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A characterization method of poroelastic materials saturated by air is described. This inverse

method enables the evaluation of all the parameters with a simple measurement in a standing

wave tube. Moreover, a Bayesian approach is used to return probabilistic data such as the

maximum a posteriori and the confidence interval of each parameter. To get these data, it is

necessary to define prior probability distributions on the parameters characterizing the studied

material. This last point is very important to regularize the inverse problem of identification. In

a first step, the direct problem formulation is presented. Then, the inverse characterization is

developed and applied to simulated and experimental data. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.3699236]
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I. INTRODUCTION

Porous materials are used in a wide range of applica-

tions such as automotive and aeronautics to improve the

acoustic properties at mid and high frequencies without

adding an excessive mass. The sound absorption realized

with these materials is due to viscous and thermal dissipa-

tions inside the pores. Therefore, the structural microgeom-

etry is of prime importance to describe these phenomena.

To predict the behavior of porous materials, finite element

models1,2 (FEM) based on Biot’s theory3–5 can be

employed. Several parameters are then necessary for their

description: the shear modulus N, the bulk modulus Kb, the

structural damping gs, the density of the solid frame q1, the

porosity /, the tortuosity a1, the airflow resistivity r, and

the viscous and thermal characteristic lengths K and K0.
Three methods are typically available to evaluate these pa-

rameters: direct measurements, indirect measurements, and

inverse measurements.

A. Direct measurements

All the parameters can be measured separately with spe-

cific apparatuses. A porosimeter is used to measure the po-

rosity via a pressure variation technique.6 If the frame does

not conduct electricity, the tortuosity can be measured with

an electrical resistivity measurement.7 Otherwise, the tortu-

osity is obtained with ultrasonic wavespeed measurements in

the porous material saturated by two different gases.8–10

This method returns also the viscous and thermal character-

istic lengths. The airflow resistivity is measured with a flow-

meter.11 Finally, elastic and damping parameters related to

the solid phase can be measured with classical experimental

methods adapted for porous materials. A review of these

methods is found in Ref. 12, and an application to the char-

acterization of glass wools is presented in Ref. 13. Direct

measurements of all the parameters can also be performed

by analyzing the microstructure of the frame with a three-

dimensional (3D) microtomograph.14,15

However, all these methods present several drawbacks

and difficulties. The saturation of a porous material with a

fluid is not always easy and may also damage the microstruc-

ture. Uncertainties related to ultrasonic wavespeed measure-

ments can be important in some cases. The resistivity

measurements are affected by the boundary conditions of the

sample in the apparatus. And finally, some materials like fi-

brous ones can present a non-linear dynamical behavior. The

parameters then depend on the compressional rate or on the

strain level at which the sample is tested.16,17

B. Indirect measurements

Indirect measurements of the tortuosity and the viscous

and thermal characteristic lengths are presented in Refs. 18

and 19. These parameters are extracted from pressure meas-

urements in an impedance tube with an analytical solution.

In the case of low or medium flow resistivity porous sam-

ples, the static airflow resistivity can also be extrapolated

from these measurements. However, the values of the airflow

resistivity and porosity are generally required as inputs and

measured with a direct method. A similar analytical method

based on ultrasonic measurements was developed in Ref. 20

with the advantage of evaluating the porosity at the same

time. The drawback in this method is that its accuracy

depends on the pressure measurements, but also on the

uncertainties on the input parameters measured directly.

Finally, the solid phase parameters can also be measured
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indirectly by measuring the phase velocities of guided acous-

tic waves (see Refs. 21 and 22).

C. Inverse measurements

Inverse measurements presented, for example, in Refs.

23 and 24 differ from the previous indirect measurements by

the fact that an optimization tool is necessary to adjust a

model on measured data. The accuracy of the model is of

prime importance in these measurements but the optimiza-

tion tool efficiency is also essential to find the global opti-

mum without being trapped in a local minimum. It is

therefore theoretically possible to infer all the parameters at

once with only one measurement. The standard intrinsic pa-

rameters of porous materials can hence be evaluated,25–27 as

well as the elastic parameters such as the

shear modulus.28 Inverse methods based on ultrasonic meas-

urements have also been developed in Refs. 29–32. Here, the

accuracy of the estimated parameters depends on the quality

of the measurements and on the robustness of the optimiza-

tion method. However, the reliability of the results is always

difficult to assess.

