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Optimizing a hierarchical community structure
of a complex network

François Queyroi

Abstract Many graph clustering algorithms perform successive divisions or aggre-

gations of subgraphs leading to a hierarchical decomposition of the network. An

important question in this domain is to know if this hierarchy reflects the struc-

ture of the network or if it is only an artifice due to the conduct of the procedure.

We propose a method to validate and, if necessary, to optimize the multi-scale de-

composition produced by such methods. We apply our procedure to the algorithm

proposed by Blondel et al. (2008) based on modularity maximization. In this con-

text, a generalization of this quality measure in the multi-level case is introduced.

We test our method on random graphs and real world examples.

1 Introduction

A central task of network analysis is the detection of a community structure[3].

Many graph clustering algorithms have been developed to fulfill this task (see [6]

for a survey). These methods often rely on the maximization of a quality measure

like modularity[12].

Previous works in human sciences[16, 14] suggest however the presence of a

hierarchical structure in complex systems such as networks. Several strategies have

been used to discover such hierarchies by iteratively grouping or splitting groups.

Good examples are algorithms based on a similarity metric. At each iteration the

two closest groups (in term of similarity) are merged leading to the construction

of a hierarchy. However, the resulting hierarchy is barely relevant for an analyst

because a level is the division of only one single group. In a recent paper [13], Pons

and Latapy provide a procedure to simplify this kind of structure.

Other algorithms directly lead to workable hierarchies[10, 15]. Blondel et al.[2]

introduced a flat clustering procedure that relies on the construction of a hierarchy
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of clusters. The identification of a hierarchy is not the final objective of the algo-

rithm although many clues suggest that this hierarchy is meaningful to analyse the

structure of the studied network.

This paper focuses on the validation of such hierarchies. We provide an opti-

mization procedure allowing to filter out undesirable fusion of clusters. We enforce

this post-procedure on the results produced by the algorithm of Blondel et al.[2].

For this purpose we introduce a generalisation of the modularity quality measure in

order to quantify the quality of a hierarchical clustering.

The rest of the paper is organized as follows. In section 2, we introduce the ap-

proach used to evaluate the quality of a hierarchical community structure. In section

3, we provide an application of our approach to the algorithm of Blondel et al..

In section 4, we show that our procedure is efficient by describing some results

obtained on a hierarchically clustered graph benchmark and on real world exam-

ples. We compare our results to those produced by two different state-of-the-art

procedures[10, 15].

2 Optimizing a hierarchical community structure

2.1 Definitions

Given a graph G = (V,E) where V is the set of vertices and E the set of edges. A

flat clustering of G is a partition of the vertices V in several groups (also called com-

munities when they are densely connected) defining a set of induced subgraphs of

G. In the example provided in Figure 1(a), the vertices falling into the hulls la-

belled {1,2,3} correspond to three subgraphs. A hierarchical clustering appears

when some of these communities are recursively divided into subgroups. For ex-

ample, the subgraph labelled 2 is divided into two subgraphs 21 and 22. The nesting

between groups of vertices at different levels makes trees an efficient way to model

hierarchical clusterings (see Figure 1(b)). We call clustering trees such structures.

Let T be a clustering tree of the vertices set V . It is a rooted tree where each

node t ∈ T can be either an internal node if its degree d(t) ≥ 2 or a leaf node if

d(t) = 1. The set of leaves of T is denoted F (T ). In the previous example we have

F (T ) = {1,21,221,222,3}. Each node t ∈ T corresponds to a subset Vt ⊂ V . Let

p(t) be the direct ancestor of t and σ(t) the set of direct successors of t. In the

example, we have p(22) = 2 and σ(22) = {221,222}. These relations correspond

to the following constraints : for each node t, we have Vt ⊆Vp(t) and Vt =
⋃

c∈σ(t)Vc

if t is internal.

