
HAL Id: hal-01018683
https://hal.science/hal-01018683

Submitted on 4 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SAGA: Sparse And Geometry-Aware non-negative
matrix factorization through non-linear local embedding

Nicolas Courty, Xing Gong, Jimmy Vandel, Thomas Burger

To cite this version:
Nicolas Courty, Xing Gong, Jimmy Vandel, Thomas Burger. SAGA: Sparse And Geometry-Aware
non-negative matrix factorization through non-linear local embedding. Machine Learning, 2014, pp.1–
23. �hal-01018683�

https://hal.science/hal-01018683
https://hal.archives-ouvertes.fr

Machine Learning manuscript No.

(will be inserted by the editor)

SAGA: Sparse And Geometry-Aware non-negative

matrix factorization through non-linear local

embedding

Nicolas Courty · Xing Gong · Jimmy

Vandel · Thomas Burger

Received: date / Accepted: date

Abstract This paper presents a new non-negative matrix factorization technique
which (1) allows the decomposition of the original data on multiple latent factors
accounting for the geometrical structure of the manifold embedding the data;
(2) provides an optimal representation with a controllable level of sparsity; (3)
has an overall linear complexity allowing handling in tractable time large and
high dimensional datasets. It operates by coding the data with respect to local
neighbors with non-linear weights. This locality is obtained as a consequence of the
simultaneous sparsity and convexity constraints. Our method is demonstrated over
several experiments, including a feature extraction and classification task, where
it achieves better performances than the state-of-the-art factorization methods,
with a shorter computational time.

1 Introduction

Context: Non-negative matrix factorization (or NMF for short) has long been
studied and used as a powerful data analysis tool providing a basis for numerous
processing, such as dimensionality reduction, clustering, denoising, unmixing, etc.
This article is concerned with a variant of NMF, where one tries to decompose a
given matrix X = [x1, . . . ,xn](xi∈Rp) formed by a set of n samples described with

p variables (∈ R
p) as a product of two matrices F ∈ R

p×ℓ and G ∈ R
n×ℓ such

that ||X−FG
⊤||2 is minimized, under the constraints that the elements of G are

positive or nil, and that its rows sum to one. In other words, G serves as a convex

N. Courty
IRISA, Université de Bretagne Sud, Vannes, France. E-mail: nicolas.courty@univ-ubs.fr

X. Gong
Costel, Université de Rennes 2, Rennes, France - NLPR, Institute of Automation, Chinese
Academy of Science, Beijing, People’s Republic of China. E-mail: xgong.nlpr@gmail.com

J. Vandel, T. Burger
Université Grenoble-Alpes, CEA (iRSTV/BGE), INSERM (U1038), CNRS (FR3425), Greno-
ble, France. E-mail: firstname.lastname@cea.fr

2 Nicolas Courty et al.

surrogate description of X in the reduced embedding formed by ℓ prototypes (the
columns of F).

This convexity property on G is desirable in a lot of applications for its relations
with the physics of the underlying observations: in this acceptation, the datapoints
are usually observations of a mixing process where the components of the mixture
are not known. Hyperspectral images are a good example, as each pixel describes
a spectrum that can be defined as a combination of pure materials spectra (trees,
concrete, water, etc.); the combination occurring because of the captor spatial
resolution and different scattering effects [15,4]. Other examples of applications
are found in archetypal analysis [31], or biology [22].

Notations: Bold capital letters, such as X or M refer to matrices. The trans-
position operator is denoted .⊤ (so that M

⊤ refers to the transpose of M). The
set of m× n real matrices (respectively real matrices with nonnegative entries) is
denoted R

m×n (respectively R
m×n
+). In is the n×n identity matrix, and ||.|| refers

to the Frobenius norm. For any matrix M, M•i (respectively Mi•) corresponds to
the ith column (respectively ith row) of M. However, in the particular case of X,
each column X•i corresponds to the datum xi, so that this latter more intuitive
notation is preferred. ∆n(M) is a (n−1)-simplicial polytope formed by n columns
of M. The unit (n− 1)-simplex ∆n(In) is simply referred to as ∆n.

Related work: Despite appealing properties, NMF presents a number of difficul-
ties: First, while real data are often embedded on complex manifolds, the seminal
convex NMF formulation prohibits a large number of latent factors that would
explain the data in a geometry preserving way; Second, the level of sparsity in the
final embedding (the matrix G) is rarely controllable, and far from data analyst
expectations; finally, the computational time is prohibitive when it comes to han-
dling very large size matrices. Even if to date, various state-of-the-art methods
already tackle one of or two of these issues, no method addresses these three issues
all together.

The convexity constraint we consider on G differs from that of what is classi-
cally referred to as Convex NMF [13], i.e. NMF where the columns of F are convex
combinations of columns of X. However, our problem is also not unheard of in the
literature, as, beyond its easiness of interpretation, it provides a very appealing
computational framework: if G encodes convex combinations, the ℓ columns of F
are expected to characterize a hull of X in R

p, as data points lying within are
perfectly reconstructed. Based on this idea, it is possible to separate the NMF
problem into two steps, namely the computation of F (in order to determine, or to
best approximate the hull of the dataset) and of G (which corresponds to the pro-
jection of the dataset onto the region bound by the hull). From a computational
point of view, this is really interesting, as it is now possible to decompose the NMF
(which amounts to finding two matrices with close relationship) into two simple
problems, each focused on a particular matrix: first one computes F regardless G,
and second, one computes G by projection of the columns of X onto F. With such
an approach, it is possible to expect a lower complexity than that of elder methods
based on singular value decomposition (with a o(n3) complexity), or than that of
demanding procedures that iteratively alternates between the minimization of the
two matrices, such as in [13].

Sparse And Geometry-Aware NMF 3

Initially, F was first related to the convex hull of X [12]: Notably, numerous
works in the remote sensing and hyperspectral imaging community (see [4] as well
as its references) have pointed out that F should be chosen so that ∆ℓ(F) best
encompasses X, while other investigations focused on how to find this simplicial
convex hull [41,38,9]. More recently, a series of works [1,24,19,34] focused on the
conical hull of X: Here, the idea is to find F so that it spans a cone encompass-
ing the dataset. The reason of the recent focus on the conical hull is that it is
the geometric translation of an important assumption in NMF, the separability
assumptions proposed by Donoho in [14]. This separability assumption reads that
(1) the residue X − FG

⊤ is nil, (2) columns of F are collinear to columns of X.
This second condition regarding the collinearity of the columns of F and X is
interesting beyond the separability assumption: whatever the type of hull defined
by F, it is possible to assume that the components of the mixture belong to the
data, and that any datum is a convex combination of a restricted number of par-
ticular selected datapoints (those forming F). This approach drastically reduces
the complexity of finding F as this latter is simply defined by a column subset
selection (CSS) of X.

Fig. 1 illustrates a dataset lying on a non-linear manifold resulting from some
hidden factors that could be of interest, as well as its conical and convex hulls. It
clearly appears that the geometries of these hulls are not adapted to that of the
dataset. So far, there has been little interest in trying to characterize the boundary
of the manifold dataset in spite of its non-convexity; in the sequel, we shall address
this boundary with the shorter and imaged name manifold hull, that is illustrated
on Fig. 1(d). Naturally, precisely characterizing such a manifold hull would require
to increase ℓ, the number of datapoints involved in the CSS; which stresses to a
larger extend the need for an adapted control of the sparsity level that is already
sought for in numerous applications: Each point should be described as a convex
combination of a restricted number λ of prototype points among the ℓ of the CSS.

Whatever the type of hull (convex or conical), separating F and G computa-
tions has drastically reduced the overall NMF complexity of the state-of-the-art
methods: [38,39] compute F in linear time and few works [19,34] even reach over-
all linear-complex NMF. However, among them, none allows characterizing the
manifold hull, and none allows controlling the solution sparsity. Even if to date,
more computationally efficient methods than adding the classical L1 penalty [21,
15] have been developed, such as [23,18], none reaches a linear complexity.

