
HAL Id: hal-01018835
https://hal.science/hal-01018835

Submitted on 5 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large Time-Step Numerical Scheme for the
Seven-Equation Model of Compressible Two-Phase

Flows
Christophe Chalons, Frédéric Coquel, Samuel Kokh, Nicole Spillane

To cite this version:
Christophe Chalons, Frédéric Coquel, Samuel Kokh, Nicole Spillane. Large Time-Step Numerical
Scheme for the Seven-Equation Model of Compressible Two-Phase Flows. Finite Volumes for Complex
Applications VI, 2011, Czech Republic. pp. 225-233, �10.1007/978-3-642-20671-9_24�. �hal-01018835�

https://hal.science/hal-01018835
https://hal.archives-ouvertes.fr


Large Time-Step Numerical Scheme for the Seven-Equation Model of

Compressible Two-Phase Flows

Christophe Chalons∗1,3, Frédéric Coquel†2, Samuel Kokh‡1, and Nicole Spillane§3

1CEA-Saclay, 91191 Gif-sur-Yvette, France
2Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France.

3Laboratoire J.-L. Lions, UPMC Univ Paris 06, BC 187, 75252 Paris cedex 05, France.

Abstract

We consider the seven-equation model for compressible two-phase flows and propose a large time-step nu-
merical scheme based on a time implicit-explicit Lagrange-Projection strategy introduced in Coquel et al. [6]
for Euler equations. The main objective is to get a Courant-Friedrichs-Lewy (CFL) condition driven by (slow)
contact waves instead of (fast) acoustic waves.

1 Introduction

We are interested in the computation of compressible two-phase flows with the so-called two-fluid two-pressure

or seven-equation model. It was first proposed in Baer & Nunziato [4] and has since aroused more and more
interest, see for instance Embid & Baer [7], Stewart & Wendroff [13], Abgrall & Saurel [11], Gallouët, Hérard
& Seguin [8], Andrianov & Warnecke [3], Karni et al. [9] Schwendeman, Wahle & Kapila [12], Munkejord [10],
Tokareva & Toro [14], Ambroso, Chalons, Coquel & Galié [1], Ambroso, Chalons & Raviart [2], and the references
therein. One of the main features of this model is that it is hyperbolic, at least in the context of subsonic flows.
In particular, an interesting property is that the seven-equation model possesses seven real eigenvalues given by
λ±
k (u) = uk ± ck, λ

0
k(u) = uk and λI(u) = uI , where uk denote the velocities of both phases k = 1, 2, ck the

sound speeds, uI an interfacial velocity and u the vector of unknowns.
However from a numerical point of view, the seven-equation model raises some issues. The first difficulty is
related to the large size of the model and as a consequence to the Riemann problem that is difficult to solve, even
approximately. The second difficulty comes from the presence of nonconservative products and more precisely
the fact that the model cannot be equivalently recast in full conservative form. However, the nonconservative
products naturally vanish when the void fractions αk are locally constant in space, and the model coincides in
that case with two (decoupled) gas dynamics systems. This property will be used in the numerical strategy.
Numerous papers are devoted to the numerical study of two-fluid two-pressure models, see again for instance
[8], [3], [9], [12], [10], [14], [1], [2] and the references therein. Many of the proposed methods are based on
time-explicit, exact or approximate, Godunov-type methods (Roe or Roe-like scheme, HLL or HLLC scheme...).
For stability reasons, the time steps ∆t involved in such methods are subject to a usual Courant-Friedrichs-Lewy
(CFL) condition that reads

max
k,u

(|λ±
k (u)|, |λ

0
k(u)|, |λI(u)|)∆t ≤ 0.5∆x,

where ∆x represents the space step. It is then clear that the definition of ∆t is driven by the fastest eigenvalues
λ±
k (u), associated with the so-called acoustic waves.