We denote by Tt the subtree of T rooted in t and by Gt the subgraph induced

by the vertices set Vt . In the example, G1 is a graph which contains the vertices

that fall into the hull labelled 1 and the edges having both extremities in the same
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(a) A hierarchical clustered graph (b) A labelled clustering tree

Fig. 1 An example of hierarchical clustering of a graph (left) modelled using a clustering tree

(right).

set. The height of a node t in T is the number of edges between the root of T and

t. We denote by Ni(T ) the i-th level of T which is the set of leaves in the subtree

T \ {t ∈ T,h(t) > i}. In the example given in Figure 1 we have N1(T ) = {1,2,3},

N2(T ) = {1,21,22,3} et N3(T ) = F (T ). Each level Ni(T ) of T is a flat clustering

of the set V .

2.2 Evaluating a hierarchical community structure

To identify a community structure in a network, quality measures are often used

in order to compare different flat clusterings of a graph. A quality measure Φ is a

function having as domain the set of all flat clusterings and as range a real interval.

Evaluating the quality of a hierarchical clustering is far more problematic because

we have to take the nesting and the height of the clusters into account. To fulfill this

task, Blanc et al.[1] introduced a recursively defined measure that generalized the

Mancoridis criteria[11] to hierarchical clusterings. The same idea is used here for

all measures respecting the additivity constraint[13].

Definition 1. A quality measure Φ(G,C) of a flat clustering C = (C1, . . . ,Ck) for

the set of vertices V of a G is said to be additive if it can be written

Φ(G,C) =
k

∑
i=1

φ(G,Ci) (1)

where the function φ(G,Ci) ∈ [0, 1
k
] is called the gain of the community i.

Most of the existing quality measures are additive[13]. The idea underlying the

extension of quality measures to hierarchical clusterings is the recursive call of an

additive quality measure on each internal node of the clustering tree.
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Definition 2. Given Φ(G,C) an additive quality measure, its extension to a hierar-

chical clustering tree T rooted in r is denoted Φ(G,T ;q) and is defined as follows:

Φ(G,T ;q) =

{

∑t∈σ(r) φ(G,Vt)(1+q×Φ(Gt ,Tt ;q)) if σ(r)> 0

0 otherwise
(2)

for q ∈ [0,1].

The measure Φ(G,T ;q) is a polynomial with a variable q ∈ [0,1]. On one hand,

the weight of an internal node at the bottom of the hierarchy increases when q is

close to 1. On the other hand, we have Φ(G,T ;q) = Φ(G,N1(T )) for q = 0.

Note that the quality of a community (a node of T ) is weighted by the product of

the quality of its ancestors. This weight corresponds to the idea that a badly defined

community (with an external density greater than its internal density for example)

can only generate badly defined sub communities (see [1] for further details).

Definition 3. We denote by hierarchical quality index of a clustering tree T , the

function Φ(G,T ) which is the integral of the polynomial Φ(G,T ;q) for q ∈ [0,1] :

Φ(G,T ) =
∫ 1

0
Φ(G,T ;q)dq (3)

The value of q to use is an open issue. When there is no reason to promote or

penalize deep hierarchies, the criteria Φ(G,T ) shall be used.

2.3 Hierarchy quality optimization

The formula 2 and 3 can be used to compare different hierarchical clusterings and

select the best one for a given network. Therefore we are able to access the rele-

vance of a modification applied on a hierarchical clustering. We can for example

determine whether or not a given node in the clustering tree should be removed.

The removal of a node t is the replacement of t by its successors σ(t). We denote

as ∆t(T ) = Φ(G,T \ {t})−Φ(G,T ) the quality variation due to this modification.

Given an initial clustering tree T , our optimization procedure can be defined as

the iterative suppression of an internal node t (if it exists) maximizing ∆t(T ) with

∆t(T )> 0.

The removal of a node t ∈ T results in several modifications in the multilevel

quality measure computation. First, the weights of all nodes in the subtree Tt are

greater because the depth of the clusters this subtree contains are now smaller in

T . Secondly, the nodes of the set σ(t) do not longer correspond to a flat clustering

of the subgraph Gt but are new parts of the flat clustering of the subgraph Gp(t).