Even if the characterization of the manifold hull has never been addressed so
far, it is well-known that the kernel trick is an efficient way to provide a manifold
preserving description of a dataset. In fact, several pre-existing works applied the
kernel trick to NMF [43,6,7]. However, the convexity constraint on G (and conse-
quently the notion of manifold hull) does not appear. Moreover, neither sparsity
nor any linear complexity is achieved.

Proposal: In this article, we present SAGA (Sparse And Geometry-Aware), a new
NMF method avoiding the aforementioned limits. It operates in a Reproducing
Kernel Hilbert Space (RKHS) [35], where F is defined by a CSS. Then, according
to an expected sparsity level, G, the best dataset projection onto the simplex
formed by F is computed. The advantages of our method are:

First, kernelization is interesting to several extents: i) it makes the algorithm
compliant with dataset where only relationships among objects are available; ii)

4 Nicolas Courty et al.

Fig. 1 (a) A dataset X embedded in a U-shaped manifold; (b) the separability assumption
assumes the dataset is encompassed in a cone spanned by the columns of F; a datum is
described in a column of G through its non-negative coordinates in the cone; (c) Convex
hull: the dataset is embedded in a simplex, and each datum is described with barycentric
coordinates; (d) Manifold hull: one uses a great enough number of reference points to precisely
characterize the manifold, while forcing the sparsity to achieve some local coding. Note that,
in order to make these imaged representations clearer, we did not represent F as a CSS of X.

its regularization property improves robustness to noise; iii) it allows using more
latent factors than the dimensions of the input data, providing an insightful tool
to consider the geometric structure of the data manifold. As both the number of
latent factors and the sparsity level are increasing, it appears that the locality of
the support of G is increasing, turning the factorization problem in a non-linear
local embedding of the original data. As shown in some recent works [42,20], this
kind of embedding is powerful to describe the non-linear structure of the data
manifold, and as such serve as a very good feature extraction framework.

Second, the CSS is defined thanks to a manifold subsampling method [36],
which reaches a linear complexity with respect to n, the size of the dataset.

Third, the computation of G corresponds to a sparse RKHS simplex projection,
which is a non-linear optimization problem. Based on recent advances on sparse
projected gradient methods, the projection is solved with an algorithm of linear
complexity (with respect to n), while naturally embedding sparsity mechanism
control.

Forth and finally, since both computations of F and G are linear, the overall
complexity of SAGA is linear. This makes this algorithm perfectly suitable for
very big data.

To the best of our knowledge, no state-of-the-art method simultaneously com-
piles all these advantages.

Contributions: SAGA has been developed on the top of several state-of-the-
art algorithms, thanks to several technical extensions that are listed here. The
computation of matrix F is largely inspired by the simplex volume maximization
(SiVM) approach of [39]. However, the method itself has been extended in several
manners:

1. It is slightly generalized in order to operate in the Hilbert space reproducing
the Gaussian kernel, rather than in R

p.
2. Most importantly, while SiVM proposes an approximate optimization (for sev-

eral simplifications are made to reach a linear complexity), we propose another

Sparse And Geometry-Aware NMF 5

solution to the simplex volume maximization which performs an exact opti-
mization.

In spite of these two extensions, our method remains of linear complexity, so
that finally, the computation of F with SiVM is both a particular case and an
approximation of the one produced by SAGA. Then, the computation of matrix
G is not inspired by any other NMF technique, but is based on a recent sparse
projected gradient strategy [25]:

3. This latter is adapted to the projection over the CSS in the RKHS, and its
linear complexity is kept.

4. We provide with theoretical bounds on the convergence of the projector (linked
to the kernel bandwidth, the minimum pairwise distance between the CSS and
the sparsity level).

Outline: We solve our NMF problem by separating the computations of the CSS
matrix and of the projection matrix. This is why, Sections 2 and 3 focus on the
computations of F and G respectively. More specifically, the structure of Sec-
tions 2 is the following: First a small introductive paragraph recalls the basics
of the kernel trick, as well as why it is interesting to operate in a RKHS to ful-
fill our objectives. Then, Section 2.1 investigates the consequences of working in
such RKHS; They lead us to a particular strategy, which is to characterize the
manifold hull of the dataset in R

p via a simplicial convex hull in the RKHS; and
to define this latter with a manifold sampling strategy. At this point, computa-
tional constraints direct us toward SiVM-like procedures rather than toward more
resource-demanding ones. Section 2.2 jointly presents SiVM, such as defined in the
literature [39], as well as the kernel generalization we propose, while Section 2.3
describes our modifications to reach exact maximal simplex volume. In a similar
way, Section 3 is divided into two parts: the first one (Section 3.1) explains how
projecting the image in the RKHS of any datum xi onto the image of the CSS in
the RKHS, along with sparsity constraints; Section 3.2 provides with a proof that
the projector defined in Section 3.1 converges. As it is established in the litera-
ture [16] that the Restricted Isometry Property (RIP, [8]) implies the convergence,
we prove that our projector respect the RIP for some particular tuning of its pa-
rameters. At this stage, most of the required mathematics is established. Then, in
Section 4, one summarizes the entire procedure made of the concatenation of the
two matrices computation through an easy to implement algorithm, completed by
some theoretical assessments of the linear complexity of the algorithm. Finally,
Section 5 is devoted to experimental validations. In the first series of experiments,
one focuses on toy examples, in order to illustrate the behavior of the manifold
hull. Then, follow several experiments on simulated datasets, in order to compare
the computational efficiency and the computational precision of SAGA with re-
spect to the state-of-the-art. Finally, we consider real datasets through challenging
image classification tasks.

2 Geometry aware CSS procedure

Despite living in R
p, X may span a nonlinear manifold of intrinsic dimensionality

lower than p. A major problem is thus to extend to this nonlinear manifold the

6 Nicolas Courty et al.

classical statistics that are used to work in a vector space. To do so, an essential
element is to replace the Euclidean distances by geodesic distances. Depending on
the manifold, the associated metric may be difficult to formally define. However,
it is possible to characterize it through the time-scale of the well-studied heat
diffusion process, the kernel formulation of which is well approximated by the
Gaussian kernel [26,27]: The geometry of the manifold in which X lies is captured
by Kij = k(xi,xj) = exp

(

−||xi − xj ||2/2σ2
)

with variance σ2. Let us call φ(.)
the implicit feature map from R

p onto H, the RKHS associated to k(., .). We use
the shorthand notation Φ = φ(X) = [φ(x1), . . . , φ(xn)](φ(xi)∈H). Then, following
the notations of [13], the SAGA solution amounts to finding the indicator matrix
W

(ℓ) ∈ {0, 1}n×ℓ defining the CSS1 and the projection matrix G where φ(F) =
φ(XW

(ℓ)) = ΦW
(ℓ), such that ||Φ−ΦW

(ℓ)
G

⊤||2 is minimized under convexity
constraints.

2.1 CSS as a manifold sampling procedure

Let us start by a basic remark,

Remark 1 In the input space, we must have ℓ ≤ n and ℓ ≤ p. In the Gaussian
RKHS, one still has ℓ ≤ n, however, ℓ > p becomes possible, for each sample spans
its own dimension.

which leads to the following property:

Property 1 (Non-Separability) Separability assumption does not hold for NMF in
the Gaussian RKHS.

Proof. According to Remark 1, any datum not included in XW cannot be ex-
pressed as a linear combination of elements of φ(XW). �

Thus, one should not consider conical hull in the RKHS. However, Remark 1 leads
to:

Corollary 1 In the Gaussian RKHS, it is possible to use more than p points in
the CSS. The latter forms a non-simplicial polytope in R

p while their image in the
Gaussian RKHS is a simplex.