In many applications, like for instance in two-phase flows involved in nuclear reactors, the acoustic waves are
not predominant physical phenomena. A CFL condition based on the most influent waves, the so-called contact
waves associated with eigenvalues λ0

k(u) and λI(u) would be more adapted. The idea is then to propose a time-
implicit treatment of the (fast) acoustic waves, in order to get rid of a too restrictive CFL condition, together
with an explicit treatment of the (slow) contact waves in order to preserve accuracy. This was recently proposed
in Coquel et al. [6] in the context of Euler equations, using a Lagrange-Projection approach. This approach is
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well-adapted as it naturally decouples the fast and slow waves in the Lagrange and Projection steps respectively.
In this paper, we propose a first attempt to extend this approach to the seven-equation model. The idea is to
operate a relevant operator splitting between the conservative and nonconservative parts of the original model,
in order to make Euler systems for each phase appear. The latter parts are treated as in [6]. The nonconservative
products are then discretized so as to maintain conservativity properties of the model on each partial mass, on
the total momentum and total energy. Numerical results are proposed. We underline that this work is still in
progress.

2 Governing equations

The model under consideration in this contribution reads as follows:














∂tαk + uI∂xαk = 0, t > 0, x ∈ R,
∂tαk̺k + ∂xαk̺kuk = 0,

∂tαk̺kuk + ∂xαk(̺ku
2
k + pk)− pI∂xαk = 0,

∂tαk̺kek + ∂xαk(̺kek + pk)uk − pIuI∂xαk = 0,

(1)

with k = 1, 2. Here, αk, ̺k, uk, ek and pk denote the volume fraction, density, velocity, specific total energy
and pressure of the phase k = 1, 2. The two phases are assumed to be non-miscible that is α1 + α2 = 1. The
structure of (1) is the one of two gas dynamics systems for each phase, coupled with a transport equation on
the void fraction αk at speed uI . We note that nonconservative products involving the interfacial pressure pI
and velocity uI (to be precised later on) and the space derivative of the void fractions αk are present in the
momentum and energy equations. These terms act as coupling terms in the evolution of the two phases. Source
terms like external forces, pressure and velocity relaxations, dissipation, heat conduction, phase changes and
heat exchanges between the two phases are not taken into account.
Each phase is provided with an equation of state pk = pk(̺k, εk), where εk = ek − u2

k/2 is the specific internal
energy. So far as the definitions of uI and pI are concerned, we follow [8] and first observe that the characteristic
speeds of (1) are always real and given by uI , uk, uk ± ck, k = 1, 2, where ck denotes the speed of sound in phase
k. System (1) turns out to be only weakly hyperbolic since there are not enough eigenvectors to span the entire
space when uI = uk ± ck for some index k (resonance occurs). When (1) is hyperbolic, one can easily check
that similarly to the classical gas dynamics equations, the characteristic fields associated with the eigenvalues
uk ± ck are nonlinear while the one associated with uk is linearly degenerate. Regarding the characteristic field
associated with uI , it is generally required to be linearly degenerate in practice. This property holds as soon as

uI = βu1 + (1− β)u2, β =
χα1̺1

χα1̺1 + (1− χ)α2̺2
(2)

where χ ∈ [0, 1] is a constant (we refer to [8] for the details), which gives a natural definition for the interfacial
velocity uI . The usual choices for χ are 0, 1/2 and 1. Regarding the interfacial pressure pI , we set pI =
µp1 + (1 − µ)p2, µ ∈ [0, 1].The choice of the coefficient µ is not detailed here (see again [8]) but is related to
the ability to provide the system with an entropy balance equation. Indeed, it can be proved that for a specific
choice of µ, smooth solutions of (1) verify the conservation law ∂tη + ∂xq = 0, where (η, q) plays the role of a
mathematical entropy pair.

3 A natural operator splitting

The starting point is to propose an equivalent form of (1) where the space derivatives of αkpk and αkpkuk are
decomposed using a chain rule:















∂tαk + uI∂xαk = 0,
∂tαk̺k + ∂xαk̺kuk = 0,

∂tαk̺kuk + ∂xαk̺ku
2
k + αk∂xpk + (pk − pI)∂xαk = 0,

∂tαk̺kek + ∂xαk̺kekuk + αk∂xpkuk + (pkuk − pIuI)∂xαk = 0.

