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Abstract. We present a new and original method to solve the domain
adaptation problem using optimal transport. By searching for the best
transportation plan between the probability distribution functions of a
source and a target domain, a non-linear and invertible transformation
of the learning samples can be estimated. Any standard machine learn-
ing method can then be applied on the transformed set, which makes
our method very generic. We propose a new optimal transport algorithm
that incorporates label information in the optimization: this is achieved
by combining an efficient matrix scaling technique together with a majo-
ration of a non-convex regularization term. By using the proposed opti-
mal transport with label regularization, we obtain significant increase in
performance compared to the original transport solution. The proposed
algorithm is computationally efficient and effective, as illustrated by its
evaluation on a toy example and a challenging real life vision dataset,
against which it achieves competitive results with respect to state-of-the-
art methods.

1 Introduction

While most learning methods assume that the test data Xt = (xt
i)i=1,...,Nt

,
xi ∈ R

d and the training data Xs = (xs
i )i=1,...,Ns

are generated from the same
distributions µt = P(Xt) and µs = P(Xs), real life data often exhibit different
behaviors. Many works study the generalization capabilities of a classifier allow-
ing to transfer knowledge from a labeled source domain to an unlabeled target
domain: this situation is referred to as transductive transfer learning [1]. In our
work, we assume that the source and target domains are by nature different,
which is usually referred to as domain adaptation. In the classification problem,
the training data are usually associated with labels corresponding to C different
classes. We consider the case where only the training data are associated with
a label Ys = (yi)i=1,...,Ns

, yi ∈ {1, . . . , C}, yielding an unsupervised domain

adaptation problem, since no labelled data is available in the target domain.
In this acceptation, the training (resp. testing) domain is usually referred to as
source (resp. target) distribution.

Domain adaptation methods seek to compensate for inter domain differences
by exploiting the similarities between the two distributions. This compensation is
usually performed by reweighing the contribution of each samples in the learning



process (e.g. [2]) or by means of a global data transformation that aligns the two
distributions in some common feature space (e.g. [3]). Our work departs from
these previous works by assuming that there exists a non-rigid transformation
of the distribution that can account for the non-linear transformations occurring
between the source and target domains. This transformation is conveniently ex-
pressed as a transportation of the underlying probability distribution functions
thanks to optimal transport (OT). The OT problem has first been introduced by
the French mathematician Gaspard Monge in the middle of the 19th century as
the way to find a minimal effort solution to the transport of a given mass of dirt
into a given hole. The problem reappeared later in the work of Kantorovitch [4],
and found recently surprising new developments as a polyvalent tool for several
fundamental problems [5]. In the domain of machine learning, OT has been re-
cently used for computing distances between histograms [6] or label propagation
in graphs [7].

Contributions Our contributions are twofold: i) First, we show how to transpose
the optimal transport problem to the domain adaptation problem, and we pro-
pose experimental validations of this idea. To the best of our knowledge, this
is the first time that optimal transport is considered in the domain adaptation
setting. ii) Second, we propose an elegant group-based regularization for inte-
grating label information, which has the effect of regularizing the transport by
adding inter-class penalties. The resulting algorithm exploits a proven efficient
optimization approaches and will benefit from any advances in this domain.
The proposed optimal transport with label regularization (OT-reglab) allows
to achieve competitive state-of-the-art results on challenging datasets.

2 Related Work

Two main strategies have been considered to tackle the domain adaptation prob-
lem: on the one hand, there are approaches considering the transfer of instances,
mostly via sample re-weighting schemes based on density ratios between the
source and target domains [2,8]. By doing so, authors compare the data distri-
butions in the input space and try to make them more similar by weighting the
samples in the source domain.

On the other hand, many works have considered finding a common feature
representation for the two (or more) domains, or a latent space, where a classifier
using only the labeled samples from the source domain generalize well on the
target domains [9,10]. The representation transfer can be performed by matching
the means of the domains in the feature space [10], aligning the domains by their
correlations [11] or by using pairwise constraints [12]. In most of these works,
the common latent space is found via feature extraction, where the dimensions
retained summarize the information common to the domains. In computer vi-
sion, methods exploiting a gradual alignment of sets of eigenvectors have been
proposed: in [13], authors start from the hypothesis that domain adaptation can



be better approached if comparing gradual distortions and therefore use interme-
diary projections of both domains along the Grassmannian geodesic connecting
the source and target observed eigenvectors. In [14,15], authors propose to obtain
all sets of transformed intermediary domains by using a geodesic-flow kernel in-
stead of sampling a fixed number of projections along the geodesic. While these
methods have the advantage of providing easily computable out-of-sample ex-
tensions (by projecting unseen samples onto the latent space eigenvectors), the
transformation defined is global and applied the same way to the whole target
domain.