In other words, the manifold hull of X can be characterized through the simplicial
convex hull ∆ℓ(φ(F)). Then, it follows that:

Corollary 2 No sample lies in ∆ℓ(φ(F)) and all the samples will be projected
on hyperfaces of ∆ℓ(φ(F)), leading to approximate reconstructions. Yet, such an
approximation comes with the appealing property of sparsity, discussed later in the
article.

At this point, finding ∆ℓ(φ(F)) amounts to finding W, which turns out to
subsample the boundary of the data manifold. Most of the methods from the
literature address it with the objective of maximizing the representation of the
dataset, while here, we are interested in its boundary, which makes the sampling

1 We write W instead of W(ℓ) when ℓ does not matter, or is implicit regarding the context.

Sparse And Geometry-Aware NMF 7

completely different: For instance, a kernel k-means sampling, although very effi-
cient to subsample a given manifold [27], leads to Convex NMF of [13], the aim of
which is completely different of ours.

However, our problem is not completely unheard of: In [36], the authors con-
sider maximizing the diversity of the selected samples using a Karcher variance2

maximization criterion. Alternative formulation exists, where one seeks for the
maximum volume parallelepiped in the data matrix [9]. Interestingly enough,
whatever the interpretation (diversity or volume criterion), the corresponding com-
putation can reduce to recursive QR decompositions of the data matrix [19,36].
However, in the RKHS, since no explicit coordinates are available, those methods
cannot be transposed. The recent proposal of [10] regarding a kernel rank revealing
Cholesky technique is also of interest, unfortunately, it fails to scale up to big data,
because it implies a computationally demanding decomposition at each selection
step.

Finally, among all the methods available in the literature, if one discards those
(1) which do not sample the boundary, (2) which cannot be conducted in a RKHS,
(3) which do not have a linear complexity, we are aware of a single remaining
method: the Simplex Volume Maximization (SiVM) [39].

2.2 Original Simplex Volume Maximization

We begin with a review of the original formulation of Thurau and co-workers [39]
and its direct transposition to the kernel framework. SiVM tries to maximize
Vol(∆ℓ(F)), the volume of the simplex spanned by ∆ℓ(F), which reads:

Vol(∆ℓ(F)) =

√

−1ℓ · cmd(F)

2ℓ−1(ℓ− 1)!
, with cmd(F) = det

0 1 1 1 . . . 1

1 0 d21,2 d21,3 . . . d21,ℓ
1 d22,1 0 d22,3 . . . d22,ℓ
1 d23,1 d23,2 0 . . . d23,ℓ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 d2
ℓ,1 d2

ℓ,2 d2
ℓ,3 . . . 0

. (1)

cmd(F) is the Cayley-Menger determinant of F (i.e. the determinant of the matrix
accounting for the pairwise distances in F) and d2i,j is the square Euclidean distance
between elements xi and xj . This obviously transposes to the RKHS: The volume
of ∆ℓ(ΦW) can be expressed by replacing the Cayley-Menger determinant by that
of a matrix accounting for pairwise distances in H:

Vol(∆ℓ(ΦW)) =

√

−1ℓ

2ℓ−1(ℓ− 1)!
det(A) (2)

with A similar to the matrix of Eq. (1) except that ∀i, j ≤ ℓ, d2i,j is replaced by:

A(i+1)(j+1) = ||φ(xi)− φ(xj)||2 = k(xi,xi) + k(xj ,xj)− 2k(xi,xj)

The comparison of the volume of the simplices spanned by all the possible
CSS is computationally prohibitive. Thus, an approximate search in linear time

2 The Karcher variance is a variance accounting for Riemannian distances over the manifold,
rather than Euclidean ones.

8 Nicolas Courty et al.

of the best simplex is proposed in [39]. This is possible thanks to two tricks: The
first one is a strong result (Theorem 1 of [39]), which states that if one adds an
element to the simplex, it can only make the reconstruction error smaller or equal.
Thus, a simple greedy algorithm can be used to compute W: Starting with the
best 1-simplex (i.e. W has 2 columns), one adds the best third sample (according
to the maximization of Eq. (1)), then the fourth, and so on until ℓ samples are
selected. Practically, this procedure can be transposed to the RKHS: At iteration
p− 1 one selects the element φ(xi) of Φ such that

i = argmax
q

Vol (∆p(ΦW) ∪ φ(xq)) . (3)

However, this procedure still requires the computation of several Cayley-Menger
determinants (each of them being computationally intensive).

At this point shows up the second trick: If one makes the simplifying assump-
tion that the distances between the elements of the CSS defined in the previous
iteration are constant and noted a, and if αj,q = d2j,q/2, then, Eq. 3 amounts to
finding φ(xi) such that

i = argmax
q

p
∑

k=1

αkq ·

a2 + 2

p
∑

j=k+1

αjq

− (p− 1) ·
p
∑

k=1

α2
kq

 , (4)

where dj,q refers to the distance between a point of the CSS xj and a point out
of the CSS xq which is considered for adjunction to the CSS (thus, in the RKHS,
one has αj,q = 1− k(xj ,xq)). Finally, the computation of Eq. 4 is sped up by
considering that d2i,q ≈ di,q and a2 ≈ a, leading to

i = argmax
q

p
∑

k=1

dkq ·

a+

p
∑

j=k+1

djq

− p− 1

2
·

p
∑

k=1

d2kq

 . (5)

Remark 2 Naturally, the magnitude to which the constant distance assumption
is violated strongly depends on the dataset. As a consequence, the instantiation
of Eq. 3 into Eq. 5 may lead to some approximations as already noted in [19],
where Gillis and Vavasis showed that SiVM can underperform on ill-conditionned
datasets.

Despite this remark, the general principle advocated in Eq. 3 remains unalter-
ably valid. This is why, we rely on it to propose an alternative to SiVM, which
provides exact volume computation, with a similar linear complexity.

2.3 Exact simplex volume maximization

Let us consider a simplex ∆p of dimensionality p−1 spanned by a subset XW
(p) =

{x1, . . . ,xp} of p points of X. If we add a (p+ 1)th point xi ∈ X \XW
(p) to the

simplex, the new volume is given by:

Vol(∆p+1) =
Vol(∆p)× dist(xi,XW

(p))

p
(6)

Sparse And Geometry-Aware NMF 9

where dist(xi,XW
(p)) is the distance between xi and its projection onto the

subspace spanned by XW
(p). According to [11], in H, this distance reads:

dist(φ(xi),ΦW
(p)) = 1−

(

k
⊤
xi

·K−1
p · kxi

)

(7)

where K
−1
p is the inverse of the kernel matrix of the elements of the CSS, i.e.

K
−1
p = (W(p)⊤

Φ
⊤
ΦW

(p))−1, and where kxi
is a vector of length p such that

kxi
= [k(xj ,xi)]xj∈XW(p) . Then, it is possible to use a greedy procedure similar

to that of SiVM, where Eq. 3 translates into:

i = argmax
q

Vol(∆p(ΦW
(p)))× dist(φ(xq),ΦW

(p))

p

= argmin
q

[

k
⊤
xq

·K−1
p · kxq

]

. (8)

Remark 3 This procedure tends to add datum that most changes the geometry
of the manifold spanned by the CSS. As such, it acts as the spectral sampling
procedure proposed in [33] for sampling a 3D mesh in a computer graphics context.

Even if K−1
p is computed a single time at each iteration (it does not depend

on xq), a matrix inversion remains a resource demanding operation. Moreover,
if ℓ elements are to be selected, then ℓ inversions of matrices of increasing size
are expected. Fortunately, it is possible to bypass this inversion, by iteratively
constructing K

−1
p on the basis of the Schur complement [5]. Once i, the index of

the best (p+ 1)th point to add to the CSS is defined (Eq. 8), one computes

K
−1
p+1=

[

Kp kxi

k
⊤
xi

1

]−1

= K·
[

(

1−k
⊤
xi

·K−1
p · kxi

)

−1
0
⊤
p

0p Kp
−1

]

·K⊤ (9)

with K =

[

−K
−1
p · kxi

Ip

1 0p
⊤

]

where Ip is the identity matrix of size p and 0p is a vector of p zeros. The compu-
tation works as long as k

⊤
xi

·K−1
p · kxi

differs from 1, which is always true in the
Gaussian RKHS as long as the data points are separated.

