
HAL Id: hal-01018869
https://hal.science/hal-01018869v5

Submitted on 1 Oct 2015 (v5), last revised 22 Dec 2015 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-linear filtering and optimal investment under
partial information for stochastic volatility models

Dalia Ibrahim, Frédéric Abergel

To cite this version:
Dalia Ibrahim, Frédéric Abergel. Non-linear filtering and optimal investment under partial information
for stochastic volatility models. Mathematical Methods of Operations Research, 2018, 87 (3), pp.311-
346. �10.1007/s00186-017-0609-x�. �hal-01018869v5�

https://hal.science/hal-01018869v5
https://hal.archives-ouvertes.fr


Non-linear filtering and optimal investment under partial

information for stochastic volatility models

Dalia Ibrahim; Frédéric Abergel∗;

October 2, 2015

Abstract

This paper studies the question of filtering and maximizing terminal wealth from ex-
pected utility in a partially information stochastic volatility models. The special features is
that the only information available to the investor is the one generated by the asset prices,
and the unobservable processes will be modeled by a stochastic differential equations. Using
the change of measure techniques, the partial observation context can be transformed into
a full information context such that coefficients depend only on past history of observed
prices (filter processes). Adapting the stochastic non-linear filtering, we show that under
some assumptions on the model coefficients, the estimation of the filters depend on a priori
models for the trend and the stochastic volatility. Moreover, these filters satisfy a stochastic
partial differential equations named "Kushner-Stratonovich equations". Using the martin-
gale duality approach in this partially observed incomplete model, we can characterize the
value function and the optimal portfolio. The main result here is that the dual value func-
tion associated to the martingale approach can be expressed, via the dynamic programming
approach, in terms of the solution to a semilinear partial differential equation which depends
also on the filters estimate and the volatility. We illustrate our results with some examples
of stochastic volatility models popular in the financial literature.

Keywords 0.1. Partial information, stochastic volatility, utility maximization, martingale du-
ality method, non-linear filtering, Kushner-Stratonovich equations, semilinear partial differential
equation.

1 Introduction

The basic problem of mathematical finance is the problem of an economic agent who invests in a
financial market so as to maximize the expected utility of his terminal wealth. In the framework
of continuous time model, the utility maximization problem has been studied for the first time
by Merton (1971) in a Black-Scholes environment (full information) via the Hamilton-Jaccobi-
Bellman equation and dynamic programming. As in financial market models, we do not have
in general a complete knowledge of all the parameters, which may be driven by unobserved
random factors. So, we are in the situation of the utility maximization problem with partial
observation, which has been studied extensively in the literature by Detemple [3], Dothan and
Feldman [4], Lakner [13], [14], etc. There are many generalizations of Merton’s setting. The
natural generalizations was to model the volatility by a stochastic process.

In this paper, we consider a financial market where the price process of risky asset follows a
stochastic volatility model and we require that investors observe just the stock price. So we are
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in the framework of partially observed incomplete market, where our aim is to solve the utility
maximization problem in this context.

In order to solve this problem with partial observation, the common way is to use the
stochastic non-linear filtering and change of measure techniques, so as the partial observation
context can be transformed into a full information context. Then it is possible to solve this
problem either with the martingale approach or via dynamic programming approach. Models
with incomplete information have been investigated by Dothan and Feldman [4] using dynamic
programming methods in a linear Gaussian filtering, Lakner [13], [14] has solved the partial
optimization problem via martingale approach and worked out the special case of the linear
Gaussian filtering. Pham and Quenez [20] treated the case of partial information stochastic
volatility model where they have combined stochastic filtering techniques and a martingale
duality approach to characterize the value function and the optimal portfolio of the utility
maximization problem. They have studied two cases: the case where the risks of the model are
assumed to be independent Gaussian processes and the Bayesian case studied by Karatzas-Zhao
[11].

In this paper, we are in the same framework studied by Pham and Quenez [20], but here we
assume that the unobservable processes are modeled by a stochastic differential equations. More
precisely, the unobservable drift of the stock and that of the stochastic volatility are modeled
by stochastic differential equations. The main result in this case, is that the filters estimate of
the risks depend on a priori models for the trend and the stochastic volatility. There are two
reasons for this result: Firstly, we need to choose the models of the trend and the stochastic
volatility such that the risks dynamics can be described only in terms of them. Secondly, we need
to choose these models such that the coefficients of the risks dynamics satisfy some regularity
assumptions, like globally Lipshitz conditions and some finite order moments will be imposed.
We show that the filters estimate of the risks satisfy a stochastic partial differential equations
named "Kushner-Stratonovich equations". But these equations are valued in infinite dimensional
space and cannot be solved explicitly, so numerical approximitions can be used to resolve them.
Also, we study the case of finite dimensional filters like Kalman-Bucy filter. We illustrate our
results with several popular examples of stochastic volatility models.

After replacing the original partial information problem by a full information one which
depends only on the past history of observed prices, it is then possible to use the classical
theory for stochastic control problem. Here we will be interested by the martingale approach to
solve our utility optimization problem. As the reduced market in incomplete, we complement
the martingale approach by using the theory of stochastic control to solve the related dual
optimization problem. In [20], they have also used the martingale approach, but they have
studied the case where the dual optimizer vanishes. The main result in this paper is that the
solution of the related dual problem can be expressed in terms of the solution to a semilinear
partial differential equation which depends also on the filters estimates and the volatility.

The paper is organized as follows: In section 2, we describe the model and formulate the
optmization problem. In section 3, we use the non-linear filtering techniques and the change of
measure techniques in order to transform the partial observation context into a full information
context such that coefficients depend only on past history of observed prices (filter processes).
In section 4, we show that the filters estimates depend on a priori models for the trend and
the stochastic volatility. We illustrate our results with examples of stochastic volatility models
popular in the financial literature. Finally, in section 5, we use the martingale duality approach
for the utility maximization problem. We show that the dual value function and the dual
optimizer can be expressed in terms of the solution to a semilinear partial differential equation.
By consequence, the primal vale function and the optimal portfolio depend also on this solution.
The special cases of power and logarithmic utility functions are studied and we illustrate our
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results by an examples of stochastic volatility models for which we can give a closed form to the
semilinear equation.

2 Formulation of the problem

Let (Ω,F ,P) be a complete probability space equipped with a filtration F = {Ft, 0 ≤ t ≤ T}
satisfying the usual conditions, where T > 0 is a fixed time horizon. The financial market
consists of one risky asset and a bank account (bound). The price of the bound is assumed for
simplicity to be 1 over the entire continuous time-horizon [0, T ] and the risky asset has dynamics:

dSt
St

= µtdt+ g(Vt)dW
1
t , (2.1)

dVt = f(βt, Vt)dt+ k(Vt)(ρdW
1
t +

√

1− ρ2dW 2
t ), (2.2)

dµt = ζ(µt)dt+ ϑ(µt)dW
3
t . (2.3)

The processes W 1 and W 2 are two independents Brownian motions defined on (Ω,F ,P) and
−1 ≤ ρ ≤ 1 is the correlation coefficient. W 3 is a standard Brownian motion independent of W 1

and W 2. The drift µ = {µt, 0 ≤ t ≤ T} is not observable and follows a stochastic differential
equation. The process βt can be taken as a function in terms of µt or another unobservable
process, which also has a stochastic differential equation.

We assume that the functions g, f , k, ζ and ϑ ensure existence and uniqueness for solutions to
the above stochastic differential equations. A Lipschitz conditions are sufficient, but we do not
impose these on the parameters at this stage, as we do not wish to exclude some well-known
stochastic volatility models from the outset. Also, we can assume that the drift µt can be
replaced by µt g(Vt), that is we have a factor model.

Moreover, we assume that g(x), k(x) > 0 and the solution of (2.2) does not explode, that is, the
solution does not touch 0 or ∞ in finite time. The last condition can be verified form Feller’s
test for explosions given in [10, p.348].

In the sequel, we denote by FS = {FS
t , 0 ≤ t ≤ T} (resp. FV = {F V

t , 0 ≤ t ≤ T}) the filtration
generated by the price process S (resp. by the stochastic volatility V ). Also we denote by
G = {Gt, 0 ≤ t ≤ T} the natural P-augmentation of the market filtration generated by the price
process S.

2.1 The optimization problem

Let πt be the fraction of the wealth that the trader decides to invest in the risky asset at time t,
and 1− πt is the fraction of wealth invested in the bound. We assume that the trading strategy
is self-financing, then the wealth process corresponding to a portfolio π is defined by Rπ

0 = x
and satisfies the following SDE:

dRπ
t = Rπ

t

(

πtµtdt+ πtg(Vt)dW
1
t

)

.

A function U : R → R is called a utility function if it is strictly increasing, strictly concave of
class C2. We assume that the investor wants to maximize the expected utility of his terminal
wealth. The optimization problem thus reads as

J(x) = sup
π∈A

E[U(Rπ
T )], x > 0, (2.4)
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where A denotes the set of the admissible controls (πt, 0 ≤ t ≤ T ) which are FS-adapted, and
satisfies the integrability condition:

∫ T

t
g2(Vs)π

2
sds <∞ P− a.s. (2.5)

We are in a context when an investor wants to maximize the expected utility from terminal
wealth, where the only information available to the investor is the one generated by the asset
prices, therefore leading to a utility maximization problem in partially observed incomplete
model. In order to solve it, we aim to reduce it to a maximization problem with full information.
For that, it becomes important to exploit all the information coming from the market itself in
order to continuously update the knowledge of the not fully known quantities and this is where
stochastic filtering becomes useful.

3 Reduction to a full observation context

Let us consider the following processes:

µ̃t :=
µt
g(Vt)

, (3.1)

β̃t :=
(

√

1− ρ2k(Vt)
)−1

(f(βt, Vt)− ρk(Vt)µ̃t) , (3.2)

we assume that they verify the integrability condition:
∫ T

0
|µ̃t|2 + |β̃t|2dt <∞ a.s.

Here µ̃t and β̃t are the unobservable processes that account for the market price of risk. The first
is related to the asset’s Brownian component. The second to the stochastic volatility’s Brownian
motion.

Also we introduce the following process:

Lt = 1−
∫ t

0
Ls

[

µ̃sdW
1
s + β̃sdW

2
s

]

. (3.3)

We shall make the usual standing assumption of filtering theory.

Assumption 1. The process L is a martingale, that is, E[LT ] = 1.

Under this assumption, we can now define a new probability measure P̃ equivalent to P on (Ω,F)
characterized by:

dP̃

dP
|Ft = Lt, 0 ≤ t ≤ T. (3.4)

Then Girsanov’s transformation ensures that

W̃ 1
t =W 1

t +

∫ t

0
µ̃sds is a (P̃,F)-Brownian motion, (3.5)

W̃ 2
t =W 2

t +

∫ t

0
β̃sds is a (P̃,F)-Brownian motion. (3.6)

(3.7)
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Also, we have that (µ̃t, β̃t) is independent of the Brownian motion
(

W̃ 1
t , W̃

2
t

)

.