An approach combining the two logics is found in [3], where authors extend
the sample re-weighing reasoning to similarity of the distributions in the feature
space by the use of surrogate kernels. By doing so, a linear transformation of the
domains is found, but, as for the feature representation approaches above, it is
the same for all samples transferred.

Our proposition strongly differs from those reviewed above, as it defines a
local transportation plan for each sample in the source domain. In this sense,
the domain adaptation problem can be seen as a graph matching problem for all
samples to be transported, where their final coordinates are found by mapping
the source samples to coordinates matching the marginal distribution of the
target domain. In the authors knowledge, this is the first attempt to use optimal
transportation theory in domain adaptation problem

3 Optimal transportation

In this Section, we introduce the original formulation of optimal transport through
the Monge-Kantorovitch problem and its discrete formulation. Then, regularized
versions of the optimal transport are exposed.

3.1 The Monge-Kantorovitch problem and Wasserstein space

Let us first consider two domains Ω1 and Ω2 (in the following, we will assume
without further indication that Ω1 = Ω2 = R

d). Let P(Ωi) be the set of all the
probability measures over Ωi. Let µ ∈ P(Ω1), and T be an application from
Ω1 → Ω2. The image measure of µ by T, noted T#µ, is a probability measure
over Ω2 which verifies:

T#µ(y) = µ(T−1(y)), ∀y ∈ Ω2. (1)

Let µs = P(Ω1) and µt = P(Ω2) be two probability measures from the two
domains. T is said to be a transport if T#µs = µt. The cost associated to this
transport is

C(T) =

∫

Ω1

c(x,T(x))dµ(x), (2)

where the cost function c : Ω1 × Ω2 → R
+ can be understood as a regular

distance function, but also as the energy required to move a mass µ(x) from x



to y. It is now possible to define the optimal transport T0 as the solution of
the following minimization problem:

T0 = argmin
T

∫

Ω1

c(x,T(x))dµ(x), s.t. T#µs = µt (3)

which is the original Monge transportation problem. The equivalent Kantorovitch
formulation of the optimal transport [4] seeks for a probabilistic coupling γ ∈
P(Ω1 ×Ω2) between Ω1 and Ω2:

γ0 = argmin
γ

∫

Ω1×Ω2

c(x,y)dγ(x,y), s.t. PΩ1#γ = µs,P
Ω2#γ = µt, (4)

where PΩi is the projection over Ωi. In this formulation, γ can be understood as
a joint probability measure with marginals µs and µt. γ0 is the unique solution
to the optimal transport problem. It allows to define the Wasserstein distance

between µs and µt as:

W2(µs, µt) = inf
γ

∫

Ω1×Ω2

c(x,y)dγ(x,y), s.t. PΩ1#γ = µs,P
Ω2#γ = µt, (5)

This distance, also known as the Earth Mover Distance in computer vision com-
munity [16], defines a metric over the space of integrable squared probability
measure.

3.2 Optimal transport of discrete distributions

Usually one does not have a direct access to µs or µt but rather to collections of
samples from those distributions. It is then straightforward to adapt the optimal
transport problem to the discrete case. The two distributions can be written as

µs =

ns
∑

i=1

psi δxs
i
, µt =

nt
∑

i=1

ptiδxt
i

(6)

where δxi
is the Dirac at location xi ∈ R

d. psi and pti are probability masses asso-
ciated to the i-th sample, and belong to the probability simplex, i.e.

∑ns

i=1 p
s
i =

∑nt

i=1 p
t
i = 1. The set of probabilistic coupling between those two distributions

is then the set of doubly stochastic matrices P defined as

P =
{

γ ∈ (R+)ns×nt | γ1nt
= µs,γ

T1ns
= µt

}

(7)

where 1d is a d-dimensional vector of ones. The Kantorovitch formulation of the
optimal transport [4] reads:

γ0 = argmin
γ∈P

〈γ,C〉F (8)

where 〈., .〉F is the Frobenius dot product and C ≥ 0 is the cost function matrix
of term C(i, j) related to the energy needed to move a probability mass from xs

i

to xt
j . This cost can be chosen for instance as the Euclidian distance between

the two locations, i.e. C(i, j) = ||xs
i − xt

j ||
2, but other types of metric could be

considered, such as Riemannian distances over a manifold [5].