3 Sparse projections onto the RKHS simplex

In this section, we focus on the computation of G. We give the formulation of our
sparse RKHS simplex projector, and then we discuss its convergence. We notably
show some analytical bounds required for the convergence of the method.

3.1 Projection on the RKHS simplex

We search for the projection of any point φ(xi) onto the simplex ∆ℓ(ΦW), i.e. the
point of the simplex which minimizes the Euclidean distance to φ(xi). It amounts
to solving the n independent problems of computing the rows of G:

10 Nicolas Courty et al.

Gi• = argmin
Gi•

||φ(xi)−ΦWG
⊤
i•||2 s. t.

∑

j

Gij = 1, Gij ≥ 0, ∀j (10)

The constraint
∑

j Gij = 1, Gij ≥ 0, ∀j is equivalent to have Gi• in the unit

standard simplex ∆ℓ, (G encodes the barycentric coordinates of X in ∆ℓ(ΦW)).
At this point, it is possible to force the sparsity of the projection to λ < ℓ, without
any extra computational cost: We only need to replace the previous constraint by
Gi• ∈ ∆λ. Thus, Eq. (10) reads:

Gi• = argmin
Gi•

||φ(xi)−ΦWG
⊤
i•||2 s. t. Gi• ∈ ∆λ (11)

Instead of considering quadratic programming, such as in [39] or [24], we follow
some recent work on the projection on the unit standard simplex [25], and we
propose to use a simple projected gradient descent algorithm to solve Eq. (11),
which amounts to iterating through different possible solutions of

G
t+1
i• = Pλ

(

G
t
i• − εt∇(||φ(xi)−ΦWG

t
i•

⊤||2)
)

(12)

t being the iteration index, εt a (possibly varying) step size, ∇(.) the gradient
operator and Pλ(.) the projector onto ∆λ. This kind of projected gradient descent
method has recently shown its computational efficiency and is also endowed with
theoretical convergence guarantees [16]. The gradient reads (we omit the iteration
index t for clarity):

∇(||φ(xi)−ΦWG
⊤
i•||2) = ∇((φ(xi)−ΦWG

⊤
i•)

⊤(φ(xi)−ΦWG
⊤
i•))

= ∇(Gi•KℓG
⊤
i• − 2kxi

G
⊤
i• + k(xi,xi)),

= 2(G⊤
i•Kℓ − kxi

). (13)

As for Pλ(.), we rely on the Greedy Selector and Simplex Projector (GSSP) al-
gorithm of [25] which can be summarized as a two-step procedure: firstly the
coordinates of the vector are sorted by magnitude, and then the λ greatest values
are projected on the unit simplex ∆λ (while the other vector entries are set to
zero).

Remark 4 Since the GSSP procedure projects Gi• on the subspace spanned by
the ℓ columns of F, the coordinates of Gi• embeds the projection over each of the
ℓ selected elements in the feature space, so that the sparsity support is chosen in
the closest elements in the feature space.

The Gaussian kernel is monotonically decreasing according to the neighboring
distance; This implies that for each datum, the sparsity support is made of the
closest CSS elements in the input space. It follows that:

Property 2 (Non-linear local coding)The sparse RKHS simplex projector describes
any element xi of X with Gi•, which interprets as its non-linear (because of
the kernel non-linearity) barycentric coordinates according to λ prototype points.
These prototype points are found in the closest elements of the CSS, thus providing
a non-linear local coding for xi.

Sparse And Geometry-Aware NMF 11

3.2 Convergence of the projector

Finally, we establish the convergence of that projector, which ensures [25] that
the final vector Gi• is the best λ-sparse solution. To do so, we rely on [16], which
states that for Eq. 11 to be minimized via the projected gradient approach, ΦW

has to satisfy λ-restricted isometry property (or λ-RIP for short), with δλ ∈ [0, 1[.
This latter reads:

Definition 1 The linear operator ΦW respects the λ-restricted isometry prop-
erty [8] with constant δλ if

(1− δλ)||x||22 ≤ ||ΦWx||22 ≤ (1 + δλ)||x||22 (14)

where ||.||2 refers to the L2 norm, and for every λ-sparse vector x.

Equivalently, the constant δλ can also be defined as:

δλ := max
L⊆{1,...,ℓ},

|L|=λ

||(ΦW)⊤L (ΦW)L − Iλ||2 (15)

where (ΦW)L denotes a subset matrix of ΦW, with λ columns corresponding
to a subset L of cardinality λ picked up among the ℓ indices of the CSS. Thus,
(ΦW)⊤L (ΦW)L is simply the related Gram matrix, noted Kλ. δλ is defined ac-
cording to the subset providing a maximum among all the possible combinations
of those columns.

As a matter of fact, such convergence holds for particular values of λ and σ,
such as stated by the following proposition:

Proposition 1 If λ > 2, and if σ < dmin√
2 ln(λ−1)

, then, ΦW satisfies the λ-RIP

with constant δλ ∈ [0, 1[. If λ ≤ 2, there is no particular bound to σ.

Proof. Let us first note that since we are working in the Gaussian RKHS, the
columns of ΦW have unit norms. The diagonal entries of Kλ are 1, and ∀i, j ∈ L
the off-diagonal element (i, j) is k(xi,xj).

Let νi be an eigenvalue of a matrix A. By the Gershgorin circle theorem, we
know that:

|νi −A(i, i)| <
∑

j≤λ,i 6=j

|A(i, j)| (16)

Thus, for A = Kλ− Iλ, we obtain |νi| <
∑

j≤λ,i 6=j k(xi,xj). Let µ be the greatest
dot product between the elements of (ΦW)L, i.e. µ := max k(xi,xj), ∀i, j ∈ L, i 6=
j. We can write:

∑

j≤λ,i 6=j

k(xi,xj) ≤ (λ− 1)µ (17)

and we have a bound for every eigenvalue νi and every subset L of cardinal-
ity λ. Thus, ΦW follows the λ-RIP with δλ = (λ − 1)µ [3]. Let d2min be the
minimum squared distance between two distinct elements of XW, i.e. d2min =
mini,j,i 6=j ||xi − xj ||2. As µ = exp

(

−d2min/2σ
2
)

, one has:

δλ < 1 ⇔ (λ− 1) exp

(

−d2min

2σ2

)

< 1 ⇔ σ <
dmin

√

2 ln(λ− 1)
, λ > 2 (18)

�

12 Nicolas Courty et al.

This allows deriving conditions on σ for different convergence or approximation
guarantees, such as δ2λ < 1/3 for convergence [16] (Theorem 2.1). This point is
discussed in [25] (Section 2). We note that similar developments using the Ger-
shgorin circle theorem have been used for the deterministic creation of projection
matrices in the domain of compressed sensing [3] (Section 2.1).

4 Complete SAGA procedure

We give in Alg. 1 the complete SAGA matrix factorization procedure3. We then
discuss its computational complexity.

4.1 Algorithm

In addition to the data matrix X, the user needs to tune the following parameters:
σ the Gaussian kernel bandwidth, λ the expected sparsity level, and ℓ the number
of prototypes in the CSS (with λ ≤ ℓ). Additional parameters for the gradient
descent can be tuned to optimize the computation load, yet it is not mandatory.
At first, one computes the CSS, then the matrix of projections. Regarding the CSS,
the procedure is initialized (Lines 1 to 4) as in [39]: First, one randomly selects
a datum. Then, one finds the most distant datum to that first one. Finally, the
most distant datum to this second datum is selected, and is considered as the first
element of the CSS (see Lines 2 and 3 in Alg. 1). After initialization, the iterative
increment of the simplex dimensionality is implemented in the loop from Line 5
to 8. Regarding the projection, each datum is processed separately thanks to the
loop from Line 9 to 16. Within this loop, another loop deals with the gradient
descent up to a stopping criterion (loop from Line 11 to 16).

