stochastic volatility models, but here we assume that the unobservable
drift is modeled by a stochastic differential equation. In section 2, we describe the model
and formulate the optmization problem. In section 3, using non-linear filtering techniques
and change of measure techniques, the partial observation context can be transformed
into a full information context such that coefficients depend only on past history of
observed prices (filters processes). In section 4, we show that the filters estimations
depend on a priori models for the trend and the stochastic volatility and these filters are
valued in infinite-dimensional space: it satisfy a stochastic partial differential equations
named "Kushner-Stratonovich equations". We give an example in a Bayesian setting
for the filters and two others examples where the filters satisfy a Kushner-Stratonovich
equations. Finally, in section 5, we obtain an explicit formulas for the optimal portfolio
and optimal wealth of the utility maximization problem in the Bayesian case. For the
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other cases, we use dynamic programming approach or maximum principle where the
associated Bellman equation is in infinite dimension. The special cases of power and
logarithmic utility functions are studied.

2 Formulation of the problem

Let (Ω,F ,P) be a complete probability space equipped with a filtration F = {Ft, 0 ≤ t ≤
T} satisfying the usual conditions, where T > 0 is a fixed time horizon. The financial
market consists of one risky asset and a bank account (bound). The price of the bound
is assumed for simplicity to be 1 over the entire continuous time-horizon [0, T ] and the
risky asset has dynamics:

dSt

St
= µtdt+ g(Vt)dW

1
t , (1)

dVt = f(βt, Vt)dt+ h(Vt)dWt, (2)

dµt = ζ(µt)dt+ ϑ(µt)dW
3
t . (3)

The processes W 1 and W are two Brownian motions defined on (Ω,F ,P) and they are
correlated with correlation coefficient ρ with −1 ≤ ρ ≤ 1, so we can write dWt =
ρdW 1

t +
√

1− ρ2dW 2
t , where W 2 is independent of W 1. W 3 is a standard Brownian

motion independent of W 1 and W 2. β = {βt, 0 ≤ t ≤ T} is a R-adapted process or
a constant. The drift µ = {µt, 0 ≤ t ≤ T} is not observable and follows a stochastic
differential equation.
We assume that g, f and h are such that unique strong solutions to the stochastic
differential equations (1) and (2) exist. A Lipschitz condition is sufficient, but we do not
impose this on the parameters at this stage, as we do not wish to exclude some well-known
stochastic volatility models from the outset.

In the sequel, we denote by FS = {F S
t , 0 ≤ t ≤ T} (resp. FV = {F V

t , 0 ≤ t ≤ T}) the
filtration generated by the price process S (resp. by the stochastic volatility V ). Also we
denote by G = {Gt, 0 ≤ t ≤ T} the P-augmentation of the market filtration generated by
the price process S.

Remark 2.1. Notice that the P-augmentation filtration G is equal to the enlarged progres-
sive filtration FS ∨FV . The first inclusion is obvious and the other inclusion FS∨FV ⊂ G

is deduced from the fact that Vt can be estimated from the quadratic variation of log(St).

2.1 The optimization problem

Let πt be the fraction of the wealth that the trader decides to invest in the risky asset at
time t, and 1 − πt is the fraction of wealth invested in the bound. We assume that the
trading strategy is self-financing, then the wealth process corresponding to a portfolio π
is defined by Rπ

0 = x and satisfies the following S.D.E:

dRπ
t = Rπ

t

(

πtµtdt+ πtg(Vt)dW
1
t

)

.
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A function U : R → R is called a utility function if it is strictly increasing, strictly concave
of class C2. We assume that the investor wants to maximize the expected utility of his
terminal wealth. The optimization problem thus reads as

J(x) = sup
π∈A

E[U(Rπ
T )], x > 0, (4)

where A denotes the set of the admissible controls (πt, 0 ≤ t ≤ T ) which are FS-adapted,
and satisfies the integrability condition:

∫ T

t

g2(Vs)π
2
sds <∞ P− a.s. (5)

We are in a context when an investor wants to maximize the expected utility from
terminal wealth, where the only information available to the investor is the one gener-
ated by the asset prices, therefore leading to a utility maximization problem in partially
observed incomplete model. In order to solve it, we aim to reduce it to a maximization
problem with full information. For that, it becomes important to exploit all the informa-
tion coming from the market itself in order to continuously update the knowledge of the
not fully known quantities and this is where stochastic filtering becomes useful.

3 Reduction to a full observation context

Let us consider the following processes:

µ̃t :=
µt

g(Vt)
, (6)

β̃t :=
(

√

1− ρ2h(Vt)
)−1

(f(βt, Vt)− ρh(Vt)µ̃t) , (7)

we assume that they verify the integrability condition:

∫ T

0

|µ̃t|2 + |β̃t|2dt <∞ a.s.

Here µ̃t and β̃t are the unobservable processes that account for the market price of risk.
The first is related to the asset’s Brownian component. The second to the stochastic
volatility’s Brownian motion.

Also we introduce the following process:

Lt = 1−
∫ t

0

Ls

[

µ̃sdW
1
s + β̃sdW

2
s

]

. (8)

We shall make the usual standing assumption on filtering theory.

Assumption 3.1. The process L is a martingale, that is, E[LT ] = 1.
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Under this assumption, we can now define a new probability measure P̃ equivalent to P

on (Ω,F) characterized by:

dP̃

dP
|Ft = Lt, 0 ≤ t ≤ T. (9)

Then Girsanov’s transformation ensures that

W̃ 1
t =W 1

t +

∫ t

0

µ̃sds is a (P̃,F)-Brownian motion,

W̃ 2
t =W 2

t +

∫ t

0

β̃sds is a (P̃,F)-Brownian motion.

Also, we have that (µ̃t, β̃t) is independent of the Brownian motion
(

W̃ 1
t , W̃

2
t

)

.

Therefore, the dynamics of (S, V ) under P̃ become:

dSt

St
= g(Vt)dW̃

1
t ,

dVt = ρ h(Vt)dW̃
1
t +

√

1− ρ2 h(Vt)dW̃
2
t .

We now state a lemma which will highly relevant in the following. The proof of this
lemma is similar to lemma 3.1 in Pham and Quenez [4].

Lemma 3.2. The filtration G is the augmented filtration of (W̃ 1, W̃ 2).

We now make the following assumption on the risk processes
(

µ̃, β̃
)

.

∀t ∈ [0, T ], E|µ̃t|+ E|β̃t| <∞ (10)

Under this assumption, we can introduce the filter estimates of
(

µ̃, β̃
)

:

µt := E[µ̃t|Gt], (11)

βt := E[β̃t|Gt]. (12)

Now, we aim to construct the restriction of P equivalent to P̃ on (Ω,G). First, let us
consider the conditional version of Baye’s formula: for any P̃ integrable random variable
X (X ∈ L1(P̃)), we have:

Ẽ [X|Gt] =
E [XLt|Gt]

E [Lt|Gt]
. (13)

Then by taking X = 1
Lt

in the above equation, we get:

L̃t := Ẽ

[

1

Lt

|Gt

]

=
1

E[Lt|Gt]
. (14)

5



Therefore, from (9) (14), we have the following restriction of P to G:

dP̃

dP
|Gt = 1/L̃t.

Finally, from Bain and Crisan [3, P.33] (proposition 2.30) and Pardoux [5, P.85](proposition
2.2.7), we have the following result:

Proposition 3.3. The following processes W
1

and W
2

are independent (P,G)-Brownian
motions.

