
HAL Id: hal-01018759
https://hal.science/hal-01018759v2

Submitted on 15 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collision Detection: Broad Phase Adaptation from
Multi-Core to Multi-GPU Architecture

Quentin Avril, Valérie Gouranton, Bruno Arnaldi

To cite this version:
Quentin Avril, Valérie Gouranton, Bruno Arnaldi. Collision Detection: Broad Phase Adaptation from
Multi-Core to Multi-GPU Architecture. Journal of Virtual Reality and Broadcasting, 2014, 6 (11),
pp.1-13. �hal-01018759v2�

https://hal.science/hal-01018759v2
https://hal.archives-ouvertes.fr


Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

Collision Detection:

Broad Phase Adaptation from Multi-Core to Multi-GPU Architecture

Quentin Avril∗, Valérie Gouranton∗, Bruno Arnaldi∗

∗Université Européenne de Bretagne, France

INSA, INRIA, IRISA, UMR 6074, F-35043 RENNES

email: quentin.avril, valerie.gouranton, bruno.arnaldi@irisa.fr

1 Introduction

Collision detection is a well-studied and still active re-

search field in which the main problem is to determine

how and if one or more objects collide or will collide

in a virtual environment. Many fields are concerned

by collision detection, including physical-based simu-

lation, computer animation, robotics, mechanical sim-

ulations (medical, biology, cars industry...), haptic ap-

plications and video games. In these applications, re-

altime performance, efficiency and robustness are key

issues. In the field of Virtual Reality, physical virtual

environments in digital mock-ups and industrial appli-

cations are now commonplace, and are of increasingly

complexity. The expected level of real time perfor-

mance is becoming harder to ensure in such largescale

virtual environments. Unsurprisingly, collision detec-

tion has been an integral part of virtual reality bottle-

necks for over thirty years. Recent years have seen

impressive advances in collision detection algorithms.

However, most algorithms remain unprepared for the

new hardware architecture (multi-core, multiproces-

sor, multi-GPU, etc.). The use of parallel process-

ing has become necessary to take advantage of recent

gains of Moores Law. During several years, proces-

sors specialists were able to provide clock frequency

increases and parallelism improvements in instruction

sets. In that way, single threaded applications ran

much faster on a new generation of processors without

any modification. Now, to have a better management

of the power consumption, they promote multi-core ar-

chitectures. It is no longer possible to rely on the evo-

lution of processing power to overcome the problem

of real-time collision detection. The impressive power

evolution of graphics hardware and multi-GPU plat-

form is also an important way of algorithm improve-

ments and speed-ups. With these major upheavals in

computer architecture it is now essential to take into

account run-time architectures to improve collision de-

tection performance. In this paper, we propose new

models of collision detection algorithms able to run on

new hardware architecture. We focus on three differ-

ent kind of architecture: multi-core, GPU and multi-

GPU.We have developed three new broad phase-based

algorithm that take into account the run-time architec-

ture. The rest of our paper is organized as follows: in

Section 2 we present the evolution of CPU and GPU

these last years. In Section 3 we report related work on

collision detection and focus on the multi-core an and

GPU-based collision detection algorithms in the par-

allel programming. Section 4 presents our new multi-

core algorithm followed by the Multi-GPU one in Sec-

tion 5. Both sections show the model and techniques

we used to develop the algorithm and also present per-

formances results. We cross results of our new algo-

rithms in Section 6 in order to reveal the limits and

differences between them. We then conclude and open

on future works in Section 7.

2 Related Work

We present here the collision detection field following

by the evolution of CPU and GPU processors. We then

present how this evolution has let the setting up of par-

allel solutions for collision detection to speed-up the

computation time.

2.1 Collision Detection

Last decade have seen an impressive evolution of vir-

tual reality applications and more precisely of col-

lision detection algorithms in term of computational

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

Figure 1: Collision detection pipeline.

bottleneck. Collision detection is a wide field dealing

with, apparently, an easy problem: determining if two

(or several) objects collide. It is used in several do-

mains namely physically-based simulation, computer

animation, robotics, mechanical simulations (medi-

cal, biology, cars industry), haptics applications and

video games. All these applications have different

constraints (real-time performance, efficiency and ro-

bustness ). It has generated a wide range of problems:

convex or non-convex objects, 2-Body or N-Body sim-

ulations, rigid or deformable objects, continual or dis-

crete methods. Algorithms are also dependent of the

geometric model formalism (polygonal, Constructive

Solid Geometry (CSG), implicit or parametric func-

tions). All of these problems reveal the diversity of

this field of study. For more details we refer to surveys

on the topic [LG98, JTT01, TKH+05, KHI+07].

Given n moving objects in a virtual environment,

testing all objects pairs tend to perform n2 pairwise

checks. When n is large it becomes a computational

bottleneck. Collision detection is represented and built

as a pipeline (cf Figure 1) [Hub95]. It is composed

by two main parts: broad-phase and narrow-phase. A

parallel and adaptive collision detection pipeline run-

ning on a multi-core architecture have been proposed

[AGA10b]. The goal of this pipeline is to apply suc-

cessive filters in order to break down the O(n2) com-

plexity. These filters provide an increasing efficiency

and robustness during the pipeline traversal. In the fol-

lowing, we present these parts of the pipeline, broad-

phase in section 2.1.1 and narrow-phase in section

2.1.1.

2.1.1 Broad-phase

The first part of the pipeline, called the broad-phase,

is in charge of a quick and efficient removal of the

objects pairs that are not in collision. Broad-phase

algorithms are classified into four main families

[KHI+07]:

Brute force approach is based on the comparison

of the overall bounding volumes of objects to de-

termine if they are in collision or not. This test is

very exhaustive because of its n2 pairwise checks.