Remark 1. When ns = nt = n and when ∀i, j psi = ptj = 1/n, the γ0 is simply
a permutation matrix

Remark 2. In the general case, it can be shown that γ0 is a sparse matrix with
at most ns + nt − 1 non zero entries (rank of constraints matrix).

This problem can be solved by linear programming, with combinatorial al-
gorithms such as the simplex methods and its network variants (transport sim-
plex, network simplex, etc.). Yet, the computational complexity was shown to be
O(n2) in practical situations [17] for the network simplex (while being O(n3) in
theory) which leverages the utility of the method to handle big data. However,
the recent regularization of Cuturi [6] allows a very fast transport computation
as discussed in the next Section.

3.3 Regularized optimal transport

When the target and source distributions are high-dimensional, or even in pres-
ence of numerous outliers, the optimal transportation plan may exhibit some
irregularities, and lead to incorrect transport of points. While it is always pos-
sible to enforce a posteriori a given regularity in the transport result, a more
theoretically convincing solution is to regularize the transport by relaxing some
of the constraints in the problem formulation of Eq.(8). This possibility has been
explored in recent papers [18,6].

In [18], Ferradans and colleagues have explored the possibility of relaxing
the mass conservation constraints of the transport, i.e. slightly distorting the
marginals of the coupling γ0. Technically, this boils down to solving the same
minimization problem but with inequality constraints on the marginals in Eq.(7).
As a result, elements of the source and target distributions can remain still. Yet,
one major problem of this approach is that it converts the original linear program
into more computationally demanding optimizations impractical for large sets.

In a recent paper [6], Cuturi proposes to regularize the expression of the
transport by the entropy of the probabilistic coupling. The regularized version
of the transport γ

λ
0 is then the solution of the following minimization problem:

γ
λ
0 = argmin

γ∈P

〈γ,C〉F −
1

λ
h(γ), (9)

where h(γ) = −
∑

i,j γ(i, j) log γ(i, j) computes the entropy of γ. The intuition
behind this form of regularization is the following: since most of the elements
of γ0 should be zero with high probability, one can look for a smoother version
of the transport by relaxing this sparsity through an entropy term. As a result,
and contrary to the previous approach, more couplings with non-nul weights are
allowed, leading to a denser coupling between the distributions. An appealing
result of this formulation is the possibility to derive a computationally very effi-
cient algorithm, which uses the scaling matrix approach of Sinkhorn-Knopp [19].
The optimal regularized transportation plan is found by iteratively computing
two scaling vectors u and v such that:



γ
λ
0 = diag(u) exp(−λC)diag(v), (10)

where the exponential exp(.) operator should be understood element-wise.
Note that while these regularizations allow the inclusion of additional priors

in the optimization problem, they do not take into account the fact that the
elements of the source distribution belong to different classes. This idea is the
core of our regularization strategy.

4 Domain Adaptation with Label Regularized Optimal

Transport

From the definitions above, the use of optimal transport for domain adaptation
is rather straightforward: by computing the optimal transport from the source
distribution µs to the target distribution µt, one defines a transformation of the
source domain to the target domain. This transformation can be used to adapt
the training distribution by means of a simple interpolation. Once the source
labeled samples have been transported, any classifier can be used to predict in
the target domain. In this section, we present our optimal transport with label
regularization algorithm (OT-labreg) and derive a new efficient algorithm to
solve the problem. We finally discuss how to interpolate the training set from
this regularized transport.

4.1 Regularizing the transport with class labels

Optimal transport aims at minimizing a transport cost linked to a metric be-
tween distributions. It does not include any information about the particular
nature of the elements of the source domain (i.e. the fact that those samples
belong to different classes). However, this information is generally available, as
labeled samples are used in the classification step following adaptation. Our
proposition to take advantage of label information is to penalize couplings that
match together samples with different labels. This is illustrated in Figure 1.c,
where one can see that samples belonging to the same classes are only associated
to points associated to the same class, contrarily to the standard and regularized
versions of the transport (Figures 1.a and 1.b ).