W
1

t =W 1
t +

∫ t

0

(µ̃s − µs) ds := W̃ 1
t −

∫ t

0

µsds,

W
2

t =W 2
t +

∫ t

0

(

β̃s − βs

)

ds := W̃ 2
t −

∫ t

0

βsds.

These processes are called the innovation processes in filtering theory. They include the
distances between the true values of µ̃ and β̃ and their estimates:

Then, by means of the innovation processes, we can describe the dynamics of (S, V, R)
within a framework of full observation model:

(Q) =























dSt

St
= g(Vt)µtdt + g(Vt)dW

1

t ,

dVt =
(

ρ h(Vt)µt +
√

1− ρ2 h(Vt)βt

)

dt+ ρh(Vt)dW
1

t +
√

1− ρ2h(Vt)dW
2

t ,

dRπ
t = Rπ

t πt

(

g(Vt) µtdt+ g(Vt)dW
1

t

)

.

4 Filtering

We have showed that conditioning arguments can be used to replace the initial partial
information problem by a full information problem one which depends only on the past
history of observed prices. But the reduction procedure involves the filter estimates µt

and βt.
There exists different cases for the modeling of the unobservable risk premia. Firstly, the
Bayesian case, when the risk premia µ̃t and β̃t are random variables with known prior
distribution. This case was firstly studied by [1] and then by Pham and Quenez in [4] for
the stochastic volatility case. We show in the application section, with which dynamics
for the drift and the volatility, we are in the Bayesian case. Secondly, the case where
the risk premia µ̃t and β̃t are supposed to be Gaussian processes modeled by a system
of stochastic differential equations. In their article, they have considered the case where
µ̃t and β̃t are independent, then by Kalman-Bucy filter they have deduced the estimates
filters µt and β̃t. But as we have mentioned in the introduction, Pham and Quenez [4]
didn’t assume any dynamics for the drift. Because, if we assume that the drift is modeled
by certain dynamics, then we can’t obtain a Gaussian modeling for the risk µ̃t. we will
explain this point in details in our general result below.
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Now, we aim to present our principal result concerning the general case, where we assume
that the processes µ̃t and β̃t are solutions of the following stochastic differential equations:

d

(

µ̃t

β̃t

)

=

(

a
a

)

dt+

(

g1 g2
g1 g2

)

d

(

N1
t

N2
t

)

+

(

b1 b2
b1 b2

)

d

(

W 1
t

W 2
t

)

(15)

where we denote for simplification the functions a := a(µ̃t, β̃t), a := a(µ̃t, β̃t), ....... b2 =
b2(µ̃t, β̃t), and the Brownian motion (N1

t , N
2
t ) is independent of (W 1

t ,W
2
t ).

4.1 Estimate µ
t
and β

t

From lemma 3.2, we have G = FW̃ 1 ∨ FW̃ 2

. Then the vector
(

W̃ 1, W̃ 2
)

corresponds to

the observation process and its dynamics is given as follows:

d

(

W̃ 1
t

W̃ 2
t

)

= d

(

W 1
t

W 2
t

)

+

(

µ̃t

β̃t

)

dt (16)

and the dynamics of the signal process (µ̃t, β̃) is give above.

Notations Let us denote by:

Xt = (µ̃t, β̃t), Yt = (W
1

t ,W
2

t ), A =

(

a
a

)

, G =

(

g1 g2
g1 g2

)

, B =

(

b1 b2
b1 b2

)

Nt =

(

N1
t

N2
t

)

, Wt =

(

W 1
t

W 2
t

)

, h =

(

h1
h2

)

,

where for x = (m, b), h1(x) = m and h2(x) = b.

With these notations, let us re-write the dynamics of the signal processXt and observation
process Yt as follows:

dXt = A(Xt)dt+G(Xt)dNt +B(Xt)dWt (17)

dYt = dWt + h(Xt)dt (18)

Now, we will be interested by filtering problem which consist in evaluating the con-
ditional expectation of the unobservable process having the observations. In the sequel,
we denote this conditional expectation by αt(φ) = E [φ(Xt)|Gt].

Then one of the approaches to obtain the evolution equation for αt is to change the
measure. Using the change of measure P̃ given in (9), we can define a new measure
P̃, such that the observation process becomes a P̃ Brownian motion independent of the
signal variable Xt. For that we need to discuss some conditions under which the process
L is a martingale.
The classical condition is Navikov’s condition:

E

[

exp

(

1

2

∫ t

0

h1(Xs)
2ds+

1

2

∫ t

0

h2(Xs)
2ds

)]

<∞.
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Normally Navikov’s condition is quite difficult to verify directly, so we will present some
results given in [3], to use an alternative conditions under which the process L is a
martingale.
From lemma 3.9 in [3, P.52], we can deduce that L is a martingale if the following
conditions are satisfied:

E

[
∫ t

0

(||h(Xs)||2)ds
]

<∞, E

[
∫ t

0

Ls||h(Xs)||2ds
]

<∞ ∀t > 0. (19)

Denote by Λt the
(

P̃,F
)

-martingale given by Λt =
1
Lt

. We then have:

dP

dP̃
|Ft = Λt, 0 ≤ t ≤ T.

Therefore the computation of αt(φ) is obtained by the so-called Kallianpur-Striebel for-
mula, which is related to Bayes formula. For every φ ∈ B(Rd), we have the following
representation:

αt(φ) := E
[

φ(Xt)|FY
t

]

=
Ẽ
[

φ(Xt)Λt|FY
t

]

Ẽ [Λt|FY
t ]

:=
ψt(φ)

ψt(1)
, (20)

with ψt(f) := E0[φ(Xt)Λt|FY
t ] is the unnormalized conditional distribution of φ(Xt),

given FY
t , ψt(1) can be viewed as the normalising factor and B(Rd) is the space of

bounded measurable functions R2 → R.

Remark 4.1. The Kallianpur-Striebel formula can also be viewed as the abstract version
of Bayes’ identity in this filtering framework. Also this formula holds true for any Borel
measurable, not necessarily bounded, such that E [|f(Xt)|] <∞ (see. exercise 5.1 in [3]).

In the following, we assume that for all t ≥ 0,

P̃

[
∫ t

0

[ψs(||h||)]2ds <∞
]

= 1, for all t > 0. (21)

The following proposition shows that the conditional distribution of the signal is a solution
of a nonlinear stochastic and parabolic type partial differential equation often called the
Kushner-Stratonovich equation. This result due to Bain and Crisan [3] and Pardoux [5].

Proposition 4.2. Assume that the signal and observation processes satisfy (17) and (18).
If conditions (19) and (21) are satisfied then the conditional distribution αt = E[φ(Xt)|Gt]
satisfies the following Kushner-Stratonovich equation:

dαt(φ) = αt(Aφ)dt+
[

αt

((

h1 + B1
)

φ
)

− αt(h
1)αt(φ)

]

[

dW̃ 1
t − αt(h

1)dt
]

+
[

αt

((

h2 + B2
)

φ
)

− αt(h
2)αt(φ)

]

[

dW̃ 2
t − αt(h

2)dt
]

. (22)

for any φ ∈ B(R2).
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Where for x = (m, b) ∈ R2, we have :

Aφ(m, b) = a∂mφ+ a∂bφ+
1

2

(

b21 + b22 + g21 + g22
)

∂2mφ+
(

b1b1 + b2b2 + g1g1 + g2g2
)

∂2mbφ

+
1

2

(

b
2

1 + b
2

2 + g21 + g22

)

∂2bφ,

B1,B2are the operators given by:

B1φ(m, b) = b1∂mφ+ b1∂bφ,

B2φ(m, b) = b2∂mφ+ b2∂bφ.