(3)

We then suggest to split (3) into two independent and quasi-classical gas dynamics equations (their Lagrangian
forms will be seen to be classical), namely















∂tαk = 0,
∂tαk̺k + ∂xαk̺kuk = 0,

∂tαk̺kuk + ∂xαk̺ku
2
k + αk∂xpk = 0,

∂tαk̺kek + ∂xαk̺kekuk + αk∂xpkuk = 0,

(4)
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and into the following genuinely nonconservative system:














∂tαk + uI∂xαk = 0,
∂tαk̺k = 0,
∂tαk̺kuk + (pk − pI)∂xαk = 0,
∂tαk̺kek + (pkuk − pIuI)∂xαk = 0.

(5)

This transformation aims at proposing in the next section an implicit-explicit Lagrange-Projection scheme similar
to [6], and at treating separately the nonconservative products. Note from now on that the overall algorithm
will be conservative on the partial mass αk̺k, total momentum α1̺1u1 + α2̺2u2 and on the total energy
α1̺1e1 + α2̺2e2, as it is expected from the original form (1) of the model.

4 Numerical approximation

This section is devoted to the discretization of (1), using (4) and (5). Let us introduce a time step ∆t > 0 and a
space step ∆x > 0 that we assume to be constant for simplicity. We set λ = ∆t/∆x and define the mesh inter-
faces xj+1/2 = j∆x for j ∈ Z, and the intermediate times tn = n∆t for n ∈ N. In the sequel, un

j = (α1,u1,u2)
n
j

where (uk)
n
j = (αk̺k, αk̺kuk, αk̺kek)

n
j denotes the approximate value of the unknowns at time tn and on the

cell Cj =]xj−1/2, xj+1/2[.

Implicit-explicit discretization of (4). We first recall that (4) is made of two independent quasi-classical gas
dynamics systems, whose eigenvalues are given by uk ± ck, uk and 0. As already stated, our aim is to propose
an implicit treatment of the fast waves uk ± ck, and an explicit treatment of uk. With this in mind, we follow
[6] and adopt a Lagrange-Projection scheme, coupled with a pressure relaxation strategy that is well adapted
to this purpose. A Lagrange-Projection splitting strategy applied to (4) amounts to introducing the Lagrangian
system















∂tαk = 0,
∂tαk̺k + αk̺k∂xuk = 0,
∂tαk̺kuk + αk̺kuk∂xuk + αk∂xpk = 0,
∂tαk̺kek + αk̺kek∂xuk + αk∂xpkuk = 0,

or equivalently















∂tαk = 0,
∂tτk − τk∂xuk = 0,
∂tuk + τk∂xpk = 0,
∂tek + τk∂xpkuk = 0,

(6)

with τk = 1/ρk, and the transport (or projection) system















∂tαk = 0,
∂tαk̺k + uk∂xαk̺k = 0,
∂tαk̺kuk + uk∂xαk̺kuk = 0,
∂tαk̺kek + uk∂xαk̺kek = 0.

(7)

We note that (6) coincides with two classical gas dynamics systems written in Lagrangian coordinates, the
eigenvalues of which are given by ±ck and 0. This system is treated using a pressure relaxation approach that
consists in introducing a linearized pressure πk (see for instance [5] and especially the references therein), such
that (πk)

n
j = (pk)

n
j , and in solving the partial differential system























∂tαk = 0,
∂tτk − τk∂xuk = 0,
∂tuk + τk∂xπk = 0,

∂tπk + a2
kτk∂xuk = 0,

∂tek + τk∂xπkuk = 0,

or equivalently























∂tαk = 0,
∂tIk = 0,

∂tw
+

k + akτk∂xw
+

k = 0,

∂tw
−
k − akτk∂xw

−
k = 0,

∂tek + τk∂xπkuk = 0,

(8)

where w±
k = πk±akuk, Ik = πk+a2

kτk, and ak is a constant satisfying the subcharacteristic condition ak > ρkck.
A natural time-implicit discretization of (8) is



































