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TOPOLOGICAL GRADIENT FOR THE DETECTION OF FINE STRUCTURES IN 2D AND 3D

IMAGES

Audric Drogoul, Gilles Aubert, Didier Auroux

Université de Nice Sophia Antipolis, CNRS, LJAD, UMR 7351, 06100 Nice, France

ABSTRACT

In this paper we describe a new variational approach for the

detection of fine structures in an image (like filaments in 2D).

This approach is based on the computation of the topological

gradient associated to a cost function defined from a regu-

larized version of the data (possibly noisy and / or blurred).

We get this approximation by solving a fourth order PDE.

The study of the topological sensitivity is made in the case

of a crack. We give the numerical algorithm to compute this

topological gradient and we illustrate our approach by giving

several experimental results in 2D and 3D images.

Index Terms— Object detection, Fine structures, Image

segmentation, Calculus of variations, Topological Gradient

1. INTRODUCTION

In image processing, segmentation / restoration or detection

of fine structures are challenging problems with many appli-

cations (in satellite, medical, biological imaging, ...). In this

work we give and experiment a variational model to detect

fine structures (filaments and points in 2D, surfaces, filaments

and points in 3D) by using the topological gradient method.

First introduced by Sokolowski [1] and Masmoudi [2], this

notion consists in the study of the variations of a cost func-

tion j(Ω) = JΩ(uΩ) with respect to a topological variation,

where JΩ(u) is of the form JΩ(u) =
∫
Ω
F (u,∇u,∇2u, . . . )

; uΩ is a solution of a PDE defined on the image domain Ω.

In order to calculate the topological gradient, we remove to

Ω a small object ωǫ of size ǫ → 0 centered at x0 (gener-

ally a ball or a crack), and we compute the limit I(x0) =

limǫ→0
j(Ω\ωǫ)−j(Ω)

ǫd
where d is the dimension of the ambiant

space. I(x0) is called the topological gradient at x0. A par-

ticularity of this method is that the computation of the topo-

logical gradient only needs the direct state uΩ and an adjoint

state vΩ solution of a similar PDE depending on uΩ. This

makes the topological gradient computation easy and very

fast. Initially applied in structural mechanics, this method has

been used in image processing by several authors, for exam-

ple by Belaid et al. [3] in restoration / segmentation prob-

lems. In this case F (∇u) = |∇u|2 and uΩ is the solution
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of a Laplace PDE. The focus of the method is to find the

most energetic points, associated to high topological gradi-

ents. If the use of the gradient operator for the cost function

is classical in edge detection, it is known [4] that this choice

is not adapted for filament detection: the “gradient does not

see” these structures. To illustrate this fact, let us consider

in 1D the function f(x) = 0 if x 6= 0 and f(0) = 1. This

function can be approximated by the function fη(x) = 0 if

|x| ≥ η and fη(x) = 2
η3 |x|

3 − 3
η2 |x|

2 + 1 if |x| ≤ η. We

have f ′
η(0) = 0 but f ′′

η (0) = −6
η2 , thus f ′

η “does not see” 0

but f ′′
η becomes singular at 0. Other variational models have

been proposed in the literature according to applications, see

[5] for the detection of biological filaments or [6] for road

network detection. In [7] authors propose a model for detect-

ing objects of codimension two and one in 2D images. Their

method is inspired by Ginzburg-Landau models. There exists

of course other approaches that are not based on variational

calculus. In [8] a morphological method is presented ; au-

thors use morphological filters and a curvature evaluation to

detect vessel-like patterns. In [9] a thin network is simulated

by a point process which penalizes unconnected segments and

favors aligned segments. The estimate of the network is ob-

tained by minimizing an energy function. Finally let us men-

tion the wavelet approach [10].

In this paper we present a new variational model based on

the topological gradient method, inspired by the static PDE

of a deflection of a thin plate subject to transverse force and

bending moment. In this case F (∇2u) = ‖∇2u‖2 and uΩ is

the solution of a PDE based on the Bilaplacian operator. The

model presented here allows us to detect filaments and points

in 2D blurred and / or noisy images (surfaces and filaments

in 3D images). The paper is organized as follows. In section

2 we present the problem and give the main idea to compute

the topological gradient (TG) in the case of a crack. In section

3, we develop the numerical algorithm for computing the TG

and give some numerical results in 2D and 3D.



