Hugo V Bacard 
email: hbacard@uwo.ca
  
01018837v2 Symmetries

come    

Symmetries in maths

Given a set X = {a, b, c, ..} such as the natural numbers N = {0, 1, ..., p, ...}, there is a standard procedure that amounts to regard X as a category with only identity morphisms. This is the discrete functor that takes X to the category denoted by Disc(X) where the hom-sets are given by Hom(a, b) = ∅ if a = b, and Hom(a, b) = {Id a } = 1 if a = b. Disc(X) is in fact a groupoid.

But in category theory, there is also a procedure called opposite or dual, that takes a general category C to its opposite C op . And to put the reader on the road, let's also call C op the reflection of C by the mirror functor (-) op . Now the problem is that if we restrict this procedure to categories such as Disc(X), there is no way to distinguish Disc(X) from Disc(X) op . And this is what we mean by sets don't show symmetries. In the program of Voevodsky, we can interpret this by saying that:

'The identity type is not good for sets, instead we should use the Equivalence type. But to get this, we need to move to from sets to Kan complexes i.e., ∞-groupoids'.

So far we've used set theory with this lack of symmetries, as foundations for mathematics. And some symmetry phenomenons occur as we progress in maths, and sometimes we're unable to figure out why exactly.

Grothendieck [START_REF] Grothendieck | Revêtements étales et groupe fondamental[END_REF] has already seen this when he moved from sheaves of sets, to sheaves of groupoid (stacks), because he wanted to allow objects to have symmetries (automorphisms). If we look at the Giraud-Grothendieck picture on nonabelian cohomology [START_REF] Giraud | Cohomologie non abélienne[END_REF], then what happens is an extension of coefficients U : Set → Cat. But this embedding is too big as we mentioned in [START_REF] Bacard | Understanding higher structures through Quillen-Segal objects[END_REF]. Rather we should consider first the comma category Cat ↓ U, whose objects are functors C -→ Disc(X). And then we should consider the full subcategory consisting of functors C ∼ -→ Disc(X) that are equivalences of categories. This will force C to be a groupoid, that looks like a set. And we call such

C ∼ -→ Disc(X) a Quillen-Segal U-object.
This category of Quillen-Segal objects should be called the category of sets with symmetries. Following Grothendieck's point of view, we've denoted by Cat U [Set] the comma category, and think of it as categories with coefficients or coordinates in sets. This terminology is justified by the fact that the functor U : Set → Cat is a morphism of (higher) topos, that defines a geometric point in Cat. The category of set with symmetries is like the homotopy neighborhood of this point, similar to a one-point going to a disc or any contractible object. The advantage of the Quillen-Segal formalism is the presence of a Quillen model structure on Cat U [Set] such that the fibrant objects are Quillen-Segal objects ([2, Theorem 8.2], [START_REF] Bacard | Understanding higher structures through Quillen-Segal objects[END_REF]Theorem 1.2 ].

In standard terminology this means that if we embed a set X in Cat as Disc(X), and take an 'projective resolution' of it, then we get an equivalence of groupoids P ∼ -→ Disc(X), and P has symmetries. Concretely what happens is just a factorization of the identity (type) Id : Disc(X) -→ Disc(X) as a cofibration followed by a trivial fibration:

Disc(X) → P ∼ -→ Disc(X).
The first morphism is also automatically an equivalence. We regard in [START_REF] Bacard | Understanding higher structures through Quillen-Segal objects[END_REF] this process of embedding Set → QS{Cat U [Set]} as a minimal homotopy enhancement. The idea is that there is no good notion of homotopy (weak equivalence) in Set, but there are at least two notions in Cat: equivalences of categories and the equivalences of classifying spaces à la Grothendieck-Kan-Quillen-Segal-Thomason.

This last class of weak equivalences is important for what we believe happens with mirror phenomenons. We isolated the discussion in the next paragraph. But for experts: the mirror of a manifold should be the opposite of its fundamental Poincaré ∞-groupoid. We make a precise statement below.

Mirrors

Given a compact Kähler manifold Y , we know that the cohomology groups H (Y, C) have a Hodge decomposition H p,q (see [START_REF] Deligne | [END_REF] [START_REF] Voisin | Hodge theory and complex algebraic geometry. I[END_REF][START_REF] Voisin | Hodge theory and complex algebraic geometry[END_REF]). Now because we have Poincaré duality, and the comparisons between singular and De Rham cohomologie, we know that any other space Z that has the same homotopy type as Y will have the same cohomology groups. Consequently they will share the same Hodge diamond, thus its symmetries. This means that the symmetry of the Hodge diamond is mostly attached to the homotopy type of Y . This is not surprising anymore because it can already be seen from the equivalence of the De Rham cohomology which is analytic, and the Betti cohomology which is something purely simplicial. In fact, it can also be seen from the (smooth) homotopy invariance of De Rham cohomology.

We believe that this symmetry can be understood using the Quillen-Segal formalism as follows. Given Y , let's consider Y top ∈ Top. Recall that we have a Quillen equivalence U : T op -→ sSet Q , where U = Sing is the singular functor whose left adjoint is the geometric realization. When we consider the comma category sSet Q U [T op] = sSet ↓ U, we are literally creating in French a "trait d'union", between the two categories. And when we consider the subcategory of Quillen-Segal objects, then our result [3, Theorem 1.2 ] says that we have a triangle that descends to a triangle of equivalences between the homotopy categories. In fact there is a much better statement.

(sSet Q ↓ U) Top sSet Q U / / s % %
It turns out that if we apply [3, Theorem 1.2 ] to the same functor but we choose the Joyal model structure sSet J , we get the Homotopy hypothesis (see [START_REF] Ara | On the homotopy theory of Grothendieck \infty-groupoids[END_REF] for the statement of this hypothesis).