A lot of bounding volume have been proposed such

as sphere, Axis-Aligned-Bounding-Box (AABB)

[Ber97], Oriented-Bounding-Box (OBB) [GLM96]

and many others.

Spatial partitioning method is based on the

principle that if two objects are situated in distant

space sides, they have no chance to collide during the

next time step. Several methods have been proposed

to divide space into unit cells: regular grid, octree

[BT95], quad-tree, Binary Space Partitioning (BSP),

k-d tree structure [BF79] or voxels.

Topological methods are based on the positions of

objects in relation to others. A couple of objects that

are too far one to the other is deleted. Sweep and prune

is also known as sort and sweep [Eri05] being called

that way at David Baraff Ph. D thesis in 1992 [Bar92].

Later works like the 1995 paper about I-COLLIDE by

Cohen et al. [CLMP95] refer to this algorithm. It

is one of the most used methods in the broad-phase

algorithms because it provides an efficient and quick

pairs removal and it does not depend on the objects

complexity. The sequential algorithm of ”Sweep and

Prune” takes in input the overall objects of the envi-

ronment and feeds in output a collided objects pairs

list. The algorithm is divided in two principal parts.

The first one is in charge of the bounding volume up-

date of each active virtual objects. Most of time, the

bounding volumes used are AABBs that are aligned

on the environment axis (cf. Figure 2). The second

part is in charge of the detection of overlapping be-

tween objects. To do that a projection of higher and

upper bounds on the three axis of coordinates of each

AABBs is made. Then, we obtain three lists with over-

laps pairs on each axis (x, y and z). We can notice two

related but different concepts on the way the Sweep

and Prune operates internally: by starting from scratch

each time or by updating internal structures. To differ-

entiate them a name was given to each method, the first

type is called brute-force and the second type persis-

tent. A Pair that is still alive after this test mean that

its objects are considered as in potential collision. This

pair is then transmitted to the narrow-phase.

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

Figure 2: ”Sweep and Prune” algorithm on x and y

axis with a non-overlapping condition (left) and an

overlapping one (right).

2.1.2 Narrow-phase

Colliding objects pairs are then given to the narrow-

phase that perform an exact collision detection. We

can classify narrow-phase algorithms into four main

families [KHI+07]:

Feature-based algorithms work on objects primi-

tives: faces (triangle-triangle test [LAM01]), edges

and vertices. This family appears in 1991 with the

Lin-Canny approach [LC91] or Voronoı̈ Marching that

proposed to divide space around objects in Voronoı̈ re-

gions that enable to detect closest features pairs be-

tween polyhedrons.

Simplex-based algorithms of whom the most fa-

mous one is the GJK algorithm [GJK88] that uses

Minkowski difference on polyhedrons. Two convex

objects collide if and only if their Minkowski differ-

ence contains the origin.

Image space-based algorithms work using image-

space occlusions queries that are suitable to be used

on graphics hardware (GPU). They rasterise objects to

perform either 2D or 2.5D overlap test in screen space

[BW04]. We further develop this part in the parallel

section.

Bounding volume-based algorithms are used in most

of strategies to perform collision tests and it highly im-

proves performances. Bounding volume hierarchies

(BVH) allow arranging bounding volume into a tree

hierarchy (binary tree, quad tree...) in order to re-

duce the number of tests to perform. A description

on these BVH and a comparison between their per-

formance can be found in [Eri05]. Deformable objects

are very challenging for BVH because hierarchy struc-

tures have to be updated when an object deforms itself

[Ber97, TKH+05].

3 Architecture Evolution

We briefly present in this section, the evolution of CPU

and GPU these last years. We first describe the emer-

gence and spread of multi-core processors, followed

in a second step by the impressive evolution of GPU

in term of computation power and ease of use.

3.1 From Sequential CPU to Multi-core Ar-

chitecture

Compared to actual outlook, it seems clear that Gor-

don Moore was a lucky man. Since 1965, he predicts

a duplication of the number of transistors on a mi-

croprocessor each two years. During more than forty

years, this guesswork seems exact but we know now

that physical limits (power and heat) prevent this du-

plication. What is the solution to keep alive Moore

law? You make more cores. Nowadays trend tends

to be duplication of cores in computers and parallel

architecture. The first personal computer with a core-

duo arrived in 2005 with AMD1 followed by Intel2.

In 2006 Sun presented its new octo-core called Nia-

gara2. Intel presents last year a 32 in order x86 cores

[SCS+08] called ”Larrabee” and Sun recently presents

80 cores computer and it seems that new trends are not

only at the multi-core but also at the many-core. Dif-

ference between these types of cores is the start and

stop notion on the way, if you need n cores to work,

computer will only starts n cores. Many-core is very

useful because when people need not the entire power

of cores, computer turns off some of them. Until now,

3D objects and virtual environments grew up parallel

to processor power, so researchers were continuously

looking for an improvement of the collision detection

algorithms in order to increase their precision and ro-

bustness. A lot of articles still continue to improve

collision detection algorithms these last recent years.

But now, processors power stay the same while virtual

environments are more and more sized, so new trends

are not only in the algorithms improvement but also in

the algorithms architecture modification. As we can

not hope a continual evolution of processors we have

now to study how it is possible to use multi-core in col-

lision detection algorithms. Nowadays it is impossible

to present CPU without dealing with central memory

handling; on a multi or many cores there is a very com-

plex cache handling between cores and this handling

1www.amd.com
2www.intel.com

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

is continually improved to increase computer perfor-

mance. Cache and memory handling is another point

that cannot be ignored in the optimization of the colli-

sion detection performance.