2. PROBLEM STATEMENTS AND COMPUTATION

OF THE TOPOLOGICAL GRADIENT

2.1. Problem statement

We suppose that the observed image f writes as f = Ku+ b
where K is a blurring operator, b a Gaussian noise and u the

image to recover. We denote by Ωǫ the domain Ω\ωǫ where

ωǫ =
{

x
ǫ
, x ∈ ω

}
with ω a crack or a ball. We introduce

the cost function and the PDE proposed in [11]. The model

is inspired by the Kirchhoff thin static plate model subject

to pure bending (see [12]) with a Poisson ratio ν = 0). We

denote by Jǫ(u) = JΩǫ
(u) the cost function defined by:

Jǫ(u) =

∫

Ωǫ

‖∇2u‖2, (1)

where for a matrix M , ‖M‖2 = tr(MTM). Let uǫ =
uΩǫ

be a regularization of the observed image f ∈ L2(Ωǫ),
solution of the following minimization problem :

min
u∈H2(Ωǫ)

(
αJǫ(u) + ‖Ku− f‖2L2(Ωǫ)

)
(Pǫ) (2)

where α > 0 is a parameter that we have to tune.

H2(Ωǫ) =
{
u ∈ L2(Ωǫ),∇u ∈ L2(Ωǫ),∇

2u ∈ L2(Ωǫ)
}

and K : L2(Ωǫ) → L2(Ωǫ) is a linear operator.

The variational formulation of (Pǫ) writes as:

find uǫ ∈ H2(Ωǫ) : aǫ(uǫ, v) = lǫ(v), ∀v ∈ H2(Ωǫ) (3)

with the following bilinear aǫ(u, v) and linear lǫ(v) forms:

aǫ(u, v) =

∫

Ωǫ

α
∑

1≤i,j≤2

∂2u

∂xi∂xj

∂2v

∂xi∂xj

+KuKv

lǫ(v) =

∫

Ωǫ

K⋆fv.

(4)

where K⋆ denotes the adjoint operator of K. The Euler equa-

tions associated with (Pǫ) are

(Pǫ)

{
α∆2uǫ +K⋆Kuǫ = K⋆f, on Ωǫ

B1uǫ = B2uǫ = 0, on ∂Ωǫ

(5)

where

B1u = ∂n(∆u)− ∂σ

(
n1n2

(
∂2u

∂x2
1

−
∂2u

∂x2
2

)

−(n2
1 − n2

2)
∂2u

∂x1∂x2

)

B2u = n2
1

∂2u

∂x2
1

+ n2
2

∂2u

∂x2
2

+ 2n1n2
∂2u

∂x1∂x2

setting ~n = (n1, n2) the outer normal to the domain, and

~σ = (σ1, σ2) the tangent vector such that (~n, ~σ) forms an

orthonormal basis.

2.2. Computation of the topological gradient in 2D

The calculus of the topological gradient is very technical. In

this section we just give the important steps and the main

ideas in the case of the crack with α = 1 and K = Id.

Notations. To simplify, we suppose that the crack σ is cen-

tered at 0 and writes as σ = {(s, 0),−1 < s < 1}. We denote

by σ̃ a fixed smooth closed curve that contains σ and by ω̃
the set such that ∂ω̃ = σ̃. For x ∈ σ, u+ and u− denote

the limit values limy→x,y∈ω̃c u(y) and limy→x,y∈ω̃ u(y) and

[u] = u+ − u− the jump across σ. We set σǫ =
{
x, x

ǫ
∈ σ

}
,

Λ the exterior space R
2\σ and Ωǫ the cracked domain Ω\σǫ.