Therefore, the dynamics of (S, V ) under P̃ become:

dSt
St

= g(Vt)dW̃
1
t , (3.8)

dVt = ρ k(Vt)dW̃
1
t +

√

1− ρ2 k(Vt)dW̃
2
t . (3.9)

We now state a lemma which will highly relevant in the following. The proof of this lemma is
similar to lemma 3.1 in Pham and Quenez [20].

Lemma 3.1. Under assumption 1, the filtration G is the augmented filtration of (W̃ 1, W̃ 2).

Proof. The sketch of the proof is summarized by two steps:
Firstly, we show that the filtration G is equal to the enlarged progressive filtration FS∨FV . The
first inclusion is obvious and the other inclusion FS ∨ FV ⊂ G is deduced from the fact that Vt
can be estimated from the quadratic variation of log(St). Secondly, from (3.8), (3.9) and the
fact that g(x), k(x) > 0, we have that FW̃ 1∨

FW̃ 2

the filtration generated by (W̃ 1, W̃ 2)

We now make the following assumption on the risk processes
(

µ̃, β̃
)

.

∀t ∈ [0, T ], E|µ̃t|+ E|β̃t| <∞ (3.10)

Under this assumption, we can introduce the conditional law of
(

µ̃, β̃
)

:

µt := E[µ̃t|Gt], (3.11)

βt := E[β̃t|Gt]. (3.12)

Let us denote by H the (P̃,F) martingale defined as Ht =
1

Lt
. Now, we aim to construct the

restriction of P equivalent to P̃ on (Ω,G). First, let us consider the conditional version of Baye’s
formula: for any P integrable random variable X (X ∈ L1(P)), we have:

E [X|Gt] =
Ẽ [XHt|Gt]

Ẽ [Ht|Gt]
. (3.13)

Then by taking X = Lt, we get:

L̃t := E [Lt|Gt] =
1

Ẽ[Ht|Gt]
. (3.14)

Therefore, from (3.4) (3.14), we have the following restriction to G:

dP̃

dP
|Gt = L̃t.

Finally, from proposition 2.30 in Bain and Crisan [1] and proposition 2.2.7 in Pardoux [18] , we
have the following result:
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Proposition 3.2. The following processes W
1

and W
2

are independent (P,G)-Brownian mo-
tions.

W
1
t =W 1

t +

∫ t

0
(µ̃s − µs) ds := W̃ 1

t −
∫ t

0
µsds,

W
2
t =W 2

t +

∫ t

0

(

β̃s − βs

)

ds := W̃ 2
t −

∫ t

0
βsds.

These processes are called the innovation processes in filtering theory. They include the distances
between the true values of µ̃ and β̃ and their estimates:

Then, by means of the innovation processes, we can describe the dynamics of (S, V,R) within a
framework of full observation model:

(Q) =























dSt

St
= g(Vt)µtdt+ g(Vt)dW

1
t ,

dVt =
(

ρ k(Vt)µt +
√

1− ρ2 k(Vt)βt

)

dt+ ρk(Vt)dW
1
t +

√

1− ρ2k(Vt)dW
2
t ,

dRπ
t = Rπ

t πt

(

g(Vt) µtdt+ g(Vt)dW
1
t

)

.

4 Filtering

We have showed that conditioning arguments can be used to replace the initial partial infor-
mation problem by a full information problem one which depends only on the past history of
observed prices. But the reduction procedure involves the filters estimate µt and βt.

Our filtering problem can be summarized as follows: From lemma 3.1, we have G = FW̃ 1 ∨
FW̃ 2

. Then the vector (W̃ 1, W̃ 2) corresponds to the observation process. On the other hand,
our signal process is given by (µ̃t, β̃t). So the filtering problem is to characterize the conditional
distribution of (µ̃t, β̃t), given the observation data G = FW̃ 1

∨
W̃ 2

.

We show in this section how the filters estimate depend on the models of the drift and
the stochastic volatility. Using the non-linear filtering theory (presenting in appendix), we
can deduce that the filters estimate satisfy some stochastic partial differential equations, called
"Kushner-Stratonovich equations". Generally these equations are infinite-dimensional and thus
very hard to solve them explicitly. So, in order to simplify the situation and in order to obtain
a closed form for the optimal portfolio, we will be interested by some cases of models, when we
can deduce a finite dimensional filters.

4.1 General Case:

Let us assume that the processes µ̃t and β̃t are solutions of the following stochastic differential
equations:

d

(

µ̃t
β̃t

)

=

(

a
a

)

dt+

(

g1 g2
g1 g2

)

d

(

W 3
t

W 4
t

)

+

(

b1 b2
b1 b2

)

d

(

W 1
t

W 2
t

)

(4.1)

where we denote for simplification the functions a := a(µ̃t, β̃t), a := a(µ̃t, β̃t), ....... b2 =
b2(µ̃t, β̃t), and the Brownian motion (W 3

t ,W
4
t ) is independent of (W 1

t ,W
2
t ).
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On the other hand, the dynamics of the observation process (W̃ 1, W̃ 2) is given by:

d

(

W̃ 1
t

W̃ 2
t

)

= d

(

W 1
t

W 2
t

)

+

(

µ̃t
β̃t

)

dt (4.2)

Remark 4.1. To avoid confusion in the sequel, we have: G = FW̃ 1
∨

W̃ 2

= FY .

Notations 1. Let us denote by:

Xt =

(

µ̃t
β̃t

)

, Yt =

(

W̃ 1
t

W̃ 2
t

)

, A =

(

a
a

)

, G =

(

g1 g2
g1 g2

)

, B =

(

b1 b2
b1 b2

)

Mt =

(

W 3
t

W 4
t

)

Wt =

(

W 1
t

W 2
t

)

, h =

(

h1
h2

)

K =
1

2
(BBT +GGT ). (4.3)

where for x = (m, b), h1(x) = m, h2(x) = b and T denotes the the transposition operator.

With these notations, the signal-observation processes (Xt, Yt) satisfy (A.1) and (A.2):

dXt = A(Xt)dt+G(Xt)dMt +B(Xt)dWt (4.4)

dYt = dWt + h(Xt)dt (4.5)

4.1.1 Estimate µt and βt

Let us now make some assumptions which will be useful to show our results.
Assumptions

• i) The functions A,G and B are globally Lipschitz.

• ii) X0 has finite second moment.

• iii) X0 has finite third moment.

Lemma 4.2. Let (X,Y ) be the solution of (4.4) and (4.5) and assume that h has linear growth
condition. If assumptions i) and ii) are satisfied, then (A.4) is satisfied. Moreover, if assumption
iii) is satisfied, then (A.6) is satisfied.

Proof. The proof is given in [2](see, lemma 4.1.1 and lemma 4.1.5).

The following results show that we need to introduce an a priori models for the trend and
the stochastic volatility in order to describe the dynamics of (µ̃t, β̃t) as in (4.1), and therefore
we can deduce the dynamics of the filters estimate (µt, βt) from proposition A.2 in appendix
A and therefore deduce that of (µt, βt). More precisely, we show that these estimates depend
essentially on the model of the volatility Vt. We need to choose the dynamics of Vt such that
the following two steps will be verified.

• First step: Describe the dynamics of (µ̃t, β̃t) as in (4.1)

We show that this description depend essentially on the model of Vt. In fact, if we apply
Itô’s formula on µ̃t and β̃t in order to describe their dynamics, we have that Vt still appear,
for that we need to describe Vt only in terms of µ̃t and β̃t in order to disappear it from
their dynamics. This can be done from the definition of the β̃t but taking in account the
choice of the variable βt or more precisely the choice of f(βt, Vt). We will clarify this with
an examples in paragraph 4.1.1.
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• Second step: Verification of some regularity assumptions

Once we describe the dynamics of (µ̃t, β̃t) as in (4.1), we must check in more that the
coefficients of the dynamics verify some regularity assumptions, in order to use the above
results of nonlinear filtering theory.

We present now our result concerning the filtering problem:

Proposition 4.3. We assume that there exists a function Υ : R2 → R such that Vt = Υ(µ̃t, β̃t).
If with this function, the dynamics of Xt = (µ̃t, β̃t) can be described as in (4.4) and assump-
tions i), ii) and iii) hold, then the conditional distribution αt : E[φ(Xt)|FY

t ] satisfy the following
Kushner-Stratonovich equation:

dαt(φ) = αt(Aφ)dt+
[

αt

((

h1 + B1
)

φ
)

− αt(h
1)αt(φ)

]

dW
1
t

+
[

αt

((

h2 + B2
)

φ
)

− αt(h
2)αt(φ)

]

dW
2
t . (4.6)

for any φ ∈ B(R2)(the space of bounded measurable functions R2 → R). The operators A,B1

and B2 are given in appendix A by (A.7) and (A.9). Moreover the dynamics of (µt, βt) satisfy
the following stochastic differential equations:

dµt = αt(a)dt+ [αt

(

h1φ1 + b1
)

− αt(h
1)αt(φ1)]dW

1
t + [αt

(

h2φ1 + b2
)

− αt(h
2)αt(φ1)]dW

2
t ,

dβt = αt(a)dt+ [αt

(

h1φ2 + b1
)

− αt(h
1)αt(φ2)]dW

1
t + [αt

(

h2φ2 + b2
)

− αt(h
2)αt(φ2)]dW

2
t .

Proof. From the definition of µ̃t and β̃t and depending on the models of µt and βt, we have
from Itô’s formula that Vt still appear in the dynamics of µ̃t and β̃t. As Vt = Υ(µ̃t, β̃t), then we
can describe the dynamics of the signal process Xt = (µ̃, β̃t) as in (A.1). On the other hand,
from the definition of the observation process given by (4.5), we have that the sensor function
h = (h1, h2) has a linear growth condition. Thus, as assumptions i), ii) and iii) are verified,
then we can deduce from lemma 4.2, that the conditions (A.4) and (A.6) are proved. Therefore
the dynamics of αt given in (4.6) is deduced from proposition A.2.
It remains to deduce the dynamics of (µt, βt).
Let us consider the functions φ1 and φ2 as follows:

for x = (m, b), φ1(x) = m and φ2(x) = b.

Then the filters µt (resp.βt) can be deduce from (4.6) by replacing φ by φ1 (resp.φ2). The problem
here is that the Kushner-Stratonovich equation (4.6) holds for any bounded Borel measurable
φ. But as φ1 (resp.φ2) not bounded, we proceed by truncating of φ1 (resp.φ2) at a fixed level
which we let tend to infinity. For this, let us introduce the functions (ψk)k>0 defined as

ψk(x) = ψ(x/k), x in R2,

where

ψ(x) =











1 if |x| ≤ 1

exp( |x|
2−1

|x|2−4) if 1 < |x| < 2

2 if |x| ≥ 2.

