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This paper proposes an efficient solution to the separation of uncorrelated wide-band sound sources

which overlap each other in both space and frequency domains. The space-frequency separation is

solved in a hierarchical way by (1) expanding the sound sources onto a set of spatial basis functions

whose coefficients become the unknowns of the problem (backpropagation step) and (2) blindly de-

mixing the coefficients of the spatial basis into uncorrelated components relating to sources of distinct

physical origins (separation step). The backpropagation and separation steps are both investigated

from a Bayesian perspective. In particular, Markov Chain Monte Carlo sampling is advocated to

obtain Bayesian estimates of the separated sources. Separation is guaranteed for sound sources having

different power spectra and sufficiently smooth spatial modes with respect to frequency. The validity

and efficiency of the proposed separation procedure are demonstrated on laboratory experiments.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4754530]
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I. INTRODUCTION

The localization and quantification of sound sources

play an important role in noise control applications related to

acoustic engineering. Sound source quantification has been

investigated by several methods such as near-field acoustic

holography,1 Helmholtz equation least squares2 and inverse

numerical acoustics.3,4 More than the quantification of the

total source field, sound source separation aims to discrimi-

nate all source distributions from the measured sound field

by decomposing it into contributions stemming from distinct

physical origins. Much attention has been recently paid to

visualize and analyze relative contributions from mutually

incoherent sources in the near-field. An early work5 reports

that by placing a number of reference microphones next to

the apparent sources the individual contributions from the

sources may be estimated from cross-correlation measure-

ments; yet this approach requires prior knowledge of the

locations of individual sources. One attempt reported by

Nam6 to avoid specifying the prior locations of sources is to

use the pressure signals at source positions estimated by the

backward prediction of near-field acoustic holography as

coherent signals to the sources. A multi-reference cross-spec-

tral analysis approach is proposed to decompose the measured

sound field into a number of partial fields owing to the refer-

ence sensors put close to sources, and these partial fields are

projected back to any reconstruction surface. It has been

addressed in a series of work, with source nonstationarity in

the scan-based measurement,7 with optimally located virtual

references,8 in the presence of reference signals corrupted by

noise and source level variation.9 Nam and Kim10 further pro-

pose an extended partial field decomposition algorithm that

does not require placing reference sensors close to individual

sources, where calculation is used rather than measurement

technique to decompose a hologram image into images of

incoherent sources. However, in the acoustic literature, the

separation of sound sources has rarely been addressed in an

unsupervised way, that is to find the hidden mixture of sound

sources from the unlabeled measurements (without reference).

Such an objective has recently motivated considerable

research efforts in the signal processing community—see,

e.g., Refs. 11–13—where the blind separation of mixtures of

sources has been shown to be possible based on the sole

assumption on the statistics of the sources, e.g., their mutual

independence, their diversity in time or in frequency domain,

etc. Regarding separation approaches, the Bayesian method

has been intensively adopted (see, for instance, Refs. 13–15)

as it provides an ideal framework to incorporate any knowl-

edge available before the experiment in order to update the

probability distribution that fully describes the unknown pa-

rameters of the problem; it also embodies an internal mecha-

nism to regularize ill-posed problems.13,16 The available

information (even assumption) is incorporated in the form of

probability density functions for instance through the use of

the maximum entropy principle; the probability represents

the current state of knowledge on a parameter based on the

available information in the Bayesian context.17

Unfortunately, all the blind separation approaches exist-

ing in the signal community are not directly transposable to

the separation of sound sources: one major difference is that

sound sources are signals of both time (or frequency) and
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space, which yields a huge amount of parameters to be esti-

mated in the mixture and thus makes the problem very under-

determined; another difficulty is that acoustic separation

implicitly implies inversion of the wave equation, a problem

which is known to be severely ill-posed. In order to circum-

vent these difficulties, the present work proposes an original

parametric formulation for sound source separation in both

space and frequency. Not only does it improve the condition-

ing of the problem by reducing a huge number of parameters

to a tractable amount, but it also lessens the separation effort

by proceeding in a hierarchical way: first the sources to be

separated are expanded onto a spatial basis whose coefficients

become the unknowns of the problem (backpropagation step);

second, the coefficients pertaining to each source (primitives

of the sound field) are blindly estimated (blind separation

step). Both steps are investigated in an optimal way from a

Bayesian perspective to reduce the ill-conditioness, treat the

measurement noise and modeling error, and enhance the spa-

tial resolution of reconstructed sources. Eventually, the diver-

sity of the source power spectra as well as their spatial

property are exploited to blindly estimate the unknown varia-

bles in the mixture, which is solved by implementing Markov

Chain Monte Carlo (MCMC).

The rest of the paper is organized as follows. Section II

derives the formulation for space-frequency sound source sep-

aration, a hierarchical framework including backpropagation

and separation. Section III presents the Bayesian reconstruc-

tion of the sound field with robust regularization and basis

function. Section IV illustrates the application of a Bayesian

inference with MCMC to estimate source parameters.