In this paper, a robust inverse method is presented to

characterize all the acoustic and elastic parameters at once in

a standing wave tube. In particular, the Bayesian approach is

adopted as it can naturally merge the experimental and prior

information (see Ref. 33). As such, the resulting cost func-

tion is a combination of a data-fitness metric and a regulari-

zation term; the importance of the latter, which pops up as a

natural byproduct of the Bayesian approach, is fundamental

to improve the efficiency of the identification scheme espe-

cially in nearly non-identifiable configurations. Point esti-

mates of the parameters are obtained by selecting the best

samples returned by the Markov Chain Monte Carlo

(MCMC) methods (i.e., samples after convergence of the

chains). One of the most interesting features of the Bayesian

approach in conjunction with MCMC method is to get the

probability density function (pdf) of each parameter as well

as the joint probability density functions of the parameters.

Uncertainties can hence be quantified on estimated values of

each parameter as well as dependencies between them. Hav-

ing such information available is crucial to assess the quality

of the parameters estimated from inverse measurements.

Another advantage of the Bayesian approach exploited in

this paper is its ability to include results from other direct or

indirect measurements; the philosophy is then to view the

latter as possible prior outcome.

The paper is organized as follows. First, the model used

to describe the wave propagation in the standing wave tube

with a porous sample is presented. Then the Bayesian

approach used to identify the porous material parameters is

detailed with its particular cost function.

The chosen optimization method is then discussed.

Simulated and experimental results are finally presented.

II. POROELASTIC MODEL DESCRIPTION

The Biot’s model is used here to calculate the reflexion

and transmission coefficients of a porous material sample in

a standing wave tube. Knowing these coefficients, it is possi-

ble to predict the pressure at any position inside the tube.

A. Biot’s model

Poroelastic materials are defined in Biot’s theory as

materials with a fluid and a solid phase. Elastic, inertial, vis-

cous, and thermal interactions between the two phases are

hence taken into account. The elastic coupling is given by

the Biot’s poroelastic stress-strain relations

rs ¼ 2N es þ ðP� 2NÞ trðesÞ Iþ Q trðef Þ I; (1)

rs ¼ R trðef Þ Iþ Q trðesÞ I; (2)

where rs (respectively, rf) represents the solid (respectively,

fluid) stress tensor, and es (respectively, ef ) represents the

solid (respectively, fluid) strain tensor. I is the identity ma-

trix, and P, Q, R, N are the classical elastic coefficients used

in Biot’s model such as

P ¼ 4

3
N þ Kb þ

ð1� /Þ2

/
Kf ; (3)

Q ¼ Rð1� /Þ
/

; (4)

R ¼ /Kf ; (5)

N is the shear modulus and Kb is the bulk modulus of the

solid frame. / is the porosity and Kf is the fluid compressi-

bility modulus. The solid phase is now defined with an elas-

tic parameter Pe and a structural damping gs, independent

from the fluid phase such that

P ¼ Peð1� jgsÞ þ
ð1� /Þ2

/
Kf : (6)

On the other hand, the inertial coupling is taken into account

in the equations of motion

$rs ¼ �q11x
2Us � q12x

2Uf ; (7)

$rf ¼ �q22x
2Uf � q12x

2Us; (8)

where Us and Uf are the solid and fluid displacements, and

q11, q22, q12 are the classical inertial coupling coefficients

used in Biot’s model and related to the densities q1 of the

solid phase, qf of the fluid phase, and q0 of the air such

that

q11 ¼ q1 þ /qf � /q0; (9)

q12 ¼ /qf þ /q0; (10)

q22 ¼ /qf : (11)

Viscous and thermal dissipations are taken into account by

the frequency-dependent Johnson-Allard’s expressions of

the fluid density qf and the dynamic fluid compressibility Kf
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qf ¼ q0a1 1� r/
jq0a1x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4j

ga2
1xq0

K2/2r2

s !
: (12)

Kf ¼
cP0

c� ðc� 1Þ 1�
8g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�jq0

Pr K02x
16g

q
jK02 Pr xq0

0
@

1
A
�1
; (13)

respectively, with j2¼�1. These expressions are given with

a time dependence e�jxt, the Prandtl number Pr, the dynamic

fluid viscosity g, the static pressure P0, the ratio of specific

heats c, and five parameters: the porosity /, the tortuosity

a1, the airflow resistivity r, and the viscous and thermal

characteristic lengths K and K0. In the following the ratio

kK ¼ K0=K � 1 is introduced in order to add the physical

constraint K0 � K.