Looking at the previous example in Figure 1, after the deletion of the node 22, the

nodes 221 and 222 are now direct successors of the node 2. Therefore, the number

of edges leaving 221 and 222 increases because the edges between these clusters
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and the cluster 21 are added.

The complexity of our procedure is O(|T |3) where |T | is the number of nodes

in the clustering tree T . First, we assume that the gain function φ can be computed

in constant time. This can be achieved by keeping some information into memory

(the number of internal/external edges for example). Secondly, the function Φ is

computed in O(|T |) as a simple depth-first search over the clustering tree. Finally,

the procedure described above lies in the family of greedy algorithms.

3 Application to modularity maximization

In this section, we present the algorithm of Blondel et al.[2] which produces a hie-

rarchical clustering of a graph. We then illustrate the fact that the hierarchies pro-

duced may contain some irrelevant groups. These observations justify the use of our

method.

3.1 Algorithm description

The algorithm of Blondel et al. is a modularity maximization heuristic. The modu-

larity can be defined as follows:

Q(G,C) =
k

∑
t=1

et

M
−

(

dt

2M

)2

(4)

where et is the number of edges having both ends in the cluster t, dt is the sum of

the degrees of nodes belonging to the cluster t and M is the number of edges in G.

We can easily prove that Q(G,C) is additive. The gain φ(G,Vt) is here the difference

between the observed proportion of internal edges in Vt and its theoretical value in

a random graph with the same degree distribution.

At the beginning of the algorithm, each vertex corresponds to a single commu-

nity. The algorithm has two major phases. First, we seek for each vertex the com-

munities that lie in its direct neighbourhood and compute the potential increase of

modularity resulting of assigning the vertex to each of them. The vertex is then as-

signed to the community that maximize the gain (ties are broken randomly). This

phase is repeated as long as an increase of the modularity is possible and results in

a flat clustering of the graph. Secondly, we replace the previous graph by the quo-

tient graph computed using the previous clustering. These two phases are iteratively

repeated as long as the modularity increases.
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3.2 Discussion on the resulting hierarchy

The algorithm of Blondel et al. produces a hierarchy T by iteratively applying a flat

clustering procedure (the first phase described above) to the quotient graph created

at the previous iteration. Each level of T can be seen as a local maximum of the mo-

dularity. The authors suggest that the last level found N1(T ) is the most meaningful

since it corresponds to the highest modularity reached.

This algorithm is very popular in social network analysis because it can be ap-

plied on very large graphs while providing clusterings with high modularity values.

We can however hardly determine whether or not the hierarchy is meaningful to

analysis a given network. We provide here two major issues.

First, the hierarchy may contain irrelevant intermediate clusters. Note that the

first phase of the algorithm is nondeterministic because the resulting flat clustering

depends on the order in which the vertices are taken. We illustrate this issue using

the example given in Figure 1. The first iteration of the algorithm leads to the de-

tection of the communities {1,21,221,222,3} (the last level of the final hierarchy).

At the second iteration the communities 221 and 222 are grouped leaving the others

isolated even if grouping 221, 222 and 21 would lead to a greater modularity. Look-

ing at the final clustering tree, we could say that the cluster 22 is just a building step

and is therefore irrelevant.

Secondly, the direct optimization of modularity can lead to the excessive aggre-

gation of several communities. This issue is called the resolution limit (see a descrip-

tion in [7] and experimental illustrations in [8]). Blondel et al. actually discussed the

fact that the hierarchy can be seen as an alternative to this issue. The excessive ag-

gregations occur at the first levels of the hierarchy. While the flat modularity gain

may be small (but still positive) remember that the multilevel quality measure we

provide takes the whole hierarchy into account. Top level clusters can therefore be

removed if their contribution is not strong enough to justify an additional level.

These issues illustrate the usefulness of our method when applied to the hierarchy

produced by the algorithm described in this section. We therefore use the procedure

described in Section 2.3 using in Eq. 3

φ(G,Vt) =
et

|E(G)|
−

(

dt

2|E(G)|

)2

(5)

as the gain of the community indexed by t in T .