3.2 From Graphic Processor to GPGPU

Recent years have seen the evolution of graphics hard-

ware from fixed function units toward an increasingly

programmable graphics pipeline. Contrary to CPU,

Graphics Processing Unit (GPU) has a very impor-

tant power evolution since few years. This impres-

sive evolution can be explain by the way that in one

hand, CPU is a generalist processor which deals with

ordinary data which are often dependent, several of

its components are in charge of the data stream con-

trol and its memory latency period is hidden by data

caching. In the other hand GPU provides processor

well-suited to highly parallelizable computations, it

deals with independent data so it needs not a sophis-

ticated data stream control and its memory latency

period is hidden by computations. General-purpose

Processing on Graphics Processing Unit is the tech-

nique allowing graphics hardware (GPU) to perform

computations traditionally reserved to CPU. A survey

has been published [OLG+07] on GPGPU focusing

on a simple presentation of GPGPU applications. Us-

ing graphics cards in order to increase mathematical

computations is not recent. During the nineties, some

researchers use rasterizer and Z-Buffer of the graph-

ics cards to accelerate path, for instance, path finding

or Vorono printing. But revolution appears in 2003

with evolved shaders allowing matrix computations on

graphics cards. From this year, a SIGGRAPH section

is dedicated to this new computation technique. To

handle GPU in 2003, OpenGL or Direct3D were es-

sential. Brook was the first C language extension that

allowed using GPU as a co-processor for parallel com-

putations. In 2007, Nvidia3 developed a language and

a software called CUDA (Compute Unified Device Ar-

chitecture) exploiting GPUs power, using principles of

parallel programming with threads. This API can be

seen as a C language extension and its assembly lan-

guage is PTX. ATI/AMD develops its own language

for graphics cards, called Brook+. Runtime uses CAL

for the GPU backend. Even if AMD technology is

as efficient as Nvidias (or even more), Brook+ is less

used than CUDA, due to a lack of documentation on it

and to a higher difficulty to code solution.

3.3 Parallel Collision Detection

The parallel solution of collision detection algorithms

is a recent field in high performance computing. We

can distinguish three different families of algorithms,

namely: GPU-based, CPU-based and hybrid-based.

3.3.1 GPU-based algorithms

The GPU-based family is used to perform collision de-

tection for few years using typical GPU solutions but it

becomes more and more used to perform non-common

GPU solutions. We call ”typical GPU solutions”, the

algorithms that are based on the image-space. Image

space-based algorithms work using image-space oc-

clusions queries that are suitable to be used on graph-

ics hardware. They rasterize objects to perform either

2D or 2.5D overlap test in screen space [BW04]. Non-

common GPU solutions are more recent ones gener-

ally developed with CUDA and not using image space

to detect collisions.

Cinder [KP03] is an algorithm exploiting GPU to

implement a ray-casting method to detect static in-

terference between solid polyhedral objects. The al-

gorithm is linear in relation to the number of objects

and number of polygons in the environment. It also

requires no preprocessing or special data structures.

Other methods have been proposed using ray-casting,

Hermann et al. [HFR08] use it to detect collision and

to create contact forces. GPU-based algorithms for

self-collision and cloth animation have also been in-

troduced by Govindaraju et al. [GLM05a, GLM05b].

Juarez-Comboni et al. [JMJC05] describe the use of

several GPUs during collision detection process. One

GPU is in charge of the collision detection process us-

ing a simple boundary volume collision query. The

other one is in charge of the rendering operations. An

algorithm using Layered Depth Images (LDI) to detect

collision and create physical reaction, has been pro-

posed [FBAF08]. It has been developed to run on a

single GPU. An LDI is a representation and rendering

method for objects. Similar to a two-dimensional im-

age, the LDI consists of an array of pixels. Contrary to

a 2D image, an LDI pixel has depth information and

there are multiple layers at a pixel location. LDI algo-

rithm has been introduced by Shade & al [SGwHS98]

to represent multiple geometric layers from one view-

point. Heidelberger et al. [HTG03, HTG04] have ex-

tended the model of LDI to build geometrical models

of volume intersections. A solution using image-space

visibility queries has been proposed for the broad

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

phase [GRLM03].

A recent work uses thread and data parallelism on a

single GPU to perform fast hierarchy construction, up-

dating, and traversal using tight-fitting bounding vol-

umes such as oriented bounding boxes (OBB) and

rectangular swept spheres (RSS) [LMM10]. We have

also proposed a solution based on a GPU mapping

function that enables GPU threads to determine the

objects pair to compute without any global memory

access using a square root approximation technique

based on Newtons estimation [AGA12].

3.3.2 CPU-based algorithms

The pipeline has never been parallelized but Zach-

mann [Zac01] made an evaluation of the performance

of a theoretical parallelized back-end of the pipeline

and showed that if the environment density is large

compared to the number of processors, then good

speed-ups can be noticed. Multi-processor machines

are also used to perform collision detection [KS95].

Depth-first traversal of bounding volumes tree traver-

sal (BVTT) and parallel cloth simulation [SSIF09]

are good instances of this kind of work. Dodier et

al. [DLAG13] have proposed a distributed and an-

ticipative model for collision detection on distributed

systems such as PC clusters. Their model allows to

break synchronism constraints for the collision detec-

tion process that allows the simulation to run in a de-

centralized and distributed fashion.

Few papers appeared dealing with new parallel col-

lision detection algorithms using multi-core architec-

ture. A new task splitting approach for implicit time

integration and collision handling on a multi-core ar-

chitecture has been proposed [TPB08]. Tang et al.