4.2 Computational complexity

Property 3 (Computational complexity for W – noted as First step in Alg. 1)
The selection of the CSS defining W based on the exact and incremental simplex
volume maximization has complexity of o(nℓ3), i.e. it has a linear complexity with
respect to n.

Proof. The entire CSS construction is based on Eq. 8 and 9. At each step of the
selection, the procedure amounts to a linear scanning procedure where the volume
increment is computed for each element in the dataset (size n). For one element xi,
with i ∈ [1, n], this requires to compute the associated bilinear form k

⊤
xq

·K−1
i−1 ·kxq

kxq
vector. with an assymptotical computational complexity of o(p2). As p varies

1 to ℓ, one ends up with a cubical complexity term regarding ℓ. �

We note that thanks to Eq. 9, almost all the values (except the one corre-
sponding to the kernel evaluation with the last chosen element) have already been
computed in the previous iteration and do not need to be computed again. This
makes the overall CSS computation that efficient. However, for exceptionally large
data matrices, it is possible to improve it with the randomized approximate search

3 The MATLAB source code is available on http://people.irisa.fr/Nicolas.Courty/SAGA

Sparse And Geometry-Aware NMF 13

Algorithm 1: The SAGA Matrix Factorization algorithm

input : X = [x1, . . . ,xn](xi∈Rp) the data matrix
σ the Gaussian kernel bandwidth
λ the expected sparsity level
ℓ the number of prototypes
E = {ǫ, (εt)(t∈N)} additional parameters for the gradient descent

output: W the indicator matrix
G the reduced sparse convex embedding of X

// First step: Column Subset Selection as a manifold subsampling

1 W(i=1) ← 0 // W (i) ∈ {0, 1}n×i

2 t← argminq
[

k(xq ,xrand[1,n])
]

3 e← argminq [k(xq ,xt)] // xe is the first element

4 W
(i=1)
et ← 1

5 for i← 2 to ℓ do

6 e← argminq

[

k⊤
xq
·K−1

i−1 · kxq

]

7 W
(i)
•i ← 0; W

(i)
ei ← 1

8 compute K
−1
i from K

−1
i−1 using Eq. 9

// Second step: Sparse Projection over the defined simplex

9 for xi ∈ X do

10 G
(k=0)
i• ← [1/ℓ, . . . , 1/ℓ]

11 repeat

12 G
(k+1)
i• ← G

(k)
i• − εt(G

(k)
i•

⊤
Kℓ − kxi)

13 find the indices of the λ greatest values of G(k+1)
i•

14 project the corresponding elements of G(k+1)
i• onto ∆λ [30]

15 set the other elements to 0

16 until ||G
(k+1)
i• −G

(k)
i• ||

2 < ǫ;

of [38], that can be directly adapted. Finally, let us remark that, in spite of being
linear in terms of n, the number of elements in the dataset, the procedure is not
linear with respect to ℓ. However, as ℓ is classically several order of magnitude
smaller than n, so that it is seldom important. This is why, in a similar way, SiVM
is also not linear with respect to ℓ.

The complexity of the computation of the projection matrix G is by construc-
tion linear with respect to n as in the algorithm, it is decomposed into a succession
of n independent projections. However, the complexity of the projection with re-
spect to ℓ is linear:

Property 4 (Computational complexity for G – noted as Second step in Alg. 1)
Each projection has a linear complexity regarding λ.

Proof. Each projection is computed through a gradient descent, each iteration
of which has a complexity dominated by that of the GSSP (Eq. 12). The latter
requires getting the λ greatest values of Gt

i•. To do so, the GSSP classically relies
on sorting the elements of Gt

i• (a vector of size ℓ), with a o(ℓ log(ℓ)) complexity.
However, it is possible to be more efficient by achieving this task in o(λ) thanks to
the median-finding algorithm [30]. Finally, if q iterations are needed in the descent,
then the total complexity of one projection is o(qλ). �

14 Nicolas Courty et al.

Let us note here that q typically depends on the choice of the magnitude of the
gradient step εt, which can be efficiently set following the results of [16]. In practice,
only a few tens of iterations are necessary and if one has n >> qλ, the influence
of the number of iterations is immaterial.

Finally, as both the definition of the CSS and the projection have a linear
complexity with respect to the dataset size, the overall SAGA procedure also has.
This allows factorizing very large matrices in tractable time.

5 Experiments and results

In this Section, we first observe the behavior of SAGA on some toy datasets.
Our goal is to verify the behavior of our algorithm with respect to the theoret-
ical properties given in the previous section, with a special focus on the nature
of the subsampling occurring the RKHS. Then, the volume maximization strat-
egy is discussed, as well as its impact on the reconstruction errors over a toy
and a real dataset. We finally discuss the potential use of SAGA in a feature ex-
traction context for classification purpose. The performances of our method are
then compared to a selection of state-of-the-art methods performing NMF with
characteristics shared by our method (sparsity, kernels, convexity, etc.).

5.1 Experiments on toy datasets

a b c d

Fig. 2 A ring and an S-shape datasets (a-c) It is possible to have ℓ > p elements in the CSS
forming a non-simplicial polytope (here illustrated by a 4-NN graph) which approximates well
the contour of the shape. (b-d) Each pixel of the image is projected in the RKHS onto the
29-simplex (b) or 49-simplex (d). Each pixel is colored according to its reconstruction error
(black for low values, white for high ones).

The SAGA paradigm is first illustrated on toy datasets (Fig. 2, 3 and 4). In
the first examples we consider simulated datasets (ring and S shaped respectively)
made of 600 points in R

2: In the input space, the points of the CSS form a non-
simplicial polytope which intuitively fits with the manifold hull idea (both inner
and outer contours are displayed for the ring). If one projects points onto the
corresponding CSS (ℓ = 30 for the ring, and ℓ = 50 for the S), the magnitude of the
reconstruction error fits with the non-linear geometry of the simplex in the input
space (Fig. 2). The sparsity and the locality of the reconstruction are displayed on

Sparse And Geometry-Aware NMF 15

Fig. 3: It appears that for each point, the number of non-null components is smaller
than or equal to λ = 3 (ring) or λ = 5 (S). Moreover, these non-nil components are
all located in the very close neighborhood of the projected point, as expected for a
non-linear local embedding. Figure 4(a) shows the evolution of the reconstruction
error and the locality of the samples used for the reconstruction. This last term
is measured as the radius of the minimum volume enclosing ball (computed as a
smallest enclosing ball problem [17]). As expected, this mean radius is decreasing
as more samples are taken from the dataset.

a b c d

Fig. 3 (a-b) The 29-simplex on the ring shape dataset: The red point is projected in the RKHS
as a 3-sparse vector. Each vertex color accounts for the corresponding convex coordinates (from
blue= 0 to red= 1) (c-d) The S dataset with 5-sparse vectors (in (d), only 4 projections are
non-nil).