Section V validates the proposed separation methodology on

laboratory examples. The conclusion is drawn in Sec. VI.

II. FORMULATION OF SPACE-FREQUENCY SOUND
SOURCE SEPARATION

Sound sources radiate an acoustic field which can be

computed through an analytical (Green’s function) or an

acoustic boundary element model: this is called the forward

problem. The acoustic propagation from a source distribution

to a microphone array is depicted in Fig. 1. The recorded

temporal pressure signals at the microphones are analyzed by

using the Short Time Fourier Transform (STFT), as described

hereafter. The total observation time of measurements is di-

vided into n- overlapped intervals of identical length. The

intervals are j-indexed and serve to generate a set of space-

frequency complex vectors by Fourier transforming the data

over their durations. These complex vectors are usually

referred to as frequency-domain snapshots.18

In linear acoustics, the measured pressure can be consid-

ered as the sum of the pressures contributed by each sound

source plus measurement noise. Specifically, the pressure

signal pðrj; x; -Þ measured by the jth microphone at position

rj reads

pðrj; x; -Þ ¼
Xn

i¼1

p0;iðrj; x; -Þ þ �ðrj; x; -Þ; (1)

where p0;iðrj; x; -Þ is the sound field radiated by the ith
sound source, �ðrj; x; -Þ is an output error term which basi-

cally accounts both for instrumentation, environment noise,

and modeling errors, n denotes the underlying number of

sources, x is the angular frequency variable, and - labels

the frequency-domain snapshot. Under random sound excita-

tion, the - indexed variables are seen as random draws of

snapshots. The contribution p0;iðrj; x; -Þ of the ith source is

obtained by the spatial integration of the source distribution

siðr0; x; -Þ on the source domain (C) with the Green’s func-

tion gðrj; r0; xÞ,

p0;iðrj; x; -Þ ¼
ð

C
siðr0; x; -Þgðrj; r0; xÞdCðr0Þ: (2)

In the following, the backpropagation surface—on which the

sources are to be separated—will be assumed to coincide

with the source domain (C), although there will be no techni-

cal difficulty for this assumption to be relaxed. Furthermore,

the backpropagation surface may have any topology and the

array any geometry—not necessarily parallel planes as

depicted for simplicity in Fig. 1.

FIG. 1. (Color online) Forward problem

[(a): acoustic origin, (b) backpropagation

plane, (c) microphone array] and measure-

ment data processing.
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In order to satisfy the condition of separability, the sound

sources are assumed to possess the following properties.

(A1) Assumption (A1) is mutual decorrelation of sources

and consequently of the partial sound fields they

radiate,

E-ðp0;iðr; x; -Þp�0;jðr0; x; -ÞÞ ¼ 0; i 6¼ j; 8ðr; r0Þ;

where the superscript asterisk denotes the Hermitian

conjugate and E- defines the expectation operator

over snapshot.

(A2) Assumption (A2) is perfect spatial coherence of sour-

ces and consequently of the partial sound fields they

radiate,

kE-ðp0;iðr; x; -Þp�0;iðr0; x; -ÞÞk2

E-kp0;iðr; x; -Þk2
E-kp0;iðr0; x; -ÞÞk2

¼ 1; 8ðr; r0Þ:

(A3) Assumption (A3) is stationarity of sources, which

implies that the partial sound fields they radiate are

uncorrelated over frequencies,

E-ðp0;iðr; x; -Þp0;jðr0; x0; -ÞÞ ¼ 0; x 6¼ x0; 8ði; jÞ:

Ergodicity will also be assumed for technical reasons,

which simply means that expectation E- over snap-

shots converges to a deterministic quantity.

Note that assumptions (A1) and (A2) are actually at the roots

of a proper definition of the concept of “sound sources.” In

physical terms, they simply mean that sources originating

from different physical origins are not coherent (no phase

relationship), whereas an individual source is perfectly

coherent with itself.19 Assumption (A3) is less fundamental

and could be easily relaxed if necessary, even though it

surely corresponds to many practical situations of interest.

Based on these assumptions, it is now possible to model

sound source distribution, which is a crucial step towards

achieving a successful separation. Each source distribution,

siðr; x; -Þ, is assigned a spatial mode /iðr; xÞ multiplied by a

quantity �iðx; -Þ describing its random amplitude. Note that

the spatial mode is independent of the snapshot variable - and

that the amplitude �iðx; -Þ, called the “latent source” here, is

used to reflect the snapshot-dependent properties of the source:

siðr;x;-Þ¼ /iðr;xÞ|fflfflfflffl{zfflfflfflffl}
spatial dependence

ðdeterministicÞ

� �iðx;-Þ|fflfflfflffl{zfflfflfflffl}
snapshot dependence

ðstochasticÞ

; (3)

for i ¼ 1;…; n.