[TMT08] propose to use a hierarchical representation

to accelerate collision detection queries and an incre-

mental algorithm exploiting temporal coherence. The

overall is distributed among multiple cores. They ob-

tained a 4X-6X speed-up on a 8-core processor based

on several deformable models. Kim et al [KHeY08]

propose to use a feature-based bounding volume hi-

erarchy (BVH) to improve performances of continu-

ous collision detection. They also propose novel task

decomposition methods for their BVH-based collision

detection and dynamic task assignment methods. They

obtained a 7X-8X speed-up using a 8-core architecture

compared to a single-core. Hermann et al. [HRF09]

propose a parallelization of interactive physical simu-

lations. They obtain a 14X-16X speed-up on a 16-core

Figure 3: Our parallel broad-phase algorithm. Paral-

lelization of the update AABB part and the calculate

overlapping pair one with a synchronization point be-

tween them.

architecture compared to a single-core.

3.3.3 Hybrid-based algorithms

More and more papers appear dealing with new hy-

brid solutions that run on multi-core and multi-GPU

architecture. Kim et al. [KHH+09] have presented an

hybrid parallel continuous collision detection method

HPCCD based on a bounding volume hierarchy. Re-

cently, Pabst et al. [PKS10] have presented a new hy-

brid CPU/GPU method for rigid and deformable ob-

jects based on spatial subdivision. Broad and narrow

phases are both executed on a multi-GPU architecture.

3.4 Positioning

Related work lets appear that many studies have been

made to improve efficiency and performance of colli-

sion detection algorithms. The use of parallelism is be-

coming commonplace to address the problem of real-

time collision detection [AGA09]. Thus, only fine-

grain parallelizations have been done on algorithms

and, for the moment, there is no work on a global par-

allelization of the pipeline stages and on its adaptation

on any number of cores.

4 Multi-Core Broad Phase

The architecture of collision detection algorithms

needs to be improved to face real-time interaction. In

this way, we focus on an essential step of the collision

detection pipeline: the broad-phase. More precisely,

our algorithm is an implementation of the ”Sweep

and Prune”[CLMP95] on a multi-core architecture

[AGA10a].

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

4.1 Multi-Threaded Algorithm

Multi-core architecture enable to separate collision de-

tection computations on available cores. But compu-

tations can not be separated on the way without a spe-

cial data structure. To fully exploit multi-core archi-

tecture, critical sections, threads idling and cores syn-

chronization have to be taken account and minimized

or avoided. To parallelize the algorithm we have de-

cided to use OpenMP3 because of the directives that

allow to keep the same code (with few algorithmic

modifications on the data structure) and to focus on

the directives. Even if IntelTBB provides better per-

formances, it is more complex to program with and

it generates specific code, enable to work without In-

telTBB libraries.

A simplified scheme of our model is in Figure 3.

We can notice parallelization of the two principal parts

of the algorithm with a synchronization between both.

Number of threads that are created depends on the

number of available cores. As a thread is only in

charge of geometric computations and does not wait

for anything, create more than one thread per core will

increase computation time. In the first step of the al-

gorithm, each thread works on n

c
objects where n is

the number of objects in the environment and c the

number of cores. It is possible to divide objects per

threads because AABB update computation does not

depend of the object complexity, time spent per object

by a thread is almost homogeneous. Compared to the

sequential algorithm where new computed bounding

volume is written on the way in a data structure, we

can not use the same scheme without avoiding criti-

cal writing section between threads. That is why we

introduce a new smallest data storage used by each

thread to put new computed bounding volume. This

new structure is an array dynamically allocated in rela-

tion to the number of cores and objects. Synchroniza-

tion between this two steps is compulsory to merge all

the new bounding volumes in the same data structure.

We only merge threads array pointers to reduce syn-

chronization time.

In the second part of the algorithm, each thread

works on
(n2

−n)
2 /c pairs of objects where c is still the

number of cores. Like in the first part, each computa-

tion made by a thread is an overlapping test between

objects coordinates so it does not depend on the object

complexity. To avoid critical section between threads

we use a similar technique where each thread is fitted

3OpenMP - http://openmp.org/wp/

Figure 4: Benchmarks: We used several benchmark

models to measure collision detection time: 10K balls

of 2K polygons each falling in simple environment of

600 polygons (= 1.1M polygons), 20K cubes of 12

polygons each fallen on complex environment of 300K

(= 420K polygons) and 3.5K concave shapes (skittles

of 20K each) falling on a plan. We only performed test

on n-body simulation of rigid bodies using AABB as

bounding volume.

with its own data storage to put objects pairs with over-

lapped coordinates. All pairs of objects in collision are

merged at the end of the overall computation to create

the pair list of objects in collision. Then, this new pairs

list is given to the narrow-phase that performs an ex-

act collision detection test. This kind of broad phase

algorithm is well-suited to the parallelization because

there is no dependency between computations. They

can be distributed among 2, 4, 8 or more cores without

disturbing results.

4.2 Results

In this section we present main results of computation

time speed-up. Those tests were performed through

several benchmark models (cf Figure. 4). We only

performed test on n-body simulation of rigid bodies

using AABB as bounding volume. To obtain homoge-

neous results, we have only worked on a 8-cores com-

puter using 1, 2, 4 or 8 cores. We work on Windows

XP Professional x64 Edition Version 2003 with Intel

Xeon (2*Quad) CPU X5482 of 3.20 GHz and with 64

GB of RAM.