Next, the reconstruction error of SAGA is evaluated with respect to the chosen
sparsity level and compared to the original version of SiVM [38], yet in the Gaus-
sian RKHS, i.e. a simplex volume maximization of Eq. 5, followed by a projection
based on quadratic programming. We draw 2, 000 points in R

30 according to a
Gaussian distribution with covariance matrix σ = 0.5I. We measure for SiVM and
SAGA the normalized reconstruction error ||Φ − ΦWG

⊤||2/||Φ||2. We remark
here that this formula is correct for SiVM if it is implemented through a kernel
form with the linear kernel. Results are displayed in Figure 4(b). When ℓ ≤ p = 30,
SAGA (with or without sparsity constraint) as well as SiVM directly operates as
a dimensionality reduction method: As the SiVM curve is below that of SAGA
λ = ℓ, SiVM appears as more reliable, which makes sense, as the Gaussian distri-
bution provides a rather convex dataset. However, even on such a dataset, if the
reconstruction error is considered along with sparsity, it appears that, whatever
the value λ∗ chosen for parameter λ, it is always possible to find a value ℓ∗ for
ℓ, such that the reconstruction error with SAGA tuned with (ℓ = ℓ∗, λ = λ∗) is
smaller than with SiVM tuned with (ℓ = λ∗). This illustrates well that it is pos-
sible to reduce the reconstruction error while constraining the solution sparsity. If
one considers the case where ℓ ≥ p = 30, SiVM fails in producing reconstruction
error which decreases when ℓ increases: From Eq. (1), the addition of a p+1 vertex
leads to a simplex of null volume, which is impossible to maximize, and turning
SiVM into a random projection method. Thus, the reconstruction error becomes
greater than with SAGA, the latter enhancing the reconstruction quality, despite
strong sparsity constraints.

16 Nicolas Courty et al.

a b

Fig. 4 (a) Reconstruction error (in red) and mean radius of smallest enclosing ball (blue) for
the ring dataset. (b) Normalized reconstruction error.

5.2 Comparison on subsampling strategies

The quality of the overall matrix factorization procedure relies on two elements:
the ability of the CSS to correctly define the manifold hull, and the precision of the
projection. A particular focus is given here on the first one, as various sampling
strategies are compared and discussed.

The goal of our first comparison is to confirm that, among the methods based
on volume maximization, ours is the most accurate. To this end, we compare three
volume maximization methods (operating in the RKHS, to fit the objectives of this
work): The first one is very method from [39], reported through Eq. 5, including
the constant distance assumption as well as the replacement of squared distances
by simple distances. As this point is only supported by computational consider-
ations, we also consider the method summarized by Eq. 4, where the constant
distance assumption still holds, but where the squared distances are kept. These
two methods are referred to as SiVM-approx-(4) and SiVM-approx-(5). Naturally,
the third one is that of SAGA, based on Eq. 8 and 9. As a reference, we consider
the exact volume computation based on the Cayley-Menger determinant (CMD),
and we compare the ratios of the volumes derived by the three methods over the
reference one. Due to the computation cost of CMD, we have restrict the size of
the CSS to ℓ = 8.

Three types of datasets are used for this comparison. First datasets are com-
posed of 2, 000 points in R

30 according to a uniform distribution. The second type
of datasets is used to test the robustness of the methods to ill-conditioned data;
so, 2, 000 elements in R

50 are generated and their singular values are transformed
such as described in [19]. Finally, our last dataset is obtained through a random
selection of 160 images from the real dataset COIL-20 (Columbia University Image
Library). COIL-20 contains 128× 128 gray images of 20 objects at different view
angles, for a total number of sample of 1, 440 [32]. We use 30 datasets of each type
and we compute the mean ratio (and variance) of the volumes, as described above
(see Table 1).

Some conclusions can be drawn from Table 1. First, the lower ratios of SiVM-
approx-(4) and SiVM-approx-(5) for ill-conditioned datasets confirm the conclu-
sion of [19] regarding the constant distance approximation, while SAGA is not

Sparse And Geometry-Aware NMF 17

Table 1 Mean ratio and variance (in %, over 30 runs) of maximum simplex volumes found by
both approximations from Eq. 4 and Eq. 5, as well as SAGA over the exact CMD approach.
For each dataset, the most accurate result is in bold font.

Uniform Ill-conditioned COIL-20
SiVM-approx-(4) 98.93 (0.07) 59.18 (1.6) 97.37 (0.12)
SiVM-approx-(5) 96.03 (0.21) 55.85 (1.5) 96.28 (0.13)

SAGA 100.13 (2·10−3) 100.04 (6·10−3) 100.00 (0.00)

bothered. Second, it is possible to notice the slight decrement of the performances
due to the supplemental approximation in SiVM-approx-(5) where the squared dis-
tances are not considered anymore for computational reasons. Also, for all datasets,
SAGA finds the most similar simplex volumes to the reference ones, as the ratios
are the closest to 1. Oddly enough, the ratios are sometimes even slightly greater
than 1, due to the numerical imprecisions of the determinant computations which
may induce different choices for the simplex vertices. In the meantime, while vol-
ume differences between SAGA and CMD are low, their respective computational
performances are quite different. As an example, with COIL dataset, each CMD
computation requires ≈ 10 sec. whereas SAGA takes ≈ 0.01 seconds in an unopti-
mized implementation. As a conclusion, SAGA provides a volume as large as what
of CMD approach, yet in much less time. However, the computational accuracy of
SAGA is fully investigated in the next subsection.

Now that it is established that SAGA provides a better hull for the manifold
than classical methods based on a kernelization of the simplex volume maximiza-
tion, let us compare it to other manifold sampling strategies. As it is not meaningful
to use the simplex volume as a criterion, we consider the normalized reconstruc-
tion errors, such as with toy datasets. We can also consider larger CSS values,
ranging from 10 to more than 100, as the computation of the CMD is not an
issue anymore. In the comparison, we keep SiVM-approx-(5), as it corresponds to
a kernelized version of the original paper [39]. We also consider random sampling
(the NMF reducing to a random projection algorithm), kernel k-means and kernel
rank-revealing Cholesky of [10], as a surrogate for the rank-revealing QR method
of [36] which cannot be kernelized.

Two datasets are used, namely the UCI Wine dataset [2] composed of 178 in-
stances with 13 attributes and a simulated dataset which consist of 2, 000 points
in R

50 according to a Gaussian distribution. Reconstruction error curves are pre-
sented in Fig 5 and demonstrate the best overall performances of SAGA with
increasing ℓ values. However this general trend differs according to the considered
dataset and the ℓ values. For example if SAGA clearly outperforms SiVM with the
Wine dataset, their performances are very close with the Gaussian one. With low-
est ℓ values, kernel k-means and kernel rank-revealing Cholesky get better results
on the Wine dataset, however, the reconstruction error remains high whatever the
strategy.

5.3 Computational complexity

First, we consider the complexity of the CSS computation. A random dataset
in R

30 of size n, with n ranging in [1000–10000] is considered, with ℓ = 10, for

18 Nicolas Courty et al.

a b

Fig. 5 Comparison of the reconstruction error according to the size of the CSS: (a) Wine
dataset; (b) simulated dataset (50 dimensional Gaussian).

both linear and Gaussian kernel. Each time the experiment is repeated 20 times
to stabilize the measure, and the computation times are reported in Fig. 6(a). As
expected, we observe a near linear trend with both different versions of kernel. The
computational differences occurring between the two kernels are mostly due to the
evaluation of the kernel: the linear kernel results in a simple dot product operation,
whereas evaluating the Gaussian kernel involves computations of transcendental
operators.

If we now turn to the complexity of the projection, it is useless to consider
it with respect to n as the projection is dealt datum by datum. However, it is
interesting to consider the complexity regarding ℓ. To do so, we use the same ex-
perimental setting, yet, n is fixed and ℓ varies from 1 to 120. Fig. 6(b) clearly
highlights the outperformance of our projector compared to the quadratic pro-
gramming approach used in SiVM.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n: size of the data

0

100

200

300

400

500

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

m
s)

Computation times of the CSS (l=10)

SAGA Linear Kernel
SAGA Gaussian Kernel

a
0 10 20 30 40 50 60 70 80 90 100 110

ℓ: size of the simplex

0

2000

4000

6000

8000

10000

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

m
s)

Computation times of the projection

Quadratic programming
Feature Space Simplex Projector

b

Fig. 6 Comparison of the computational times for the CSS (a) and the projection (b) for
SiVM and SAGA.