B. Standing wave tube solution

The case of a poroelastic material sample placed in a

standing wave tube and submitted to a normal incident plane

wave is considered as depicted in Fig. 1 (see also Ref. 16).

The reduced one-dimensional Biot’s model is therefore

adopted. In this case, the shear wave is not present in the

poroelastic material. Only the solid and fluid compressional

waves remain. Using the wave formalism with a time de-

pendence e�jxt, the fluid and solid displacements are derived

from two scalar potentials

Us ¼ rðu1 þ u2Þ; (14)

Us ¼ rðl1u1 þ l2u2Þ; (15)

with

u1 ¼ Aejk1x þ Be�jk1x; (16)

u2 ¼ Cejk2x þ De�jk2x: (17)

Wave numbers k1, k2 and amplitude coefficients l1, l2

between the solid and fluid displacements are recalled in the

Appendix.

Unknown amplitudes A, B, C, and D are determined using

the boundary conditions at the interface of the poroelastic ma-

terial sample. In the present case of an acoustic–poroelastic

interface, the coupling conditions are based on the flow, the

fluid pressure, and the total normal stress continuity conditions

such that

/Uf � nþ ð1� /ÞUs � n ¼ Ua � n; (18)

/rf � nþ ð1� /Þrs � n ¼ �Pa � n; (19)

rf � n ¼ �Pa � n: (20)

The acoustic pressure Pa and acoustic displacement Ua are

related to the incident and reflected waves as

Pa ¼ Pinc þ Pr at x ¼ 0; (21)

and to the transmitted and backward waves as

Pa ¼ Pt þ Pb at x ¼ d: (22)

On the other hand, reflected and transmitted waves are

related to the incident wave with the reflection and transmis-

sion coefficients, respectively, such that

Prk k ¼ R Pinck k; (23)

Ptk k ¼ T Pinck k; (24)

while the backward wave is related to the transmitted wave

with the rigid boundary condition as

Ut þ Ub ¼ 0 at x ¼ L: (25)

It is thus possible to calculate the reflection and transmission

coefficient of the porous material sample. Then the total

acoustic pressure can be determined at any position in the

tube, and, in particular, at the four microphone positions by

summing the incident and reflected waves in the upstream

section and by summing the transmitted and the backward

waves in the downstream section. The only remaining

unknown to set is the incident pressure.

III. BAYESIAN IDENTIFICATION METHOD

The central idea beyond the Bayesian approach is to

construct the posterior pdf of the parameters to be inferred.

Not only will the maximization of the latter provide the most

likely values of the parameters given the measured data—

the so-called maximum a posteriori (MAP) estimates—but

its shape will be truly indicative of the joint probability dis-

tribution of the estimated parameters as well.33,34 In particu-

lar, it will give access to the full covariance matrix, a

fundamental quantity to assess the variability of the esti-

mates and their mutual correlations. This is in contrast to

most other optimization techniques, where cost functions

rarely result from a deductive approach and hardly bear any

probabilistic interpretation.

A. Cost function

The parameters to identify are the following: the poros-

ity /, the tortuosity a1, the airflow resistivity r, the viscous

characteristic length K, the characteristic lengths ratio kK,

the solid frame density q1, the elastic part Pe of the coeffi-

cient P in Eq. (6), and the structural damping gs. Namely, let

h ¼ f/; a1; r;K; kK; q1;Pe; gsg be the vector of parametersFIG. 1. Standing-wave tube setup.
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to be inferred and p h Pik;P
inc
k