4 Results

In this section, we discuss the results of several experiments. First, we show that our

procedure is able to detect irrelevant intermediate clusters using benchmark graphs

where a two level hierarchical clustering is known. Secondly, we provide results of
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our procedure when it is applied on real world networks. These results seem reason-

able when compared to other state-of-the-art hierarchical clustering algorithms.

4.1 Validation on random graphs with a known hierarchical

clustering

In order to validate our method we use the LFR-benchmark[9] extended to hierar-

chical clustering[10]. This benchmark is used in order to evaluate the effectiveness

of clustering algorithms (see [15] for example).

We generate graphs with a power law degree distribution and a two-level commu-

nity structure. These levels are denoted micro-communities and macro-communities.

We can decide how well the communities are defined (in term of density). This is

achieved by using two parameters µ1 and µ2 which correspond to the proportion

of edges between macro-communities and the proportion of edges between micro-

communities lying in the same macro-communities respectively. The graphs have

10000 vertices with an average degree of 20 and a maximum degree of 100. The

size of macro-communities and micro-communities are in the range [400,4000] and

[10,100] respectively.

We evaluate how well the given multilevel structure is identified by using the

normalized mutual information[5]. This measure is used to access the similarity

between two partitions of the same set. The result is a score between 0 (the parti-

tions are completely different) and 1 (the partitions are the same).

The results are given in Figure 2. The x-axis corresponds to the value µ1 + µ2

which is the proportion of edges outside micro-communities. For four different val-

ues of µ1, we compare the different clusterings for µ2 ∈ [µ1,1− µ1]. The y-axis

corresponds to the normalized mutual information between the compared cluster-

ings. We compare the real micro-communities to the clustering given by N2(T ) and

F (T ) (orange and red curves respectively) and the real macro-communities to the

clustering given by N1(T ) (blue curves). The results reported here correspond to an

average on one hundred samples.

First, we analyze the results obtained using the algorithm without optimiza-

tion (left column in Figure 2). The micro-communities seem to be identified when

they are well defined theoretically. This situation occurs when µ2 < 0.5. Macro-

communities are also identified when the proportion of edges between micro-

communities is superior to the proportion of edges between micro-communities.

We can however observe that the clustering trees produced by the algorithm contain

additional levels. Indeed the flat clustering N2(T ) should be equal to F (T ) (the mi-

cro-communities) but it is obviously not always the case here. This last observation

confirms the risks outlined in Section 3.2.

Looking now at the results obtained using our method (right column in the Figure

2), we can see that the intermediate levels are removed and that the flat clustering

N2(T ) is almost always equal to the micro-communities. Moreover, the similarities
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Fig. 2 Evaluation on the multilevel LFR Benchmark for different values of µ1 and µ2. The blue

line corresponds to the mutual information between N1(T ) and the real macro-communities. The

red one between F (T ) and the real micro-communities. Finally, the orange one between N2(T )
and the real micro-communities

between N1(T )/macro-communities and between F (T )/micro-communities do not

change. It means that we do not remove wrongly some clusters.
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4.2 Real world examples

We now present some results of our method when applied to real world networks.

We compare our resulting hierarchical clustering to the hierarchical clusterings pro-

duced by the Oslom[10] and Infomap[15] algorithms. Note that these algorithms are

also nondeterministic.

4.2.1 Co-publication network

We first look at a co-publication network in social network analysis (see [6] for more

details). The graph contains 515 authors (vertices), two authors are linked when they

are co-authors in at least one paper. The graph contains 1318 edges.

This kind of network is conductive to the presence of some hierarchical commu-

nity structure. Indeed, the top level of such hierarchy could correspond to people

in the same university/institute while the bottom level could correspond to groups

formed by Professors/Ph.D. students.

The Oslom and Infomap algorithms detect big clusters at the top level (with over

a hundred people). While these clusters can be easily separated from the rest of the

network by removing a couple of edges, they are not densely connected. In particular

they contain a lot of biconnected components.