Remark 4.3. The above Kushner-Stratonovich equation holds true for any Borel mea-
surable φ1, not necessarily bounded. In fact, we cannot replace φ by φ1 because it is an
unbounded function. For that, we proceed by cutting of φ1 at a fixed level which we let
tend to infinity. For this, let us introduce the functions (ψk)k>0 defined as

ψk(x) = ψ(x/k), xinR2,

where

ψ(x) =







1 if |x| ≤ 1

exp( |x|
2−1

|x|2−4
) if 1 < |x| < 2

2 if |x| ≥ 2.

Then by using the following relations given in[3, P.151]:

lim
k→∞

φ1ψ
k(x) = φ1(x), |φ1(x)ψ

k(x)| ≤ |φ1(x)|,

lim
k→∞

As(φ1ψ
k)(x) = Asφ1(x).

Then by replacing in equation (22) φ by φ1ψ
k and from dominated convergence theorem,

we may pass to the limit as k → ∞ and then we deduce that αt(φ1) satisfies equation
(22).

Let φ1 and φ2 be the following functions:

for x = (m, b), φ1(x) = m and φ2(x) = b.

Now, we can deduce our main result concerning the filter estimates µt and βt in the
general case of models for the drift and the stochastic volatility.

Corollary 4.4. If conditions (19) and (21) are satisfied, then the processes µ and β are
solution of the following stochastic differential equations:

dµt = αt(a)dt+ [αt

(

h1φ1 + b1
)

− αt(h
1)αt(φ1)]dW

1

t + [αt

(

h2φ1 + b2
)

− αt(h
2)αt(φ1)]dW

2

t ,

dβt = αt(a)dt+ [αt

(

h1φ2 + b1
)

− αt(h
1)αt(φ2)]dW

1

t + [αt

(

h2φ2 + b2
)

− αt(h
2)αt(φ2)]dW

2

t .
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Proof. From the definition of µt and βt, we have that:

µt = αt(φ1) and βt = αt(φ2)

Therefore from proposition 4.2, we can deduce the above equations for µt and βt.

Remark 4.5. Generally, these equations are infinite-dimensional and cannot be solved
explicitly. Infinite-dimensional filters have to be solved numerically, but in concrete ap-
plication, the filter could thus never be implemented exactly, so in order to avoid in-
finite dimensionality, some approximation schemes have been proposed, yielding finite-
dimensional filters for the the unobserved state. A well-known approximation method is
the extended Kalman filter, which is based upon linearization of the state equation around
the current estimate, see e.g Pardoux [5].

4.2 Existence of a regular density to the filter

In this filter, we show that under some conditions, the conditional distribution of Xt

given FS
t has a density with respect to a reference measure, in particular with respect to

Lebesgue measure.
The existence of a regular density for the filter in the case of uncorrolated system

(decorrelation between the signal and the observations processes) with bounded coeffi-
cients has been proved by means of Malliavin calculus, by pardoux [5], Bain and Crisan
[3]. The case of correlated systems with bounded coefficients has been studied by Michel
and Bismut and Michel. Under some growth conditions on the sensor function h appeared
in the observation process, Ferreyra has studied the existence of a regular density for the
case of uncorrelated system where the observation coefficients are unbounded.
In our context, we will be interested by the case of correlated system where the observation
coefficients are unbounded, more precisely where the sensor function h is not bounded.

Let us now make the following assumption:

Assumption 4.6. We assume that the law of Xt given FS
t admits a density pt(x) relative

to some dominating measure m(dx).

Given the assumption above we can thus write the conditional expectation of Xt given
FS

t as follows:

E[φ(Xt)|FS
t ] =

∫

R2

φ(x)pt(x)m(dx),

and it is known that pt satisfies the Kushner-Stratonovich equation, see e.g. [3] and [5]:

dpt(x) = A∗pt(x)dt+ ϑ(pt(x))dW
1

t + ν(pt(x))dW
2

t (23)

where

ϑ(pt(x)) = pt(x)(h
1(x)− αt(h

1)) + B1,∗pt(x),

ν(pt(x)) = pt(x)(h
2(x)− αt(h

2)) + B2,∗pt(x).
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and A∗ (resp.B1,∗, B2,∗ ) design the adjoint of the operators A (resp.B1, B2 ) given as
follows, for x = (m, b):

A∗φ(m, b) = ∂m(aφ) + ∂b(aφ) +
1

2
∂2m(
(

b21 + b22 + g21 + g22
)

φ) + ∂2mb(
(

b1b1 + b2b2 + g1g1 + g2g2
)

φ)

+
1

2
∂2b ((b

2

1 + b
2

2 + g21 + g22t)φ),

B1,∗φ(m, b) = ∂m(b1φ) + ∂b(b1φ), B2φ(m, b) = ∂m(b2φ) + ∂b(b2φ).

The conditional density process (pt) is Markov with respect to FS with infinite dimension.

4.3 Applications

We show in this section that the filtering problem depends on the dynamics of the drift
and the stochastic volatility. Let us firstly study the Bayesian case. For this case, we will
be interested by the decorrelated case (ρ = 0). Let us assume that the drift µt is modeled
by an Ornstein Uhlenbeck as follows:

dµt = η (υ − µt) dt + σµdW
3
t . (24)

where W 3 is a standard Brownian motion independent of W 1 and W 2.
Also we assume that the model of diffusion is given by the following GARCH model:

dSt

St

= µtdt+
√

VtdW
1
t , (25)

dVt = −λVtdt+ σV VtdW
2
t . (26)

So we are in the context of dynamics (1), (2) and (3) with g(x) =
√
x, βt = −λ is a

constant, f(λ, x) = λx, h(x) = σV x, ρ = 0, ξ(x) = η(υ − x) and ϑ(x) = σµ is a constant.

So from (6) and (7), the risk µ̃t related to the asset’s Brownian component and the risk
β̃t related to the stochastic volatility Brownian motion are given by:

µ̃t =
µt√
V t

and β̃t =
−λ
σV

. (27)

Therefore the filter estimate βt is a constant and it remains to calculate µt := E[µ̃t|FS
t ].

Explicit formula for µt:

In this case of models, µ̃ has a prior known distribution which will be denoted in the
sequel by q(dx). So we are in the Bayesian framework studied by Karatzas and Zhao [1]
and also by Pham and Quenez [4] which give us an explicit formula of the filter estimate
µt as a function of the Brownian motion W̃ 1 and the distribution q(dx).

Let us introduce the new probability P̃ as follows:

dP̃

dP
|Ft = Lt, 0 ≤ t ≤ T.
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where:

Lt = 1−
∫ t

0

Ls

[

µ̃sdW
1
s − λ

σV
dW 2

s

]

.

Notice that Assumption 3.1 is satisfied if conditions (19) are satisfied. Here for x = (m, b),
h(x) = (m, −λ

σV
). From theorem 3.11 in [3, P.54], in order to verify condition (19) it remains

to verify that h(x) has linear growth, which is the case.
Now, let Λt =

1
Lt

, then we have:
dP

dP̃
|Ft = Λt.