By construction, mutually uncorrelated latent sources

will automatically fulfill assumptions (A1) and (A2) since

E-ð�iðxk; -Þ��j ðxl;-ÞÞ ¼ dijdklS�i
ðxkÞ; (4)

with S�i
ðxkÞ the power spectrum of �iðxk; -Þ and dij the Kro-

necker symbol.

In a general setting the spatial modes may not be known

a priori, but they may be developed on a predefined finite-

dimensional set of spatial basis functions, flkg
nl

k¼1, to a rea-

sonable accuracy:

/iðr; xÞ ¼
Xnl

k¼1

akiðxÞlkðr; xÞ: (5)

[There are many possible choices for the spatial basis

flkðr; xÞgnl

k¼1, such as plane waves, splines, etc.; how to

design an optimal basis of minimal dimension given an

array geometry and a source surface topology is described

in Ref. 20.] Now, inserting Eqs. (2)–(5) into Eq. (1) yields

pðrj; x; -Þ ¼
Xn

i¼1

�iðx; -Þ
Xnl

k¼1

akiðxÞhjkðxÞ

þ �ðrj; x; -Þ; j ¼ 1; :::;m; (6)

where hjkðxÞ ¼
Ð
Clkðr0; xÞgðrj; r0; xÞdCðr0Þ is the radiation

of the spatial basis function lkðr0; xÞ to the jth microphone

of the array. Equation (6) can be rewritten in a matrix form,

pðx; -Þ ¼ HðxÞAðxÞ�ðx; -Þ þ mðx; -Þ; (7)

where the column vectors pðx; -Þ 2 C
m

and mðx; -Þ 2 C
m

collect the measured pressures and measurement noise

at m microphones, respectively, the propagation matrix HðxÞ
2 C

m�nl is of the j-row and k-column element formed by

hjkðxÞ, AðxÞ 2 C
nl�n

is of the k-row and i-column element

formed by akiðxÞ, and the column vector �ðx; -Þ 2 C
n col-

lects the amplitude variables. Equation (7) expresses the

inverse problem in a compact and discrete form: the

unknowns of the problem are matrix AðxÞ of projection coef-

ficients and vector �ðx; -Þ of latent sources. Standard back-

propagation (i.e., near-field acoustical holography) amounts to

estimating the product cðx; -Þ ¼ AðxÞ�ðx; -Þ from meas-

urements pðx; -Þ,20 from which the global source distribution

sðr; x; -Þ ¼
Xnl

k¼1

lkðr; xÞckðx; -Þ (8)

can be reconstructed, whereas source separation ambitions

the further issue of estimating the two factors AðxÞ and

�ðx; -Þ from which individual sources

siðr; x; -Þ ¼
Xnl

k¼1

lkðr; xÞakiðxÞ�iðx; -Þ (9)

can be recovered. So far, it is quite obvious that such a separa-

tion has no unique solution if no further physical characteris-

tics are taken into account (many couples of different factors

A and � are likely to produce the same product). One property

investigated in this paper is the case of sources with distinct

power spectra and smooth spatial modes in frequency:

(A4) Assumption (A4) is that there exists non-empty (narrow)

frequency bands B centered at xm over which sound

sources have distinct power spectra, S�i
ðxÞ 6¼ S�j

ðxÞ,
i 6¼ j, and /ðr; xÞ � /ðr;xmÞ;x 2 B.
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Indeed, for many types of source distributions the spatial

mode /ðr; xÞ can be reasonably considered smooth with

respect to frequency x, as well as basis functions lkðr; xÞ.
Thus matrix A is invariant across B and Eq. (7) is simplified

into

pðx; -Þ � HðxÞA�ðx; -Þ þ mðx; -Þ; x 2 B: (10)

Comparing Eq. (10) with the standard formulation of source

separation,12 A is understood as a mixing matrix, � as sour-

ces (latent variables) to be separated, but with a pre-

multiplying matrix HðxÞ. This equation will then have to be

solved for A and �ðx; -Þ over a set of (possibly overlapping)

narrow frequency bands fBg. The resolution of Eq. (10) has

its own specific challenges: (a) the propagation matrix HðxÞ
is usually heavily ill-conditioned due to the presence of

evanescent waves,1 (b) the mixing matrix is of large size

ðnl � nÞ due to the large number of microphones. Both of

these difficulties plus the fact that the issue involves the joint

backpropagation and separation steps make the space-

frequency separation of sound sources considerably more

intricate than classical blind source separation. To break

down these difficulties, a tractable hierarchical scheme is

proposed by considering a vector of hidden variables

cðx; -Þ which represents the projection of the source distri-

bution onto the space of basis functions flkg
nl

k¼1; thus Eq.

