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Large Time-Step Numerical Scheme for the Seven-Equation Model of Compressible Two-Phase Flows

 for Euler equations. The main objective is to get a Courant-Friedrichs-Lewy (CFL) condition driven by (slow) contact waves instead of (fast) acoustic waves.

Introduction

We are interested in the computation of compressible two-phase flows with the so-called two-fluid two-pressure or seven-equation model. It was first proposed in Baer & Nunziato [START_REF] Baer | A two phase mixture theory for the deflagration to detonation transition in reactive granular materials[END_REF] and has since aroused more and more interest, see for instance Embid & Baer [START_REF] Embid | Mathematical analysis of a two-phase continuum mixture theory[END_REF], Stewart & Wendroff [START_REF] Stewart | Two-phase flow : models and methods[END_REF], Abgrall & Saurel [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF], Gallouët, Hérard & Seguin [START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid twopressure approach[END_REF], Andrianov & Warnecke [START_REF] Andrianov | The Riemann problem for the Baer-Nunziato two-phase flow model[END_REF], Karni et al. [START_REF] Karni | Compressible two-phase flows by central and upwind schemes[END_REF] Schwendeman, Wahle & Kapila [START_REF] Schwendeman | The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow[END_REF], Munkejord [START_REF] Munkejord | Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation[END_REF], Tokareva & Toro [START_REF] Tokareva | HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow[END_REF], Ambroso, Chalons, Coquel & Galié [START_REF] Ambroso | Relaxation and numerical approximation of a two fluid two pressure diphasic model[END_REF], Ambroso, Chalons & Raviart [START_REF] Ambroso | A Godunov-type method for the seven-equation model of compressible two-phase flow[END_REF], and the references therein. One of the main features of this model is that it is hyperbolic, at least in the context of subsonic flows. In particular, an interesting property is that the seven-equation model possesses seven real eigenvalues given by λ ± k (u) = u k ± c k , λ 0 k (u) = u k and λI (u) = uI , where u k denote the velocities of both phases k = 1, 2, c k the sound speeds, uI an interfacial velocity and u the vector of unknowns. However from a numerical point of view, the seven-equation model raises some issues. The first difficulty is related to the large size of the model and as a consequence to the Riemann problem that is difficult to solve, even approximately. The second difficulty comes from the presence of nonconservative products and more precisely the fact that the model cannot be equivalently recast in full conservative form. However, the nonconservative products naturally vanish when the void fractions α k are locally constant in space, and the model coincides in that case with two (decoupled) gas dynamics systems. This property will be used in the numerical strategy. Numerous papers are devoted to the numerical study of two-fluid two-pressure models, see again for instance [START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid twopressure approach[END_REF], [START_REF] Andrianov | The Riemann problem for the Baer-Nunziato two-phase flow model[END_REF], [START_REF] Karni | Compressible two-phase flows by central and upwind schemes[END_REF], [START_REF] Schwendeman | The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow[END_REF], [START_REF] Munkejord | Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation[END_REF], [START_REF] Tokareva | HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow[END_REF], [START_REF] Ambroso | Relaxation and numerical approximation of a two fluid two pressure diphasic model[END_REF], [START_REF] Ambroso | A Godunov-type method for the seven-equation model of compressible two-phase flow[END_REF] and the references therein. Many of the proposed methods are based on time-explicit, exact or approximate, Godunov-type methods (Roe or Roe-like scheme, HLL or HLLC scheme...). For stability reasons, the time steps ∆t involved in such methods are subject to a usual Courant-Friedrichs-Lewy (CFL) condition that reads max

k,u (|λ ± k (u)|, |λ 0 k (u)|, |λI (u)|) ∆t ≤ 0.5∆x,
where ∆x represents the space step. It is then clear that the definition of ∆t is driven by the fastest eigenvalues λ ± k (u), associated with the so-called acoustic waves. In many applications, like for instance in two-phase flows involved in nuclear reactors, the acoustic waves are not predominant physical phenomena. A CFL condition based on the most influent waves, the so-called contact waves associated with eigenvalues λ 0 k (u) and λI (u) would be more adapted. The idea is then to propose a timeimplicit treatment of the (fast) acoustic waves, in order to get rid of a too restrictive CFL condition, together with an explicit treatment of the (slow) contact waves in order to preserve accuracy. This was recently proposed in Coquel et al. [START_REF] Coquel | Entropy-satisfying relaxation method with large time-steps for Euler IBVPs[END_REF] in the context of Euler equations, using a Lagrange-Projection approach. This approach is well-adapted as it naturally decouples the fast and slow waves in the Lagrange and Projection steps respectively. In this paper, we propose a first attempt to extend this approach to the seven-equation model. The idea is to operate a relevant operator splitting between the conservative and nonconservative parts of the original model, in order to make Euler systems for each phase appear. The latter parts are treated as in [START_REF] Coquel | Entropy-satisfying relaxation method with large time-steps for Euler IBVPs[END_REF]. The nonconservative products are then discretized so as to maintain conservativity properties of the model on each partial mass, on the total momentum and total energy. Numerical results are proposed. We underline that this work is still in progress.