Main ideas. To compute the topological gradient we have

to evaluate the leading term in the difference Jǫ(uǫ)−J0(u0)
where u0 is the solution of (3) with ǫ = 0. We introduce for

that an adjoint problem vǫ ∈ H2(Ωǫ) solution of :

aǫ(u, vǫ) = −Lǫ(u), ∀u ∈ H2(Ωǫ) (6)

with Lǫ(u) =
∫
Ωǫ

K⋆(f − 2Ku0)u. Then by integration by

parts we get

Jǫ(uǫ)− J0(u0) =

∫

σǫ

B1u0[wǫ]−B2u0[∂nwǫ]−Aǫ (7)

with wǫ = vǫ − v0 (v0 is the solution of (6) with ǫ = 0),

Aǫ = ‖uǫ − u0‖
2
L2(Ωǫ)

and where [wǫ] and [∂nwǫ] denote

the jumps across σǫ of wǫ and ∂nwǫ. Next we approximate

wǫ by wǫ = ǫ2P
(
x
ǫ

)
+ eǫ where eǫ ∈ H2(Ωǫ) is such that

‖eǫ‖H2(Ωǫ) = O(ǫ2log(ǫ)) and where P ∈ W 2(Λ)/P1 is the

solution of the exterior problem defined by

(Pext)

{
∆2P = 0, on Λ

B1P = 0, and B2P = V2 on σ
(8)

where V2 = −∂2v0
∂x2

2

(0) is such that B2(v0)(x) = V2 + O(ǫ).

We recall that W 2(Λ)/P1 is the weighted Sobolev space of

functions defined up to the polynomial functions of degree

less than or equal to one. We know [11] that P writes as a

multilayer potential :

P (x) =

∮

σ

λ1(y)B1,yE(x−y)dσy+

∮

σ

λ2(y)B2,yE(x−y)dσy

where
∮

denotes the principal Cauchy value and E(x) is the

fundamental solution associated to the Bilaplacian operator.

We can show that [P ] = λ1 = 0 and [∂nP (x)] = λ2(x) =
4
3V2

√
1− x2

1. Thus (7) expresses as

Jǫ(uǫ)− J0(u0) = −
2π

3
ǫ2
∂2u0

∂x2
2

(0)
∂2v0
∂x2

2

(0) + o(ǫ2)

2.3. Expression of the topological gradient in the general

case in 2D

The topological gradient of the function ǫ 7→ Jǫ(uǫ) with uǫ

given by (3) and for a crack centered at x0 and of normal ~n is



(see [11]) :

I(x0, ~n) = −
2π

3
∇2u0(x0)(~n, ~n)∇

2v0(x0)(~n, ~n) (9)

where u0 and v0 are respectively given by (5) and (6) with ǫ =
0. We deduce from (9) an indicator based on the topological

gradient by taking the maximum of its absolute value over ~n :

I(x0) = max
‖~n‖=1

|I(x0, ~n)| (10)

Remark 2.1 In 3D we can model a planar circular crack by

σ = {(rcos(θ), rsin(θ), 0), 0 ≤ r < 1, 0 ≤ θ < 2π} writ-

ten in the orthonormal basis (~u,~v, ~n); by similar calculus we

have the following TG expression :

I(x0, ~n) = −
4π

3
∇2u0(x0)(~n, ~n)∇

2v0(x0)(~n, ~n) (11)

Remark 2.2 We will check numerically that the maximum

magnitude of I(x0) is reached when ~n is perpendicular to

the filament direction.

3. NUMERICAL ALGORITHM AND

EXPERIMENTAL RESULTS

In this section we describe the numerical method to perform

the TG (10) and give some experiment results.

3.1. Algorithm

To compute the TG given in (10) we need to compute the so-

lution u0 and v0 given by (3) and (6) for ǫ = 0. To do that, we

consider that Ω is the unit square and we extend f by sym-

metry with respect to the boundary of Ω and by periodicity.