So from Ito’s formula and the definition of W̃ 1 and W̃ 2, we have the following dynamics
of Λ:

dΛt = Λt

[

µ̃tdW̃
1
t − λ

σV
dW̃ 2

t

]

. (28)

Now from Kallianpur-Striebel formula (20), we have:

µt := E [µ̃t|Gt] =
EP̃ [µ̃t Λt|Gt]

EP̃ [Λt|Gt]
. (29)

i) Calculate EP̃ [µ̃t Λt|Gt]:

From lemma 3.2, G is the augmented filtration of (W̃ 1, W̃ 2), that is ∀t ≥ 0,
Gt = F W̃ 1

t ∨ F W̃ 1

t . Also from Girsanov transformation, the random variable µ̃
is independent of the Brownian motion W̃ 1 under P̃. So from equation (28), we
have the following:

EP̃ [µ̃t Λt|Gt] =

∫

R

x exp

(

xW̃ 1
t − λ

σV
W̃ 2

t − 1

2
x2t− 1

2

λ2

σ2
V

t

)

q(dx). (30)

ii) Calculate EP̃ [Λt|Gt]:

Similarly as above, we have:

EP̃ [Λt|Gt] =

∫

R

exp

(

xW̃ 1
t − λ

σV
W̃ 2

t − 1

2
x2t− 1

2

λ2

σ2
V

t

)

q(dx). (31)

Finally from (29), we have the following explicit formula for µt:

µt =

∫

R

x exp

(

xW̃ 1
t − λ

σV
W̃ 2

t − 1

2
x2t− 1

2

λ2

σ2
V

t

)

q(dx)

∫

R

exp

(

xW̃ 1
t − λ

σV
W̃ 2

t − 1

2
x2t− 1

2

λ2

σ2
V

t

)

q(dx)

= N(t, W̃ 1
t ). (32)

Where the function N is given by:

N(t, w) :=
∂wM(t, w)

M(t, w)
, (t, w) ∈ [0, T ]× R,
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and M(t, w) =

∫

R

exp

(

xw − 1

2
x2t

)

q(dx).

For the general case where the risks µ̃t and β̃t are dependent and the correlation coefficient
ρ 6= 0, we aim to use the non-linear filtering theory described in section 4 in order to
deduce a stochastic differential equations for their filters.
For that we need to apply the following two steps:

• First step: Describe the dynamics of (µ̃t, β̃t) as in equation (15).

• Second step: We deduce from section 4.1 the filters µt and βt.

The following result shows that we need to introduce an a priori models for the trend
and the stochastic volatility in order to describe the dynamics of (µ̃t, β̃t) as in (15).

Proposition 4.7. The dynamics of (µ̃t, β̃t) depends on the models for the trend and
the stochastic volatility. Moreover, if there exists a function Υ : R2 → R such that
Vt = Υ(µ̃t, β̃t), then the dynamics of (µ̃t, β̃t) satisfies (15).

Proof. From Itô’s formula we have:

µ̃t = µ̃0 +

∫ t

0

1

g(Vs)
dµs −

∫ t

0

µs

g2(Vs)
d(g(Vs)) +

∫ t

0

µs

g3(Vs)
d < g(V ) >s

So depending on the model for the trend and the stochastic volatility, we can appear µ̃t

in the above terms. Also, in some terms Vs still appear. So if there exists a function
Υ such that Vs = Υ(µ̃s, β̃s), then Vs is replaced by something depending on (µ̃t, β̃t) and
therefore the dynamics of µ̃t is described only in terms of (µ̃t, β̃t).
In the same way, one can describe the dynamics of β̃t in terms of (µ̃t, β̃t).

Let us consider two models which satisfy proposition 4.7 and then deduce the correspond-
ing filters: Garch and log-Ornstein Models.
Garch Model:

Let us consider the following Garch-model:

dSt

St
= µtdt+ VtdW

1
t ,

dVt = λ (θ − Vt) dt+ σV Vt

(

ρdW 1
t +

√

1− ρ2dW 2
t

)

,

dµt = η (υ − µt) dt+ σµdW
3
t .

Here β is a constant. λ, θ, η, υ , σV and σµ are constants, and W 3 is a standard Brownian
motion independent of W 1 and W 2.
Here the risks of the model are given by:

µ̃t =
µt

Vt
and β̃t :=

λ (θ − Vt)

Vt σV
√

1− ρ2
− ρ
√

1− ρ2
µ̃t. (33)

In the sequel, we aim to estimate the filters µt and βt using the above two steps.
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Remark 4.8. Notice that Vt can be estimated from the quadratic variation of the log of
the price process, so we have that V is a G-adapted. However:

βt =
λ

σV
√

1− ρ2

[

θ

Vt
− 1

]

− ρ
√

1− ρ2
µt.

Let us begin by finding the stochastic differential equations satisfied by µ̃t and β̃t.

From Itô’s formula, µ̃t satisfies the following S.D.E:

µ̃t = µ̃0 +

∫ t

0

1

Vs
dµs −

∫ t

0

µs

V 2
s

dVs +

∫ t

0

µs

V 3
s

d < V >s

= µ̃0 +

∫ t

0

1

Vs
η (υ − µs) ds+

∫ t

0

σµ
Vs
dW 3

s −
∫ t

0

µs

V 2
s

λ (θ − Vs) ds−
∫ t

0

µs

V 2
s

ρ σV VsdW
1
s

−
∫ t

0

µs

V 2
s

√

1− ρ2 σV VsdW
2
s +

∫ t

0

µs

V 3
s

σ2
V V

2
s ds,

= µ̃0 +

∫ t

0

(

1

Vs
(ηυ − λθµ̃s) +

(

σ2
V − η + λ

)

µ̃s

)

ds+

∫ t

0

σµ
Vs
dW 3

s −
∫ t

0

σV
√

1− ρ2 µ̃sdW
2
s

−
∫ t

0

ρσV µ̃sdW
1
s . (34)

Also from Itô’s formula, β̃t satisfies the following S.D.E:

β̃t = β̃0 −
∫ t

0

λθ

σV
√

1− ρ2
1

V 2
s

dVs −
∫ t

0

ρ
√

1− ρ2
dµ̃s +

λθ

σV
√

1− ρ2

∫ t

0

1

V 3
s

d < V >s,

= β̃0 −
∫ t

0

λθ

σV
√

1− ρ2

(

λθ

V 2
s

− λ

Vs
− σ2

V

Vs

)

ds−
∫ t

0

ρ
√

1− ρ2
dµ̃s

−
∫ t

0

λθρ
√

1− ρ2
1

Vs
dW 1

s −
∫ t

0

λθ
1

V s
dW 2

s . (35)

On the other hand, from the expression of β̃t given in (33), we can deduce that Vt is a
function in terms of µ̃t and β̃t as follows:

1

Vt
=
σV
√

1− ρ2

λθ
β̃t +

1

θ
+
ρσV
λθ

µ̃t,

By replacing the above equation of 1
Vt

in (34) and (35), one obtains the following dynamics

of µ̃t and β̃t:

µ̃t = µ̃0 +

∫ t

0

a
(

µ̃s, β̃s

)

ds+

∫ t

0

b1

(

µ̃s, β̃s

)

dW 1
s +

∫ t

0

b2

(

µ̃s, β̃s

)

dW 2
s +

∫ t

0

g
(

µ̃s, β̃s

)

dW 3
s ,

(36)

β̃t = β̃0 +

∫ t

0

a
(

µ̃s, β̃s

)

ds+

∫ t

0

b1

(

µ̃s, β̃s

)

dW 1
s +

∫ t

0

b2

(

µ̃s, β̃s

)

dW 2
s +

∫ t

0

g
(

µ̃s, β̃s

)

dW 3
s .

(37)

14



Where:

a(m, b) = (ηυ − λθ m)

(

σV
√

1− ρ2

λθ
b+

1

θ
+
ρσV
λθ

m

)

+
(

σ2
V − η + λ

)

m,

b1(m, b) = −ρσV m,

b2(m, b) = −σV
√

1− ρ2 m,

g(m, b) =
σµσV

√

1− ρ2

λθ
b+

σµ
θ

+
σµρσV
λθ

m

a(m, b) = −
(

b+
λ

σV
√

1− ρ2
+

ρ
√

1− ρ2
m

)

(

λθσV
√

1− ρ2 b+ λ2θ − λ− σ2
V + (λθρσV ) m

)

,

b1(m, b) = −ρσV b− λρ
√

1− ρ2
,

b2(m, b) = −σV
√

1− ρ2 b− λ,

g(m, b) = −ρσµσV
λθ

b− ρ
√

1− ρ2
σµ
θ

− σµσV
λθ

ρ
√

1− ρ2
m.