The results obtained using the algorithm of [2] without our method provides sim-

ilar results. Using our procedure, the first level is removed and contains subgraphs

with a small graph diameter that may correspond to close collaboration within same

research teams. A visualization of the results is given in Figure 3. The clusterings

N1(T ) and N2(T ) are drawn using blue and grey concave hulls respectively.

4.2.2 Migration Network

We now investigate the hierarchical structure which can be found in a migration net-

work. The graph models migration flows in USA (see [4] for details on this dataset).

The 1650 vertices represent American counties. For each couple of counties we

know the number of person who moved from one to the other between 1995 and

2000. There is a total of 6500 positive relations in this network which are repre-

sented as weighted directed edges.

A visualisation of the results is provided in Figure 4 where counties are geolocal-

ized. The two first hierarchical levels are drawn using a color mapping. Both levels

illustrate the following observation: geographically close counties are more likely

to be part of the same clusters. This observation can be also found in the results

obtained using Oslom and Infomap algorithms.

The Infomap algorithm does not find any hierarchical structure in this network.

The biggest identified communities correspond to California, Texas and the East of

the country. On the opposite, the Oslom algorithm provides a deep hierarchical clus-

tering tree. The first level contains mostly two very big communities corresponding
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Fig. 3 Results on a scientific co-publication network. The blue and grey hulls correspond to the

flat clusterings N1(T ) and N2(T ) respectively.

to the West/Mid-West area and the East. These clusters are then divided over two

additional levels. The bottom clustering corresponds to the clustering provided by

the Infomap algorithm.

The results of our method are a good compromise. The first level (see Figure

4(a)) contains relatively large clusters. The second level (see Figure 4(b)) is similar

to the clustering provided by the Infomap algorithm.
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(a) First level N1(T )

(b) Second level N2(T )

Fig. 4 Results on a migration network (United-States). Vertices position corresponds to the

geographical coordinates of the corresponding county. Two vertices belong to the same cluster if

they have the same color. White coloured vertices are isolated (cluster of size 1).

5 Conclusion

We introduced a post-processing procedure to improve the quality of a hierarchical

clustering of a network. This is achieved by iteratively removing the internal clusters

that decrease a multilevel quality measure. Our method was applied to the algorithm

of Blondel et al.[2] by using a generalization of the modularity metric to hierarchical

clusterings. The experiments run on random graphs clearly show that the hierarchies

we provide are very close to the ground truth hierarchies. Results obtained on real

networks are also meaningful.

Note that our method does not allow to know whether or not the leaves of the

clustering tree should be removed. We can reduce this problem to the following

one: is a given clustering better than no clustering at all ? One way to overcome this

problem is to use a minimal threshold for modularity. However dealing with this
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kind of clusters is less problematic. Indeed, from an analysis perspective, the first

levels of a hierarchical clustering are the most relevant.

As future work, we plan to test the effectiveness of our post-processing procedure

when applied with different hierarchical clustering algorithms. The greedy removal

of internal clusters is a fast and intuitive method but adding internal clusters to

the hierarchy is also a possible modification. We need to investigate the way of

combining these basic operations to explore the space of hierarchical clusterings

using a hierarchical quality measure as objective function.
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mentation de graphe multi-niveaux. In: Journées MARAMI 2010. Toulouse, France (2010).

URL http://hal.archives-ouvertes.fr/hal-00542484/en/

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities

in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008, P10,008

(2008). URL http://arxiv.org/pdf/0803.0476

3. Cook, D.J., Holder, L.B.: Mining Graph Data. Wiley (2006)

4. Cui, W., Zhou, H., Qu, H., Wong, P., Li, X.: Geometry-based edge clustering for graph vi-

sualization. IEEE Transactions on Visualization and Computer Graphics 14(6), 1277–1284

(2008)

5. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identifi-

cation. Journal of Statistical Mechanics: Theory and Experiment 2005, P09,008 (2005)

6. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174 (2010).

URL http://arxiv.org/pdf/0906.0612
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