We present here time results for all used benchmark

models (Cubes, Balls and Skittles). Numerical results

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

Cubes Balls Skittles

1 core 8,89ms 4,45ms 1,6ms

2 cores 4,96ms 2,48ms 0,9ms

4 cores 2,76ms 1,4ms 0,5ms

8 cores 1,52ms 0,74ms 0,27ms

Figure 5: Time spent for updating AABB for each

benchmark model from 1 core to 8 cores.

Figure 6: The AABB update execution time in relation

to the number of cores. The overall computation time

is reduced by 17.03% by using 8 cores on this bench-

mark.

for the first part of the algorithm is presented in tab

5. The reduction of the overall running time is shown

on the graphic in Figure 6. We can see a percent-

age of time reduction for the first part of the algo-

rithm concerning the AABB update. For one scenario

four blocks show time spent from 1 to 8 cores and

we can notice that time decreases when the number

of cores goes up. The overall running time is reduced

by 56.04% by using 2 cores, 31.49% for 4 cores and

17,03% for 8-cores. Numerical results for the second

part of the algorithm is presented in tab 7. This second

part of the algorithm is shown in the graphic Figure 8

and we notice the same gain of time than the first part.

The overall running time is reduced by 59.2% by using

2 cores, 35.34% for 4 cores and 21.56% for 8-cores.

The general speed-up of our parallel algorithm is

shown in Figure 9, on this graphics our work is repre-

sented by the pink line bounded by the blue one which

is the optimal speed-up for a parallel execution whose

we wanted to get closer. We have also performed

measures on the computation time spent by t threads

shared on c cores and the assumption made at the be-

ginning on using more than one thread per core seems

to be exact. Time spent by 3 threads on 2 cores is

slower than 2 threads but better than 1. So using more

Cubes Balls Skittles

1 core 53,339ms 26,7ms 10,71ms

2 cores 31,65ms 15,748ms 6,35ms

4 cores 18,76ms 9,51ms 3,742ms

8 cores 11,43ms 5,82ms 2,314ms

Figure 7: Time spent to calculate overlapping pairs for

each benchmark model from 1 core to 8 cores.

Figure 8: The execution time of the overlapping pairs

checks in relation to the number of cores. The over-

all computation time is reduced by 21.56% by using 8

cores on this benchmark.

than one thread per core is not justified and appears to

be less efficient.

Figure 9: The overall gain of the execution. A speed-

up of 5,1 is obtained on a 8-cores computer.

4.3 Positioning Key

We have presented a new way to parallelize the

”Sweep and Prune” algorithm on a multi-core archi-

tecture. Results show that our solution enables to re-

duce computation time by almost 5X-6X on a 8-cores

architecture. The persistent method that updates an in-

ternal structure is still more interesting compared to

the brute force one parallelized on 2 or 4 cores but be-

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

Figure 10: ”Sweep and Prune” algorithm on a sin-

gle GPU. Each pair of the biggest tab is handled by

a thread that looks for similar pair in the other input

tab.

comes longer compared to the 8-cores parallelization.

As processors will soon have more and more cores, us-

ing the brute force broad phase algorithm will become

a necessity to take full advantage of these highly par-

allelizable architecture. GPU is also subjected to an

impressive evolution of its number of cores.

5 Multi-GPU Broad Phase

We continue by presenting a new way to parallelize the

broad phase algorithm on a multi-GPU architecture.

First, we describe the existing algorithm we used and

then our new model running on a multi-core and multi-

GPU architecture.

5.1 GPU ”Sweep and Prune”

We have started the development with a first imple-

mentation of this broad phase algorithm on a single

GPU. The algorithm is divided in three parts which

two of them are executed by the GPU. The first part

is in charge of determining which pairs of object are

in overlapping. On the CPU we maintain three sorted

lists of starts (lower bound) and ends (upper bound)

of objects bounding volume which we extract over-

lapping pairs. GPU is in charge of extracting pairs

common to all three lists (cf Figure 10). This work

is done by a CUDA algorithm that assigns to each

GPU threads a kernel function in charge of extract-

ing pairs in a smaller dataset. We first compare X

and Y axis creating a tab results in the GPU memory

that corresponds to pairs that are in both input axis.

To optimize performances we check before separating

Figure 11: Example of spatial subdivision used for

multi-GPU ”Sweep and Prune” algorithm. We seek

the axis with the largest number of overlapping pairs

and subdivide this axis. We then create a CPU thread

by area in charge of one GPU device to perform the

algorithm in its area.

data between threads which axis is the ”fullest” one,

in other ways which tab is the biggest one. A thread is

created for each pair of this axis, and each thread is in

charge of determining if there is a similar pair in the

other input axis. Then we compare the Z axis with the

previous tab results.

5.2 Spatial Subdivision for Multi-GPU

After adapting the ”Sweep and Prune” algorithm on

a GPU architecture, we now present how it is possi-

ble to adapt it on a multi-GPU architecture. Differ-

ence between these two versions is in the genericity of

the second one because it is able to work on a n-GPU

platform. To separate computations between GPU de-

vices during the broad phase process we use dynamic

spatial subdivision and more precisely we divide space

by the number of GPUs. The subdivision technique is

not a regular one as are grids or octrees but depends

on the density distribution of objects in the environ-

ment. As the computational complexity of the algo-

rithm only depends on the number of objects in the

scene, we can decompose the environment from the

density of objects. This repartition enables to balance

GPU’s computation time and obtain an homogeneous

one between GPUs. Figure 11 presents the technique

we used to subdivide environment and distribute com-

putations between GPU devices. We check among axis

which one has more overlapping pairs, then we divide

it by the number of GPUs in order to separate homo-

geneously number of overlapping pairs between them.