We are in the context of a signal process (µ̃t, β̃t) which satisfy (17) and an observation
process which satisfy (18). So we deduce the filters µt and β from corollary 4.4. For that,
let us firstly check if conditions (19) and (21) are satisfied. From exercise 3.11 in [3, P.54],
it remains to verify that h has a linear growth, that is, there exists C such that:

||h(x)||2 ≤ C(1 + ||x||2).

which is the case for our model. Thus from corollary 4.4 we can deduce the stochastic
differential equations satisfied by the filters:

dµt = αt(a)dt+ [αt

(

h1φ1 + b1
)

− αt(h
1)αt(φ1)]dW

1

t + [αt

(

h2φ1 + b2
)

− αt(h
2)αt(φ1)]dW

2

t ,

dβt = αt(a)dt+ [αt

(

h1φ2 + b1
)

− αt(h
1)αt(φ2)]dW

1

t + [αt

(

h2φ2 + b2
)

− αt(h
2)αt(φ2)]dW

2

t .

where the functions a, b1, b2, a, b1, b2 are defined above. .

Log-Ornstein model

Let us consider the following model:

dSt

St

= µtdt+ eVtdW 1
t ,

dVt = λ (θ − Vt) dt+ σV

(

ρdW 1
t +

√

1− ρ2dW 2
t

)

,

dµt = η (υ − µt) dt+ σµdW
3
t .

In this case of model, we have:
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µ̃t =
µt

eVt
and β̃t :=

λ (θ − Vt)

σV
√

1− ρ2
− ρ
√

1− ρ2
µ̃t. (38)

As in the case of GARCH model. Firstly, we describe the dynamics of µ̃t and β̃t. Then,
using the filtering theory, we can deduce the stochastic differential equations satisfied by
µt and βt.

Let Mt = eVt , then by Itô’s formula, one obtains the following dynamics of M ;

Mt =M0 +

∫ t

0

Ms

[

λ (θ − log(Ms)) +
1

2
σ2
V

]

ds+ σVMs

(

ρdW 1
s +

√

1− ρ2dW 2
s

)

.

Also, from Itô’s formula, µ̃t :=
µt

Mt
satisfies the following S.D.E:

µ̃t = µ̃0 +

∫ t

0

ηυ

Ms
ds+ µ̃s

(

σ2
V − η −

[

λ (θ − log(Ms)) +
1

2
σ2
V

])

ds+

∫ t

0

σV
Ms

dW 3
s −

∫ t

0

ρσV µ̃sdW
1
s

−
∫ t

0

√

1− ρ2σV µ̃sdW
2
s

= µ̃0 +

∫ t

0

ηυe−Vsds+ µ̃s

(

σ2
V − η −

[

λ (θ − Vs) +
1

2
σ2
V

])

ds+

∫ t

0

σV e
−VsdW 3

s −
∫ t

0

ρσV µ̃sdW
1
s

−
∫ t

0

√

1− ρ2σV µ̃sdW
2
s . (39)

and β̃t satisfies the following S.D.E:

β̃t = β̃0 −
∫ t

0

λ

σV
√

1− ρ2
dVs −

∫ t

0

ρ
√

1− ρ2
dµ̃s

= −
∫ t

0

λ2(θ − Vs)

σV
√

1− ρ2
ds−

∫ t

0

λρ
√

1− ρ2
dW 1

s −
∫ t

0

λdW 2
s − ρ

√

1− ρ2
dµ̃s. (40)

On the other hand, from (38), we can express Vt in terms of µ̃t and β̃t as follows:

Vt = −σV
√

1− ρ2

λ
β̃t −

σV ρ

λ
µ̃t + θ. (41)

By replacing the above equation of 1
Vt

in (39) and (40), one obtains the following dynamics

of µ̃t and β̃t:

µ̃t = µ̃0 +

∫ t

0

a
(

µ̃s, β̃s

)

ds+

∫ t

0

b1

(

µ̃s, β̃s

)

dW 1
s +

∫ t

0

b2

(

µ̃s, β̃s

)

dW 2
s +

∫ t

0

g
(

µ̃s, β̃s

)

dW 3
s ,

(42)

β̃t = β̃0 +

∫ t

0

a
(

µ̃s, β̃s

)

ds+

∫ t

0

b1

(

µ̃s, β̃s

)

dW 1
s +

∫ t

0

b2

(

µ̃s, β̃s

)

dW 2
s +

∫ t

0

g
(

µ̃s, β̃s

)

dW 3
s .

(43)
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Where

a(m, b) = ηυ exp

(

σV
√

1− ρ2

λ
b+

σV ρ

λ
m− θ

)

+

(

1

2
σ2
V − η − σV

√

1− ρ2b− σV ρm

)

m

b1(m, b) = −ρσVm
b2(m, b) = −σVm

√

1− ρ2

g(m, b) = σV exp

(

σV
√

1− ρ2

λ
b+

σV ρ

λ
m− θ

)

.

and

a(m, b) = −λb− λρ
√

1− ρ2
m− ρ

√

1− ρ2
a(m, b)

b1(m, b) = − λρ
√

1− ρ2
− ρ2σV
√

1− ρ2
m

b2(m, b) = −λ + ρσVm

g(m, b) =
−ρ

√

1− ρ2
exp

(

σV
√

1− ρ2

λ
b+

σV ρ

λ
m− θ

)

.

Similary as in the above example for Garch model, we can deduce that the filters µt and
βt satisfy the following stochastic differential equations:

dµt = αt(a)dt+ [αt

(

h1φ1 + b1
)

− αt(h
1)αt(φ1)]dW

1

t + [αt

(

h2φ1 + b2
)

− αt(h
2)αt(φ1)]dW

2

t ,

dβt = αt(a)dt+ [αt

(

h1φ2 + b1
)

− αt(h
1)αt(φ2)]dW

1

t + [αt

(

h2φ2 + b2
)

− αt(h
2)αt(φ2)]dW

2

t .

Where we have now a new functions a, b1, b2, a, b1, b2 given above.

5 Martingale and PDE approaches

Let us present in general these two approaches and how we can describe the value function
and the optimal wealth and strategy. Also, we show in which cases of utility functions
we can derive an explicit solutions for these quantities.

From section 3, we can reduced our optimization problem from partial information context
to full information context as follows:























dSt

St
= g(Vt)µtdt+ g(Vt)dW

1

t ,

dVt = f(βt, Vt)dt+ ρh(Vt)dW
1

t +
√

1− ρ2h(Vt)dW
2

t ,

dRπ
t = Rπ

t πt

(

g(Vt) µtdt+ g(Vt)dW
1

t

)

.

and the trader’s objective is to solve the following optimization problem:

J(x) = sup
π∈At

E[U(Rπ
T )], x > 0, (44)
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where At is the set of admissible controls πt which are FS-adapted process,take their
value in a compact U ⊂ R, and satisfies the integrability condition:

∫ T

t

g2(Vs)π
2
s <∞ P a.s. (45)

5.1 Martingale approach

The martingale approach was introduced by Karatzas et al [14], Cox and Huange [13],
for dealing with more general price process and in particular for relaxing Markov as-
sumption required in the Ballman approach. With this approach, the optimal portfolio
is characterized through a representation theorem for martingale but explicit solutions of
the value function and strategy can be produced in very few cases. Moreover, in the case
of incomplete markets, we have to solve a dual optimization problem.