Governing equations

The model under consideration in this contribution reads as follows:

       ∂tα k + uI ∂xα k = 0, t > 0, x ∈ R, ∂tα k ̺ k + ∂xα k ̺ k u k = 0, ∂tα k ̺ k u k + ∂xα k (̺ k u 2 k + p k ) -pI∂xα k = 0, ∂tα k ̺ k e k + ∂xα k (̺ k e k + p k )u k -pI uI ∂xα k = 0, (1) 
with k = 1, 2. Here, α k , ̺ k , u k , e k and p k denote the volume fraction, density, velocity, specific total energy and pressure of the phase k = 1, 2. The two phases are assumed to be non-miscible that is α1 + α2 = 1. The structure of ( 1) is the one of two gas dynamics systems for each phase, coupled with a transport equation on the void fraction α k at speed uI . We note that nonconservative products involving the interfacial pressure pI and velocity uI (to be precised later on) and the space derivative of the void fractions α k are present in the momentum and energy equations. These terms act as coupling terms in the evolution of the two phases. Source terms like external forces, pressure and velocity relaxations, dissipation, heat conduction, phase changes and heat exchanges between the two phases are not taken into account. Each phase is provided with an equation of state

p k = p k (̺ k , ε k ), where ε k = e k -u 2
k /2 is the specific internal energy. So far as the definitions of uI and pI are concerned, we follow [START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid twopressure approach[END_REF] and first observe that the characteristic speeds of (1) are always real and given by uI , u k , u k ± c k , k = 1, 2, where c k denotes the speed of sound in phase k. System (1) turns out to be only weakly hyperbolic since there are not enough eigenvectors to span the entire space when uI = u k ± c k for some index k (resonance occurs). When ( 1) is hyperbolic, one can easily check that similarly to the classical gas dynamics equations, the characteristic fields associated with the eigenvalues u k ± c k are nonlinear while the one associated with u k is linearly degenerate. Regarding the characteristic field associated with uI , it is generally required to be linearly degenerate in practice. This property holds as soon as

uI = βu1 + (1 -β)u2, β = χα1̺1 χα1̺1 + (1 -χ)α2̺2 (2) 
where χ ∈ [0, 1] is a constant (we refer to [START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid twopressure approach[END_REF] for the details), which gives a natural definition for the interfacial velocity uI . The usual choices for χ are 0, 1/2 and 1. Regarding the interfacial pressure pI , we set pI = µp1 + (1 -µ)p2, µ ∈ [0, 1].The choice of the coefficient µ is not detailed here (see again [START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid twopressure approach[END_REF]) but is related to the ability to provide the system with an entropy balance equation. Indeed, it can be proved that for a specific choice of µ, smooth solutions of (1) verify the conservation law ∂tη + ∂xq = 0, where (η, q) plays the role of a mathematical entropy pair.

A natural operator splitting

The starting point is to propose an equivalent form of (1) where the space derivatives of α k p k and α k p k u k are decomposed using a chain rule:

       ∂tα k + uI ∂xα k = 0, ∂tα k ̺ k + ∂xα k ̺ k u k = 0, ∂tα k ̺ k u k + ∂xα k ̺ k u 2 k + α k ∂xp k + (p k -pI )∂xα k = 0, ∂tα k ̺ k e k + ∂xα k ̺ k e k u k + α k ∂xp k u k + (p k u k -pI uI )∂xα k = 0. (3)
We then suggest to split (3) into two independent and quasi-classical gas dynamics equations (their Lagrangian forms will be seen to be classical), namely