Each GPU is now in charge of looking for overlap-

ping pairs in its own data set. As we mentioned in

the overview each GPU is managed by a CPU core

to provide a global parallelization on multi-GPU and

multi-core. This is done by using OpenMP, which is a

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

Figure 12: Benchmark: Four virtual environments used during simulation tests - (a) Cubes - (b) Torus - (c)

Spheres - (d) Alphabet letters.

Figure 13: Geometric and numerical properties of our

four benchmark environments.

parallelization standard allowing to parallelize the ex-

ecution on several cores by using compiler directives.

Each thread on a core is in charge of a part of the global

environment and of its GPU that executes the broad

phase algorithm.

At the end we synchronise every GPU results to cre-

ate the list of object pairs to transmit to the narrow

phase.

5.3 Results

We tested our new collision detection pipeline with

different simulation scenarios, going from similar ob-

jects that are completely independent to heterogeneous

scenes of colliding objects (cubes, balls, torus and

alphabet letters) (cf Figure 12 and 13). Tests were

performed on a 4 * Quadro FX 4600 with Intel(R)

Xeon(R) CPU X5482 @ 3.20 Ghz (Octo-core) on

Windows XP(v64) with 64GB of RAM.

Graphic 14 presents computation time during the

broad phase process on our four benchmark tests. We

measured time spent by four algorithms (from sequen-

tial CPU to four GPUs). We can notice a significant

difference between CPU and GPU and also between

using 1, 2 or 4 GPUs. For large-scale virtual envi-

ronment speed-up is very significant whereas results

show that using 4 GPUs to perform a small scale en-

vironment brings a loss of time. For example with

the first benchmark (20.000 Cubes) using one GPU re-

Figure 14: The execution time (compared in % to the

CPU time) of the broad phase process in relation to

the run-time architecture.

duces time by 4,2 in relation to the CPU computation

time. Time spent by the algorithm on CPU is here to

compare with GPU measures but it is a non perfor-

mant time because of the brute force method. Using

this CPU algorithm during the broad phase process if

you only have a sequential CPU is highly not recom-

mended. We use it because this is the most paralleliz-

able broad phase algorithm. The use of 2 GPUs re-

duces time by 1,79 in relation to the use of one single

GPU and 4 GPUs reduces it by more than 3,5.

On the contrary in the last benchmark (Alphabet),

CPU time is the best one because there is only few

objects and the broad phase algorithm is linear with

number of object and does not take into account ob-

ject complexity. Results show that using one GPU al-

low to significantly reduce computation time during

the broad phase process into large scale environment.

Results also show that multi-GPU solution is perfectly

suited for this kind of highly parallelizable algorithm

and allow to divide computation time on 2 and 4 GPUs

architecture. Results has also shown that using the

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

Figure 15: Test made with the ”balls” environment to

compare algorithms behaviors throughout the simula-

tion. Tests were performed from sequential CPU to 4

GPUs during the broad phase process.

largest number of available GPU might not insure you

the best performances when using small scale environ-

ment.

Graphic 15 shows performance measurements of

the broad phase process during the ”balls” simulation.

We did four time the same simulation but with four dif-

ferent algorithms from sequential CPU to 4 GPUs. We

can see on this graphic that algorithms has the same

computations time changes all along the simulation,

these changes are related to the simulation evolution.

The horizontal line at the beginning of each curve rep-

resents the fall of balls before dropping on to the floor.

6 Conclusion

We have presented several contributions on the colli-

sion detection optimization centered on hardware per-

formance. We focus on the first step (Broad-phase)

and propose three new ways of parallelization of the

well-known Sweep and Prune algorithm. We first

developed a multi-core model takes into account the

number of available cores. Multi-core architecture en-

ables us to distribute geometric computations with use

of multi-threading. Critical writing section and threads

idling have been minimized by introducing new data

structures for each thread. Programming with direc-

tives, like OpenMP, appears to be a good compro-

mise for code portability. We then proposed a new

GPU-based algorithm also based on the ”Sweep and

Prune” that has been adapted to multi-GPU architec-

tures. Our technique is based on a spatial subdivision

method used to distribute computations among GPUs.

Results show that significant speed-up can be obtained

by passing from 1 to 4 GPUs in a large-scale environ-

ment.

Results suggest a multitude of future directions. It

could be interesting to focus on repartition techniques

that can be used to distribute data and tasks between

GPUs to determine which one is the most suitable for

a multi-GPU platform. Specifically, there is still room

for improvement in the field of data division during

the exact collision detection step (narrow phase). The

Sweep and Prune algorithm can also be parallelized

in many ways by proceeding to a different division of

axis. We saw that using 4 GPUs in a small scale en-

vironment brings a loss of time. Another way of op-

timization could be an evaluation of the most suitable

number of GPU to use to obtain best performances, as

using all available GPUs during physical simulations

might not insure best performance. Multi-GPU tech-

nique is going to be a key component of parallel colli-

sion detection algorithm. The design of such systems

requires a detailed analysis of task and data repartition

techniques to optimize the performance of these com-

plex runtime architectures.

7 Acknowledgements

This work would not have been possible without the

help of several people who provided great help and

our beautiful region of Brittany who provided fund-

ing (ARED financing - GriRV Project No4295). This

paper is related to a Best Student Paper Award re-

ceived on April 2010 at the VRIC conference, the

authors thank the conference’s organisers and people

who voted for our work.

References

[AGA09] Quentin Avril, Valérie Gouranton, and

Bruno Arnaldi, New trends in collision

detection performance, Virtual Reality

International Conference (VRIC) 2009

(Simon Richir & Akihiko Shirai, ed.),

April 2009, pp. 53–62.