Then by using the following relations given in:

lim
k→∞

φ1ψ
k(x) = φ1(x), |φ1(x)ψk(x)| ≤ |φ1(x)|,

lim
k→∞

As(φ1ψ
k)(x) = Asφ1(x).

Then by replacing in equation (4.6) φ by φ1ψ
k and from dominated convergence theorem, we

may pass to the limit as k → ∞ and then we deduce that µt := αt(φ1) (resp.βt := αt(φ2) )
satisfy the dynamics given above.
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4.1.2 Existence and uniqueness of the solution to equation (4.6)

We now take sufficient assumption on the coefficients of the signal-observation system in order
to show that equation (4.6) has a unique solution, see Bain and Crisan [1, chap.4]. We define in
the following the space within which we prove the uniqueness.
Let us define the space of measure-valued stochastic processes within which we prove uniqueness
of the solution to equation (4.6). This space has to be chosen so that it contains only measures
with respect to which the integral of any function with linear growth is finite. The reason of
this choice is that we want to allow to the coefficients of the signal and observation processes to
be unbounded.

Let ψ : R2 → R be the function ψ(x) = 1 + ||x||, for any x ∈ R2 and define C l(R2) to be
the space of continuous functions φ such that φ/ψ ∈ Cb(R

2)(the space of bounded continuous
functions).
Let us denote by Ml(R2) the space of finite measure M such that M(ψ) <∞. In particular, this
implies that µ(φ) < ∞ for all φ ∈ C l(R2). Moreover, we endow Ml(R2) wit the corresponding
weak topology: A sequence (µn) of measures in Ml(R2) converges to µ ∈ Ml(R2) if and only if
lim
n→∞

µn(φ) = µ(φ), for all φ ∈ C l(R2).

Definition 4.4. • The Class U is the space of all Yt-adapted Ml(R2)-valued stochastic pro-
cess (µ)t>0 with càdlàg paths such that, for all t > 0, we have

Ẽ

[
∫ t

0
(µs(ψ))

2ds

]

<∞.

• The Class Ũ is the space of all Yt-adapted Ml(R2)-valued stochastic process (µ)t>0 with
càdlàg paths such that the process mµµ belongs to the class U, where the process mµ is
defined as:

mµ
t = exp

(
∫ t

0
µs(h

T )dYs −
1

2

∫ t

0
µs(h

T )µs(h)ds

)

.

Now we state the uniqueness result of the solution to equation (4.6), see theorem 4.19 in
Bain and Crisan [1, chap.4]

Proposition 4.5. Assuming that the functions A, K and h defined in (4.3) have twice contin-
uously differentiable components and all their derivatives of first and second order are bounded.
Then equation (4.6) has a unique solution in the class Ũ.

Remark 4.6. The equations satisfied by the filters are infinite-dimensional and cannot be solved
explicitly. These filters have to be solved numerically, but in concrete application, the filter
could thus never be implemented exactly, so in order to avoid this difficulty, some approximation
schemes have been proposed. For example, the extended Kalman filter, which is based upon
linearization of the state equation around the current estimate, see e.g Pardoux [18]. This method
is not mathematically justified, but it is widely used in practice. The partial differential equations
method which based on the fact that the density of the unnormalised conditional distribution of the
signal is the solution of a partial differential equation, see e.g Bensoussan[2] and Pardoux [18].
Also, we can use the approximation scheme used by Gobet el al [7] which consist in discretizing the
Zakai equation, which is linear, and then deduce the approximation of the conditional distribution
αt from Kllianpur-Striebel formula (A.5).
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4.1.3 Application

In this section, we will present two types of models: a models for which we cannot apply our
result in proposition 4.3 in order to deduce the filters estimate and a models where proposition
4.3 can be applied.

Let us consider the following Log Ornstein-Uhlenbeck model

dSt
St

= µtdt+ eVtdW 1
t , (4.7)

dVt = λV (θ − Vt) dt+ σV ρdW
1
t + σV

√

1− ρ2dW 2
t , (4.8)

dµt = λµ (θµ − µt) dt+ σµdW
3
t , (4.9)

Here the risks of the models are given by:

µ̃t =
µt
eVt

β̃t =
λV (θ − Vt)

σV
√

1− ρ2
− ρ
√

1− ρ2
µ̃t.

Applying Itô’s formula on µ̃t and βt, we have the following dynamics:

µ̃t = µ̃0 +

∫ t

0
λµθµe

−Vsds+ µ̃s

(

σ2V − λµ −
[

λV (θ − Vs) +
1

2
σ2V

])

ds+

∫ t

0
σV e

−VsdW 3
s

−
∫ t

0
ρσV µ̃sdW

1
s −

∫ t

0

√

1− ρ2σV µ̃sdW
2
s .

β̃t = −
∫ t

0

λ2V (θ − Vs)

σV
√

1− ρ2
ds−

∫ t

0

λV ρ
√

1− ρ2
dW 1

s −
∫ t

0
λV dW

2
s − ρ

√

1− ρ2
dµ̃s.

On the other hand, from the definition of β̃t, we can express Vt in terms of µ̃t and β̃t as follows:

Vt = −σV
√

1− ρ2

λV
β̃t −

σV ρ

λV
µ̃t + θ. (4.10)

If we replace Vt in the above dynamics, we can deduce that (µ̃t, β̃t) can be described as in (A.1),
where:

a(m, b) = λµθµ exp

(

σV
√

1− ρ2

λV
b+

σV ρ

λV
m− θ

)

+

(

1

2
σ2V − λµ − σV

√

1− ρ2b− σV ρm

)

m;

b1(m, b) = −ρσVm; b2(m, b) = −σVm
√

1− ρ2; g1(m, b) = σV exp

(

σV
√

1− ρ2

λV
b+

σV ρ

λV
m− θ

)

.

and

a(m, b) = −λV b−
λV ρ

√

1− ρ2
m− ρ

√

1− ρ2
a(m, b); b1(m, b) = − λV ρ

√

1− ρ2
− ρ2σV
√

1− ρ2
m

b2(m, b) = −λV + ρσVm; g1(m, b) =
−ρ

√

1− ρ2
exp

(

σV
√

1− ρ2

λV
b+

σV ρ

λV
m− θ

)

; g2 = g2 = 0.

With (4.10), the dynamics of (µ̃t, β̃t) is described as in (A.1) but assumption i) about the
globally Lipschitz conditions is not satisfied, then proposition 4.3 can’t be applied.
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Remark 4.7. Notice that here βt is a constant function. Also we can choose for example βt = µt
which in this case we can still describe Vt only in terms of µ̃t and β̃t. But if we take βt is another
process, in this case it is not clear that Vt can be described only in terms of µ̃t and β̃t.

Let us now consider another example: Heston model

dSt
St

= µtdt+
√

VtdW
1
t ,

dVt = λV (θ − Vt) dt+ σV
√

Vt

(

ρdW 1
t +

√

1− ρ2dW 2
t

)

,

dµt = λµ (θµ − µt) dt+ σµdW
3
t , µ0  N (m0, σ0),

Here the risks are given by µ̃t =
µt√
Vt

and β̃t =
λV (θ − Vt)

σV
√
Vt
√

1− ρ2
− ρ
√

1− ρ2
µ̃t. Also here we

are in the above situation that is we can describe the dynamics of µ̃t and β̃t as in (4.3), but
assumption i) is not satisfied.

Now we give some examples with which proposition (4.3) can be applied and therefore we
can deduce the filters estimate. we will be interested by the stochastic factor Garch model and
the stochastic factor Log Ornstein-Uhlenbeck model.

Stochastic factor Garch model:
Let us consider the following Garch-model:

dSt
St

=
√

Vt
(

µtdt+ dW 1
t

)

,

dVt = βt (θ − Vt) dt+ σV Vt

(

ρdW 1
t +

√

1− ρ2dW 2
t

)

,

dµt = λµ (θµ − µt) dt+ σµdW
3
t ,

dβt = λββtdt+ σββtdW
4
t .

where W 3 and W 4 are independent and independent from W 1 and W 2.
Here the risks of the model are given by:

µ̃t = µt and β̃t =
βt(θ − Vt)
√

1− ρ2Vt
− ρ
√

1− ρ2
µ̃t.

In order to compute the filters estimate in this case of models, we will be interested by using
proposition 4.3. For that, we need to take θ = 0. Because, if we apply Itô’s formula on µ̃t and
β̃t in the case where θ 6= 0, we obtain a dynamics with coefficients are not Lipschitz, that is,
assumption i) is not verify and therefore proposition 4.3 can’t be applied. For that we will take
θ = 0. Let θ = 0, then from Itô’s formula, we have:

d

(

µ̃t
β̃t

)

= A

(

µ̃t
β̃t

)

dt+G

(

µ̃t
β̃t

)

dMt.

where the functions A,G and B are given as follows:

A

(

m
b

)

=





λµ(θµ −m)

λβb+
ρ(λβ + λµ)

ρ
m− ρλµθµ

ρ



 , G

(

m
b

)

=

(

σµ 0

−ρσµ
ρ

σβ(b+
ρ

ρ
m)

)

.
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where ρ =
√

1− ρ2 and the function B is null, so we are in the case where the signal process
Xt := (µ̃t, β̃t) and the observation processes Yt := (W̃ 1

t , W̃
2
t ) are independent. This implies that

the operator B1 and B2 will disappear in the Zakai and Kushner-Stratonovich equations. As for
this model, the assumptions of proposition 4.3 are satisfied, then the conditional distribution αt

is given for any φ by:

dαt(φ) = αt(Aφ)dt+
[

αt

(

h1φ
)

− αt(h
1)αt(φ)

]

dW
1
t +

[

αt

(

h2φ
)

− αt(h
2)αt(φ)

]

dW
2
t .

Here the operator A is given by (A.7), where K =
1

2
GGT .

Therefore, the dynamics of the filters estimate are given as follows:

dµt = λµ(θµ − µt)dt+
(

αt(h
1φ1)− µ2t

)

dW
1
t +

(

αt(h
2φ1)− βtµt

)

dW
2
t ,

dβt =

(

λββt +
ρ(λβ + λµ)

ρ
µt −

ρλµθµ
ρ

)

dt+
(

αt(h
1φ2)− µtβt

)

dW
1
t +

(

αt(h
2φ2)− βt

2
)

dW
2
t .

Numerically, in order to simulate αt, we can use the approximation scheme developed by Gobet
et al [7] or the extended Kalman filter studied by Pardoux [18, Chap.6], see remark 4.6.

Also we consider another example for which we can apply proposition (4.3): the stochastic
factor Log Ornstein-Uhlenbeck model. The special features of this model is not only we can apply
proposition (4.3), but also we are in a particular case of the signal-observation system (A.1) where
A,B and G are deterministic. So we are in the framework of the classical Kalman-Bucy filter
with correlation between the signal and the observation processes, see Pardoux [17, Chap.6]
and Kallianpur[8, Theo 10.5.1]. This filter is deduced from the general Kushner-Stratonovich
equation (A.2), but the advantage of this filter is that it is a finite dimensional filter.

