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Topological gradient for a fourth order PDE and application to the detection of fine structures in 2D and

3D images

INTRODUCTION

In image processing, segmentation / restoration or detection of fine structures are challenging problems with many applications (in satellite, medical, biological imaging, ...). In this work we give and experiment a variational model to detect fine structures (filaments and points in 2D, surfaces, filaments and points in 3D) by using the topological gradient method. First introduced by Sokolowski [START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF] and Masmoudi [START_REF] Masmoudi | The topological asymptotic[END_REF], this notion consists in the study of the variations of a cost function j(Ω) = J Ω (u Ω ) with respect to a topological variation, where J Ω (u) is of the form J Ω (u) = Ω F (u, ∇u, ∇ 2 u, . . . ) ; u Ω is a solution of a PDE defined on the image domain Ω. In order to calculate the topological gradient, we remove to Ω a small object ω ǫ of size ǫ → 0 centered at x 0 (generally a ball or a crack), and we compute the limit I(x 0 ) = lim ǫ→0 j(Ω\ωǫ)-j(Ω) ǫ d

where d is the dimension of the ambiant space. I(x 0 ) is called the topological gradient at x 0 . A particularity of this method is that the computation of the topological gradient only needs the direct state u Ω and an adjoint state v Ω solution of a similar PDE depending on u Ω . This makes the topological gradient computation easy and very fast. Initially applied in structural mechanics, this method has been used in image processing by several authors, for example by Belaid et al. [START_REF] Auroux | Image restoration and classification by topological asymptotic expansion[END_REF] in restoration / segmentation problems. In this case F (∇u) = |∇u| 2 and u Ω is the solution Contact: drogoula@unice.fr, gaubert@unice.fr, auroux@unice.fr of a Laplace PDE. The focus of the method is to find the most energetic points, associated to high topological gradients. If the use of the gradient operator for the cost function is classical in edge detection, it is known [START_REF] Steger | An unbiased detector of curvilinear structures[END_REF] that this choice is not adapted for filament detection: the "gradient does not see" these structures. To illustrate this fact, let us consider in 1D the function f (x) = 0 if x = 0 and f (0) = 1. This function can be approximated by the function

f η (x) = 0 if |x| ≥ η and f η (x) = 2 η 3 |x| 3 -3 η 2 |x| 2 + 1 if |x| ≤ η. We have f ′ η (0) = 0 but f ′′ η (0) = -6 η 2 , thus f ′ η "does not see" 0 but f ′′
η becomes singular at 0. Other variational models have been proposed in the literature according to applications, see [START_REF] Jacob | 3D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake[END_REF] for the detection of biological filaments or [START_REF] Rochery | New higherorder active contour energies for network extraction[END_REF] for road network detection. In [START_REF] Baudour | Detection and Completion of Filaments: A Vector Field and PDE Approach[END_REF] authors propose a model for detecting objects of codimension two and one in 2D images. Their method is inspired by Ginzburg-Landau models. There exists of course other approaches that are not based on variational calculus. In [START_REF] Zana | Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation[END_REF] a morphological method is presented ; authors use morphological filters and a curvature evaluation to detect vessel-like patterns. In [START_REF] Stoica | A Gibbs Point Process for Road Extraction from Remotely Sensed Images[END_REF] a thin network is simulated by a point process which penalizes unconnected segments and favors aligned segments. The estimate of the network is obtained by minimizing an energy function. Finally let us mention the wavelet approach [START_REF] Liew | Application of wavelet theory for crack identification in structures[END_REF]. In this paper we present a new variational model based on the topological gradient method, inspired by the static PDE of a deflection of a thin plate subject to transverse force and bending moment. In this case F (∇ 2 u) = ∇ 2 u 2 and u Ω is the solution of a PDE based on the Bilaplacian operator. The model presented here allows us to detect filaments and points in 2D blurred and / or noisy images (surfaces and filaments in 3D images). The paper is organized as follows. In section 2 we present the problem and give the main idea to compute the topological gradient (TG) in the case of a crack. In section 3, we develop the numerical algorithm for computing the TG and give some numerical results in 2D and 3D.