� ���� �
its pdf conditional to the

observations of the four pressures Pik � PiðxkÞ, i¼ 1, 2, 3, 4,

as returned by the microphones and the incident pressure

Pinc
k � PincðxkÞ at frequencies xk, k 2 F . This is the poste-

rior pdf which reflects all the information that can be

inferred on h from the measured data and in the frequency

band fxk; k 2 Fg based on the prior information. Now from

Bayes’ rule

pðh fPik;P
inc
k gÞ / pðfPikg

�� ��h; fPinc
k gÞpðhÞ; (26)

where / stands for the proportional sign [all factors entering

Eq. (26) that do not depend on the vector of parameters h
have been removed], p Pikf g hj ; Pinc

k

� �� �
is the likelihood and

p(h) is the prior pdf of the parameters, both of which can be

given closed-form expressions. In words, p Pikf g hj ; Pinc
k

� �� �
reflects the direct problem which, given the values of h and

{Pinc(xk)} can predict the data {Pi(xk)}—notwithstanding

measurement noise and modeling errors—whereas p(h) is the

mechanism to assign weights to the values of h before the

experiment. Typically, p(h) will cover a range of possible val-

ues obtained from tabulated data or from other types of

experiments (e.g., direct or indirect measurements) and its

shape will be based either on the user’s expertise or subjective

judgment, or on strict physical constraints (e.g., constraint of

positiveness). The choice of the prior pdf will be discussed in

Sec. III B. That of the likelihood proceeds as follows.

As seen from Eqs. (21)–(24), the measured data are

functionally related to the vector of parameters h as

Pik ¼ bikðhÞPinc
k þ Nik; (27)

where bik(h) is a deterministic function that embodies the

direct model of Sec. II, and where Nik accounts for additive

measurement noise. It results that p Pikf g hj ; Pinc
k

� �� �
¼ pNðPik � bikðhÞPinc

k Þ with pNð�Þ standing for the pdf of Nik.

Upon invoking the central limit theorem applied to the

Fourier transform of Nik, it happens that under mild condi-

tions pNð�Þ tends to a (complex) Gaussian distribution, inde-

pendently of the original pdf of the additive noise in the time

domain.35 Hence, after further assuming that the measure-

ment noise is uncorrelated across the microphones, which is

true under stationary regime35

pðh
��fPik;P

inc
k gÞ/pðhÞ

Y
xk2F

1

p4P4
i¼1r

2
ik

�exp �
X4

i¼1

Pik�bikðhÞPinc
k

�� ��2
r2

ik

 !
: (28)

This is the closed-form expression of the posterior pdf of the

parameters h which can now be explored in a variety of

ways. The noise variance r2
ik enables here to increase or

decrease the prior contribution in the posterior pdf. It may be

determined either experimentally or set a priori. In the fol-

lowing, the variance is set to 0.5%.

In the present work, the optimal values of the parame-

ters are sought so as to maximize this expression or, more

conveniently, so as to minimize its negative logarithm lead-

ing to the following cost function:

JðhÞ ¼ � ln pðhÞ þ
X
xk2F

X4

i¼1

Pik � bikðhÞPinc
k

�� ��2
r2

ik

: (29)

In doing so, one should keep in mind that Pinc
k is the first

quantity to be inferred since it is not measured by the micro-

phones. This is easily achieved analytically by setting the

gradient of J(h) with respect to Pinc
k to zero, thus giving

P̂inc
k ¼

X4

i¼1

bikðhÞ � Pik

X4

i¼1

bikðhÞj j2
(30)

(where * stands for the conjugate operator, and the hat sign

indicates an estimate) which is to be used in place of Pinc
k in

J(h).

B. Prior information

The prior density function p(h) on the inferred parame-

ters is one of the most important quantities in the Bayesian

approach. It is actually the mechanism by which the inverse

problem is regularized, i.e., forced to find a unique and stable

solution even in hardly identifiable cases. As mentioned

above, there are many possible choices on p(h) that may

reflect the user’s prior knowledge on the problem. In the

present study, a separable pdf pðhÞ ¼ P8
1 pðhiÞ is chosen,

meaning that the parameters are a priori mutually independ-

ent. It must be underlined here that prior independence only

reflects the user’s ignorance of any coupling between the pa-

rameters before the experience is conducted, and that it gen-

erally does not prevent the posterior parameters to be

physically dependent, which after all is what matters only.