Finite dimensional filter: stochastic factor Log Ornstein-Uhlenbeck model
Let us consider the following Log Ornstein-Uhlenbeck model:

dSt
St

= eVt
(

µtdt+ dW 1
t

)

(4.11)

dVt = λV (θ − Vt) dt+ σV ρdW
1
t + σV

√

1− ρ2dW 2
t (4.12)

dµt = λµ (θµ − µt) dt+ σµdW
3
t . (4.13)

Then from the definition of µ̃t and β̃t and Itô’s formula, the risks of the system have the following
dynamics:

d

(

µ̃t
β̃t

)

=

(

A(t)

(

µ̃t
β̃t

)

+ b(t)

)

dt+G(t)d

(

W
3
t

W
4
t

)

+B(t)

(

W
1
t

W
2
t

)

.

Here:

A =





−λµ 0
ρ[λµ − λV ]

ρ
−λV



 , b =

(

λµθµ

−ρ
ρ
λµθµ

)

, G =

(

σµ 0

−ρ
ρ
σµ 0

)

B =

(

0 0

−ρ
ρ
λV −λV

)

.

where ρ =
√

1− ρ2.
Therefore using theorem 10.5.1 in [8], we can deduce the following stochastic differential

equations for the filters:
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d

(

µt
βt

)

=

(

A(t)

(

µt
βt

)

+ b(t)

)

dt+ (B(t) + Θt) d

(

W
1
t

W
2
t

)

. (4.14)

Where Θt is the conditional covariance matrix (2× 2) of the signal satisfies the following deter-
ministic matrix Ricatti equation:

dΘt = AΘt +ΘtA
T +GGT −ΘtΘ

T
t −ΘtB

T −BΘt. (4.15)

Also we can consider the case where the mean θ of the stochastic volatility Vt is a linear
function of µt. For example, assume the above dynamics of (St, Vt, µt) with θ = µt. Therefore,
the filters estimate (µt, βt) verifies (4.14). Here G and B are the same matrix given above, but
A and b are given by:

A =





−λµ 0
ρ[λµ − λV ]

ρ
− λµλV

σV ρ
−λV



 , b =





λµθµ
λV
σV ρ

− ρ

ρ
λµθµ



 .

Remark 4.8. Also, we have the above results about the filters estimate if we consider the Stien-
stein model, where the stock has the dynamics: dSt

St
= |Vt|

(

µtdt+ dW 1
t

)

and the stochastic
volatility Vt and the drift µt are given by (4.12) and (4.13).

5 Application to portfolio optimization

Before presenting our results, let us recall that the trader’s objective is to solve the following
optimization problem:

J(x) = sup
π∈At

E[U(Rπ
T )] x > 0, (5.1)

where the dynamics of Rπ
t in the full information context is given by:

dRπ
t = Rπ

t πt

(

g(Vt) µtdt+ g(Vt)dW
1
t

)

.

Here At is the set of admissible controls πt which are FS-adapted processes, take their value in
a compact U ⊂ R, and satisfy the integrability condition:

∫ T

t
g2(Vs)π

2
s <∞ P a.s. (5.2)

We have showed that using the nonlinear filtering theory, the partial observation portfolio
problem is transformed into a full observation portfolio problem with the additional filter term
in the dynamic of the wealth, for which one may apply the martingale or PDE approach.

Here we will interested by the martingale approach in order to resolve our optimization problem.
The motivation to use the martingale approach instead of the PDE approach is that we don’t
need to impose any constraint on the admissible control (see remark 5.17).

As the reduced market model is not complete, due to the stochastic factor V , we have to solve the
related dual optimization problem. For that, we complement the martingale approach by using
the PDE approach in order to solve explicitly the dual problem. For the case of CARA’s utility
functions, show by verification result, that under some assumptions on the market coefficients,
the dual value function and the dual optimizer are related to the solution of a semilinear partial
differential equation.
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5.1 Martingale approach

Before presenting our result concerning the solution of the dual problem, let us begin by remind-
ing some general results about the martingale approach.
The martingale approach in incomplete market is based on a dual formulation of the optimization
problem in terms of a suitable family of (P,G)-local martingales. The important result for
the dual formulation is the martingale representation theorem given in [20] for (P,G)-local

martingales with respect to the innovation processes W
1

and W
2
.

Lemma 5.1 (Martingale representation theorem). Let A be any (P,G)-local martingale. Then,
there exist a G-adapted processes φ and ψ, P a.s. square-integrable and such that

At =

∫ t

0
φsdW

1
s +

∫ t

0
ψsdW

2
s. (5.3)

Now, we aim to describe the dual formulation of the optimization problem. We now make the
following assumption which will be useful in the sequel:

∫ T

0
µ2t dt <∞,

∫ T

0
ν2t dt <∞ P− a.s. (5.4)

For any G-adapted process ν = {νt, 0 ≤ t ≤ T}, which satisfies (5.4), we introduce the (P,G)-
local martingale strictly positive:

Zν
t = exp

(

−
∫ t

0
µsdW

1
s −

∫ t

0
νsdW

2
s −

1

2

∫ t

0
µ2sds−

1

2

∫ t

0
ν2sds

)

(5.5)

When, E [Zν
T ] = 1, the process Z is a martingale and then there exists a probability measure Q

equivalent to P with:
dQ

dP
|Gt = Zν

T .

Here µ is the risk related to the asset’s Brownian motion W 1, which is chosen such that Q is
a equivalent martingale measure, that is, the process ZνR is a (P,G)-local martingale. On the
other hand, ν is the risk related to the stochastic volatility’s Brownian motion and this risk will
be determined as the optimal solution of the dual problem defined below.
Consequently, from Itô’s formula, the process Zν satisfies:

dZν
t = −Zν

t

(

µsdW
1
s + νsdW

2
s

)

. (5.6)

As shown by Karatzas et al [9], the solution of the primal problem (5.1) relying upon solving
the dual optimization problem:

Jdual(z) = inf
Q∈Q

E

[

Ũ(z
dQ

dP
)

]

:= inf
ν∈K

E

[

Ũ(zZν
T )
]

, z > 0 (5.7)

Where:

• Q is the set of equivalent martingale measures given by:

Q = {Q ∼ P| R is a local (Q,G)− martingale}. (5.8)

• Ũ is the convex dual of U given by:

Ũ(y) = sup
m>0

[U(m)− ym] , m > 0. (5.9)
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• K is the Hilbert space of G-adapted process ν such that E

[∫ T

0
|ν2t |dt

]

<∞.

We henceforth impose the following assumptions on the utility functions in order to guarantee
that the dual problem admits a solution ν̃ ∈ K:

Assumption 2. • For some p ∈ (0, 1), γ ∈ (1,∞), we have

pU ′(x) ≥ U ′(γx) ∀x ∈ (0,∞).

• x→ xU ′(x) is nondecreasing on (0,∞).

• For every z ∈ (0,∞), there exists ν ∈ K such that Jdual(z) <∞.

By same arguments as in theorem 12.1 in Karatzas et al [9], we have existence to the dual
problem (5.7).

Proposition 5.2. Under assumption 2, for all z > 0, the dual problem (5.7) admits a solution
ν̃(z) ∈ K

In the sequel, we denote by I :]0,∞[→]0,∞[ the inverse function of U ′ on ]0,∞[. It’s a decreasing
function and verifies lim

x→0
I(x) = ∞ and lim

x→∞
I(x) = 0.

Now from Karatzas et al [9] and Owen [16], we have the following result about the solution of
the primal utility maximization problem (2.4).

Theorem 5.3. The optimal wealth for the utility maximization problem (2.4) is given by

R̃t = E

[

Z ν̃
T

Z ν̃
t

I(zxZ
ν̃
T )|Gt

]

where ν̃ = ν̃(zx) is the solution of the dual problem and zx is the Lagrange multiplier such that
E
[

Z ν̃
T I(zxZ

ν̃
T )
]

= x. Also the optimal portfolio π̃ is implicitly determined by the equation

dR̃t = π̃tg(Vt)dW̃
1
t . (5.10)

Remark 5.4. The constraint E
[

Z ν̃
T I(zxZ

ν̃
T )
]

= x to choose zx is satisfied if

zx ∈ argminz>0{Jdual(z) + xz}. (5.11)

Now we begin by presenting our results about the solution of the dual problem.

5.1.1 Solution of the dual problem (5.7)

We remark from theorem 5.3 that optimal wealth depends on the optimal choice of ν. So we
are interested in the following by finding the optimal risk ν which is solution of (5.7).

Here we present two cases. Firstly, we show that in the case when the filter estimate of the price
risk µt ∈ FW̃ 1

t , the infimum of the dual problem is reached for ν̃ = 0. Secondly, for the general
case, the idea is to derive a Hamilton-Jacobi-Bellman equation for dual problem, which involves
the volatility risk ν as control process.
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Lemma 5.5. Assume that µt ∈ FW̃ 1

t , then the infimum of the dual problem is reached for ν̃ = 0,
that is:

Jdual(z) = inf
Q∈Q

E

[

Ũ(z
dQ

dP
)

]

= E

[

Ũ
(

zZ0
T

)

]

. (5.12)

Proof. See Appendix A.

Generally, the filter estimate of the price risk doesn’t satisfy lemma 5.5 and therefore it’s a
difficult problem to derive an explicit characterization for the solution of the dual problem and
therefore for the optimal wealth and portfolio. For that, we need to present the dual problem
as a stochastic control problem with controlled process Zν

t and control process ν.

Firstly, from the underlying dynamics of Zν
t , we notice that our optimization problem 5.7 has

three state variables which will be take in account to describe the associated Hamilton-Jaccobi-
Belleman equation: the dynamic (5.6) of Zν

t , the dynamic of the stochastic volatility (Vt) which
is given in system (Q) and the dynamic of the filter estimate of the price risk µt.

Remark 5.6. We have showed in filtering section, that the filter estimate µt satisfies a stochas-
tic differential equation which in general is infinite dimensional and is not a Markov process.
Therefore, we can’t use it to describe the HJB. On the other hand, we have also showed that
for some models of stochastic volatility models, we can obtain a finite dimensional stochastic
differential equation for µt which is also a Markov process. So in the sequel, we will assume that
the filter µt is Markov.

On the other hand, we need in general to take in account the dynamics of µt and βt. But for
simplification, we will consider βt as a linear function of µt or a constant. Also for this choice
of βt, we can obtain, due to the separation technique used in proposition (5.18), a closed form
for the value function and the optimal portfolio.