Sparse And Geometry-Aware NMF 19

5.4 Application to classification on real datasets

In order to propose a more application-oriented test of SAGA, we propose to use
the result of various NMF methods as feature extraction processes in a classifica-
tion problem. Experiments are conducted on four publicly available datasets. The
previously described COIL-20 dataset, the CMU PIE dataset, the MNIST dataset
and the CIFAR-10 dataset: The CMU PIE dataset contains the 32 gray scale facial
images of 68 people, any of each having 42 images at different illumination and
facial expression conditions [37]. The MNIST dataset [28] contains the 28 × 28
gray scale images of handwritten numbers (from 0 to 9). Its total sample number
is 70,000. Finally, CIFAR-10 is made of 60,000 32× 32 color images in 10 classes,
with 6,000 images per class.

Each dataset is partitioned into two sets: one for training (one tenth of the
dataset), and the other for testing. On the training dataset Xt, a factorization
is conducted and leads to derive Ft and Gt. Ft plays the role of a visual coding
dictionary, and is used to reconstruct the test set. We note here that Ft could
have been constructed with respect to the entire dataset, in a unsupervised learn-
ing manner, but it was not the case. Gt is used to train a SVM classifier (with
Gaussian kernel), with parameters optimized by standard cross-validation. The
testing set Xs is then projected over Ft which allows deriving Gs, used for test-
ing with the SVM classifier. This process is repeated 10 times for each value of
ℓ ∈ {10, 20, 30, 40, 50}, and for each ℓ/λ ratio ∈ {1, 1.5, 2}, in order to stabilize the
performances. In this setting, we have compared the result of SAGA to other state-
of-the-art algorithms: Sparse NMF [23] (with ℓ/λ = 2), Kernel NMF [29], Convex
NMF [13] and Kernel Convex NMF [13] (or KC NMF for short). We have used
the same kernel variance for all kernel-based techniques, on the basis of a standard
rule of thumb [40]. The mean results over the 10 repetitions are displayed in Fig. 7.
It shows that SAGA produces the most accurate results on three datasets out of
four. In the case of CIFAR-10 dataset, one notices first the very low performances
of all the methods with respect to the state-of-the-art works focusing on classifi-
cation performances. The reason is that the size of the CSS remains rather low in
our experimental setting: the point of this comparison is not to exhibit the high-
est possible accuracies, but rather to provide a sound experimental setting across
various datasets of heterogeneous difficulty. However, this does not explain why
SAGA does not compete with Sparse NMF and Kernel NMF on this dataset. A
possible explanation stems from the complexity of the manifold hull which cannot
be described efficiently by so few elements. In this particular case, SAGA would
perform slightly worse than other state-of-the-art methods. Interestingly enough,
whatever the dataset, when λ stays the same, the SAGA classification accuracy
improves with the increasing number ℓ of simplex vertices. However, ℓ exerts little
influence when λ is already large. As discussed in [42], we can relate the optimal
value of ℓ to the intrinsic dimensionality of the manifold where the data live.

Table 2 summarizes the results of Fig. 7 by averaging the performances ∀ℓ ∈
{10, 20, 30, 40, 50}, (for Sparse NMF and SAGA, with ℓ/λ = 2): The variances
which are not displayed on Fig. 7 for clarity sakes are given here. SAGA variance
is sometimes important due to the strong increment of the performances when ℓ
increases. To allow for more complete comparisons, we have also added a kernel
version of the original SiVM with our projection method, noted Sparse Kernel

20 Nicolas Courty et al.

10 20 30 40 50
λ

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

COIL Dataset

SAGA l=2λ

SAGA l=1.5λ

SAGA l=1.0λ

Sparse NMF l=2λ

Kernel NMF
Convex NMF
KC NMF

a
10 20 30 40 50

λ

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

PIE Dataset

SAGA l=2λ

SAGA l=1.5λ

SAGA l=1.0λ

Sparse NMF l=2λ

Kernel NMF
Convex NMF
KC NMF

b

10 20 30 40 50
λ

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

MNIST Dataset

SAGA l=2λ

SAGA l=1.5λ

SAGA l=1.0λ

Sparse NMF l=2λ

Kernel NMF
Convex NMF
KC NMF

c
10 20 30 40 50

λ

0.0

0.1

0.2

0.3

0.4

0.5

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

CIFAR10 Dataset

SAGA l=2λ

SAGA l=1.5λ

SAGA l=1.0λ

Sparse NMF l=2λ

Kernel NMF
Convex NMF
KC NMF

d

Fig. 7 Feature extraction evaluation on (a) COIL-20, (b) PIE, (c) MNIST and (d) CIFAR-10
datasets at different reduced dimension.

SiVM (SK SiVM for short), which basically amounts to using SAGA, yet with
Eq. 5 instead of Eq. 8 and 9; it appears that it is always less accurate than SAGA.

Table 2 Mean accuracy and variance NMF-based classification. For each dataset, the most
accurate method is in bold font. This property is assessed thanks to a paired Student’s T-test
between the SAGA and the best other method (apart from SK SiVM which can be seen as a
particular case of SAGA)

COIL-20 PIE MNIST CIFAR-10
Sparse NMF 88.04 (0.66) 80.24 (1.25) 86.08 (1.99) 38.34 (0.56)
Kernel NMF 94.38 (1.75) 79.89 (7.25) 83.61 (2.86) 38.90 (1.87)
Convex NMF 83.46 (2.84) 54.95 (9.07) 80.66 (2.80) 31.31 (0.45)

KC NMF 85.18 (0.39) 59.80 (1.75) 81.94 (0.35) 25.76 (0.16)
SK SiVM 96.79 (1.34) 83.73 (9.32) 89.71 (3.78) 35.50 (2.20)

SAGA 97.23 (1.58) 84.44 (13.62) 89.92 (3.18) 35.59 (2.44)
t-statistics 3.2327 1.8872 2.3257 X

Confidence Level ≥ 99% ≥ 95% ≥ 97.5% X

Finally, on the majority of the datasets, the superiority of SAGA is established.
Also, it is the fastest of all, as can be seen in Fig. 8, where the factorization perfor-
mances are reported for SAGA and the considered state-of-the-art NMF methods
for the whole PIE dataset when varying the size of the CSS. This illustrates the
computational benefits of our approach.

Sparse And Geometry-Aware NMF 21

10 20 30 40 50 60 70 80 90 100 110 120

l: number of elements in the simplex

0

500

1000

1500

2000

2500

3000

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

se
co

n
d
s)

Computation times on PIE Dataset

SAGA
Sparse NMF
Kernel NMF
Convex NMF
KC NMF

Fig. 8 Computational performances between SAGA and the other considered NMF methods
on the whole PIE dataset.

6 Conclusion

SAGA (Sparse and Geometry Aware) is a new matrix factorization algorithm
which has the following properties: (1) it operates in the Gaussian RKHS, which
accounts for potential nonlinearity in the dataset geometry; (2) it provides sparse
and convex projections onto a reduced embedding spanned by selected typical
samples, which facilitates the human interpretation, and leads to a non-linear
local representation of the data; (3) it has a complexity linear with the number of
data entries, which allows dealing with big data. SAGA relies on both a manifold
sampling strategy and a data projection. This latter has been proved to converge
under some conditions regarding the Gaussian kernel variance. Finally, SAGA has
been tested on toy, simulated and real datasets. The following conclusions can
be drawn from the experiments: we observed in accordance with the theory that
SAGA encodes the data as convex combinations of neighbor samples; the proposed
volume maximization heuristic leads to better subsampling of the original data
with respect to the volume of the simplex formed by the CSS; and the performances
of its feature extraction have proved to outperform the selected state-of-the-art
other NMF methods on classification tasks.

Acknowledgements This work was partially supported by the ANR fundings ANR-10-
INBS-08 (ProFI project, “Infrastructures Nationales en Biologie et Santé”, “Investissements
d’Avenir”), ANR-13-JS02-0005-01 (Asterix project). and the Prospectom project (Mastodons
2012 CNRS challenge).