Then we can compute u0 and v0 by DCT (Discrete Cosine

Transform). The computation time is O(Nlog(N)) where N
denotes the number of pixels (or voxels). If we represent the

blur K by a convolution operator we get the solutions in the

Fourier domain :

û0 =
K̂⋆f̂

α|ν|4 + K̂⋆K̂
v̂0 =

2K̂⋆K̂û0 − K̂⋆f̂

α|ν|4 + K̂⋆K̂
(12)

where ν is the discrete Fourier variable and K̂, K̂⋆, f̂ , û0 and

v̂0 the array of Fourier coefficients. The discrete solutions u0

and v0 are then obtained from (12) by using the IDCT (Inverse

DCT). We compute the Hessian matrices ∇2u0 and ∇2v0 at

each point of the meshgrid by convolution with derivative fil-

ters; finally we approximate (10) by writting ~n in polar or

spherical coordinates and by taking the discrete maximum.

All calculus are implemented in Matlab 7.5.0 and the experi-

ments are performed on a computer equipped with a processor

Intel Core 1.9 GHz.

(a) Initial Image (b) ILap

(c) IBilap (c) IHes

Fig. 1. Comparison of IBilap (α = 10−4) with the indicators

ILap (α = 102) and IHes (σ = 5/4) on a simple non noisy

image

3.2. Experimental results in 2D

In this section we will compare the TG with an indicator

based on the Hessian matrix eigenvalues of a Gaussian con-

volution of the image and used in [4]. We will denote by

IHes this indicator. The TG given in [3] associated to F (u) =
|∇u|2 is denoted by ILap, the TG performed in (10) by IBilap.

Figure 1 displays an image containing both an edge and a fil-

ament. First we see that ILap detects more the edge than the

filament while IBilap (and also the Hessian indicator but less

clearly) detects more the filament than the edge. In Figure 2

we display both IHes and IBilap for a very noisy image con-

taining a filament, and we see that IHes is less robust with

respect to noise than the TG IBilap. On Figure 3 we compare

IBilap, ILap and IHes on a satellite image of a road network.

We can see that IBilap detects the center of the roads while

ILap is high on the edges of the image and on the border of

the roads. IHes is sensitive to texture and is high both on the

center of the roads and on edges.

Figure 4 displays the TG IBilap and the indicator IHes for

a blurred and noisy image. The result is clear : IHes is inef-

ficient in this case while the TG always detects the filament.

The dimension of images are : 49×49 for Figure 1, 132×112
for Figure 2, 493×351 for Figure 3 and 193×165 for Figure

4. The computation times for Figures 1, 2, 3 and 4 are about

0.2 sec.

3.3. Experimental results in 3D

Here we illustrate the fact that the method can easily be ex-

tended to 3D imaging with the TG (11). The DCT is again



(a) Initial Image

(b) IBilap (c)IHes

Fig. 2. Comparison of IBilap (α = 0.5) with the indicator

IHes (σ = 7/4) on a noisy image (PSNR=14dB)

(a) Initial Image (b) IBilap

(c) IHes (d) ILap

Fig. 3. Comparison of IBilap (α = 1) with the indicators

ILap (α = 0.1) and IHes (σ = 5/4) on a real satellite image

used and the computation of the TG is very fast (for N =
3.6 × 105 : 0.22 sec for computing u0, v0 ∇2u0 and ∇2v0
and 25 sec to compute (10)). On Figure 5 we display the TG

on 3D noisy images containing a filament (cylinder of length

3 voxels) and spheres. The visualisation is made by isosur-

face and we see that the topological gradient is quite smooth.

(a) Initial Image

(b) IBilap (c) IHes

Fig. 4. Comparison of IBilap (α = 0.7) with the indicator

IHes (σ = 9/4) on a motion blurred (θ = 90o, len=7) and

Gaussian noisy image (PSNR=16dB)

(a1) Initial Image (a2) Initial Image

(b1) IBilap (b2) IBilap

Fig. 5. Images and Topological gradients for Gaussian noisy

3D images (PSNR=16dB), top : noisy images, bottom : TG

4. CONCLUSION

In this paper we have proposed a new detector (the topologi-

cal gradient) of fine structures in 2D or 3D imaging. The main

qualities of this detector are its simplicity and rapidity. More-

over it is quite efficient and robust both in the case of noisy

and blurred images. More extensive simulations and compar-

isons on real images as well as results for perforated domains

can be found in [13, 11].
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