(10) is equivalently transformed into a hierarchical form,

pðx; -Þ ¼ HðxÞcðx; -Þ þ mðx; -Þ; (11)

and

cðx; -Þ ¼ A�ðx; -Þ þ eðx; -Þ; (12)

where eðx; -Þ embodies uncertainty in the separation step; it

is classically described by a zero-mean complex normal dis-

tribution with unknown diagonal covariance matrix Ce. The

introduction of the hidden variable is the key to break down

the original problem of Eq. (10) into two sub-problems: first

Eq. (11) involves source reconstruction by estimating the

projection coefficients cðx; -Þ from the measurements and

then Eq. (12) involves blind separation of coefficients

cðx; -Þ into uncorrelated latent sources mixed by A.

In following sections, the hierarchical scheme is devel-

oped and each step addressed from a Bayesian perspective

III. SOURCE RECONSTRUCTION BY A BAYESIAN
APPROACH

The reconstruction of sound sources from discrete field

measurements is a difficult inverse problem which has been

approached by different techniques.2,21 The source recon-

struction—i.e., resolution of Eq. (11)—has been recently

investigated by the authors from a Bayesian perspective in

Ref. 20. A brief overview is given here since it is at the root

of the proposed source separation solution.

Equation (8) indeed shows the expansion of the total

sound source onto the set of basis functions used in Eq. (5),

where projection coefficients ck have been formally intro-

duced in Eq. (11). They are the unknowns to be found from

merging prior information and sound measurements. Before

the experiment, they are assigned a prior probability distribu-

tion of the form

pðcÞ / r�2nl
a exp½�r�2

a DðcÞ�; (13)

where / stands for the proportionality sign, DðcÞ
¼
Ð
k
Pnl

k¼1 ckðx; -Þlkðr; xÞk2r�2
s ðrÞdCðrÞ, and r2

s ðrÞ is an

aperture function that reflects the belief on the acoustic spa-

tial origins, which is used to enhance the resolution of recon-

structed sources. In other words, before the experiment is

carried out, the actual source distribution is assumed to be a

realization of a Gaussian random field with covariance func-

tion E-ðsðr; x; -Þs�ðr0; x; -ÞÞ ¼ dðr� r0Þr2
s ðrÞ in the

Gibbs ensemble sense, with d the Dirac delta—see Ref. 20

for details. The next step is to update the probability distribu-

tion of the unknown coefficients c after the experiment has

returned a set of measured pressures; in this respect, the

probability density function of the additive noise, i.e., the

difference between theoretical and measured pressures, is

required.

By virtue of the Central Limit Theorem22 applied to the

Fourier transform, the measurement noise in frequency do-

main has a probability distribution rapidly converging to a

zero-mean complex Gaussian distribution. In addition, it is

physically sensible to assume that measurement noises at

different microphones are spatially uncorrelated with identi-

cal unknown variance r2
� . Based on the additive output error

model in Eq. (11), the likelihood function of the unknowns

then reads

pðpjcÞ / r�2m
� exp½�Dðp�HcÞ�; (14)

with Dðp�HcÞ ¼ kpðx; -Þ �HðxÞcðx; -Þk2
r2
�

(where the

notational convention kvk2
X¼ v�X�1v is used).

Through Bayes’ theorem, the posterior distribution of

the unknowns is finally returned as

pðcjpÞ ¼ pðpjcÞpðcÞ
pðpÞ ¼ N c½ĉðx; -Þ;Cc�; (15)

that is, the projection coefficients follow a posteriori a Gaus-

sian law with mean and covariance matrix equal to

ĉkðx; -Þ ¼ kk

k2
k þ r̂2

�=r̂
2
a

U�kpðx; -Þ;

Ccðk; k
0 Þ ¼ r̂2

�

k2
k þ r̂2

�=r̂
2
a

dkk0 ; (16)

respectively, where Uk is the kth eigenvector of the Gramian

matrix ½
Ð
Cgðrj; r0; xÞg�ðrj; r0; xÞr2

s ðr0ÞdCðr0Þ�, dkk0 is the

Kronecker symbol, and r̂2
a and r̂2

� are optimal values of the

source and noise power estimated by evidence optimiza-

tion.20,23 Following similar lines, one may also construct a

spatial basis flkg
nl

k¼1 which is optimal for a given source to-

pology and array geometry and has a minimal dimension

equal to number of microphones (nl ¼ m)—see Ref. 20.
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To make a seamless connection between the recon-

struction and separation steps, let us denote the projection

coefficients cðx; -Þ as the current estimate ĉðx; -Þ plus

some discrepancy dcðx; -Þ, i.e., cðx; -Þ ¼ ĉðx; -Þ
þdcðx; -Þ with dcðx; -Þ � N cð0;CcÞ. According to the

previous discussion, the separation step in Eq. (12) is thus

rewritten as

ĉðx; -Þ ¼ A�ðx; -Þ þ ~eðx; -Þ; (17)

with ~eðx; -Þ ¼ eðx; -Þ � dcðx; -Þ.
The next section addresses the blind separation of Eq.

(17) by means of a full Bayesian approach.