PROBLEM STATEMENTS AND COMPUTATION

OF THE TOPOLOGICAL GRADIENT

Problem statement

We suppose that the observed image f writes as f = Ku + b where K is a blurring operator, b a Gaussian noise and u the image to recover. We denote by Ω ǫ the domain Ω\ω ǫ where ω ǫ = x ǫ , x ∈ ω with ω a crack or a ball. We introduce the cost function and the PDE proposed in [START_REF] Aubert | A topological gradient based model for the detection of fine structures in 2D images[END_REF]. The model is inspired by the Kirchhoff thin static plate model subject to pure bending (see [START_REF] Zhou | Boundary Element Methods with Applications to Nonlinear Problems[END_REF]) with a Poisson ratio ν = 0). We denote by J ǫ (u) = J Ωǫ (u) the cost function defined by:

J ǫ (u) = Ωǫ ∇ 2 u 2 , (1) 
where for a matrix M , M 2 = tr(M T M ). Let u ǫ = u Ωǫ be a regularization of the observed image f ∈ L 2 (Ω ǫ ), solution of the following minimization problem :

min u∈H 2 (Ωǫ) αJ ǫ (u) + Ku -f 2 L 2 (Ωǫ) (P ǫ ) (2)
where α > 0 is a parameter that we have to tune.

H 2 (Ω ǫ ) = u ∈ L 2 (Ω ǫ ), ∇u ∈ L 2 (Ω ǫ ), ∇ 2 u ∈ L 2 (Ω ǫ ) and K : L 2 (Ω ǫ ) → L 2 (Ω ǫ ) is a linear operator.
The variational formulation of (P ǫ ) writes as:

find u ǫ ∈ H 2 (Ω ǫ ) : a ǫ (u ǫ , v) = l ǫ (v), ∀v ∈ H 2 (Ω ǫ ) (3)
with the following bilinear a ǫ (u, v) and linear l ǫ (v) forms:

a ǫ (u, v) = Ωǫ α 1≤i,j≤2 ∂ 2 u ∂x i ∂x j ∂ 2 v ∂x i ∂x j + KuKv l ǫ (v) = Ωǫ K ⋆ f v. (4) 
where K ⋆ denotes the adjoint operator of K. The Euler equations associated with (P ǫ ) are

(P ǫ ) α∆ 2 u ǫ + K ⋆ Ku ǫ = K ⋆ f, on Ω ǫ B 1 u ǫ = B 2 u ǫ = 0, on ∂Ω ǫ (5) 
where

B 1 u = ∂ n (∆u) -∂ σ n 1 n 2 ∂ 2 u ∂x 2 1 - ∂ 2 u ∂x 2 2 -(n 2 1 -n 2 2 ) ∂ 2 u ∂x 1 ∂x 2 B 2 u = n 2 1 ∂ 2 u ∂x 2 1 + n 2 2 ∂ 2 u ∂x 2 2 + 2n 1 n 2 ∂ 2 u ∂x 1 ∂x 2
setting n = (n 1 , n 2 ) the outer normal to the domain, and σ = (σ 1 , σ 2 ) the tangent vector such that ( n, σ) forms an orthonormal basis.

Computation of the topological gradient in 2D

The calculus of the topological gradient is very technical. In this section we just give the important steps and the main ideas in the case of the crack with α = 1 and K = I d . Notations. To simplify, we suppose that the crack σ is centered at 0 and writes as σ = {(s, 0), -1 < s < 1}. We denote by σ a fixed smooth closed curve that contains σ and by ω the set such that ∂ ω = σ. For x ∈ σ, u + and u -denote the limit values lim y→x,y∈ ω c u(y) and lim y→x,y∈ ω u(y) and [u] = u + -u -the jump across σ. We set σ ǫ = x, x ǫ ∈ σ , Λ the exterior space R 2 \σ and Ω ǫ the cracked domain Ω\σ ǫ .

Main ideas. To compute the topological gradient we have to evaluate the leading term in the difference J ǫ (u ǫ ) -J 0 (u 0 ) where u 0 is the solution of (3) with ǫ = 0. We introduce for that an adjoint problem v ǫ ∈ H 2 (Ω ǫ ) solution of :

a ǫ (u, v ǫ ) = -L ǫ (u), ∀u ∈ H 2 (Ω ǫ ) (6) 
with

L ǫ (u) = Ωǫ K ⋆ (f -2Ku 0 )u.
Then by integration by parts we get

J ǫ (u ǫ ) -J 0 (u 0 ) = σǫ B 1 u 0 [w ǫ ] -B 2 u 0 [∂ n w ǫ ] -A ǫ (7) 
with w ǫ = v ǫ -v 0 (v 0 is the solution of ( 6) with ǫ = 0),

A ǫ = u ǫ -u 0 2 L 2 (Ωǫ)
and where [w ǫ ] and [∂ n w ǫ ] denote the jumps across σ ǫ of w ǫ and ∂ n w ǫ . Next we approximate w ǫ by w ǫ = ǫ 2 P x ǫ + e ǫ where e ǫ ∈ H 2 (Ω ǫ ) is such that e ǫ H 2 (Ωǫ) = O(ǫ 2 log(ǫ)) and where P ∈ W 2 (Λ)/P 1 is the solution of the exterior problem defined by (P ext ) ∆ 2 P = 0, on Λ B 1 P = 0, and