In the following, we assume that µt is Markov. So for initial time t ∈ [0, T ] and for fixed z,
the dual value function is defined by the following stochastic control problem:

Jdual(z, t, z, v,m) := inf
ν∈K

E

[

Ũ(zZν
T )|Zν

t = z, Vt = v, µt = m
]

. (5.13)

Where the dynamics of (Zν
t , Vt, µt) are given as follows:

dZν
t = −Zν

t µsdW
1
s − Zν

t νsdW
2
s

dVt = f(µt, Vt)dt+ ρk(Vt)dW
1
t +

√

1− ρ2k(Vt)dW
2
t

dµt = τ(µt)dt+ ϑ(µt)dW
1
t +Υ(µt)dW

2
t .

where f is a linear function.

Remark 5.7. The dual value function in (5.7) is simply deduced from Jdual(z) = Jdual(z, 0, z, v,m).

If we assume that Yt = (Vt, µt) be a bi-dimensional process, then the controlled process
(Zν

t , Yt) satisfies the following dynamics:

dZν
t = −Zν

t ψ(Ys)dW
1
s − Zν

t νsdW
2
s (5.14)

dYt = Γ(Yt)dt+Σ(Yt)dWt (5.15)
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where Wt = (W
1
t ,W

2
t ) is a bi-dimensional Brownian motion, and for y = (v,m), we have:

ψ(y) = m, Γ(y) =

(

f(m, v)
τ(m)

)

and

Σ(y) =

(

ρk(v)
√

1− ρ2 k(v)
ϑ(m) Υ(m)

)

.

Then we have the new reformulation of the above stochastic problem (5.13) and its HJB
equation as follows:

Jdual(z, t, z, y) := inf
ν∈K

E

[

Ũ(zZν
T )|Zν

t = z, Yt = y
]

. (5.16)

Now assuming that Ũ satisfies the following property:

Ũ(λx) = g1(λ)Ũ(x) + g2(λ), (5.17)

for λ > 0 and for any functions g1 and g2.

The special advantage of this assumption is: we can solve the dual problem (5.16) independently
of z. In general, a solution to the dual problem (5.16) depends on z, but for this type of Ũ , this
dependence vanishes. Then (5.16) reads as follows:

Jdual(z, t, z, y) = g1(z) inf
ν∈K

E

[

Ũ(Zν
T )|Zν

t = z, Yt = y
]

+ g2(z)

= g1(z)J̃ (t, z, y) + g2(z).

Where J̃ denotes the dual value the following stochastic control problem:

J̃(t, z, y) = inf
ν∈K

E

[

Ũ(Zν
T )|Zν

t = z, Yt = y
]

. (5.18)

In the sequel, we will be interested by the stochastic control problem (5.18) in order to deduce
the dual value function Jdual(z, t, z, y).

Formally, the Hamilton-Jacobi-Bellman equation associated to the above stochastic control prob-
lem (5.18) is the following nonlinear partial differential equation:

∂J̃

∂t
+

1

2
Tr
(

Σ(y)ΣT (y)D2
yJ̃
)

+ ΓT (y)DyJ̃

+ inf
ν∈K

[

1

2
(ψ(y)2 + ν2)z2D2

z J̃ − z[ψ(y)KT
1 (y) + νKT

2 ]D
2
z,yJ̃

]

= 0, (5.19)

with the boundary condition
J̃(T, x, y) = U(x), (5.20)

and the associated optimal dual optimizer ν̃ is given by:

ν̃t =
KT

2 D2
z,yJ̃

z D2
z J̃

.
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Here Dy and D2
y denote the gradient and the Hessian operators with respect to the variable y.

D2
z,y is the second derivative vector with respect to the variables z and y and for y = (v,m),

K1(y) =

(

ρk(v)
ϑ(m)

)

and K2(y) =

( √

1− ρ2k(v)
Υ(m)

)

.

The above HJB is nonlinear, but if we consider the case of CARA’s utility functions and via a
suitable transformation, we can make this equation semilinear and then characterize the dual
value function J̃ through the classical solution of this semilinear equation which is more simpler
than the usual fully nonlinear HJB equation.

5.2 Special cases for utility function

Let us consider the two more standard utility functions: logarithmic and power, defined by:

U(x) =















ln(x) x ∈ R+

xp

p
x ∈ R+, p ∈ (0, 1)

For these functions, the convex dual functions associated are given by:

Ũ(z) =















−(1 + ln(z)) z ∈ R+

−z
q

q
z ∈ R, q =

p

p− 1

These utility functions are of particular interests: firstly, they satisfy property (5.17)and sec-
ondly, due to the homogeneity of the convex dual functions together with the fact that the
process Zν

t and the control ν appear linearly, we can suggest a suitable transformation, for
which we can characterize the dual value functions J̃ through a classical solution of a semilinear
semilinear partial differential equations which will be described below.

Let us now make some assumptions which will be useful for proving our verification results.
Assumption (H)

i) Γ and Σ are Lipscitz and C1 with bounded derivatives.
ii) ΣΣT is uniformly elliptic, that is, there exists c > 0 such that for y, ξ ∈ R2:

2
∑

i,j=1

(ΣΣT (y))ijξiξj ≥ c|ξ|2.

iii) Σ is bounded or is a deterministic matrix.
iv) There exists a positive constant ǫ such that

exp

(

ǫ

∫ T

0
(ψ2(Yt) + ν2t )dt

)

∈ L1(P).

Notice that the Lipschitz assumption on Γ and Σ ensure the existence and uniqueness of the
solution of (5.15). Moreover, we have:

E[ sup
0≤s≤t

|Ys|2] <∞. (5.21)
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5.2.1 Logarithmic utility:

For the logarithmic utility case, we can look for a candidate solution of (5.19) and (5.20) in the
form :

J̃(t, z, y) = −(1 + ln(z))− Φ(t, y) (5.22)

Then direct substitution of (5.22) in (5.19) and (5.20) gives us the following semilinear partial
differential equation for Φ:

−∂Φ
∂t

− 1

2
Tr
(

Σ(y)ΣT (y)D2
yΦ
)

+H(y,DyΦ) = 0, (5.23)

with the boundary condition:
Φ(T, y) = 0. (5.24)

Here the Hamiltonian H is defined by:

H(y,Q) = −ΓT (y)Q+ inf
ν

(

1

2
(ψ2(y) + ν2)

)

.

We now state a verification result for the logarithmic case, which relates the solution of the
above semilinear (5.23) and (5.24) to the stochastic control problem (5.18).

Theorem 5.8 (verification theorem). Let assumption H i) holds. Suppose that there exists
a solution Φ ∈ C1,2([0, T ) × R2) ∩ C0([0, T ] × R2) to the semilinear (5.23) with the terminal
condition (5.24). Also we assume that Φ satisfies a polynomial growth conditon, i.e:

|Φ(t, y)| ≤ C(1 + |y|k) for some k ∈ N.

Then, for all (t, z, y) ∈ [O,T ]× R+ × R2

J̃(t, z, y) ≤ −1− ln(z)− Φ(t, y),

and for the optimal risk ν̃ = 0, we have J̃(t, x, y) = −1− ln(x)− Φ(t, y) .

Proof. Let J̃ν(t, z, y) = E

[

Ũ(Zν
T )|Zν

t = z, Yt = y
]

. From (5.18) and Ũ(z) = −1− ln(z), we have

the following expression for J̃ν :

J̃ν(t, z, y) = −1− ln(z) + E

[

1

2

∫ T

t
(ψ2(Ys) + ν2s )ds

]

. (5.25)

Let ν be an arbitrary control process, Y the associated process with Yt = y and define the
stopping time

θn := T ∧ inf{s > t : |Ys − y| ≥ n}.
Now, let Φ be a C1,2 solution to (5.23). Then, by Itô’s formula, we have:

Φ(θn, Yθn) = Φ(t, y) +

∫ θn

t

(

∂Φ

∂t
+

1

2
Tr(ΣΣTD2

yΦ) + ΓTDyΦ

)

(s, Ys)ds+

∫ θn

t
((DyΦ)

TΣ)(s, Ys)dW s

≤ Φ(t, y) +
1

2

∫ θn

t
(ψ2(Ys) + ν2s )ds +

∫ θn

t
((DyΦ)

TΣ)(s, Ys)dW s (5.26)
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From the definition of θn, the integrand in the stochastic integral is bounded on [t, θn], a con-
sequence of the continuity of DyΦ and assumption H i). Then, by taking expectation, one
obtains:

E[Φ(θn, Yθn)] ≤ Φ(t, y) + E

[

1

2

∫ θn

t
(ψ2(Ys) + ν2s )ds

]

.

We now take the limit as n increases to infinity, then θn → Ta.s. From the growth condition
satisfied by Φ and (5.21), we can deduce the uniform integrability of (Φ(θn, Yθn))n. Therefore,
it follows from the dominated convergence theorem and the boundary condition (5.24) that for
all ν ∈ K:

−Φ(t, y) ≤ E

[

1

2

∫ T

t
(ψ2(Ys) + ν2s )ds

]

Then from (5.22), we have:

J̃ν(t, z, y) ≤ −1− ln(z)− Φ(t, y).

Now by repeating the above argument by replacing ν by ν̃ = 0 which is the optimal risk, we can
finally deduce that:

J̃ν̃(t, z, y) = −1− ln(z)− Φ(t, y).

which ends the proof since J̃(t, z, y) = infν∈K J̃ν(t, z, y)

Let us now study the regularity of the solution Φ to the semilinear (5.23) with the terminal
condition (5.24).

Proposition 5.9. Under assumptions H i) and ii), there exists a solution Φ ∈ C1,2([0, T ) ×
R2) ∩ C0([0, T ] × R2) with polynomial qrowth condition in y, to the semilinear (5.23) with the
terminal condition (5.24).

Proof. Under assumptions i) and ii) and the fact that the Hamiltonian H satisfies a global
Lipschitz condition on DyΦ, we can deduce from theorem 4.3 in Fleming and soner [6, p.163]
the existence and uniqueness of a classical solution to the semilinear equation(5.23).

5.2.2 Power utility:

As the above reasons given in the logarithmic case, we can suggest that the value function must
be of the form:

J̃(t, z, y) = −z
q

q
exp(−Φ(t, y)). (5.27)

Then if we substitute the above form in (5.19)and (5.20), we can deduce the following semilinear
P.D.E for Φ:

− ∂Φ

∂t
− 1

2
Tr
(

ΣΣTD2
yΦ
)

+H(y,DyΦ) = 0, (5.28)

Φ(T, y) = 0. (5.29)

The Hamiltonian H is defined by:

H(y,Q) =
1

2
QTΣ(y)ΣT (y)Q−QTΓ(y) + inf

ν∈K

[

1

2
q(q − 1)(ψ2(y) + ν2) + q

(

ψ(y)KT
1 + νKT

2

)

Q

]

(5.30)

=
1

2
QT
(

Σ(y)ΣT (y)−G(y)
)

Q−QTF (y) + Ψ(y). (5.31)
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where for y := (v,m):

G(y) =
q

q − 1
K2(y)K

T
2 (y)

F (y) = Γ(y)− qψ(y)K1

Ψ(y) =
1

2
q(q − 1)ψ2(y).