Then, for the sake of simplicity, each pdf p(hi) was modeled

as a Chi2 distribution with “scale parameter” ki and number

of degrees-of-freedom vi, viz.,

ln pðhiÞ ¼ �ðki � 1Þ lnðaihi þ biÞ

þ �i

2
ðaihi þ biÞ þ C (31)

with C a constant with no effect on J(h). This naturally

enforces a constraint of positivity (ai¼ 1, bi¼ 0) on parame-

ters r, K, q1, Pe, and gs, and after a suitable change of vari-

able ðai ¼ 61; bi ¼ �1Þ, inequality constraints /	 1,

a1 > 1 and kK � 1. In other words, it forbids non-physical

values in Biot’s model. Other distributions than the Chi2

could surely be used to ensure similar properties, yet it is

well-known that the exact shape of the prior pdf has little

effect when large amounts of data are available.34 Moreover,

the values of ki and �i may be tuned from their relations

ki ¼ l2
hi
=r2

hi
and �i ¼ 2lhi

=r2
hi

with the expected mean lhi

and variance r2
hi

of the parameter hi. Mean values and stand-

ard deviations used in the following are given in Table I for

TABLE I. Foam statistics.

/ a1 r K kK q1 Pe gs

kN s m�4 lm kg m�3 MPa

Mean ðlhi
Þ 0.97 2.0 39 94 3.0 22 0.15 0.15

St. Dev. ðrhi
Þ 0.03 1.6 35 70 2.3 12 0.25 0.06
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the foams, and in Table II for the fibrous materials. A good

prior knowledge on some parameters is, of course, helpful to

adjust these values. For example, a simple measurement

with a balance can give a first estimation of the frame den-

sity in the void q1. It must be emphasized here that although

such prior information is crucial in the Bayesian approach, it

could not be used in a classical approach, i.e., by direct plug-

in into Biot’s model.

IV. OPTIMIZATION METHOD

The aim of the optimization tools described here is to

get a good estimation of each parameter in a robust way.

Besides, the major problem to avoid is to be trapped in a

local minimum of the cost function. With descent optimiza-

tion methods, the result depends highly on the initial starting

point. These methods are therefore generally used to refine

locally a solution obtained from a global approach. How-

ever, global search methods like genetic algorithm or Monte

Carlo methods are very time consuming when the number of

parameters to estimate is important and when the search

space is large.

MCMC techniques can serve to explore efficiently the

whole space of the parameters when facing large dimen-

sions. The basic idea is to generate random samples from a

Markov Chain whose distribution converges to the posterior

pdf (28). A Markov chain (e.g., Metropolis-Hastings36,37

explores the search space by spending more time in regions

of high probability, i.e., around the maximum of the cost

function. Thus, optimal estimates of the parameters can be

simply selected among samples of the Markov Chain at con-

vergence. In addition, MCMC gives access to the joint pdf

of the inferred parameters and is very useful to assess the ac-

curacy of the parameters estimates. In cases where the pa-

rameters are hardly identifiable from the available

measurements, the posterior pdf may indeed have multiple

modes. As a result, there is a risk the Markov chain gets

trapped in a local mode. To improve the exploration effi-

ciency and avoid convergence to a local optimum, it has

been proposed to combine a genetic algorithm with the

MCMC method (see Refs. 38–40)—the so-called EMCMC

method—where a series of chains are generated instead of a

single one, and exchange of information is allowed between

the chains through crossover and swap operators. The main

drawback of this approach is the computation time necessary

to ensure a good exploration when the search space is large,

but this is not insurmountable, for instance, if a surrogate

model is used.39

TABLE II. Fibrous statistics.

/ a1 r K kK q1 Pe gs

kN s m�4 lm kg m�3 MPa

Mean ðlhi
Þ 0.96 1.2 31 98 2.0 52 0.5 0.093

Standard deviation ðrhi
Þ 0.024 0.25 28 59 0.57 44 1.4 0.02

TABLE III. Parameters of the three materials used in the simulated data.

Parameters Material A Material B Material C

/ 0.95 0.95 0.97

a1 1.00 1.00 1.54

r (103 N m�4 s) 105 23.0 57.0

K (lm) 35.1 54.1 24.6

kK 3 3 3

q1 (kg m�3) 17 58 46

Pe (MPa) 1.4� 10�3 1.7� 10�2 2.9� 10�1

gs 0.100 0.100 0.115

FIG. 2. (Color online) Posterior

pdfs for the parameters of material

A. Vertical line: reference value to

find.
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In the present work, 5000 generations with 240 individu-

als chains have been used to explore the parameters space. A

serie of initial values has been generated randomly according

to the prior pdfs—see Sec. III B—in order to ensure a good

coverage of the search space. As previously explained, the

prior information used in the cost function and detailed in

Tables I and II makes it possible to restrict the search domain

around the mean values of the parameters and within a “radius

of convergence” proportional to their standard deviation.