IV. SOURCE SEPARATION BY A FULL BAYESIAN
APPROACH

A. Specification of priors and likelihood function

Assumptions (A1)–(A2) imply that the projection of

the sound sources onto the basis functions can be separated

into uncorrelated components originating from sound sour-

ces of distinct physical origins. The separation can be

achieved based on different assumptions on the statistical

properties of sources such as independence, nonstationarity,

sparsity.12 The present work considers stationary sources

[assumption (A3)] and exploits the diversity of the sources

spectra in the frequency band of interest [assumption (A4)].

Before the experiment is undertaken, these properties

have to be encoded by means of a prior probability

distribution.

1. A prior probability distribution on latent sources

The latent sources are modeled as stationary with dif-

ferent covariance matrix at different frequency lines. Based

on only the stationary second-order statistics, the prior

probability distribution of the latent sources reads (up to a

constant)

pð�jC�Þ /
Ynx

k¼1

jC�1
� ðxkÞjn-exp½�Dð�Þ�; (18)

where Dð�Þ ¼
Pnx

k¼1

Pn-
j¼1 k�ðxk; -jÞk2

c�ðxkÞ, the covariance

matrix C�ðxkÞ ¼ diagðr2
�1k
;…; r2

�nk
Þ with r2

�ik
¼ r2

�i
ðxkÞ, nx

is the number of frequency lines in band B, and n- is the

number of snapshots. Conjugate prior probability distribu-

tions are assigned to the inverse of source variances by a

Gamma distribution, r�2
�ik
� Gammaða�; b�Þ, 8ðk; iÞ, with

known hyper-parameters ða�; b�Þ. A conjugate prior is in

the same probability distribution family as the posterior,14

which is advocated in the present work as it can make effi-

cient the MCMC sampling of the posterior probability

distribution.

2. A prior probability distribution on mixing matrix

Similarly, the Bayesian approach can incorporate any

prior on the mixing matrix A, a fundamental step towards

regularization of the inverse problem. Since sound sources

stem from distinct physical origins, they are likely to display

distinct spatial modes. Such a property implies a weak

correlation,

qðai; ajÞ ¼
ð

C
/�i ðr; xmÞ/jðr; xmÞdCðrÞ

¼ a�i Rllaj; (19)

between modes of different sound sources at center frequency

xm in a band B, i 6¼ j, where /ðrÞ is defined in Eq. (5), ai and

aj are the ith and jth columns of the mixing matrix, and

½Rll�kl ¼
Ð
Cl�kðr; xÞllðr; xÞdCðrÞ. The more distinct the

sound sources in space, the smaller their spatial correlation.

The complex correlation variables fqðai; ajÞgi 6¼j are consid-

ered as identically normally distributed with zero mean and

unknown variance w. The following prior is therefore attrib-

uted to the columns of the mixing matrix by means of the

probability distribution function of the correlation variable,

pqðfaign
i¼1jwÞ /

1

wnðn�1Þ exp
�1

w

Xn

i;j¼1
i 6¼j

kqðai; ajÞk2

2
664

3
775
;

(20)

which can impose a soft spatial constraint on the sound sour-

ces, and favor their separability in space (the higher the prior

probability, the more distinct the sound sources in space). In

order not to overload the notation, it is used that

pðAjwÞ ¼ pqðfaign
i¼1jwÞ.

The scaling coefficient w has to be tuned to find an opti-

mal weighting for the prior in the Bayesian formulation. To

maintain the conjugacy property, a Gamma distribution is

adopted, w�1 � Gammaðaw; bwÞ.

3. Likelihood function

Once prior probability distributions have been assigned

to variables � and A, it still remains to specify the probability

distribution of coefficients c conditioned on � and A: this

will “close the loop” in our effort to estimate the latter fac-

tors from the observation of their product only.

Let us consider the random variables dcðx; -Þ and

eðx; -Þ in the hierarchical steps of 19 to be independent, and

further consider Ce to be proportional to Cc in favor of the

subsequent Bayesian learning by exploring the whole proba-

bility space of parameters through MCMC sampling. As a

result, C~e ¼ sCc. The likelihood function of the unknown

parameters is then written as,

pðcjA; �; sÞ / jC�1
~e j

nxn-exp½�DðA; �Þ�; (21)

with DðA; �Þ ¼
Pnx

k¼1

Pn-
j¼1 kĉðxk; -jÞ � A�ðxk; -jÞk2

C~e
.