We now state a verification result for the power case, which relates the solution of the above
semilinear (5.28) and (5.29) to the stochastic control problem (5.18).

Theorem 5.10 (verification theorem). Let assumptions H i), iii) and iv) hold. Suppose that
there exists a solution Φ ∈ C1,2([0, T ) × R2) ∩ C0([0, T ] × R2) with linear growth condition on
the derivation DyΦ, to the semilinear (5.28) with the terminal condition (5.29). Then, for all
(t, x, y) ∈ [O,T ]× R+ × R2

i) J̃(t, z, y) ≤ −z
q

q
exp(−Φ(t, y)).

Now, assume that there exists a minimizer ν̃ of

ν −→ 1

2
q(q − 1)ν2 + qνK2(y)

TDyΦ

such that

−∂Φ
∂t

− 1

2
Tr
(

ΣΣ∗D2
yΦ
)

+H(y,DyΦ) = 0.

Then

ii) J̃(t, z, y) = −z
q

q
exp(−Φ(t, y)).

and the associated optimal ν̃ is given by the Markov control {ν̃t = ν̃(t, Yt)} with

ν̃t = − 1

q − 1
KT

2 (YT )DyΦ(t, Yt). (5.32)

Proof. Let us introduce the new probability Qν as follows:

dQν

dP
= exp

(

−
∫ t

0
qψ(Yu)dW

1
u −

∫ t

0
qνudW

2
u − 1

2

∫ t

0
q2(ψ2(Yu) + ν2u)du

)

,

From assumption iv) the probability measureQν with the density process dQν

dP is well defined,
see Liptser and Shiryaev [15, P.233].

Let J̃ν(t, z, y) = E

[

Ũ(Zν
T )|Zν

t = z, Yt = y
]

.

From (5.18) and Ũ(z) = −z
q

q
, we have from Itô’s formula the following expression for J̃ν :

J̃ν(t, z, y) = −z
q

q
Eν

[

exp

(∫ T

t

1

2
q(q − 1)(ψ2(Yu) + ν2)du

)

|Yt = y

]

. (5.33)

Also by Girsanov’s theorem, the dynamics of Y under Qν , is given by:

dYt = (Γ(Yt)− qψ(Yt)K1(Yt)− qνtK2(Yt)) dt+Σ(Yt)dW
ν
t , (5.34)
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where W ν is a bi-dimensional Brownian motion under Qν .

Now, let Φ be a C1,2 solution to (5.28), then by Itô’s formula applied to Φ(t, Yt) under Qν , one
obtains:

Φ(θn, YT ) = Φ(t, y) +

∫ T

t

(

∂Φ

∂t
+ (Γ− qψK1 − qνtK2)

T DyΦ+
1

2
Tr(ΣΣT D2

yΦ)

)

(u, Yu)du

+

∫ T

t
(DT

y Φ Σ)(u, Yu)dW
ν
u

Or Φ is solution of (5.28), then one obtains:

Φ(T, YT ) = Φ(t, y) +

∫ T

t

(

H(y,DyΦ) + (Γ− qψK1 − qνtK2)
T DyΦ

)

(u, Yu)du

+

∫ T

t
(DT

y Φ Σ)(u, Yu)dW
ν
u (5.35)

≤ Φ(t, y) +

∫ T

t

1

2
q(q − 1)(ψ2(Yu) + ν2)du+

1

2

∫ T

t

(

DT
y Φ ΣΣTDyΦ

)

(u, Yu)du

+

∫ T

t
(DT

y Φ Σ)(u, Yu)dW
ν
u , (5.36)

where the inequality comes from the representation (5.30) of the Hamiltonian.
Therefore, we have:

exp(−Φ(t, y))Eν

[

exp

(

−1

2

∫ T

t

(

DT
y Φ ΣΣTDyΦ

)

(u, Yu)du−
∫ T

t
(DT

y Φ Σ)(u, Yu)dW
ν
u

)]

≤ Eν

[
∫ T

t

1

2
q(q − 1)(ψ2(Yu) + ν2)du

]

.

Let us now consider the exponential Qν-local martingales:

ǫπt = exp

(

−
∫ t

0
(DT

y Φ Σ)(u, Yu)dW
ν
u − 1

2

∫ t

0

(

DT
y Φ ΣΣTDyΦ

)

(u, Yu)du

)

.

From the Lipschitz condition assumed in i) and from iii), we can deduce from Gronwall’s lemma
that there exists a positive constant C such that:

|Yt| ≤ C

(

1 +

∫ t

0
|W ν

u |du+ |W ν
t |
)

Then we deduce that there exists some ǫ > 0 such that

sup
t∈[0,T ]

Eν [exp(ǫ|Yt|2)] <∞. (5.37)

Therefore from (5.37) and the fact that DyΦ satisfies a linear growth condition in y, we can
deduce that ǫπ is a martingale under Qν , therefore we have:

exp(−Φ(t, y)) ≤ Eν

[
∫ T

t

1

2
q(q − 1)(ψ2(Yu) + ν2)du

]

.

The above inequality is proved for all ν ∈ K, therefore we can deduce from (5.33) that:

J̃(t, z, y) ≤ −z
q

q
exp(−Φ(t, y)).
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since J̃(t, z, y) = infν∈K J̃ν(t, z, y), then i) is proved.
Now by repeating the above argument and observing that the control ν̃ given by (5.32),

achieves equality in (5.36), we can finally deduce that:

J̃ν(t, z, y) = −z
q

q
exp(−Φ(t, y)).

Also since J̃(t, z, y) = infν∈K J̃ν(t, z, y), then ii) is proved.

We now study the existence of a classical solution to (5.28)-(5.29).
In fact, the existence of a classical solution to (5.28)-(5.29) cannot be found directly in the
literature since Q → H(y,Q) is not globally Lipschitz on Q but satisfies a quadratic growth
condition on Q. For that we can use the approach taken in [6] by considering a certain sequence
of approximating P.D.Es which are the HJB-equations of certain stochastic control problems for
which the existence of smooth solution is well-known.

Let us make some assumptions which will be useful to prove the regularity for the solution
of (5.28).

Assumption (H’) Let us consider either one of the following conditions:

I)-If Σ is a deterministic matrix: In this case we need the following assumption:
i) Γ and ψ are Lipschitz and C1 with bounded derivatives.

II)-If Σ is not a deterministic matrix: In this case we need the following assumptions:

i) Γ and ψ.K1 are Lipschitz and C1.
ii) ψ2, K2K

T
2 are C1 with bounded derivatives.

iii) ΣΣT − q

q − 1
K2K

T
2 is uniformly elliptic.

By the similar arguments used by Pham in [19] and from the standard verification theorem
proved by Fleming and soner [Theorem 3.1 P.163][6], we can deduce our regularity result for the
case when the Hamiltonian is not globally Lipschitz but satisfies a quadratic growth condition.

Theorem 5.11. Under one the assumptions (H’), there exists a solution Φ ∈ C1,2([0, T )×R2)∩
C0([0, T ]×R2) with linear growth condition on the derivation DyΦ, to the semilinear (5.28) with
the terminal condition (5.29).

Remark 5.12. In general, a closed form solution to (5.28) with the terminal condition (5.29)
does not exist. But we show that for some stochastic volatility model and in the case when the
filters estimate are Gaussian, we can obtain a closed form, see section 5.4.

Let us now describe the relation between the optimal trading strategy and the optimal dual
optimiser.

5.3 Solution to the primal problem for special utility functions

We have showed from theorem 5.3, that the optimal wealth, and by consequence the optimal
portfolio, depend on the optimal dual optimiser ν̃. So we will study this relation in the special
case of utility functions studied above.

From theorem 5.3, we have:

R̃t = E

[

Z ν̃
T

Z ν̃
t

I(zxZ
ν̃
T )|Gt

]

(5.38)
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where ν̃ is the optimal dual maximizer and zx is the Lagrange multiplier such that E
[

Z ν̃
T I(zxZ

ν̃
T )
]

=
x.

Before presenting our result concerning the optimal wealth and the optimal portfolio, in
order to avoid any confusion, let us describe the dynamics of the wealth Rt in terms of the
process Yt := (Vt, µt) as follows:

dRt = Rtπt(ψ(Yt)δ(Yt)dt+ δ(Yt)dW
1
t ) (5.39)

where ψ(Yt) = µt and δ(Yt) = g(Vt).

Logarithmic utility: U(x) = ln(x).

Proposition 5.13. We suppose that the assumptions of theorems 5.8 and 5.9 hold. Then the
optimal wealth process is given by R̃t =

x

Z0
t

. Also the optimal portfolio π̃ and the primal value

function are given by:

π̃t =
ψ(Yt)

δ(Yt)
:=

µt
g(Vt)

and J(x) = ln(x)− Φ(0, Y0). (5.40)

where Φ is the solution of the semilinear equation (5.23) with boundary condition (5.24).

Proof. In this case we have I(x) =
1

x
and from theorem 5.8, the dual optimizer ν̃ = 0. Moreover,

the Lagrange multiplier zx =
1

x
. Therefore from (5.38), the optimal wealth is given by

R̃t =
x

Z0
t

. (5.41)

By applying Itô’s formula to (5.41) and from proposition 3.2, we obtain that:

dR̃t = R̃tψ(Yt)dW̃
1
t

On the other hand, we have from (5.39) that dR̃t = R̃tπ̃tδ(Yt)dW̃
1
t . Therefore comparing these

two expressions for R̃t, we obtain that the optimal portfolio π̃ is given by (5.40).Finally from
the definition of the primal value function and (5.41), we have J(x) = ln(x) − E[ln(Z0

T )] =
ln(x) + 1 + J̃(0, 1, Y0) = ln(x)− Φ(0, Y0). The last equality comes from theorem 5.8.

Power utility: U(x) = xp/p 0 < p < 1.

Proposition 5.14. We suppose the assumptions of theorems 5.10 and 5.11 hold. Then the
optimal wealth is given by:

R̃t =
x

E[(Z ν̃
T )

q]
(Z ν̃

t )
q−1 exp (−Φ(t, Yt)) .

the associated optimal portfolio is given by the Markov control {π̃t = π̃(t, Yt)} with

π̃t =
1

1− p

ψ(Yt)

δ(Yt)
− KT

1 (Yt)

δ(Yt)
DyΦ(t, Yt) (5.42)

and the primal value function is given by:

J(x) =
xp

p
exp(−(1− p)Φ(0, Y0)).