Principles of the label regularization Over each column of γ, we want to
concentrate the transport information on elements of the same class c. This is
usually done by using ℓp−ℓq mixed-norm regularization, among which the ℓ1−ℓ2
known as as group-lasso is a favorite. The main idea is that, even if we do not
know the class of the target distribution, we can promote group sparsity in the
columns of γ such that a given target point will be associated with only one of
the classes.

Promoting group sparsity leads to a new term in the cost function (9), which
now reads:

γ0 = argmin
γ∈P

〈γ,C〉F −
1

λ
h(γ) + η

∑

j

∑

c

||γ(Ic, j)||
p
q , (11)
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Fig. 1. Illustration of the transport for two simple distributions depicted in the image.
The colored disks represent 3 different classes. The transport solution is depicted as
blue lines whose thickness relate to the strength of the coupling. (a) Solution of the
original optimal transport solution (OT-ori); (b) using the Sinkhorn transport (OT-

reg [6]); (c) using our class-wise regularization term (OT-reglab).

where Ic contains the index of the lines such that the class of the element is c,
γ(Ic, j) is a vector containing coefficients of the jth column of γ associated to
class c and || · ||pq denotes the ℓq norm to the power of p. η is a regularization
parameter that weights the impact of the supervised regularization.

The choice of the p, q parameters is particularly sensitive. For p ≥ 1 and
q ≥ 1 the regularization term is convex. The parameters p = 1, q = 2 lead to
the classical group-lasso that is used, for instance, for joint features selection
in multitask learning. The main problem of using the group-lasso in this case
is that it makes the optimization problem much more difficult. Indeed, when
using an ℓ2 norm in the objective function, the efficient optimization procedure
proposed in [6] cannot be used anymore. Moreover there is no particular reason
to choose the ℓ2 norm for regularizing coefficients of a transport matrix. Those
coefficients being all positive and associated to probabilities, we propose to use
q = 1 that will basically sum the probabilities in the groups. When q = 1, one
needs to carefully chose the p coefficient in order to promote group sparsity. In
this work we propose to use p = 1/2 < 1. This parameter is a common choice for
promoting sparsity, as the square root is non-differentiable in zero and has been
used recently for promoting non-grouped sparsity in compressed sensing [20].An
additional advantage of our proposal is that, despite the fact that the proposed
regularization is non-convex, a simple approach known as reweighted ℓ1 can be
performed for its optimization, as detailed below.

4.2 Majoration Minimization strategy

The optimization problem with a ℓp− ℓ1 regularization boils down to optimizing

γ0 = argmin
γ∈P

J(γ) + ηΩ(γ), (12)

with J(γ) = 〈γ, C〉F − 1
λ
h(γ) and Ω(γ) =

∑

j

∑

c ||γ(Ic, j)||
p
1. We want to be

able to use the optimization in [6] to solve the left term, as it is very efficient.
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Fig. 2. Illustration of the regularization term loss for a 2D group (left). Illustration of
the convexity of g(·) and its linear majoration (right)

First, note that the regularization term can be reformulated as

Ω(γ) =
∑

j

∑

c

g(||γ(Ic, j)||1) (13)

where g(·) = (·)p is a concave function of a positive variable (∀γ ≥ 0). A classical
approach to address this problem is to perform what is called Majorization-
minimization [21]. This can be done because the ℓp − ℓ1 regularization term is
concave in the positive orthant as illustrated in the left part of figure 2. It is
clear from this Figure that the surface can be majored by an hyperplane. For a
given group of variable, one can use the concavity of g to majorize it around a
given vector ŵ > 0

g(w) ≤ g(‖ŵ‖1) +∇g(‖ŵ‖1)
⊤(w − ŵ) (14)

with ∇g(‖ŵ‖1) = p(‖ŵ‖1)
p−1 for ŵ > 0. An illustration of the majoration of

g(·) can be seen in the right part of Figure 2. For each group, the regularization
term can be majorized by a linear approximation. In other words, for a fixed γ̂

Ω(γ) ≤ Ω̃(γ) = 〈γ,G〉F + cst (15)

where the matrix G has components

G(Ic, j) = p(‖γ̂(Ic, j)‖+ ǫ)p−1, ∀c, j (16)

Note that we added a small ǫ > 0 that helps avoiding numerical instabilities,
as discussed in [20]. Finally, solving problem (11) can be performed by iterating
the two steps illustrated in Algorithm 1. This iterative algorithm is of particular
interest in our case as it consists in iteratively using an efficient Sinkhorn-Knopp
matrix scaling approach. Moreover this kind of MM algorithm is known to con-
verge in a small number of iterations.