An improper prior density pðsÞ ¼ 1=s [so-called

because the area of the distribution pðsÞ ¼ 1=s does not

equal one for s taking values between zero and infinity] is

used, but any inverse-gamma prior for s would also maintain

conjugacy. Conditioning on s is important, because it guar-

antees a unimodal full posterior.
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B. Markov Chain Monte Carlo implementation

The posterior probability distribution of all the unknown

parameters is next obtained from Bayes’ theorem,

pðA; �;C�; s;wjĉÞ / pðĉjA; �; sÞpð�jC�Þ
� pðAjwÞpðC�ÞpðsÞpðwÞ; (22)

where all the distributions on the right hand side of the

equation have been described above. The posterior

pðA; �;C�; s;wjĉÞ plays a crucial role in the proposed

approach because it assigns probabilities to possible values

of factors � and A after observing the projection coeffi-

cients c. In particular, values with the highest probability

will provide a valid solution to the source separation prob-

lem. How to numerically evaluate the full posterior proba-

bility distribution—and not only its mode—is described

here after. Since the conditional posterior densities of all

the unknowns are tractable distributions that do not require

rejection sampling, the Gibbs sampling method24 is particu-

larly recommended here for parameter inference. The

Gibbs sampler is basically an iterative simulation scheme

for generating samples that converge asymptotically to the

target distribution pðA; �;C�; s;wjĉÞ. Each component is

visited and updated by a sample drawn from its conditional

distribution. The expressions of all the conditional distribu-

tions are listed as follows:

(a) �ðxk;-jÞjĉ;A;s;C�ðxkÞ�N cð�̂ðxk;-jÞ;Ĉ�ðxkÞÞwith

Ĉ�ðxkÞ ¼ ðA�C�1
~e Aþ C�1

� ðxkÞÞ�1;

�̂ðxk; -jÞ ¼ Ĉ�ðxkÞ A�C�1
~e ĉðxk; -jÞ

� �
: (23)

(b) r�2
�i
ðxkÞ � Gammaðâ�; b̂�Þwith

â� ¼ a� þ n-; b̂� ¼ b� þ
Xn-

j¼1

k�iðxk; -jÞk2; (24)

for all i ¼ 1;…; n and k ¼ 1;…; nx.

(c) s�1jĉ;A � Gammaðâs; b̂sÞwith âs ¼ mnxn- þ 1 and

b̂s ¼
Xnx

k¼1

Xn-

j¼1

kĉðxk; -jÞ � A�ðxk; -jÞk2
C~e
: (25)

(d) The ith column of the mixing matrix, aij ĉ; fajgn
j¼1;j 6¼i;

�; s;w � N cðâi; Ĉai
Þ where

Ĉai
¼ ðR�i�i

C�1
~e þ w�1R�llRaaRllÞ�1;

âi ¼ Ĉai
C�1

~e Rc�i
; (26)

for all i ¼ 1;…; n with Raa ¼
Pn

l¼1;l 6¼i ala
�
l ;

R�i�i
¼
Pnx

k¼1

Pn-
j¼1k�iðxk;-jÞk2

and Rc�i

¼
Pnx

k¼1

Pn-
j¼1ðĉðxk;-jÞ�

Pn
l¼1;l 6¼ial�lðxk;-jÞÞ ��i ðxk;-jÞ.

(e) wjA � Gammaðâw; b̂wÞ with âw ¼ aw þ nðn� 1Þ;

b̂w ¼ bw þ
Xn

i;j¼1;i 6¼j

kqðai; ajÞk2: (27)

In summary, Gibbs sampling basically initializes firstly A,

C�, s, w following their prior distributions, and then executes

in a cyclic manner the steps from (a) to (e). A good starting

point of MCMC sampling is crucial to shorten the burn-in

period of the Markov chain, especially for our case with

many unknown parameters. The burn-in period is the time

required by the Markov chain for its convergence to the tar-

get probability density function. The mixing matrix is initial-

ized with the Second Order Blind Identification (SOBI)

method.25 [SOBI performs separation by exploiting the

decorrelation properties of the source signals: it basically

relies only on finding A which jointly diagonalizes the set of

covariance matrices R��ðxkÞ ¼
Pn-

j¼1 �ðxk; -jÞ��ðxk; -jÞ for

all k ¼ 1; :::; nx in band B.]

C. Bandwidth

The choice of bandwidth of B plays an important role in

maintaining the performance of the algorithm. For instance, if

the range of B is chosen large, this increases the diversity of

the spectra of the sources which plays in favor of separation;

yet at the same time the mixing matrix A is less likely to

remain constant in the frequency band, which jeopardizing

the model of Eq. (10). A reasonable trade-off will be made by

the following criterion. By considering the sound sources

originating from distinct space origins, the separation quality

can be indicated by the correlation coefficients between the

spatial modes of two different sound sources [as computed in

Eq. (19)]. Following Eq. (20), a correlation index is defined as

q ¼
Xn

i;j¼1;i 6¼j

kqðai; ajÞk2; (28)

which may decrease when the width of B increase from zero

to a certain level. The error caused by choosing a finite width

of B can be reflected by the normalized residual

c ¼

Xm

l¼1

Xnx

k¼1

Xn-

j¼1

kĉlðxk; -jÞ � ^̂clðxk; -jÞk2

Xm

l¼1

Xnx

k¼1

Xn-

j¼1

kĉlðxk; -jÞk2

; (29)

where ^̂c ¼ Â�̂ is computed with the estimates of the mixing

matrix and sources returned by separation. It will increase

with the chosen bandwidth. Both index will serve to deter-

mine an appropriate bandwidth in a less heuristic way.