A fibrant replacement of Y in the model category sSet

Q U [Top], is a trivial fibration F ∼ ---U(Y )
, where F is fibrant in sSet Q , that is a Kan complex. But a Kan complex is exactly an ∞-groupoid. ∞-Groupoids generalize groupoids, and still are category-like. In particular we can take their opposite (or dual), just like we consider the opposite category C op of a usual category, as outlined in the beginning.

Conjecture 2.1. Given Y as above, we can think of the mirror of Y as the opposite ∞groupoid F op . A good approximation of F op can be obtained by the schematization functor à la Toën applied to the simplicial set (quasicategory) underlying F op .

We can take as model for F the fundamental ∞-groupoid Π ∞ (Y ). And depending on the dimension it's enough to stop at the corresponding n-groupoid.

Toën schematization functor can also be obtained from the Quillen-Segal formalism applied to the embedding U : Sh(Var(C)) → sP resh(Var(C),

where on the right hand side we consider the model category of simplicial presheaves à la Jardine-Joyal. The representability of the π 0 of the schematization has to be determined by descent along the equivalence type.

Conjectures

We now list some conjectures. We use the same notations as in [START_REF] Bacard | Understanding higher structures through Quillen-Segal objects[END_REF]. These statements are only inspired by some abstract thinking and not by experience in algebraic geometry.

Conjecture 3.1.

1. As mentioned above, we can enhance T op → sSet J [T op] by looking at the Quillen-Segal objects. Then given Y as before, then the mirror of Y should correspond to thhe1 opposite ∞-groupoid Π ∞ (Y ). Indeed by a theorem of Toën [START_REF] Toën | Vers une axiomatisation de la théorie des catégories supérieures[END_REF], we know that Z/2 = Gal(C/R) acts on ho(sSet J ), where 0 is the identity and 1 is the opposite-category construction. In particular we have π 1 (Y op ) = π 1 (Y ) op , as expected. It seems that it's not surprising that Z/2 appears in supersymmetry. We believe that this should be considered as the introduction of the Higgs boson, and therefore we shall call it the Higgs equivalence or Higgs symmetry. We are tempted to denote the two arrows in the interval category { * * } by e + and e -. We would like to interpret this as the boson hiding between the identity, and therefore invisible.

4. We believe that the fact that C is algebraically closed and that Gal(C/R) = Z/2 is quantumly related to Higgs boson. The reason being that following the factorization (3.0.1), we are tempted to write:

e + e -Id i(-i) = 1.
It seems that this phenomenon explains why representation of fundamental group of complex projective variety leads to Higgs bundle as shown in the work of Hitchin [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF] and Simpson [START_REF] Simpson | Moduli of representations of the fundamental group of a smooth projective variety[END_REF][START_REF] Simpson | Moduli of representations of the fundamental group of a smooth projective variety[END_REF].

5. We can enhance Vect C → (∞, n) Cat[Vect C ] with the relative pushout product. Taking (∞, n) Cat[Vect C ] as coefficient for TQFT, should explain why TQFT are classified by fully dualizable objects. Indeed Toën's theorem has been generalized by Barwick and Schommer-Pries [START_REF] Barwick | On the Unicity of the Homotopy Theory of Higher Categories[END_REF]. There is an action of (Z/2) n on ho[(∞, n) Cat], that correspond to the different opposite (=mirror) constructions for 1-morphisms, to n-morphisms. This action should explain the n-dualizable objects, as named by Lurie.

6. Similarly we can enhance n-Fold → (∞, n) Cat[n-Fold] to see the symmetries at every level for manifolds. Taking n = 4 for space-time should fix some issues occurring in Physics with set theory.

7. We can enhance dg-Cat → (∞, 2) Cat[dg-Cat] and similarly we have an action of (Z/2) 2 on the homotopy category ho[(∞, 2) Cat]. This action should explain the proof of Deligne's conjecture given by Tamarkin [START_REF] Tamarkin | What do DG categories form?[END_REF], in particular why there are 2-discs acting on the Hochschild cohomology. The number n = 2 is the exponent in (Z/2) n . It should also agree with Tamarkin's answer to Drinfeld's question:

What do dg-categories form ?

This philosophy should fit in Kontsevich's program on homological mirror symmetry.

8. We can enhance Mod k → (∞, 1) Cat[Mod k ] with the relative pushout product. It should be interesting to let cohomology theories in algebraic geometry take their coefficient in this enhancement.

Remark 3.2.

1. If we follow our philosophy, it's not surprising that there is no direct link between a variety Y and its mirror Y op . Because there is no direct link in general between a classical category C and its opposite C op , unless C is Tannakian or at least has duals.

2. This last fact should have its analogy with duality in geometry such as Poincaré, Serre, Grothendieck dualities. Lurie has already taken this direction when he speaks of Poincaré object and nonabelian Poincaré duality. Simpson has further developed his program on nonabelian Hodge theory using higher stacks. And there is a long list of people who are currently developing these ideas that aim to fix the issues caused by set theory and its lack of symmetries.

3. It would be interesting to understand the statement of the Hodge conjecture in terms of ∞-groupoids that are fixed by the homotopy action of Z/2 = Gal(C/R) and its power (Z/2) n . After all, as mentioned before, the cohomology of a subvariety is actually a homotopy theory invariant.

2 .

 2 The generating trivial cofibration in the folk model structure on Cat is the minimal equivalence of groupoids * → { * * =walking iso }.

3 .

 3 We have a factorization of the identity Id * through the Higgs boson, as a Feynman-like diagram: * Id -→ * = * → { * * } -→ * . (3.0.1)

'thhe' is the homotopy version of 'the' (Drinfeld)