Algorithm 1 Majoration Minimization for ℓp−ℓ1 regularized Optimal Transport

Initialize G = 0

Initialize C0 as in Equation (8)
repeat

C← C0 +G

γ ← Solve problem (9) with C

G← Update G with Equation (16)
until Convergence

4.3 Interpolation of the source domain

Once the transport γ0 has been defined using either Equations (8), (9) or (11),
the source samples must be transported in the target domain using their trans-
portation plan. One can seek the interpolation of the two distributions by fol-
lowing the geodesics of the Wasserstein metric [5] (parameterized by t). This
allows to define a new distribution µt such that:

µt = argmin
µ

(1− t)W2(µs, µ)
2 + tW2(µt, µ)

2. (17)

One can show that this distribution is:

µt =
∑

i,j

γ0(i, j)δ(1−t)xs
i
+txt

j
. (18)

In our approach, we suggest to compute directly the image of the source samples
as the result of this transport, i.e. for t = 1. Those images can be expressed
through γ0 as barycenters of the target samples. Let Tγ

0
: Rd → R

d be the
mapping induced by the optimal transport coupling. This map transforms the
source elements Xs in a target domain dependent version X̂s. The mapping Tγ

0

can be conveniently expressed as:

X̂s = Tγ
0
(Xs) = diag((γ01nt

)−1)γ0Xt. (19)

We note that Tγ
0

is fully invertible and can be also used to compute an adapta-
tion from the target domain to the source domain by observing that T−1

γ
0

= T
γ

T
0

.
Let us finally remark that similar interpolation methods were used in the domain
of color transfer [18].

5 Experimental validation

In this Section, we validate the proposed algorithm in two domain adaptation ex-
amples. On the first one, we study the behavior of our approach on a simple toy
dataset. The second one considers a challenging computer vision dataset, used
for a comparison with state-of-the-art methods. In every experiment, the original
optimal transport (OT-ori) is computed with a network simplex approach [17].



The Sinkhorn transport, which corresponds to the regularized version of the opti-
mal transport (OT-reg) described in Section 3.3, was implemented following the
algorithm proposed in [6]. Our approach, OT-reglab, follows the Algorithm 1.
As expected, these last two methods are generally one order of magnitude faster
than the network simplex approach.
As for the choice of the weights of Eq. (6), the problem can be cast as an esti-
mation of a probability mass function of a discrete variable on the sample space
of the source and target distributions. A direct and reasonable choice is to take
an uniform distribution, i.e. psi = 1

ns
and pst = 1

nt
. This choice gives the same

value for every samples in the two discrete distributions. Alternatively, one can
seek to strengthen the weights of samples that are in a high density region, and
lower weights for samples in low density regions. This way, outliers should be
associated with lower masses. A possible solution relies on a discrete variant of
the Nadaraya-Watson estimator [22] where one enforces the sum-to-1 property:

psi =

∑ns

j=1 kσ(x
s
i ,x

s
j)

∑ns

j=1

∑ns

i=1 kσ(x
s
i ,x

s
j)

(20)

where kσ(·, ·) is a gaussian kernel of bandwidth σ. The drawback of such an
estimator is that it adds an hyper parameter to the method. Yet, while standard
approaches [22] can be used to estimate this parameter, we observed in our
experiments, and for large number of samples, that this parameter exerts little
influence over the final result (less than a standard deviation) for a large range
of values.

5.1 Toy dataset

In this first experiment, the behavior of the optimal transport is examined on
a simple two-dimensional dataset. We consider a two-class distribution by sam-
pling independently for each class c1 and c2 following the normal distributions
N s

1 and N s
2 . The set of all those samples constitute the source domain. The tar-

get domain samples are then obtained by sampling the mixture N t
1 +N t

2 . The
target distributions N t

i , (i = 1, 2) are deduced from N s
i , (i = 1, 2) by chang-

ing both the scale and translating the distribution mean. The produced domain
transformation is thus non-linear and cannot be expressed by a simple 2D trans-
formation of the input space. This makes the problem particularly interesting
with respect to our initial assumptions on the nature of the domain change. We
then sample randomly from these distributions ns

1,n
s
2,n

t
1 and nt

2 samples from
N s

1 , N s
2 , N t

1 and N t
2 to form the corresponding learning and test sets. An il-

lustration of this toy dataset is given in Figure 3.a for ns
1 + ns

2 = 100 samples
in the source distribution (red and white circles) and nt

1 + nt
2 = 200 samples in

the target one (blue crosses). Note that the size of the points in the Figure is
proportional to its weight pi and reflects the density of the distribution.