The martingale approach in incomplete market is based on a dual formulation of the
optimization problem in terms of a suitable family of (P,G)-local martingales. The
important result for the dual formulation is the martingale representation theorem given
in [4] for (P,G)-local martingales with respect to the innovation processes W

1
and W

2
.

Lemma 5.1 (Martingale representation theorem). Let A be any (P,G)-local martingale.
Then, there exist a G-adapted processes φ and ψ, P a.s. square-integrable and such that

At =

∫ t

0

φsdW
1

s +

∫ t

0

ψsdW
2

s. (46)

Now, we aim to describe the dual formulation of the optimization problem.

5.1.1 Equivalent martingales measures and duality theory

A probability measure Q equivalent to P is an equivalent martingales measure (EMM) if
the discounted asset process is a martingale under this measure.

Now for any G-adapted process ν = {νt, 0 ≤ t ≤ T}, which satisfies
∫ T

0

ν2sds < ∞, we

introduce the (P,G)-local martingale strictly positive:

Zν
t = exp

(

−
∫ t

0

µsdW
1

s −
∫ t

0

νsdW
2

s −
1

2

∫ t

0

µ2
sds−

1

2

∫ t

0

ν2sds

)

(47)

When, E [Zν
T ] = 1, the process Z is a martingale and then there exists a probability

measure Q equivalent to P with:
dQ

dP
|Gt

= Zν
T .

Here µ is the risk related to the asset’s Brownian motion W 1, which is chosen such that
Q is a EMM , that is, the process ZνS is a (P,G)-local martingale. On the other hand,
ν is the risk related to the stochastic volatility’s Brownian motion and this risk will be
determined as the optimal solution of the dual problem defined below.
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Consequently, from Itô’s formula, the process Zν satisfies:

dZν
t = −Zν

t

(

µsdW
1

s + νsdW
2

s

)

. (48)

As shown by Karatzas et al [7] and Kramkov and Schachemayer [6], the solution of the
primal problem (44) relying upon solving the dual optimization problem:

J̃(z) = inf
Q∈Q

E

[

Ũ(z
dQ

dP
)

]

:= inf
ν∈K

E

[

Ũ(zZν
T )
]

, z > 0 (49)

Where:

• Q is the set of equivalent martingale measures given by:

Q = {Q ∼ P| S is a local (Q,G)− martingale}. (50)

• Ũ is the convex dual of U given by:

Ũ(y) = sup
m>0

[U(m)− ym] , m > 0. (51)

• K is the Hilbert space of G-adapted process ν such that E

[
∫ T

0

|ν2t |dt
]

<∞.

In the sequel, we denote by I :]0,∞[→]0,∞[ the inverse function of U ′ on ]0,∞[. It’s a
decreasing function and verifies lim

x→0
I(x) = ∞ and lim

x→∞
I(x) = 0.

We henceforth impose the following assumptions on the utility functions in order to
guarantee that the dual problem admits a solution ν̃ ∈ H, see Karatzas et al [7], sections
11 and 12.

Assumption 5.2. • For some p ∈ (0, 1), γ ∈ (1,∞), we have

pU ′(x) ≥ U ′(γx) ∀x ∈ (0,∞).

• x→ xU ′(x) is nondecreasing on (0,∞).

• For every z ∈ (0,∞), there exists ν ∈ K such that J̃(z) <∞.

Now from Karatzas, Lehoczky, Shreve and Xu [7] and Owen [8], we have the following
result about the solution of the primal utility maximization problem (4).

Theorem 5.3. The optimal wealth for the utility maximization problem (4) is given by

R̃t = E

[

Z ν̃
T

Z ν̃
t

I(zxZ
ν̃
T )|Gt

]

where ν̃ is the solution of the dual problem and zx is the Lagrange multiplier such that
E
[

Z ν̃
T I(zxZ

ν̃
T )
]

= x. Also the optimal portfolio π̃ is implicitly determined by the equation

dR̃t = π̃tg(Vt)dW̃
1
t . (52)

Remark 5.4. The constraint E
[

Z ν̃
T I(zxZ

ν̃
T )
]

= x to choose zx is satisfied if

zx ∈ argminz>0{J̃(z) + xz}. (53)
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5.1.2 Optimal equivalent martingale measure

We remark from theorem 5.3 that optimal wealth depends on the optimal choice of ν,
that is, depends on the equivalent martingale measure Q. So we are interested in the
following by finding the optimal risk ν which is solution of (49).

Here we present two cases. Firstly, we show that in the case when the price risk µ̃t ∈ F W̃ 1

t ,
the infimum over all equivalent martingale measures of the dual problem is reached for
ν̃ = 0. Secondly, for the general case, the idea is to derive a Hamilton-Jacobi-Bellman
equation for dual problem, which involves the volatility risk ν as control process.

Lemma 5.5. Assume that µt ∈ F W̃ 1

t , then the infimum of the dual problem is reached
for ν̃ = 0, that is:

J̃(z) = inf
Q∈Q

E

[

Ũ(z
dQ

dP
)

]

= E

[

Ũ
(

zZ0
T

)

]

. (54)

Proof. From equation (47), the definition of the conditional expectation and Jensen’s
inequality, it follows for any ν ∈ H:

E

[

Ũ (zZν
T )
]

= E

[

E

[

Ũ

(

z exp

(

−
∫ T

0

µsdW
1

s −
1

2

∫ T

0

µ2
sds−

∫ T

0

νsdW
2

s −
1

2

∫ T

0

ν2sds

))

|F W̃ 1

T

]]

≥ E

[

Ũ

(

z exp

(

−
∫ T

0

µsdW
1

s −
1

2

∫ T

0

µ2
sds

)

E

[

exp

(

−
∫ T

0

νsdW
2

s −
1

2

∫ T

0

ν2sds

)

|F W̃ 1

T

])]

.

On the other hand, E

[

exp

(

−
∫ T

0

νsdW
2

s −
1

2

∫ T

0

ν2sds

)]

= 1 a.s. In fact, from the def-

inition of the conditional expectation, it remains to prove that for each positive function
h, for each, t1, ......tk ∈ [0, T ], we have:

E

[

exp

(

−
∫ T

0

νsdW
2

s −
1

2

∫ T

0

ν2sds

)

h
(

W̃ 1
t1
, .....W̃ 1

tk

)

]

= E

[

h
(

W̃ 1
t1
, .....W̃ 1

tk

)]

.

As ν is a G-adapted, we can define a new probability measure Pν equivalent to P on GT

given by:
dPν

dP
= exp

(

−
∫ T

0

νudW
2 − 1

2

∫ T

0

ν2udu

)

By Girsanov theorem, N is a G Brownian motion under Pν . On the other hand, from
the dynamic of W̃ 1 given by dW̃ 1 = dNt + µtdt and the assumption that µt ∈ F W̃ 1

t , we
deduce that the law of W̃ 1 remains the same under P and Pν . Thus:

Eν
[

h
(

W̃ 1
t1 , .....W̃

1
tk

)]

:= E

[

exp

(

−
∫ T

0

νsdW
2

s −
1

2

∫ T

0

ν2sds

)

h
(

W̃ 1
t1 , .....W̃

1
tk

)

]

= E

[

h
(

W̃ 1
t1
, .....W̃ 1

tk

)]

.
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Therefore E

[

exp

(

−
∫ T

0

νsdW
2

s −
1

2

∫ T

0

ν2sds

)]

= 1 and then one obtains:

E

[

Ũ (zZν
T )
]

≥ E

[

Ũ

(

z exp

(

−
∫ t

0

µsdW
1

s −
1

2

∫ t

0

µ2
sds

))]

:= E

[

Ũ
(

zZ0
T

)

]

.