       ∂tα k = 0, ∂tα k ̺ k + ∂xα k ̺ k u k = 0, ∂tα k ̺ k u k + ∂xα k ̺ k u 2 k + α k ∂xp k = 0, ∂tα k ̺ k e k + ∂xα k ̺ k e k u k + α k ∂xp k u k = 0, (4) 
and into the following genuinely nonconservative system:

       ∂tα k + uI ∂xα k = 0, ∂tα k ̺ k = 0, ∂tα k ̺ k u k + (p k -pI )∂xα k = 0, ∂tα k ̺ k e k + (p k u k -pI uI )∂xα k = 0. (5)
This transformation aims at proposing in the next section an implicit-explicit Lagrange-Projection scheme similar to [START_REF] Coquel | Entropy-satisfying relaxation method with large time-steps for Euler IBVPs[END_REF], and at treating separately the nonconservative products. Note from now on that the overall algorithm will be conservative on the partial mass α k ̺ k , total momentum α1̺1u1 + α2̺2u2 and on the total energy α1̺1e1 + α2̺2e2, as it is expected from the original form (1) of the model.

Numerical approximation

This section is devoted to the discretization of (1), using ( 4) and ( 5). Let us introduce a time step ∆t > 0 and a space step ∆x > 0 that we assume to be constant for simplicity. We set λ = ∆t/∆x and define the mesh interfaces x j+1/2 = j∆x for j ∈ Z, and the intermediate times t n = n∆t for n ∈ N. In the sequel, u n j = (α1, u1, u2)

n j where (u k ) n j = (α k ̺ k , α k ̺ k u k , α k ̺ k e k
) n j denotes the approximate value of the unknowns at time t n and on the cell Cj =]x j-1/2 , x j+1/2 [. Implicit-explicit discretization of (4). We first recall that ( 4) is made of two independent quasi-classical gas dynamics systems, whose eigenvalues are given by u k ± c k , u k and 0. As already stated, our aim is to propose an implicit treatment of the fast waves u k ± c k , and an explicit treatment of u k . With this in mind, we follow [START_REF] Coquel | Entropy-satisfying relaxation method with large time-steps for Euler IBVPs[END_REF] and adopt a Lagrange-Projection scheme, coupled with a pressure relaxation strategy that is well adapted to this purpose. A Lagrange-Projection splitting strategy applied to (4) amounts to introducing the Lagrangian system

       ∂tα k = 0, ∂tα k ̺ k + α k ̺ k ∂xu k = 0, ∂tα k ̺ k u k + α k ̺ k u k ∂xu k + α k ∂xp k = 0, ∂tα k ̺ k e k + α k ̺ k e k ∂xu k + α k ∂xp k u k = 0, or equivalently        ∂tα k = 0, ∂tτ k -τ k ∂xu k = 0, ∂tu k + τ k ∂xp k = 0, ∂te k + τ k ∂xp k u k = 0, (6) 
with τ k = 1/ρ k , and the transport (or projection) system

       ∂tα k = 0, ∂tα k ̺ k + u k ∂xα k ̺ k = 0, ∂tα k ̺ k u k + u k ∂xα k ̺ k u k = 0, ∂tα k ̺ k e k + u k ∂xα k ̺ k e k = 0. (7) 
We note that (6) coincides with two classical gas dynamics systems written in Lagrangian coordinates, the eigenvalues of which are given by ±c k and 0. This system is treated using a pressure relaxation approach that consists in introducing a linearized pressure π k (see for instance [START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF] and especially the references therein), such that (π k ) n j = (p k ) n j , and in solving the partial differential system

           ∂tα k = 0, ∂tτ k -τ k ∂xu k = 0, ∂tu k + τ k ∂xπ k = 0, ∂tπ k + a 2 k τ k ∂xu k = 0, ∂te k + τ k ∂xπ k u k = 0, or equivalently            ∂tα k = 0, ∂tI k = 0, ∂tw + k + a k τ k ∂xw + k = 0, ∂tw - k -a k τ k ∂xw - k = 0, ∂te k + τ k ∂xπ k u k = 0, (8) 
where the second one (top right) and the third one (bottom) involve several distinct waves. The scheme we propose here is denoted LP implicit and is compared with its explicit version (which amounts to replacing (9) by its time-explicit version) and the well-known Rusanov scheme (see [START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid twopressure approach[END_REF]). We observe that our approach is clearly less diffusive around the contact discontinuities since the CFL condition is well-adapted to the corresponding speed of propagation, but more diffusive around the acoustic waves since it is implicit. Table 1 gives for each test case the number of iterations needed to perform the computations. As expected, the gain is important when using the proposed implicit-explicit algorithm and the corresponding CFL restriction based on the material waves (instead of the acoustic waves as for the explicit scheme). A careful evaluation of the CPU cost necessitates an additional programming effort that has not been implemented yet.