Where q =
p

p− 1
, ν̃ is given by (5.32) and Φ is a solution of the semilinear equation (5.28) with

boundary condition (5.20).
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Proof. In this case we have I(x) = x1/(p−1) and from theorem 5.10, the dual optimizer ν̃ is given

by (5.32). The Lagrange multiplier zx =

(

x

E[Z
p/p−1
T ]

)p−1

. Therefore from (5.38), the optimal

wealth is given by

R̃t = E

[

Z ν̃
T

Z ν̃
t

I(zxZ
ν̃
T )|Gt

]

= E

[

Z ν̃
T

Z ν̃
t

(zx)
1/(p−1)(Z ν̃

T )
1/(p−1)|Gt

]

=
x

E[(Z ν̃
T )

q]

1

Z ν̃
t

E
[

(Z ν̃
T )

q|Gt

]

Therefore from theorem 5.10, we deduce that:

R̃t =
x

E[(Z ν̃
T )

q]
(Z ν̃

t )
q−1 exp (−Φ(t, Yt)) . (5.43)

Now, as in the logarithmic case, by writing dR̃t = R̃tπtδ(Vt)dW̃
1
t and applying Itô’s formula to

(Z ν̃
t )

q−1 exp (−Φ(t, Yt)), then after comparing the two expressions for R̃t, we deduce that:

π̃t =
1

1− p

ψ(Yt)

δ(Yt)
− KT

1 (Yt)

δ(Yt)
DyΦ(t, Yt).

Finally, from (5.43) and the boundary condition Φ(T, Yt) = 0, we have:

J(x) =
xp

p
E[(Z ν̃

T )
q]1−p =

xp

p
exp(−(1− p)Φ(0, Y0)).

where the last equality comes from theorem 5.10.

Let us now deduce the following relation between the primal and dual control function.

Corollary 5.15. The optimal portfolio π̃ is given by

π̃t =
1

1− p

ψ(Yt)

δ(Yt)
− 1

1− p

KT
1 (K

T
2 )

−1

δ(Yt)
ν̃t. (5.44)

Proof. The proof can be deduced easily from theorem 5.10 and proposition 5.14.

Remark 5.16. For the logarithmic case, we notice that in the case of partial information,
the optimal portfolio can be formally derived from the full information case by replacing the
unobservable risk premium µ̃t by its estimate µt. But on the other hand, in the power utility
function, this property does not hold and the optimal strategy cannot be derived from the full
information case by replacing the risk µ̃t by its best estimate µt due to the last additional term
which depend on the filter.
This property corresponds to the so called separation principle. It is proved in Kuwana [12] that
certainty equivalence holds if and only if the utilities functions are logarithmic.

Remark 5.17. The advantage of using the martingale approach instead of the dynamic program-
ming approach (PDE approach) is that we don’t need to impose any constraint on the admissible
portfolio controls, while it is essential in the case of the PDE approach. In fact, with the PDE
approach, we need to make the following constraint on the admissible portfolio controls:

sup
t∈[0,T ]

E[exp(c|δ(Yt)πt|)] <∞, for some c > 0. (5.45)

this constraint is indispensable to impose in order to show a verification theorem in the case of
power utility function.
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5.4 Application

Here we give an example of stochastic volatility model for which we can obtain a closed form
for the value function and the optimal portfolio. Let us consider the Log Ornstein-Uhlenbeck
model defined in (4.11), (4.12) and (4.13). Also we consider the power utility function U(x) =
xp

p
, 0 < p < 1. Firstly, notice that we have the following dynamics of (Rπ

t , Vt, µt) in the full

observation framework:

dRπ
t = Rπ

t πt

(

µte
Vtdt+ eVtdW

1
t

)

dVt = λV (θ − Vt) dt+ σV ρdW
1
t + σV

√

1− ρ2dW
2
t

dµt = (−λµµt + λµθµ) dt+Θ11
t dW

1
t +Θ12

t dW
2
t .

where the last dynamics is deduced from (4.14). Θ11 and Θ12 are solutions of Riccati equation
(4.15).

Therefore the primal value function J(x) and the associated optimal portfolio π̃t are given
explicitly.

Proposition 5.18. The optimal portfolio is given by:

π̃t =
1

p− 1

µt
eVt

− ρσV
eVt

[Ã(t) + (T − t)] +
Θ11

eVt
(2A(t)µt +B(t)).

and the primal value function is given by:

J(x) =
xp

p
exp

[

− (1− p)
(

Ã(0)V0 + B̃(0)− V0T −A(0)µ20 −B(0)µ0 − C(0)
)]

.

where:

Ã(t) = −
∫ T

t
(λV (T − s) + 1)e−λV (s−t)ds.

B̃(t) =

∫ T

t

[

− 1

2
(σ2V − q

q − 1
(1− ρ2)σ2V )A

2(s) +

(

(σ2V − q

q − 1
(1− ρ2)σ2V )(T − s) + λV θ

)

A(s)

− 1

2
(σ2V − q

q − 1
(1− ρ2)σ2V )(T − s)2 − λV θ(T − s)

]

ds.

and A is solution of the following Riccati equation:

A
′

(t) = −2

(

Θ2
11 +Θ2

12 −
q

q − 1
Θ2

12

)

A
2
(t) + 2(λµ + qΘ11)A(t)−

1

2
q(q − 1), with A(T ) = 0

and

B(t) =

∫ T

t
B1(s)A(s) exp

[

− (λµ + qΘ11)(s− t) + 2(Θ2
11 +Θ2

12 −
q

q − 1
Θ2

12)

∫ s

t
A(u)du

]

ds.

C(t) =

∫ T

t

[

(Θ2
11 +Θ2

12)A(s) +
1

2

(

Θ2
11 +Θ2

12 −
q

q − 1
Θ2

12

)

B
2
(s)−B1(s)B(s)

]

ds.

where

B1(s) = +2

[

(ρσV Θ11 +
√

1− ρ2σV Θ12 −
q

q − 1

√

1− ρ2σVΘ12)(Ã(s)− (T − s))− λµθµ

]

and with terminal conditions: Ã(T ) = B̃(T ) = A(T ) = B(T ) = C(T ) = 0.

Proof. See Appendix A.

For more comprehension about the advantage to obtain a closed form with the Log Ornstein-
Uhlenbeck model , see remark A.4 in the proof of proposition 5.18.
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A Appendix

Filtering Let us consider the following partially observation system:

dXt = A(Xt)dt+G(Xt)dMt +B(Xt)dWt (A.1)

dYt = dWt + h(Xt)dt (A.2)

Here X is the two dimensional signal process and Y is the two dimensional observation process.
A is a 2×1 matrix, G,B are 2×2 matrix and h is 2×1 matrix . W and M are two dimensional
independents Brownian motions. We assume that A,B, and G satisfy the global Lipschitz
condition.

Now, we will be interested in the filtering problem which consists in evaluating the conditional
expectation of the unobservable process having the observations. In the sequel, we denote this
conditional expectation by αt(φ) = E

[

φ(Xt)|FY
t

]

, where FY is the filtration generated by the
observation process Y .

Then one of the approaches to obtain the evolution equation for αt is to change the measure.
Using the change of measure P̃ given in (3.4), we can define a new measure P̃, such that the
observation process becomes a P̃ Brownian motion independent of the signal variable Xt. For
that we need to discuss some conditions under which the process L is a martingale:

Lt = exp

(

−
2
∑

i=1

∫ t

0
hi(Xs)dW

i
s −

1

2

2
∑

i=1

∫ t

0
hi(Xs)

2ds

)

. (A.3)

Firstly, the classical condition is Novikov’s condition:

E

[

exp

(

1

2

∫ t

0
h1(Xs)

2ds+
1

2

∫ t

0
h2(Xs)

2ds

)]

<∞.

Normally Novikov’s condition is quite difficult to verify directly, so we need to use an alternative
conditions under which the process L is a martingale.
From lemma 3.9 in [1], we can deduce that L is a martingale if the following conditions are
satisfied:

E

[∫ t

0
(||h(Xs)||2)ds

]

<∞, E

[∫ t

0
Ls||h(Xs)||2ds

]

<∞ ∀t > 0. (A.4)

Let us now denote by Λt the
(

P̃,F
)

-martingale given by Λt =
1
Lt

. We then have:

dP

dP̃
|Ft = Λt, 0 ≤ t ≤ T

= exp

(

2
∑

i=1

∫ t

0
hi(Xs)dW

i
s −

1

2

2
∑

i=1

∫ t

0
hi(Xs)

2ds

)

.

Therefore the computation of αt(φ) is obtained by the so-called Kallianpur-Striebel formula,
which is related to Bayes formula. For every φ ∈ B(Rd), we have the following representation:

αt(φ) := E
[

φ(Xt)|FY
t

]

=
Ẽ
[

φ(Xt)Λt|GY
t

]

Ẽ
[

Λt|GY
t

] :=
ψt(φ)

ψt(1)
, (A.5)

27



with ψt(φ) := Ẽ[φ(Xt)Λt|GY
t ] is the unnormalized conditional distribution of φ(Xt), given GY

t ,
ψt(1) can be viewed as the normalising factor and B(Rd) is the space of bounded measurable
functions R2 → R.

In the following, we assume that for all t ≥ 0,

P̃

[∫ t

0
[ψs(||h||)]2ds <∞

]

= 1, for all t > 0. (A.6)

Let us now introduce the following notations which will be useful in the sequel.

Notations 2. Let K =
1

2
(BBT +GGT ) and A be the generator associated with the process X

in the second order differential operator:

Aφ =
2
∑

i,j=1

Kij∂
2
xixj

φ+
2
∑

i=1

Ai∂xi
φ, for φ ∈ B(Rd). (A.7)

and its adjoint A∗ is given by:

A∗φ =

2
∑

i=1

∂2xixj
(Kijφ)−

2
∑

i=1

∂xi
(Aiφ). (A.8)

Also we introduce the following operator B = (Bk)2k=1:

Bkφ =

2
∑

i=1

Bik∂xi
φ, for φ ∈ B(Rd). (A.9)

and the adjoint of the operator B is given by Bk,∗ = (Bk,∗)2k=1:

B1,∗φ = −
2
∑

i=1

∂xi
(Bi1φ), B2,∗φ = −

2
∑

i=1

∂xi
(Bi2φ). (A.10)

The following two propositions show that the unnormalized conditional distribution (resp. the
conditional distribution) of the signal is a solution of a linear stochastic partial differential
equation often called the Zakai equation (resp. nonlinear stochastic and parabolic type partial
differential equation often called the Kushner-Stratonovich equation). These results due to Bain
and Crisan [1] and Pardoux [18].

Proposition A.1. Assume that the signal and observation processes satisfy (A.1) and (A.2).
If conditions (A.4) and (A.6) are satisfied then the unnormalized conditional distribution ψt

satisfies the following Zakai equation:

dψt(φ) = ψt(Aφ)dt + ψt

((

h1 + B1
)

φ
)

dW̃ 1
t + ψt

((

h2 + B2
)

φ
)

dW̃ 2
t . (A.11)

for any φ ∈ B(R2).