Figure 3.b presents the result of the optimal transport OT-ori coupling as
a set of non-nul connections (red and black arcs) between the source and the
target distributions. The color of those connections is related to the magnitude
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Fig. 3. Illustration of the transport OT-ori on a simple toy dataset. The initial distri-
butions are depicted in the right image (a) The source distribution is depicted in white
and red for respectively class 1 and 2, the target distributions are in blue. In image
(b), we show the optimal transport couplings, depicted as links colored with respect to
the source class label.

of the coupling (up to a global scaling factor). As expected, the coupling matrix
γ0 contains less than 100 + 200 − 1 = 299 non-nul entries. One can see that
some white and red elements are clearly misled by the transport, but the overall
adaptation remains coherent with the test distribution.

Figure 4 illustrates the results obtained on this dataset with the regularized
versions of the transport OT-reg and OT-reglab for a regularization parameter
value of λ = 1. The γ0 matrix of OT-reg, on the left of the first row of Figure 4,
is indeed sparse, but much less than the corresponding one in OT-ori. This
can be assessed by comparing the denser connections issued from OT-reg (left
panel of the second row of Figure 4) with respect to those observed for OT-

ori (right panel of Figure 3). In the proposed OT-reglab (right column of
Figure 4), the sparsity is clearly enforced per class (the rows of the coupling
matrix are sorted by class), which yields a sparser coupling matrix with block
structure. In the last row of Figure 4 we show the result of the adaptation of
the source distribution following the procedure described in Section 4.3. Two
additional interesting behaviors are observed in the regions highlighted by red
squares, where some of the incoherencies observed in OT-ori and OT-reg of the
transport are resolved by the label regularization proposed with OT-reglab.

Classification measures. We now consider performances of a classifier trained
on the source samples adapted to the target distribution. In those experiments,
we use a SVM classifier with a Gaussian kernel. The hyperparameters of the
classifier are computed for each trial by a 2-fold cross validation over a grid
of potential values. For every setting considered, the data generation / adap-
tation / classification was conducted 20 times to leverage the importance of
the sampling. When informative, we provide the standard deviation of the re-
sult. In the first experiment, we examine the importance of the regularization
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Fig. 4. Comparisons of two versions of the regularized transport: Sinkhorn transport
(OT-reg, left column) and Sinkhorn transport with the label regularization (OT-

reglab, right column). The first row shows the transport coupling matrices γ
0
, the

second row their equivalent graphical representations, with connections colored by the
source node label. The third row is the adaptation of the source samples induced by
γ

0
using Equation (19).
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Fig. 5. Classification results for the toy dataset example: (a) influence of the regular-
ization parameter λ; (b) influence of the proportions of samples between the source
and the target distributions; (c) influence of the balance of classes on the overall per-
formance of the adaptation.

parameter λ over the overall classification accuracy (Figure 5.a). In this case,
we set ns

1 = ns
2 = nt

1 = nt
2 = 100. We confirm that the use of the transport

for domain adaptation increases the performances significantly (by 8%) over
a classification conducted directly with the source distribution as learning set.
When varying the λ regularization parameter and using OT-reglab, another
very significant increase is achieved (up to 25% for λ = 0.04), which demon-
strates the relevance of our transport regularization. In the second experiment,
we set ns

1 = ns
2 = 100 and we increase the number of elements in the source

target nt
1 and nt

2 equivalently. For this experiment and for the next one, λ is
set by a standard cross-validation method. In this case, the standard deviation
is omitted as it is constant over the experiments and no informative. One can
observe that the performances of the classification are i) consistent with the first
experiment and ii) constant over the volume of samples in the target domain as
long as the proportions are conserved. In the third experiment, we set nt

1 and
nt
2 to the value of 100 samples each and we vary the proportion of the classes

through a parameter p ∈ [0, 1] with ns
1 = p ∗ 100 and ns

2 = (1 − p) ∗ 100. This
parameter allows to control the proportion of elements in class 1 and in class
2 in the source distribution. As shown in Figure 5.c, the best result is achieved
when the proportion of each class samples is similar in the source and target
distributions (at 50%). This somehow highlights one limit of the method: the
mass equivalent to each class should match in proportions for both distributions
to get the best adaption result. Nevertheless, we can see from Figure 5.c that
a variation of ±15% between the source and target distribution still leads to
significant performance improvements.