(αk)
n+1=

j = (αk)
n
j ,

(Ik)
n+1=

j = (Ik)
n
j ,

(w+

k )n+1=

j = (w+

k )nj − λ(τk)
n
j ak

(

(w+

k )n+1=

j − (w+

k )
n+1=

j−1

)

,

(w−
k )n+1=

j = (w−
k )nj + λ(τk)

n
j ak

(

(w+

k )n+1=

j+1 − (w+

k )
n+1=

j

)

,

(ek)
n+1=

j = (ek)
n
j − λ(τk)

n
j

(

(πkuk)
n+1=

j+1/2 − (πkuk)
n+1=

j−1/2

)

,

(9)

with (πkuk)
n+1=

j+1/2 = (πk)
n+1=

j+1/2(uk)
n+1=

j+1/2 and

(πk)
n+1=

j+1/2 =
1

2

(

(w+

k )n+1=

j + (w−
k )n+1=

j

)

, (uk)
n+1=

j+1/2 =
1

2ak

(

(w+

k )n+1=

j − (w−
k )n+1=

j

)

.
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The updated values of uk, τk and ρk are recovered from the formulas uk = (w+

k −w−
k )/2ak, πk = (w+

k +w−
k )/2,

τk = (Ik − πk)/a
2
k and ρk = 1/τk. The computation of (w±

k )n+1=

j is cheap and amounts to solving a tridiagonal

system of linear equations, while the time-implicit definition of (ek)
n+1=

j explicitly follows.
Then, the transport equations involved in (7) are associated with the following classical time-explicit update
formula

(uk)
n+1−
j = (uk)

n+1=

j + λ
(

max((uk)
n+1=

j−1/2, 0)(uk)
n+1=

j−1 −min((uk)
n+1=

j+1/2, 0)(uk)
n+1=

j+1

+
[min((uk)

n+1=

j+1/2
, 0)−max((uk)

n+1=

j−1/2
, 0)](uk)

n+1=

j
)

,

(10)

and of course (αk)
n+1−
j = (αk)

n+1=

j .

Discretization of (5). Our objective is to propose a consistent approximation of (5) such that the overall
algorithm is conservative for each partial mass, for the total momentum and for the total energy, as already
motivated. First of all and similarly to (10), the transport equation associated with αk is treated as follows:

(αk)
n+1

j = (αk)
n+1=

j + λ
(

max((uI)
n+1=

j−1/2
, 0)(αk)

n+1=

j−1 −min((uI)
n+1=

j+1/2
, 0)(αk)

n+1=

j+1

+
[min((uI)

n+1=

j+1/2, 0)−max((uI)
n+1=

j−1/2, 0)](αk)
n+1=

j
)

where (uI)
n+1=

j+1/2 = βn+1=

j+1/2(u1)
n+1=

j+1/2+(1−βn+1=

j+1/2)(u2)
n+1=

j+1/2 and for instance βn+1=

j+1/2 = 1

2

(

βn+1=

j +βn+1=

j+1

)

. We set

(αkρk)
n+1

j = (αkρk)
n+1−
j for the partial mass, so that only the treatments of the momentum and total energy

of each phase are now left. We propose

(αkρkuk)
n+1

j − (αkρkuk)
n+1−
j

∆t
+

(

(pk)j − (pI)j
) (αk)

n
j+1/2 − (αk)

n
j−1/2

∆x
= 0,

(αkρkek)
n+1

j − (αkρkek)
n+1−
j

∆t
+

(

(pkuk)j − (pIuI)j
) (αk)

n
j+1/2 − (αk)

n
j−1/2

∆x
= 0.