References

1. Arora, S., Ge, R., Kannan, R., Moitra, A.: Computing a nonnegative matrix factorization–
provably. In: Proceedings of the 44th symp. on Theory of Computing, pp. 145–162. ACM
(2012)

2. Bache, K., Lichman, M.: UCI machine learning repository (2013). URL http://archive.

ics.uci.edu/ml

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

22 Nicolas Courty et al.

3. Bandeira, A., Fickus, M., Mixon, D., Wong, P.: The road to deterministic matrices with
the restricted isometry property. arXiv preprint arXiv:1202.1234 (2012)

4. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot,
J.: Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based
approaches. Selected Topics in Applied Earth Obs. & Remote Sensing, IEEE J. 5(2), 354–
379 (2012)

5. Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge university press (2004)
6. Buciu, I., Nikolaidis, N., Pitas, I.: Nonnegative matrix factorization in polynomial feature

space. Neural Networks, IEEE T. 19(6), 1090–1100 (2008)
7. Cai, D., He, X., Han, J., Huang, T.: Graph regularized nonnegative matrix factorization

for data representation. IEEE Trans. on Pattern Analysis and Machine Intelligence 33(8),
1548–1560 (2011)

8. Candes, E.: The restricted isometry property and its implications for compressed sensing.
Comptes Rendus Mathematique 346(9-10), 589–592 (2008)

9. Çivril, A., Magdon-Ismail, M.: On selecting a maximum volume sub-matrix of a matrix
and related problems. Theoretical Computer Science 410(47–49), 4801 – 4811 (2009)

10. Courty, N., Burger, T.: A kernel view on manifold sub-sampling based on karcher variance
optimization. In: Geometric Science of Information, pp. 751–758. Springer (2013)

11. Courty, N., Burger, T., Johann, L.: PerTurbo: a new classification algorithm based on the
spectrum perturbations of the laplace-beltrami operator. In: ECML/PKDD, vol. 1, pp.
359–374 (2011)

12. Cutler, A., Breiman, L.: Archetypal analysis. Technometrics 36(4), 338–347 (1994)
13. Ding, C., Li, T., Jordan, M.: Convex and semi-nonnegative matrix factorizations. IEEE

Trans. on Pattern Analysis and Machine Intelligence 32(1), 45–55 (2010)
14. Donoho, D.L., Stodden, V.C.: When does non-negative matrix factorization give a correct

decomposition into parts? In: NIPS (2003)
15. Esser, E., Moller, M., Osher, S., Sapiro, G., Xin, J.: A convex model for nonnegative

matrix factorization and dimensionality reduction on physical space. IEEE Trans. on
Image Processing 21(7), 3239–3252 (2012)

16. Garg, R., Khandekar, R.: Gradient descent with sparsification: an iterative algorithm for
sparse recovery with restricted isometry property. In: ICML, pp. 337–344 (2009)

17. Gärtner, B.: Fast and robust smallest enclosing balls. In: Proceedings of the 7th Annual
European Symposium on Algorithms, ESA ’99, pp. 325–338 (1999)

18. Gillis, N.: Sparse and unique nonnegative matrix factorization through data preprocessing.
JMLR 13, 3349–3386 (2012)

19. Gillis, N., Vavasis, S.: Fast and robust recursive algorithms for separable nonnegative
matrix factorization. Pattern Analysis and Machine Intelligence, IEEE Transactions on
(2013). DOI 10.1109/TPAMI.2013.226

20. Guillemot, C., Turkan, M.: Neighbor Embedding with Non-negative Matrix Factorization
for image prediction. In: IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2012, pp. 785–788. Kyoto, Japon (2012)

21. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. JMLR 5,
1457–1469 (2004)

22. Kersting, K., Xu, Z., Wahabzada, M., Bauckhage, C., Thurau, C., Roemer, C., Ballvora,
A., Rascher, U., Leon, J., Pluemer, L.: Pre-symptomatic prediction of plant drought stress
using dirichlet-aggregation regression on hyperspectral images. AAAI Computational Sus-
tainability and AI Track (2012)

23. Kim, H., Park, H.: Sparse non-negative matrix factorizations via alternating non-
negativity-constrained least squares for microarray data analysis. Bioinformatics 23(12),
1495–1502 (2007)

24. Kumar, A., Sindhwani, V., Kambadur, P.: Fast conical hull algorithms for near-separable
non-negative matrix factorization. In: ICML, pp. 231–239 (2013)

25. Kyrillidis, A., Becker, S., Cevher, V.: Sparse projections onto the simplex. JMLR W&CP:
Proceedings of The 30th International Conference on Machine Learning (ICML 2013)
28(2), 235–243 (2013)

26. Lafferty, J.D., Lebanon, G.: Diffusion kernels on statistical manifolds (2005)
27. Lafon, S., Lee, A.: Diffusion maps and coarse-graining: A unified framework for dimension-

ality reduction, graph partitioning, and data set parameterization. PAMI 28(9), 1393–1403
(2006)

28. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

Sparse And Geometry-Aware NMF 23

29. Li, Y., Ngom, A.: A new kernel non-negative matrix factorization and its application in
microarray data analysis. In: Computational Intelligence in Bioinformatics and Compu-
tational Biology (CIBCB), 2012 IEEE Symposium on, pp. 371–378. IEEE (2012)

30. Maculan, N., de Paula, G.: A linear-time median-finding algorithm for projecting a vector
on the simplex of rn. Operations research letters 8(4), 219–222 (1989)

31. Mørup, M., Hansen, L.: Archetypal analysis for machine learning and data mining. Neu-
rocomputing 80, 54–63 (2012)

32. Nene, S., Nayar, S., Murase, H.: Columbia object image library (coil-20). Dept. Comput.
Sci., Columbia Univ., New York 62 (1996)

33. Öztireli, C., Alexa, M., Gross, M.: Spectral sampling of manifolds. In: SIGGRAPH ASIA
(2010)

34. Recht, B., Re, C., Tropp, J., Bittorf, V.: Factoring nonnegative matrices with linear pro-
grams. In: NIPS, pp. 1223–1231 (2012)

35. Schölkopf, B., Smola, A.: Learning with kernels: Support vector machines, regularization,
optimization, and beyond. the MIT Press (2002)

36. Shroff, N., Turaga, P., Chellappa, R.: Manifold precis: An annealing technique for diverse
sampling of manifolds. In: NIPS, pp. 154–162 (2011)

37. Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression (pie) database.
In: Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International
Conference on, pp. 46–51. IEEE (2002)

38. Thurau, C., Kersting, K., Bauckhage, C.: Yes we can: simplex volume maximization for
descriptive web-scale matrix factorization. In: CIKM, pp. 1785–1788 (2010)

39. Thurau, C., Kersting, K., Wahabzada, M., Bauckhage, C.: Descriptive matrix factorization
for sustainability adopting the principle of opposites. Data Mining & Knowledge Disc.
24(2), 325–354 (2012)

40. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and computing 17(4), 395–
416 (2007)

41. Wang, F.Y., Chi, C.Y., Chan, T.H., Wang, Y.: Nonnegative least-correlated component
analysis for separation of dependent sources by volume maximization. IEEE Trans. on
Pattern Analysis and Machine Intelligence 32(5), 875–888 (2010)

42. Yu, K., Zhang, T., Gong, Y.: Nonlinear learning using local coordinate coding. In: NIPS,
pp. 2223–2231 (2009)

43. Zhang Da.and Zhou, Z., Chen, S.: Non-negative matrix factorization on kernels. In: PRI-
CAI 2006: Trends in Artificial Intelligence, pp. 404–412. Springer (2006)

	Introduction
	Geometry aware CSS procedure
	Sparse projections onto the RKHS simplex
	Complete SAGA procedure
	Experiments and results
	Conclusion