5.2 Visual adaptation dataset

We now evaluate our method on a challenging real world dataset coming from
the computer vision community. The objective is now a visual recognition task of
several categories of objects, studied in the following papers [23,13,14,15]. The
dataset contains images coming from four different domains: Amazon (online



merchant), the Caltech-256 image collection [24], Webcam (images taken from a
webcam) and DSLR (images taken from a high resolution digital SLR camera).
Those domains are respectively noted in the remainder as A, C, W and D. A
feature extraction method is used to preprocess those images; it namely con-
sists in computing SURF descriptors [23], which allows to transform each image
into a 800 bins histogram, which are then subsequently normalized and reduced
to standard scores. We followed the experimental protocol exposed in [14]: each
dataset is considered in turn as the source domain and used to predict the others.
Within those datasets, 10 classes of interest are extracted. The source domain
are formed by picking 20 elements per class for domains A,C and W, and 8
for D. The training set is then formed by adapting these samples to the tar-
get domain. The latter is composed of all the elements in the test domain. The
classification is conducted using a 1-Nearest Neighbor classifier, which avoids
cross-validation of hyper-parameters. As for the toy example above, we repeat
each experiment 20 times and report the overall classification accuracy and the
associated standard deviation. We compare the results of the three transport
models (OT-ori, OT-reg and OT-reglab) against both a classification con-
ducted without adaptation (no adapt.) and 3 state-of-the-art methods: 1) the
surrogate kernel approach (SuK), which in [3] was shown to outperform both
the Transfer Component Analysis method [10] and the reweighing scheme of [2];
2) the (SGF) method proposed in [13] and 3) the Geodesic Flow Kernel (GFK)
approach proposed in [14]. Note that this last method can also efficiently incorpo-
rate label information: therefore we make a distinctions between methods, which
do not incorporate label information (no adapt, SuK, SGF, GFK, OT-ori

and OT-reg) and those that do (GFK-lab and OT-reglab). For each setting
we used the recommended parameters to tune the competing methods. Results
are reported in Table. 1.

When no label information is used, (OT-reg) usually performs best. In some
cases (notably when considering the adaptation from (W→A or D→W), it can
even surpass the (GFK-lab) method, which uses labels information.OT-ori

usually enhances the result obtained without adaptation, but remains less effi-
cient than the competing methods (except in the case of W→A where it sur-
passes SGF and SuK. Among all the methods, OT-reglab usually performs
best, and with a significant increase in the classification performances for some
cases (W→C or D→W). Yet, our method does not reach state-of-the-art perfor-
mance in two cases: A→C and D→A. Finally, the overall mean value (last line
of the table) shows a consistent increase of the performances with the proposed
OT-reglab, which outperforms in average GFK-lab by 2%. Also note that the
regularized unsupervised version OT-reg outperforms all the competing meth-
ods by at least 3%.

6 Conclusion and discussion

We have presented in this paper a new method for unsupervised domain adap-
tation based on the optimal transport of discrete distributions from a source
to a target domain. While the classical optimal transport provide satisfying re-



sults, it fails in some cases to provide state-of-the-art performances in the tested
classification approaches. We proposed to regularize the transport by relaxing
some sparsity constraints in the probabilistic coupling of the source and target
distributions, and to incorporate the label information by penalizing couplings
that mix samples issued from different classes. This was made possible by a
Majoration Minimization strategy that exploits a ℓp − ℓ1 norm, which promotes
sparsity among the different classes. The corresponding algorithm is fast, and
allows to work efficiently with sets of several thousand samples. With this regu-
larization, competitive results were achieved on challenging domain adaptation
datasets thanks to the ability of our approach to express both class relationship
and non-linear transformations of the domains.

Possible improvements of our work are numerous, and include: i) extension
to a multi-domain setting, by finding simultaneously the best minimal transport
among several domains, ii) extension to semi-supervised problems, where several
unlabeled samples in the source domain, or labelled samples in the target domain
are also available. In this last case, the group sparsity constraint should not only
operate over the columns but also the lines of the coupling matrix, which makes
the underlying optimization problem challenging. iii) Definition of the transport
in a RKHS, in order to exploit the manifold structure of the data.
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