V. RESULTS

A. Results from simulated data

In order to evaluate the efficiency and the robustness of

the proposed identification method, simulated data are used

first instead of real experimental measurements. These data

are generated using the model described in Sec. II with 1181

frequencies lines between 100 Hz and 6000 Hz. A random

noise has been added to the simulated data with a signal-to-

noise-ratio of 0.5% in order to account for instrumentation

noise as well as modeling noise. The same noise variance r2
ik

is used in the cost function (29) with a direct effect on the

prior contribution in the posterior pdf. When the level of

noise is very low, the priors’ contribution is not important.

On the contrary, for high level of noise the estimated param-

eters depend highly on the prior contributions. In this case,

the user expertise is of prime importance and estimated pa-

rameters must then be taken with caution. Three materials A,

B, and C found in Ref. 41 have hence been used with a sam-

ple thickness of 20 mm. The parameters of each material are

given in Table III. Material A is a low density glass wool

found in aerospace applications with a very high airflow re-

sistivity. Material B is a high density fibrous material and

material C is a plastic foam with a stiff skeleton and a high

airflow resistivity. Both materials B and C are found in auto-

motive applications.

The user’s expertise and his/her subjective judgment is

used here to modify the priors listed in Tables I and II. Mate-

rial A being very soft and quite resistive, the statistical mean

values of the rigidity and resistivity are multiplied by 0.01

and 3, respectively, to obtain the prior mean values. Material

B being quite soft and not very resistive, the statistical mean

values of the rigidity and resistivity are multiplied by 0.1

and 1/3, respectively, to adjust efficiently the prior mean

values.

The posterior pdfs and mean values (MVs) obtained

with the EMCMC method for material A and B are presented

in Figs. 2 and. 3, respectively. Most of the parameters are

well identified with a narrow pdf around the reference val-

ues. However, it is seen that some parameters are not as

accurately estimated as other ones. In particular, the tortuos-

ity and the characteristic lengths of material A do not present

a smooth distribution, but rather a multi-modal distribution.

The mean value and the maximum a posteriori estimates are

meaningless in this case, which demonstrates the advantage

of returning the full pdfs rather than point estimates.

FIG. 3. (Color online) Posterior

pdfs for the parameters of material

B. Vertical line: reference value to

find.

TABLE IV. Errors (%) obtained with the simulated data.

Parameters Material A Material B Material C

/ 0.33 0.24 0.97

a1 17 0.44 4.8

r 0.21 0.10 2.8

K 87 1.3 8.9

K0 3.3 1.6 4.2

q1 0.28 5.4 0.16

Pe 56 1100 2.7

gs 0.32 0.07 16
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Furthermore, these three parameters are not independent and

the knowledge of one of them would enable one to estimate

the two others more accurately.

Table IV displays the relative error obtained with the pro-

posed method on simulated data with added random noise.

The MVs are compared here with the reference data. It is seen

that the best results are found with material B, and the worst

with material A. The results’ accuracy can thus be related to

the resistivity of the material. For material B, only the solid

phase elasticity is not well-estimated. The solid phase is

indeed not preponderant in the acoustic response due to the

acoustic excitation, the very low rigidity, and very low resis-

tivity of the material. This is also visible on the pdf in Fig. 3.

However, poor estimations of mechanical parameters do not

affect the other recovered parameters. Indeed, when the solid

phase contribution is negligible in the cost function, the solid

phase parameters cannot be estimated accurately, yet it does

not change the global optimum. For material A, the tortuosity

and the viscous characteristic length are not accurate. How-

ever, when looking at the joint pdf in Fig. 4, one can see that

these two parameters are closely related. A direct measure-

ment of one of these parameters would therefore give a better

estimation for the second. Here, again, this is a good demon-

stration of the advantage of getting the full posterior pdfs

rather than only point estimates.