[AGA10a] , A broad phase collision detec-

tion algorithm adapted to multi-cores ar-

chitectures, Virtual Reality International

Conference (VRIC) 2010 (Simon Richir

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

& Akihiko Shirai, ed.), April 2010,

pp. 95–100.

[AGA10b] , Synchronization-free parallel

collision detection pipeline, Interna-

tional Conference on Artificial Telexis-

tence (ICAT) 2010, December 2010.

[AGA12] , Fast collision culling in large-

scale environments using gpu map-

ping function, Eurographics Symposium

on Parallel Graphics and Visualization

(2012) (Cagliari, Italy) (Hank Childs,

Torsten Kuhlen, and Fabio Marton,

eds.), Eurographics Association, 2012,

pp. 71–80.

[Bar92] David Baraff, Dynamic simulation of

non-penetrating rigid bodies, Ph.D. the-

sis, Cornell University, 1992.

[Ber97] Gino Van Den Bergen, Efficient collision

detection of complex deformable mod-

els using aabb trees, J. Graph. Tools 2

(1997), no. 4, 1–13.

[BF79] Jon Louis Bentley and Jerome H. Fried-

man, Data structures for range search-

ing, ACMCS 11 (1979), no. 4, 397–409.

[BT95] Srikanth Bandi and Daniel Thalmann,

An adaptive spatial subdivision of the

object space for fast collision detec-

tion of animated rigid bodies, Comput.

Graph. Forum 14 (1995), no. 3, 259–

270.

[BW04] George Baciu and Wingo Sai-Keung

Wong, Image-based collision detection

for deformable cloth models, IEEE

Trans. Vis. Comput. Graph 10 (2004),

no. 6, 649–663.

[CLMP95] Jonathan D. Cohen, Ming C. Lin, Dinesh

Manocha, and Madhav K. Ponamgi, I-

collide: An interactive and exact colli-

sion detection system for large-scale en-

vironments, SI3D, 1995, pp. 189–196,

218.

[DLAG13] Steve Dodier-Lazaro, Quentin Avril,

and Valérie Gouranton, SODA: A

scalability-oriented distributed &

anticipative model for collision detec-

tion in physically-based simulations,

GRAPP/IVAPP (Sabine Coquillart,

Carlos Andújar, Robert S. Laramee,

Andreas Kerren, and José Braz, eds.),

SciTePress, 2013, pp. 337–346.

[Eri05] Christer Ericson, Real-time collision de-

tection, Morgan Kaufmann, 2005.

[FBAF08] François Faure, Sébastien Barbier,

Jérémie Allard, and Florent Falipou,

Image-based collision detection and

response between arbitrary volumetric

objects, September 12 2008.

[GJK88] Elmer G. Gilbert, Daniel W. Johnson,

and Sathiya S. Keerthi, A fast procedure

for computing the distance between com-

plex objects in three-dimensional space,

IEEE Journal of Robotics and Automa-

tion 4 (1988), 193–203.

[GLM96] Stefan Gottschalk, Ming Lin, and Di-

nesh Manocha, Obbtree: A hierarchical

structure for rapid interference detec-

tion, Proceedings of the ACM Confer-

ence on Computer Graphics (New York),

ACM, August 4–9 1996, pp. 171–180.

[GLM05a] Naga K. Govindaraju, Ming C. Lin,

and Dinesh Manocha, Fast and reliable

collision detection using graphics pro-

cessors, COMPGEOM: Annual ACM

Symposium on Computational Geome-

try, 2005.

[GLM05b] , Quick-cullide: fast inter-

and intra-object collision culling using

graphics hardware, SIGGRAPH ’05:

ACM SIGGRAPH 2005 Courses (New

York, NY, USA), ACM, 2005, p. 218.

[GRLM03] Naga K. Govindaraju, Stephane Redon,

Ming C. Lin, and Dinesh Manocha,

Cullide: Interactive collision detection

between complex models in large en-

vironments using graphics hardware,

SIGGRAPH/Eurographics Workshop on

Graphics Hardware (San Diego, Califor-

nia) (M. Doggett, W. Heidrich, W. Mark,

and A. Schilling, eds.), Eurographics

Association, 2003, pp. 025–032.

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

[HFR08] Everton Hermann, Francois Faure, and

Bruno Raffin, Ray-traced collision de-

tection for deformable bodies, GRAPP,

2008, pp. 293–299.

[HRF09] Everton Hermann, Bruno Raffin, and

François Faure, Interactive physical sim-

ulation on multicore architectures, Eu-

rographics Workshop on Parallel and

Graphics and Visualization, EGPGV’09,

March, 2009 (Munich, Allemagne),

2009.

[HTG03] Bruno Heidelberger, Matthias Teschner,

and Markus H. Gross, Real-time vol-

umetric intersections of deforming ob-

jects, VMV (Thomas Ertl, ed.), Aka

GmbH, 2003, pp. 461–468.

[HTG04] , Detection of collisions and self-

collisions using image-space techniques,

WSCG, 2004, pp. 145–152.

[Hub95] Philip M. Hubbard, Collision detec-

tion for interactive graphics applica-

tions, IEEE Transactions on Visualiza-

tion and Computer Graphics 1 (1995),

no. 3, 218–230, ISSN 1077-2626.

[JMJC05] Andy M. Day Jose M. Juarez-Comboni,

A multi-pass multi-stage multi-gpu col-

lision detection algorithm, Graphicon

2005 Proceedings, 2005.

[JTT01] Pablo Jiménez, Federico Thomas, and

Carme Torras, 3d collision detection:

a survey, Computers & Graphics 25

(2001), no. 2, 269–285.