In order to get the expected overall conservativity properties, we pay a particular attention to the definitions of
(pk)j , (pI)j , (pkuk)j and (pIuI)j . For any consistent definition of the flux (αk)

n
j+1/2, we set with κj ∈ [0, 1]























(αk)
n
j = κj(αk)

n
j+1/2 + (1− κj)(αk)

n
j−1/2,

(pk)j = (1− κj)(πk)
n+1=

j+1/2
+ κj(πk)

n+1=

j−1/2
,

(pkuk)j = (1− κj)(πkuk)
n+1=

j+1/2 + κj(πkuk)
n+1=

j−1/2,

and


























(pI)j = µn+1=

j+1/2
(p1)j + (1− µn+1=

j+1/2
)(p2)j , with µn+1=

j+1/2
= 1

2

(

µn+1=

j + µn+1=

j+1

)

(uI)j = βn+1=

j+1/2(u1)j + (1− βn+1=

j+1/2)(u2)j , with (uk)j = (pkuk)j/(pk)j ,

(pIuI)j = (pI)j(uI)j .

We choosed in practice (αk)
n
j+1/2 = (αk)

n
j or equivalently κj = 1.

With such definitions, it can be proved that under a suitable CFL condition based on the velocities uk and
uI only, and not on the acoustic waves uk ± ck, the void fractions (αk)

n+1

j belong to (0, 1) if (αk)
n
j do. We can

also prove that under the same restriction on the time step (ρk)
n+1

j is positive, as well as (εk)
n+1−
j and (pk)

n+1−
j .

Unfortunately, the positivity of (εk)
n+1

j and (pk)
n+1

j is not proved at the moment.

5 Numerical experiments

For the sake of illustration, we present in this section the results given by our algorithm on three Riemann
problems. They are all taken from [2] and are fully described therein. Space and time orders of accuracy are one.
The first one (top left) corresponds to an isolated contact discontinuity propagating with a positive velocity, while
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Figure 1: Comparison of several schemes with a reference solution (density profile)

Test 1 Test 2 Test 3
Rusanov 4231 550 2630

LP explicit 4297 551 2631
LP implicit 63 41 151

Table 1: Number of time-iterations for each test case

the second one (top right) and the third one (bottom) involve several distinct waves. The scheme we propose
here is denoted LP implicit and is compared with its explicit version (which amounts to replacing (9) by its
time-explicit version) and the well-known Rusanov scheme (see [8]). We observe that our approach is clearly less
diffusive around the contact discontinuities since the CFL condition is well-adapted to the corresponding speed
of propagation, but more diffusive around the acoustic waves since it is implicit. Table 1 gives for each test case
the number of iterations needed to perform the computations. As expected, the gain is important when using
the proposed implicit-explicit algorithm and the corresponding CFL restriction based on the material waves
(instead of the acoustic waves as for the explicit scheme). A careful evaluation of the CPU cost necessitates an
additional programming effort that has not been implemented yet.
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[1] A. Ambroso, C. Chalons, F. Coquel, T. Galié. Relaxation and numerical approximation of a two fluid two
pressure diphasic model. M2AN, vol. 43, pp. 1063-1097, (2009).

[2] A. Ambroso, C. Chalons and P.-A. Raviart. A Godunov-type method for the
seven-equation model of compressible two-phase flow. LJLL report number R10020,
http://www.ljll.math.upmc.fr/publications/2010/R10020.php, (2010).

[3] N. Andrianov and G. Warnecke. The Riemann problem for the Baer-Nunziato two-phase flow model.
Journal of Computational Physics, vol. 195, pp. 434-464, (2004).

5



[4] M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation transition
in reactive granular materials. Int. J. Mult. Flows, vol. 12(6), pp. 861-889, (1986).

[5] C. Chalons and J.-F. Coulombel, Relaxation approximation of the Euler equations. J. Math. Anal. Appl.,
vol. 348(2), pp. 872-893, (2008).

[6] F. Coquel, Q.-L. Nguyen, M. Postel and Q.-H. Tran, Entropy-satisfying relaxation method with large
time-steps for Euler IBVPs. Math. Comp, vol. 79, pp. 1493-1533, (2010).

[7] P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory, Contin. Mech.

Thermodyn. vol. 4(4), pp. 279-312, (1992).
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