D. Indeterminacy

An indeterminacy problem always exists with blind

source separation. To see this, let us remember that estimates

of A and � have to be found such that c ’ A�. It is immediate

that such a factorization is not unique, since c ’ ðAP�1ÞðP�Þ
will also return a valid solution for any invertible matrix P

that keeps diagonal the correlation matrix of P�, as required

from assumptions (A1) and (A2). This may be solved by

imposing a constraint on the mixing matrix. For instance, the

first row of A are constrained to be unit. To keep invariant

the Markovian properties of MCMC due to the scaling
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constraint on the columns of A, the following adjustments

are made, 8k ¼ 1;…; nx,

A AP�1;

C�ðxkÞ  PC�ðxkÞP�; (30)

where the lth element of the diagonal matrix P is in the first

element of the lth column of A.

E. Acceleration strategy

A good initialization of the numerous elements in the

mixing matrix is a key step to accelerate MCMC sampling in

a large frequency band. It was mentioned previously that this

can be achieved by first running the SOBI algorithm. Here a

alternative acceleration strategy is presented based on the

smooth property of source spatial modes across consecutive

frequency bands. Namely, if the ith spatial mode in band

Bðkþ1Þ is not too different from that in the previous band,

BðkÞ, then its coefficients onto basis flkðr; xÞgnl

k¼1 [see Eq.

(5)] are likely to follow a random-walk model,

a
ðkþ1Þ
il ¼ a

ðkÞ
il þ fil; (31)

where fil represents a zero-mean random variable. It has

been found in applications involving sound sources with

smooth spatial modes (e.g., as generated by loudspeakers)

that this initialization strategy works better than SOBI, espe-

cially when the mixing matrix has a large dimension.

F. Sound source discrimination

Once the backpropagation/separation procedure is termi-

nated, one can easily reconstruct each sound source from the

estimated mixing matrix and latent sources. Two principal

indicators are defined to discriminate the sound source distri-

butions. One is the power radiated by each source to the

microphones, defined as Rsi
ðxkÞ ¼ E-f

Ð
Ckp0;iðr; xk; -Þk2

� dCðrÞg at frequency xk, 8i ¼ 1;…; n. In practice,

Rsi
ðxkÞ �

1

mn-

Xn-

j¼1

kHðxkÞâi�̂iðxk; -jÞk2; (32)

with âi the ith column of Â and �̂iðxk; -jÞ the ith estimated

latent source at frequency xk for the jth snapshot. By defini-

tion, this can be used to rank sound sources, for instance in an

attempt to identify the most noisy ones. The other indicator is

the acoustic map of the source magnitude on the backpropa-

gation surface, defined as Msi
ðr;xkÞ ¼ E-fksiðr; xkÞkg at

frequency xk, 8i ¼ 1;…; n. In practice,

Msi
ðr;xkÞ �

1

n-

Xn-

j¼1

����
Xnl

l¼1

llðr; xkÞâli�̂iðxk; -jÞ
����; (33)

with llðr; xkÞ the lth basis function evaluated in a user-

defined spatial grid and âli the lth row and ith column

element of Â. This indicator is found useful to localize the

distribution of the ith source. Other indicators may as well

be defined on similar lines, such as the acoustic intensity for

instance.

V. EXPERIMENTAL APPLICATIONS

In this section, the proposed methodology is demon-

strated on laboratory experiments to separate the sound sour-

ces emitted by loudspeakers. The experiments are performed

in a semi-anechoic room with a planar array of 60 randomly

spaced microphones, as shown in Fig. 2. The mean spacing

between microphones is dm ¼ 0:1 m. The loudspeakers are

driven by independent Gaussian noises with distinct spectra.

The separation procedure is here verified on two experimen-

tal configurations with different source numbers and array

distances. In each test case, additional experiments are sys-

tematically carried out where only one loudspeaker is

switched on, one after the other, thus allowing the assess-

ment of the partial radiations to the microphones from each

source; for instance, with the ith source switched on only,

Rsi
ðxkÞ ¼

1

mn-

Xm

l¼1

Xn-

j¼1

kpiðrl; xk; -jÞk2; (34)

which serves as a reference point to validate Eq. (32). In

addition, the recorded data will serve to validate Eq. (33) af-

ter backpropagating individual sources according to the

reconstruction step addressed in Sec. III.

The backpropagation/separation capacity of the algo-

rithm is restricted to some extent by the experimental

FIG. 2. (Color online) Experimental plant with microphone array.

FIG. 3. (Color online) Normalized residual in Eq. (29) and correlation indi-

cator in Eq. (28).
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configuration, such as the array shape, size and placement,

microphone spacing, size of the source object, acquisition

hardware, and so on. For instance, the spacing between the

microphones determines the half-wavelength of the maxi-

mum frequency, and the size of the array roughly determines

the half-wavelength of the minimum frequency.