On the other hand, we have from the definition of the dual problem that J̃(z) ≤
E

[

Ũ (zZ0
T )
]

, so we conclude that

J̃(z) = E

[

Ũ
(

zZ0
T

)

]

.

However, in the general case where the risk premia don’t satisfy lemma 5.5, it’s a difficult
problem to derive an explicit characterization for the solution of the dual problem and
therefore for the optimal wealth and portfolio. So, here we present a stochastic control
approach to the dual problem of determining the optimal martingale measures.

Note that the underlying dynamics for the equivalent martingale measure are the stochas-
tic differential equation (48) and the stochastic volatility equation given in system (Q).
So for initial time t ∈ [0, T ] and for fixed z, the dual value function is defined by the dual
stochastic control problem

J̃(z, t, z, v) := inf
ν
E

[

Ũ(zZν
T )|Zν

t = z, Vt = v
]

. (55)

Remark that the dual value function in (49) is simply deduced from J̃(z) = J̃(z, 0, , z, v).

Notice that in the case where Ũ satisfies the following iso-elasticity property:

Ũ(kx) = f(k)Ũ(x) + g(k), k > 0,

for any functions f and g, then:

J̃(z, t, z, v) = f(z) inf
ν
E

[

Ũ(Zν
T )|Zν

t = z, Vt = v
]

+ g(z)

:= f(z) inf
ν
Ψ(t, z, v) + g(z).

Now, we are in the setting of a stochastic control problem with controlled process (Zν , V )
and control process ν. Let ζ be a smooth function on [0, T ]× R+ × R+. The Hamilton-
Jaccobi-Bellman equation associated to this control problem is written as:

∂tζ(t, z, v) + inf
ν
Lζ(t, z, v) = 0.

where

Lζ = f(βt, Vt)∂vζ +
1

2
h2(v)∂2vvζ +

1

2
z2
(

µ2
t + ν2

)

∂2zzζ

−
(

ρh(v)µt +
√

1− ρ2h(v)ν
)

z∂2zvζ.

Under smoothness assumptions one the dual value function, we can show by verification
theorem that a smooth solution of the above Hamilton-Jacobi-Bellman equation coincides
with the value function Ψ.
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Proposition 5.6. Suppose that there exists a function ζ(t, z, v) ∈ C1,2 ([0, T [×R+ × R+),
satisfying the following HJB equation:

∂tζ(t, z, v) + inf
ν
Lζ(t, z, v) = 0. (56)

with terminal condition
ζ(T, z, v) = Ũ(z).

Then, for all t ∈ [0, T ], z ∈ R+, v ∈ R+

ψ(t, z, v) ≤ ζ(t, z, v).

Assume there exists a minimizer ν∗t := ν∗(t, z, v) of (56) such that:

∂tζ(t, z, v) + Lζ(t, z, v) = 0, (57)

Then ψ(t, z, v) = ζ(t, z, v) for all t ∈ [0, T ], and the optimal risk ν̃t is given by

ν̃t = −
√

1− ρ2 h(V )

Zν

∂2zvψ(t, Z
ν , V )

∂2zzψ(t, Z
ν , V )

.

5.1.3 Application

Let assume that the model of diffusion is given by (25) and (26) and the trader’s objective
is to solve the optimization problem given by (44).
Firstly, notice from (32) that µ̃t is adapted to the filtration generated by W̃ 1, then from
lemma 5.5, the dual problem is reached for ν̃ = 0. Therefore from theorem 5.3 the optimal
wealth is given by:

R̃t = E

[

Z0
T

Z0
t

I(zxZ
0
T )|Gt

]

.

Now, from the definition of the innovation process W
1

and (32), we have that:

Z0
t = exp

(

−
∫ t

0

N(s, W̃ 1
s )dW̃

1
s +

1

2

∫ t

0

(

N(s, W̃ 1
s )
)2

ds

)

.

On the other hand, as in Lakner [2], we can deduce that the random variable Λ̃t :=

EP̃ [Λt|Gt] satisfies the following S.D.E:

Λ̃t = 1 +

∫ t

0

µs Λ̃sdW̃
1
s − λ

σV

∫ t

0

Λ̃sdW̃
2
s

= 1 +

∫ t

0

N(s, W̃ 1
s ) Λ̃sdW̃

1
s − λ

σV

∫ t

0

Λ̃sdW̃
2
s (from(32))

So notice that Z0
t = E

[

1
Λ̃t
|F W̃ 1

t

]

. Moreover from (31) we have that:

Λ̃t =M(t, W̃ 1
t ) exp

(

− λ

σV
W̃ 2

t − 1

2

λ2

σ2
V

t

)
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Then, as W̃ 2 is independent of W̃ 1, one obtains:

Z0
t = E

[

1

Λ̃t

|F W̃ 1

t

]

=
1

M(t, W̃ 1
t )
.

Now from the restriction of P to G given in (14), we have the following lemma proved by
Pham and Quenez [4]:

Lemma 5.7. For all t ∈ [0, T ] and for all measurable function Υ on R+, such that
Z0

TΥ(Z0
T ) is P-integrable, we have Υ(Z0

T ) is P̃-integrable and:

Ẽ
[

Υ(Z0
T )|Gt

]

= E

[

Z0
T

Z0
t

Υ(Z0
T )|Gt

]

.

Now as in Karatzas and Zhao [1], let us assume that the function

Ψ(z, t, w) :=











∫

R

I

(

z

M(T, w + v)

)

φT−t(v)dv; k > 0, t ∈ [O, T [, w ∈ R

I
(

z
M(T,w)

)

; k > 0, t = T, w ∈ R

is finite for every (z, t, w) ∈ (0,∞)× [O, T ]× R. The function φ is the Gaussian density
given by:

φt(z) :=
1√
2πt

e−z2/2t.

We also assume that Ψ(z, s, w) has finite first derivatives with respect to the arguments
z, s and w and finite second derivatives with respect to the arguments z and w.
Under this assumption, the strictly decreasing function

z →
∫

R

I

(

z

M(T, v)

)

φT−t(v)dv

is continuous. Finally, from lemma 5.7, the optimal wealth satisfies:

R̃t = Ẽ

[

I

(

zx

M(T, W̃ 1
T )

)

|Gt

]

= Ψ(zx, t, W̃
1
t ), (58)

where the Lagrange multiplier zx is the unique solution of J̃
′

(z) = −x, where J̃(z) is
given as follows:

J̃(z) = E

[

Ũ(zZ0
T )
]

= Ẽ



M(T, W̃ 1
T )Ũ





z

M
(

T, W̃ 1
T

)







 .

It remains to make explicit the optimal strategy π̃.

In fact, as dR̃t = R̃tπ̃t
√
VtdW̃

1
t , then as in Karatzas and Zhao [1], we can deduce that the

optimal strategy α̃ is given by:

π̃t = (Vt)
−1/2 ∂wΨ

Ψ
(zx, t, W̃

1
t ), (59)
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where

∂wΨ(zx, t, w) = −zx
∫

R

∂wM(T, w + v)

(M(T, w + v))2
I

′

(

zx
M(T, w + v)

)

φT−t(v)dv.