We need now to impose the following fundamental condition in order to derive the Kushner-
Stratonovich equation:

P

[∫ t

0
||αt(h)||2ds <∞

]

= 1, for all t ≥ 0. (A.12)
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Proposition A.2. Assume that the signal and observation processes satisfy (A.1) and (A.2). If
conditions (A.4) and (A.6) are satisfied then the conditional distribution αt satisfies the following
Kushner-Stratonovich equation:

dαt(φ) = αt(Aφ)dt+
[

αt

((

h1 + B1
)

φ
)

− αt(h
1)αt(φ)

]

dW
1
t

+
[

αt

((

h2 + B2
)

φ
)

− αt(h
2)αt(φ)

]

dW
2
t . (A.13)

for any φ ∈ B(R2).

Remark A.3. Firstly, we remark that condition (A.12) is a consequence of the first part of
condition (A.4), since αt is a probability measure for all t ∈ [0,∞).
Secondly, notice that the above Zakai and Kushner-Stratonovich equations hold true for any Borel
measurable, not necessarily bounded. For that, see the proof of proposition 4.3.

Proof of lemma 5.5
From equation (5.5), the definition of the conditional expectation and Jensen’s inequality, it

follows for any ν ∈ K:

E

[

Ũ (zZν
T )
]

= E

[

E

[

Ũ

(

z exp

(

−
∫ T

0
µsdW

1
s −

1

2

∫ T

0
µ2sds−

∫ T

0
νsdW

2
s −

1

2

∫ T

0
ν2sds

))

|FW̃ 1

T

]]

≥ E

[

Ũ

(

z exp

(

−
∫ T

0
µsdW

1
s −

1

2

∫ T

0
µ2sds

)

E

[

exp

(

−
∫ T

0
νsdW

2
s −

1

2

∫ T

0
ν2sds

)

|FW̃ 1

T

])]

.

On the other hand, E

[

exp

(

−
∫ T

0
νsdW

2
s −

1

2

∫ T

0
ν2sds

)]

= 1 a.s. In fact, from the definition

of the conditional expectation, it remains to prove that for each positive function h, for each,
t1, ......tk ∈ [0, T ], we have:

E

[

exp

(

−
∫ T

0
νsdW

2
s −

1

2

∫ T

0
ν2sds

)

h
(

W̃ 1
t1 , .....W̃

1
tk

)

]

= E

[

h
(

W̃ 1
t1 , .....W̃

1
tk

)]

.

As ν is a G-adapted, we can define a new probability measure Pν equivalent to P on GT given
by:

dPν

dP
= exp

(

−
∫ T

0
νudW

2 − 1

2

∫ T

0
ν2udu

)

By Girsanov theorem, N is a G Brownian motion under Pν. On the other hand, from the
dynamic of W̃ 1 given by dW̃ 1 = dNt+µtdt and the assumption that µt ∈ FW̃ 1

t , we deduce that
the law of W̃ 1 remains the same under P and Pν. Thus:

Eν
[

h
(

W̃ 1
t1 , .....W̃

1
tk

)]

:= E

[

exp

(

−
∫ T

0
νsdW

2
s −

1

2

∫ T

0
ν2sds

)

h
(

W̃ 1
t1 , .....W̃

1
tk

)

]

= E

[

h
(

W̃ 1
t1 , .....W̃

1
tk

)]

.

Therefore E

[

exp

(

−
∫ T

0
νsdW

2
s −

1

2

∫ T

0
ν2sds

)]

= 1 and then one obtains:

E

[

Ũ (zZν
T )
]

≥ E

[

Ũ

(

z exp

(

−
∫ t

0
µsdW

1
s −

1

2

∫ t

0
µ2sds

))]

:= E

[

Ũ
(

zZ0
T

)

]

.
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On the other hand, we have from the definition of the dual problem that J̃(z) ≤ E

[

Ũ
(

zZ0
T

)

]

,

so we conclude that
Jdual(z) = E

[

Ũ
(

zZ0
T

)

]

.

Proof of proposition 5.18
With the Log-Ornstein model given by (4.11),(4.12) and (4.13), the assumptions H and H’

i) hold. Therefore from proposition 5.14, we have

π̃t =
1

p− 1

µt
eVt

− KT
1 (Yt)

eVt
DyΦ(t, Yt),

where KT
1 = (ρσV Θ11) and Φ is solution of (5.28). Generally, equation (5.28) does not have

closed-form, but with this model we can deduce a closed form for Φ by using the following
separation transformation: For y = (v,m),

Φ(t, y) = Φ̃(t, v)− f̃(t, v,m).

The general idea of this separation transformation has been used by a lot of authors like
Fleming [5] Pham [19], Rishel[21].., in order to express the value function in terms of the solution
to a semilinear parabolic equation.
Now, substituting the above form of Φ into (5.28) gives us:

− ∂Φ̃

∂t
+
∂f̃

∂t
− 1

2
σ2V

[

∂2Φ̃

∂2v
− ∂2f̃

∂2v

]

+
(

ρσV Θ11 +
√

1− ρ2σV Θ12

) ∂f̃

∂v,m
+

1

2
(Θ2

11 +Θ2
12)

∂2f̃

∂2m

+
1

2
(σ2V − q

q − 1
(1− ρ2)σ2V )

[

(
∂Φ̃

∂v
)2 − 2

∂Φ̃

∂v

∂f̃

∂v
+ (

∂f̃

∂v
)2

]

− (λV (θ − v)− qmρσV )

(

∂Φ̃

∂v
− ∂f̃

∂v

)

+ (−λµm+ λµθµ − qmΘ11)
∂f̃

∂m
+

1

2

(

Θ2
11 +Θ2

12 −
q

q − 1
Θ2

12

)

(
∂f̃

∂m
)2 +

1

2
q(q − 1)m2

−
(

ρσV Θ11 +
√

1− ρ2σV Θ12 −
q

q − 1

√

1− ρ2σV Θ12

)

(
∂f̃

∂m

∂Φ̃

∂v
− ∂f̃

∂m

∂f̃

∂v
) = 0.

Thus we have a coupled PDEs for which we have not able to find its solution in general. The
key is to separate the considered PDE into a PDE in Φ̃ and another in f̃ , with the fact that
Φ̃(T, v) = 0 and f̃(T, v,m) = 0. These two last conditions come from the boundary condition
(5.20).

The difficulty is how we can obtain two PDEs for which we can obtain an explicit forms.

In fact, the difficulty comes from the terms
∂f̃

∂v,m
,
∂f̃

∂v

∂f̃

∂m
and

∂Φ̃

∂v

∂f̃

∂v
. For that we need to

use a new separation transformation for f̃ as follows: f̃(t, v,m) = v.(T − t) + f(t,m), with
f(T,m) = 0. So with this new transformation, we can obtain a PDE for Φ̃ which depends only
on v and another PDE for f which depends only on m, and therefore we can obtain a closed
form for Φ̃ and f .

Remark A.4. Here we want to make clear the advantage of the Log Ornstein-Uhlenbeck model.
In fact, it’s not just the new transformation that helped us to find the PDE equation satisfy by f
which depends only on m, but also the advantage of the constant diffusion term in the stochastic
volatility model which is modeled as an Ornstein-Uhlenbeck model.
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Finally, we have the following PDEs for Φ̃ and f for which we can deduce an explicit form as
follows:

− ∂Φ̃

∂t
− 1

2
σ2V

∂2Φ̃

∂2v
+

1

2
(σ2V − q

q − 1
(1− ρ2)σ2V )(

∂Φ̃

∂v
)2 −

(

(σ2V − q

q − 1
(1− ρ2)σ2V )(T − t) + λV (θ − v)

)

∂Φ̃

∂v

− (λV (T − t) + 1)v +
1

2
(σ2V − q

q − 1
(1− ρ2)σ2V )(T − t)2 + λV θ(T − t). (A.14)

and

∂f

∂t
+

1

2
(Θ2

11 +Θ2
12)

∂2f

∂2m
+

1

2

(

Θ2
11 +Θ2

12 −
q

q − 1
Θ2

12

)

(
∂f̃

∂m
)2

+

[

−(ρσV Θ11 +
√

1− ρ2σVΘ12 −
q

q − 1

√

1− ρ2σV Θ12)(
∂Φ̃

∂v
− (T − t))− λµm+ λµθµ − qmΘ11

]

∂f

∂m

+
1

2
q(q − 1)m2 + qmρσV

∂Φ̃

∂v
− qmρσV (T − t) (A.15)

Notice that the PDE for f depends on
∂Φ̃

∂v
, but we show below that the solution of the PDF

satisfied by Φ̃ is polynomial of degree 1, then by deriving it, we obtain a term which does not
depend on v. So we have a PDE for f which depends only on m, therefore an explicit form can
be deduced.

As in Rishel[21], the solution of (A.14) with the boundary condition Φ̃(T, v) = 0 is given by:

Φ̃(t, v) = Ã(t)v + B̃(t)

where: Ãt and B̃(y) are respectively solutions of the following differential equations:

Ã
′

(t) = λV Ã(t)− (λV (T − t) + 1), with Ã(T ) = 0,

B̃
′

(t) =
1

2
(σ2V − q

q − 1
(1− ρ2)σ2V )A

2(t)−
(

(σ2V − q

q − 1
(1− ρ2)σ2V )(T − t) + λV θ

)

A(t)

+
1

2
(σ2V − q

q − 1
(1− ρ2)σ2V )(T − t)2 + λV θ(T − t) with B̃(T ) = 0,

One easily verifies that Ã(t), B̃(t) given in proposition 5.18 are solutions of the above differ-
ential equations.
Also as in Rishel[21], the solution of (A.15) with the boundary condition f(T,m) = 0 is given
by:

f(t,m) = A(t)m2 +B(t)m+C(t)

Where:

A
′

(t) = −2

(

Θ2
11 +Θ2

12 −
q

q − 1
Θ2

12

)

A
2
(t) + 2(λµ + qΘ11)A(t)−

1

2
q(q − 1),

B
′

(t) =

[

−2(Θ2
11 +Θ2

12 −
q

q − 1
Θ2

12)A(t) + (λµ + qΘ11)

]

B(t)− qρσV Ã(t) + qρσV (T − t)

+ 2

[

(ρσV Θ11 +
√

1− ρ2σV Θ12 −
q

q − 1

√

1− ρ2σV Θ12)(Ã(t)− (T − t))− λµθµ

]

A(t),

C
′

(t) = −(Θ2
11 +Θ2

12)A(t)−
1

2

(

Θ2
11 +Θ2

12 −
q

q − 1
Θ2

12

)

B
2
(t)

+

[

(ρσV Θ11 +
√

1− ρ2σV Θ12 −
q

q − 1

√

1− ρ2σV Θ12)(Ã(t)− (T − t))− λµθµ

]

B(t).
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with terminal condition A(T ) = B(T ) = C(T ) = 0. The solution of the riccati equation satisfied
by A(t) can be deduced from [21]. For B(t) and C(t), on easily verifies that their expressions
given in proposition 5.18 are solutions of the above differential equations.

Finally, from proposition 5.14 and the above solutions of Φ̃ and f , we can deduce the explicit
form of the value function given in proposition 5.18.
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