A. Case with three sources

Three loudspeakers are used with a center-distance of

dl ¼ 0:12 m. The array is situated in front of the loud-

speakers with a distance of zm ¼ 0:7 m. The acoustical sig-

nals are recorded with a sampling frequency Fs ¼ 4096 Hz.

n- ¼ 420 and nx ¼ 11. 5� 104 MCMC samples are kept af-

ter the burn-in phase, from which the mean values of A and

� are estimated. After a series of bandwidth of B is investi-

gated, as shown in Fig. 3, a width of 20 Hz is chosen for the

source separation. The power radiated to the microphones by

each source computed using Eq. (32) is shown in Fig. 4. The

separation results agree well with their counterparts com-

puted using Eq. (34) when only one source is switched on,

which demonstrates the validity of the proposed backpropa-

gation/separation procedure.
FIG. 4. (Color online) Radiated power, fRsi

ðxÞg3
i¼1, of each individual

source.

FIG. 5. (Color online) Maps of separated

sound sources, fMsi
ðr;xÞg3

i¼1, at x¼1450

Hz [(a)–(c): separation with SOBI; (d)–(f):

Bayesian separation; (h)–(j): references].
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In addition, the separation results are visualized by the

acoustic maps of the reconstructed sources on the backpro-

pagation plane. They are computed with Eq. (33) using the

estimated separation parameters returned by SOBI and the

established Bayesian estimation with MCMC method. Fig-

ure 5 compares the results at x¼ 1450 Hz with the recon-

structed counterparts when only one source is switched on.

The separated sources are well localized with a quite accu-

rate estimation of their varying amplitude levels, as can be

seen by comparison with the references. The essential

reasons why the proposed Bayesian separation demonstrates

supremacy over the standard SOBI algorithm is because it is

rooted in a probabilistic approach that explicitly accounts for

(1) measurement and modeling errors thought the specifica-

tion of a likelihood function and (2) for structural informa-

tion about sources to be separated thought the specification

of prior probability distributions. The resulting posterior

probability distribution is then explored by means of a

powerful MCMC algorithm capable of exploring the whole

space of the parameters, thus avoiding the estimate to be

trapped in a local mode. Yet SOBI offers initial estimates,

which is quite important to shorten MCMC running time.

B. Case with four sources

In this case, four loudspeakers with an equal center-

distance of dl¼ 0.24 m are assembled to generate a mixture

of sound sources. The data are recorded with a higher

FIG. 6. (Color online) Radiated power, fRsi
ðxÞg4

i¼1, of each individual

source.

FIG. 7. (Color online) Magnitude of the interpolated sound field averaged

over snapshots, at 2100 Hz, in the microphone plane.

FIG. 8. (Color online) Reconstructed total sound distribution, at 2100 Hz, in

the backpropagation plane.

FIG. 9. (Color online) Map fMsi
ðr;xÞg4

i¼1 of separated sources with SOBI,

at x¼ 2100 Hz.
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sampling frequency of 16 384 Hz. A nearer array distance is

considered: zm ¼ 0:1 m. The width of B is chosen as 35 Hz

to achieve a fair diversity of the source spectra while still

maintaining the assumption of constant spatial modes—see

Eq. (10). n- ¼ 480 and nx ¼ 16. In the same way as in the

previous case, the power radiated to the microphones from

each source is computed and shown in Fig. 6. One can see a

rather good agreement of the separation results with the ref-

erence data (measurements with only one loudspeaker is

switched on) except for source 1 in band [1400,1500] Hz

and for source 3 in [1050,1200] Hz, since they are too weak

there. The measured sound field interpolated in the array

plane is shown in Fig. 7. The total source distribution recon-

structed in the backpropagation plane according to the meth-

odology of Sec. III is shown in Fig. 8. The overlapping

sources before separation clearly do not lend themselves to

be identified—in terms of number and of localization—as

they are located close to each other or have a large ratio of

intensity levels (see the separation and backpropagation

results in Figs. 9–11). This situation illustrates very well one

of the motivations to develop a separation procedure in order

to obtain a deeper insight into spatial distributions of under-

lying sources.

VI. CONCLUSIONS

An efficient space-frequency source separation has been

proposed and validated on laboratory experiments. The sepa-

ration task is dealt with successfully by virtue of a hierarchi-

cal framework: the reconstruction step is solved with a

minimal reconstruction error and the separation step is

treated by a full Bayesian approach in conjunction with a

MCMC algorithm. The method applies to mutually uncorre-

lated and stationary sound sources with different power spec-

tra. The continuity in frequency of the spatial distribution of

the sources is also assumed and exploited to accelerate the

unsupervised learning in a large frequency band. Following

similar lines, the method could be easily extended to exploit

other types of diversities, such as source nonstationarity for

instance.
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