w ± k = π k ± a k u k , I k = π k + a 2 k τ k , and a k is a constant satisfying the subcharacteristic condition a k > ρ k c k . A natural time-implicit discretization of (8) is                  (α k ) n+1= j = (α k ) n j , (I k ) n+1= j = (I k ) n j , (w + k ) n+1= j = (w + k ) n j -λ(τ k ) n j a k (w + k ) n+1= j -(w + k ) n+1= j-1 , (w - k ) n+1= j = (w - k ) n j + λ(τ k ) n j a k (w + k ) n+1= j+1 -(w + k ) n+1= j , (e k ) n+1= j = (e k ) n j -λ(τ k ) n j (π k u k ) n+1= j+1/2 -(π k u k ) n+1= j-1/2 , (9) with 
(π k u k ) n+1= j+1/2 = (π k ) n+1= j+1/2 (u k ) n+1= j+1/2 and (π k ) n+1= j+1/2 = 1 2 (w + k ) n+1= j + (w - k ) n+1= j , (u k ) n+1= j+1/2 = 1 2a k (w + k ) n+1= j -(w - k ) n+1= j . 0 

Table 1 :

 1 Number of time-iterations for each test case

	1			Rusanov		0.265						Rusanov		
	0.9			LP explicit LP implicit		0.26					LP explicit LP implicit Rusanov(reference)		
	0.8													
						0.255								
	0.7													
	0.6					0.25								
	0.5					0.245								
	0.4													
						0.24								
	0.3													
	0.2					0.235								
	.1					0.23								
	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2
			1				Rusanov							
							LP explicit							
			0.9				LP implicit							
						Rusanov(reference)							
			0.8											
			0.7											
			0.6											
			0.5											
			0.4											
			0.3											
			0.2											
			0	0.25	0.5		0.75		1					
		Figure 1: Comparison of several schemes with a reference solution (density profile)		
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The updated values of u k , τ k and ρ k are recovered from the formulas

k and ρ k = 1/τ k . The computation of (w ± k ) n+1= j is cheap and amounts to solving a tridiagonal system of linear equations, while the time-implicit definition of (e k ) n+1= j explicitly follows. Then, the transport equations involved in [START_REF] Embid | Mathematical analysis of a two-phase continuum mixture theory[END_REF] are associated with the following classical time-explicit update formula

and of course (α k ) n+1- j = (α k ) n+1= j .

Discretization of (5). Our objective is to propose a consistent approximation of ( 5) such that the overall algorithm is conservative for each partial mass, for the total momentum and for the total energy, as already motivated. First of all and similarly to [START_REF] Munkejord | Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation[END_REF], the transport equation associated with α k is treated as follows:

for the partial mass, so that only the treatments of the momentum and total energy of each phase are now left. We propose

In order to get the expected overall conservativity properties, we pay a particular attention to the definitions of (p k )j, (pI )j, (p k u k )j and (pI uI )j . For any consistent definition of the flux (α k ) n j+1/2 , we set with κj ∈ [0, 1]

(pI uI )j = (pI )j(uI )j.

We choosed in practice (α k ) n j+1/2 = (α k ) n j or equivalently κj = 1.

With such definitions, it can be proved that under a suitable CFL condition based on the velocities u k and uI only, and not on the acoustic waves u k ± c k , the void fractions (α k ) n+1 j belong to (0, 1) if (α k ) n j do. We can also prove that under the same restriction on the time step (ρ k ) n+1 j is positive, as well as (ε k ) n+1- j and (p k ) n+1- j . Unfortunately, the positivity of (ε k ) n+1 j and (p k ) n+1 j is not proved at the moment.

Numerical experiments

For the sake of illustration, we present in this section the results given by our algorithm on three Riemann problems. They are all taken from [START_REF] Ambroso | A Godunov-type method for the seven-equation model of compressible two-phase flow[END_REF] and are fully described therein. Space and time orders of accuracy are one. The first one (top left) corresponds to an isolated contact discontinuity propagating with a positive velocity, while