B. Results from experimental data

The identification process described in this paper relies

on pressure measurements made in the standing wave tube

of Fig. 1. A small or a large tube is used depending on the

frequency band of interest. It is important here to reach high

frequencies to get the effects of all the parameters including

the solid phase elastic parameters. A multisine excitation is

used with 1328 frequencies lines between 100 Hz and

6000 Hz.

FIG. 4. (Color online) Joint pdf between the tortuosity and the viscous char-

acteristic length for material A.

TABLE V. Reference values for the three tested materials.

Parameters Polyurethane foam Fibrous material Agglomerated

/ 0.98 0.96 0.91

a1 1.74 1.00 1.09

r (103 N m�4 s) 14.4 5.4 23.6

K (lm) 87 170 33

kK 3.3 1.4 2.9

q1 (kg m�3) 28 44 120

FIG. 5. (Color online) Cost function

evaluation around the reference val-

ues for the foam. Solid lines: poste-

rior cost functions, dotted lines: cost

functions without prior information,

vertical lines: reference values.
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Three different materials are tested: a foam, a fibrous

material, and an agglomerated foam material. The thickness

of each sample is 4 cm, 4 cm, and 2 cm, respectively. The

present method does not require several measurements on

different samples for each material to get the pdfs of the

identified parameters. This is another advantage of the

Bayesian method: it takes into account both the measure-

ment uncertainties and the modeling discrepancies at once

with only one sample. Supplementary data on other sam-

ples could also be used to improve the identification

process, but is not necessary to get the posterior pdfs. The

three materials have also been characterized by Matelys

with the indirect method given in Refs. 18 and 19. These

measured values are displayed in Table V and are taken in

the following as reference values. However, these values

are also submitted to some uncertainties inherent to the

measurement setup or the boundary conditions of the sam-

ple,16,42 for instance.

For simplicity, the prior pdfs of the parameters are all

defined by Chi2 pdfs—which easily allow non-negativity or

FIG. 6. (Color online) Cost function

evaluation around the reference val-

ues for the fibrous material. Solid

lines: posterior cost functions, dotted

lines: cost functions without prior in-

formation, vertical lines: reference

values.

FIG. 7. (Color online) Cost function

evaluation around the reference val-

ues for the agglomerated material.

Solid lines: posterior cost functions,

dotted lines: cost functions without

prior information, vertical lines: ref-

erence values.
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other inequality constraints—based on the tabulated data in

Tables I and II. The user’s expertise and subjective judgment

are also used to amend the latter values, if necessary. For

instance, the statistical mean value of the resistivity of the

foam and the fibrous material have been multiplied by 1/3

according to the authors’ experience with this material. Sim-

ilarly, the agglomerate material being denser, its porosity

and density have been adjusted by multiplying their statisti-

cal mean values by 0.95 and 6, respectively, to obtain the

prior mean values.

An evaluation of the marginal cost function for each pa-

rameter around the reference is presented for the three tested

materials in Figs. 5–7. The effect of the prior information is

more or less important depending on the material, but it still

helps to regularize the identification problem for some pa-

rameters. Moreover, the minimum of the cost function is

found to be very close to the expected values of the parame-

ters in all cases.

The posterior pdfs obtained with the EMCMC method

for the three tested materials are presented in Figs. 8, 9,

FIG. 8. (Color online) Posterior

pdfs for the foam. Vertical lines and

shaded area: reference values and

standard deviations.

FIG. 9. (Color online) Posterior

pdfs for the fibrous material. Verti-

cal lines and shaded area: reference

values and standard deviations.
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and 10, respectively. Very important information lies in the

support of the posterior pdfs. The mean values, the maxi-

mum a posteriori, the standard deviations, and the joint

probability distributions must be carefully analyzed to

determine the relevance and the reliability of the results.

Here, the distributions are quite smooth and unimodal, which

means good reliability on the results. Nevertheless, some

parameters, the solid phase parameters for instance, cannot

be compared to reference values. The solid phase response is

indeed not preponderant in the total response due to a very

low rigidity, and the estimated values for the solid phase

parameters may not be accurate.