[KHeY08] DukSu Kim, Jea-Pil Heo, and Sung eui

Yoon, Pccd: Parallel continuous colli-

sion detection, Tech. report, Dept. of CS,

KAIST, 2008.

[KHH+09] Duksu Kim, Jae-Pil Heo, Jaehyuk

Huh, John Kim, and Sung-Eui Yoon,

HPCCD: Hybrid parallel continuous

collision detection using CPUs and

GPUs, Comput. Graph. Forum 28

(2009), no. 7, 1791–1800.

[KHI+07] S. Kockara, T. Halic, K. Iqbal,

C. Bayrak, and Richard Rowe, Col-

lision detection: A survey, Systems,

Man and Cybernetics, 2007. ISIC. IEEE

International Conference on (2007),

4046–4051.

[KP03] Dave Knott and Dinesh K. Pai, Cin-

der: Collision and interference detec-

tion in real-time using graphics hard-

ware, Graphics Interface, 2003, pp. 73–

80.

[KS95] Yoshifumi Kitamura and Andrew Smith,

Parallel algorithms for real-time collid-

ing face detection, Robot and Human

Communication (1995), 211–218 (en).

[LAM01] Thomas Larsson and Tomas Akenine-

Mller, Collision detection for continu-

ously deforming bodies, Eurographics

(2001) (en).

[LC91] Ming C. Lin and John F. Canny, A

fast algorithm for incremental distance

calculation, Tech. report, University of

Berkeley, California, March 19 1991.

[LG98] Ming C. Lin and Stefan Gottschalk, Col-

lision detection between geometric mod-

els: a survey, Proceedings of the 8th

IMA Conference on the Mathematics

of Surfaces (IMA-98) (Winchester, UK)

(Robert Cripps, ed.), Mathematics of

Surfaces, vol. VIII, Information Geome-

ters, September 1998, pp. 37–56.

[LMM10] C. Lauterbach, Q. Mo, and D. Manocha,

gproximity: Hierarchical gpu-based

operations for collision and distance

queries, Computer Graphics Forum

(EUROGRAPHICS Proceedings),

vol. 29, June 2010, pp. 419–428.

[OLG+07] John D. Owens, David Luebke, Naga

Govindaraju, Mark Harris, Jens Krüger,

Aaron E. Lefohn, and Timothy J. Pur-

cell, A survey of general-purpose com-

putation on graphics hardware, Pro-

ceedings of Eurographics 2004, Black-

well Publishing Ltd, 2007, Warning:

the year was guessed out of the URL.,

pp. 21–51 (en).

[PKS10] Simon Pabst, Artur Koch, and Wolf-

gang Straβer, Fast and scalable cpu/gpu

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

collision detection for rigid and de-

formable surfaces, Computer Graphics

Forum, vol. 29, July 2010, pp. 1605–

16212.

[SCS+08] Larry Seiler, Doug Carmean, Eric Spran-

gle, Tom Forsyth, Michael Abrash,

Pradeep Dubey, Stephen Junkins, Adam

Lake, Jeremy Sugerman, Robert Cavin,

Roger Espasa, Ed Grochowski, Toni

Juan, and Pat Hanrahan, Larrabee:

a many-core x86 architecture for vi-

sual computing, ACM SIGGRAPH’08

Transactions on Graphics 27 (2008),

no. 3.

[SGwHS98] Jonathan Shade, Steven J. Gortler, Li wei

He, and Richard Szeliski, Layered depth

images, SIGGRAPH, 1998, pp. 231–

242.

[SSIF09] Andrew Selle, Jonathan Su, Geof-

frey Irving, and Ronald Fedkiw, Ro-

bust high-resolution cloth using paral-

lelism, history-based collisions, and ac-

curate friction, IEEE Trans. Vis. Com-

put. Graph 15 (2009), no. 2, 339–350.

[TKH+05] Matthias Teschner, Stefan Kimmerle,

Bruno Heidelberger, Gabriel Zachmann,

Laks Raghupathi, Arnulph Fuhrmann,

Marie-Paule Cani, François Faure,

Nadia Magnenat-Thalmann, Wolfgang

Straßer, and Pascal Volino, Collision de-

tection for deformable objects, Comput.

Graph. Forum 24 (2005), no. 1, 61–81.

[TMT08] Min Tang, Dinesh Manocha, and

Ruofeng Tong, Multi-core collision

detection between deformable models,

Computers & Graphics, 2008.

[TPB08] Bernhard Thomaszewski, Simon Pabst,

and Wolfgang Blochinger, Parallel tech-

niques for physically based simulation

on multi-core processor architectures,

Computers & Graphics 32 (2008), no. 1,

25–40.

[Zac01] Gabriel Zachmann, Optimizing the colli-

sion detection pipeline, Proc. of the First

International Game Technology Confer-

ence (GTEC), January 2001.

urn:nbn:de:0009-6-348, ISSN 1860-2037


	Introduction
	Related Work
	Collision Detection
	Broad-phase
	Narrow-phase


	Architecture Evolution
	From Sequential CPU to Multi-core Architecture
	From Graphic Processor to GPGPU
	Parallel Collision Detection
	GPU-based algorithms
	CPU-based algorithms
	Hybrid-based algorithms

	Positioning

	Multi-Core Broad Phase
	Multi-Threaded Algorithm
	Results
	Positioning Key

	Multi-GPU Broad Phase
	GPU "Sweep and Prune"
	Spatial Subdivision for Multi-GPU
	Results

	Conclusion
	Acknowledgements