Special cases for utility functions

Let us consider the more standard utility functions:

U(y) =

{

log(y), y ∈ R+

yp

p
, y ∈ R+, p ∈ (0, 1)

Then we can deduce the following formulae for the convex function Ũ :

Ũ(y) =

{

−(1 + log(y), y ∈ R+

−yδ

δ
, y ∈ R+, δ = p

p−1

and

I(y) =

{ 1
y
, y ∈ R+

y−q, y ∈ R+, q = 1
1−p

Logarithm function

In this case, the Lagrange multiplier zx is given by zx = 1/x. Then from (58), one obtains:

R̃t = x

∫

M(T, W̃ 1
T + v)φT−t(v)dv.

and from (59), the optimal strategy is given as follows:

π̃t = (Vt)
−1/2

∫

∂wM(T, W̃ 1
T + v)φT−t(v)dv

∫

M(T, W̃ 1
T + v)φT−t(v)dv

= (Vt)
−1/2N(t, ).

Power function

In this case, the Lagrange multiplier zx is given by:

zx =









∫

(M(T, v))q φT (v)dv

x









1−p

.

Then from (58), one obtains:

R̃t = x

∫

(

M(T, W̃ 1
T + v)

)q

φT−t(v)dv
∫

(M(T, v))q φT (v)dv

.

24



and from (59), the optimal strategy is given as follows:

π̃t = q (Vt)
−1/2

∫

∂wM(T, W̃ 1
t + v)

(

M(T, W̃ 1
t + v)

)q−1

φT−t(v)dv
∫

(M(T, W̃ 1
t + v))qφT−t(v)dv

.

Remark 5.8. Notice that in general it is not easy to deduce an explicit formulas for
the optimal wealth and strategy as in the above example. Because in general cases, the
solution of the dual problem is not zero and then we can’t have a simplification in the
above formulas witch leads to make explicit the calculus. So for general case, martingale
approach is not useful to resolve our optimization problem. For that, we need to use
another approach, like dynamic programming approach or PDE approach.

5.2 PDE approach

In our framework, we are in the context of portfolio optimization problem with stochastic
volatility. These problems have been studied by a lot of authors like Zaripholou [9], Pahm
[10] and Kraft [11]...etc.

Under smooth assumptions on the value function J , this approach leads to a character-
ization of J as solution of a associated HJB equation which in general is nonlinear, but
in the case of CARA’s utility functions and via a suitable transformations, we can made
this equation linear and then we can deduce an explicit solutions for the value function
and the optimal strategy. Also for this approach, a verification result is necessary to
guarantee that a solution of the PDE coincides with the value function. Thus, we need
to make regularity assumptions on the coefficients of the asset dynamic process and the
volatility dynamic process, in order to guarantee the regularity of the value function.

Now, let us assume that we have the following dynamics of (R, V ) within the full obser-
vation framework:

dRπ
t = Rπ

t πt

(

g(Vt)µt + g(Vt)dW
1

t

)

(60)

dVt = f(Vt)dt+ ρk(Vt)dW
1

t +
√

1− ρ2k(Vt)dW
2

t (61)

(62)

The coefficients g, f and k are assumed to satisfy all the required regularity assumptions
in order to guarantee a unique solution to the above stochastic differential equations.

Here we take the general case, when the dynamics of the risk processes are given as in
(15). So from section filtering, we can deduce the stochastic differential equation satisfied
by µt. Also, we assume that the law of Xt := (µ̃t, β̃t) given FS

t satisfy assumption 4.6,
that is we have:

E[φ(Xt)|FS
t ] =

∫

R2

φ(x)pt(x)m(dx),

where from (63), the density pt(x) satisfies:

dpt(x) = A∗pt(x)dt+ ϑ(pt(x))dW
1

t + ν(pt(x))dW
2

t (63)
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Then

µt := E[φ1(Xt)|FS
t ] =

∫

R2

φ1(x)pt(x)m(dx). (64)

Note that the process (Rπ
t , Vt, pt) is a Markov process as is immediate from the dy-

namics in (60), (62) and (63). Now we recall that the trader’s objective is to solve the
optimization problem (44). In general, we can rewrite this problem as follows:

J(t, x, v,m) = sup
π∈At

E [U(Rπ
T )|Rπ

t = x, Vt = v, pt = p] . (65)

Observe that now our optimization problem has not only one state variable, as in the
classical Merton’s optimization problem, but three variables, corresponding to the three
sources of randomness in our model.

Formally, the Hamilton-Jacobi-Bellman equation associated to the above stochastic con-
trol problem is the following nonlinear partial differential equation:

∂J

∂t
+ f(v)

∂J

∂v
+

1

2
k2(v)

∂2J

∂v2
+ A∗p

∂J

∂p
+

1

2

[

ϑ2(p) + ν2(p)
] ∂2J

∂p2

+
[

ρk(v)ϑ(p) +
√

1− ρ2k(v)ν(p)
] ∂2J

∂v, p

+ sup
π

[

πg(v)µt(p)x
∂J

∂x
+

1

2
π2g2(v)x2

∂2J

∂x2
+ xπg(v)ϑ(p)

∂2J

∂x, p

+ xπg(v)ρk(v)
∂2J

∂x, v

]

.

together with the terminal boundary condition J(t, x, v, p) = U(x).
The associated optimal strategy is given by the Markov control {π̃ = π̃(t, Vt, pt)} with:

π̃t(t, x, v, p) = − µt(p)

x g(v)

∂xJ

∂2xJ
− ρk(v)

xg(v)

∂2x,vJ

∂2xJ
− ϑ(p)

xg(v)

∂2x,pJ

∂2xJ
.

where µt is defined by (64).

5.2.1 To do for the second version of this paper

We have several theoretical difficulties concerning the above HJB: In fact, as p is gen-
erally infinite-dimensional, the above HJB equation is a PDE with infinite-dimensional
state variable. With this remark, we have to use the maximum principle or dynamic
programming for an infinite dimensional system. The situation is very similar to that for
systems governed by partial differential equations. For this systems, the treatment varies
with the choice of the functional space on which the conditional probability is defined.
We will discuss this points in next version. Also we aim to study the above HJB in the
cases of logarithmic and power utility function.
If we consider the case of CARA’s utility functions and via a suitable transformation,
we can make the above PDE a semilinear. Let us firstly consider the case of logarithmic
function. Due to the homogeneity of the utility function together with the fact that
the wealth process Rπ and the control π appear linearly in the wealth dynamic, we can
suggest that the value function must be of the form:
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J(t, x, v, p) = log(x) + Φ(t, y, p). (66)

Then direct substitution of (66) in the above HJB, gives us a semilinear P.D.E for Φ,
and the associated optimal strategy is now given by:

π̃t =
µt(p)

g(v)
.

where for notation µt = µt(p) is given by (64).
On the other hand, for the case of power utility function U(x) = xδ

δ
, we can suggest that

the value function must be of the form:

J(t, x, v, p) =
xδ

δ
exp(Φ(t, y, p))

also with this form we can obtain an semilinear P.D.E for Φ. Here the optimal strategy
is given by:

π̃t =
µt(p)

(1− δ)g(v)
+

ρk(v)∂vΦ

(1− δ)g(v)
+

ϑ(p)∂pΦ

(1− δ)g(v)

Remark 5.9. For the logarithmic case, we notice that in the case of partial information,
the optimal portfolio can be formally derived from the full information case by replacing
the unobservable risk premium µ̃t by its estimate µt. But on the other hand, in the power
utility function, this property does not hold and the optimal strategy cannot be derived
from the full information case by replacing the risk µ̃t by its best estimate µt due to the
last additional term which depend on the filter.
This property corresponds to the so called separation principle. It is proved in Kuwana
that certainty equivalence holds if and only if the utilities functions are logarithmic.
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