The posterior mean values are now compared in Table

VI with the reference values. Once again, the fibrous mate-

rial with the lowest resistivity gives the best results in com-

parison with the indirect method. For the foam, some

estimated values such as the tortuosity and the viscous char-

acteristic length are slightly different from the reference val-

ues. However, the joint pdf in Fig. 11 is still very thin. These

two parameters are thus still related. A better prior knowl-

edge or a direct measurement on one of them could then

modify the value of the second. For the agglomerated mate-

rial, the thermal characteristic length is also different from

its reference value. However, the posterior pdf on this

parameter is very thick with a high standard deviation, and

the reference value with its own uncertainties lies in the

confidence interval.

The experimental uncertainties can indeed explain some

differences. The indirect method in Refs. 18 and 19 and the

present inverse method are both submitted to experimental

uncertainties. For example, effects of circumferential edge

constraint16,42 can be expected in both measurements and

can lead to differences in the results. The reference value of

the resistivity obtained with a flowmeter is also submitted to

similar uncertainties due to the boundary conditions. These

uncertainties can thus change the accuracy of all the

FIG. 10. (Color online) Posterior

pdfs for the agglomerated material.

Vertical lines and shaded area: refer-

ence values and standard deviations.

TABLE VI. Differences (%) with the reference values.

Parameters Foam Fibrous Agglomerated

/ 2.3 0.28 0.32

a1 34 0.54 13

r 28 2.8 8.2

K 32 1.8 15

K0 5.0 38 81

q1 46 23 9.8 FIG. 11. (Color online) Joint pdf between the tortuosity and the viscous

characteristic length for the foam.
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reference values. The advantage of the present method is

to provide an idea of the interval of confidence and to

identify the direct measurements that could improve the

results.

It is also well known that measurement reproducibility

and repeatability are not perfect, and round robin tests

have already shown some surprising discrepancies between

laboratories even for classical absorption coefficient meas-

urements. The present comparison between results obtained

in different laboratories, by different users, on different

samples, with different methods seems therefore quite rea-

sonable. A better prior knowledge on some parameters

could improve the comparison, but the aim of the paper is

not to present a perfect method that has been tuned to

obtain the expected results. This paper presents instead a

method and its limits, a method submitted to the user’s

expertise, and a flexible method that can be improved

with external data obtained, for example, from direct

measurements.

VI. CONCLUSION

An inverse method of porous material identification has

been tested on simulated and experimental data. This method

based on Baye’s rule is robust due to the prior information

added in the cost function. The posterior pdfs are finally

obtained with an EMCMC algorithm (genetic algorithm and

Markov Chain Monte Carlo). Simulated and experimental

results show that this method is efficient and more adapted

to low resistivity materials. The posterior pdfs and the joint

pdfs are also available in this method to evaluate the results

accuracy and the dependence between the parameters. Com-

pared to standard inverse methods, the main advantages are

the robustness added by the prior information and the dis-

posal of the full posterior pdfs rather than only point

estimates.

Small discrepancies can be observed in a few cases with

other characterization methods but some clues are given in

the paper to help the user to evaluate the reliability of the

results and, if necessary, to improve the quality of the results

by adding prior information on some parameters with spe-

cific direct measurements. Once again, the main advantage

of the method is not to measure the parameters with the

highest reliability but to give, with a very simple measure-

ment setup, the best set of parameters to feed a complex

model being given all the possible modeling and measure-

ment uncertainties, and to give also for each parameter an

interval of confidence. It is then the user’s responsibility to

take the results as is or to investigate the possible

enhancements.
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APPENDIX: REDUCED ONE-DIMENSIONAL BIOT’S
MODEL

Using the wave formalism with a one-dimensional

Biot’s model gives the following wave numbers k1, k2 and

amplitude coefficients l1, l2 between the solid and fluid

displacements:

k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2ðPR� Q2Þ Pq22 þ Rq11 � 2Qq12 �
ffiffiffiffi
D
p� 	s

;

l1 ¼
Pk2

1 � x2q11

x2q12 � Qk2
1

;

k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2ðPR� Q2Þ Pq22 þ Rq11 � 2Qq12 þ
ffiffiffiffi
D
p� 	s

;

l2 ¼
Pk2

2 � x2q11

x2q12 � Qk2
2

;

with

D ¼ ðPq22 þ Rq11 � 2Qq12Þ2

� 4ðPR� Q2Þðq11q22 � q2
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