B 2 P = V 2 on σ (8) 
where

V 2 = -∂ 2 v0 ∂x 2 2 (0) is such that B 2 (v 0 )(x) = V 2 + O(ǫ).
We recall that W 2 (Λ)/P 1 is the weighted Sobolev space of functions defined up to the polynomial functions of degree less than or equal to one. We know [START_REF] Aubert | A topological gradient based model for the detection of fine structures in 2D images[END_REF] that P writes as a multilayer potential :

P (x) = σ λ 1 (y)B 1,y E(x-y)dσ y + σ λ 2 (y)B 2,y E(x-y)dσ y
where denotes the principal Cauchy value and E(x) is the fundamental solution associated to the Bilaplacian operator. We can show that

[P ] = λ 1 = 0 and [∂ n P (x)] = λ 2 (x) = 4 3 V 2 1 -x 2 1
. Thus (7) expresses as

J ǫ (u ǫ ) -J 0 (u 0 ) = - 2π 3 ǫ 2 ∂ 2 u 0 ∂x 2 2 (0) ∂ 2 v 0 ∂x 2 2 (0) + o(ǫ 2 )

Expression of the topological gradient in the general case in 2D

The topological gradient of the function ǫ → J ǫ (u ǫ ) with u ǫ given by ( 3) and for a crack centered at x 0 and of normal n is (see [START_REF] Aubert | A topological gradient based model for the detection of fine structures in 2D images[END_REF]) :

I(x 0 , n) = - 2π 3 ∇ 2 u 0 (x 0 )( n, n)∇ 2 v 0 (x 0 )( n, n) (9)
where u 0 and v 0 are respectively given by ( 5) and ( 6) with ǫ = 0. We deduce from ( 9) an indicator based on the topological gradient by taking the maximum of its absolute value over n :

I(x 0 ) = max n =1 |I(x 0 , n)| ( 10 
)
Remark 2.1 In 3D we can model a planar circular crack by σ = {(rcos(θ), rsin(θ), 0), 0 ≤ r < 1, 0 ≤ θ < 2π} written in the orthonormal basis ( u, v, n); by similar calculus we have the following TG expression :

I(x 0 , n) = - 4π 3 ∇ 2 u 0 (x 0 )( n, n)∇ 2 v 0 (x 0 )( n, n) (11)
Remark 2.2 We will check numerically that the maximum magnitude of I(x 0 ) is reached when n is perpendicular to the filament direction.

NUMERICAL ALGORITHM AND EXPERIMENTAL RESULTS

In this section we describe the numerical method to perform the TG [START_REF] Liew | Application of wavelet theory for crack identification in structures[END_REF] and give some experiment results.

Algorithm

To compute the TG given in [START_REF] Liew | Application of wavelet theory for crack identification in structures[END_REF] we need to compute the solution u 0 and v 0 given by ( 3) and ( 6) for ǫ = 0. To do that, we consider that Ω is the unit square and we extend f by symmetry with respect to the boundary of Ω and by periodicity.

Then we can compute u 0 and v 0 by DCT (Discrete Cosine Transform). The computation time is O(N log(N )) where N denotes the number of pixels (or voxels). If we represent the blur K by a convolution operator we get the solutions in the Fourier domain :

u 0 = K ⋆ f α|ν| 4 + K ⋆ K v 0 = 2 K ⋆ K u 0 -K ⋆ f α|ν| 4 + K ⋆ K ( 12 
)
where ν is the discrete Fourier variable and K, K ⋆ , f , u 0 and v 0 the array of Fourier coefficients. The discrete solutions u 0 and v 0 are then obtained from (12) by using the IDCT (Inverse DCT). We compute the Hessian matrices ∇ 2 u 0 and ∇ 2 v 0 at each point of the meshgrid by convolution with derivative filters; finally we approximate (10) by writting n in polar or spherical coordinates and by taking the discrete maximum. All calculus are implemented in Matlab 7.5.0 and the experiments are performed on a computer equipped with a processor Intel Core 1.9 GHz. 

Experimental results in 2D

In this section we will compare the TG with an indicator based on the Hessian matrix eigenvalues of a Gaussian convolution of the image and used in [START_REF] Steger | An unbiased detector of curvilinear structures[END_REF]. We will denote by I Hes this indicator. The TG given in [START_REF] Auroux | Image restoration and classification by topological asymptotic expansion[END_REF] associated to F (u) = |∇u| 2 is denoted by I Lap , the TG performed in (10) by I Bilap . Figure 1 displays an image containing both an edge and a filament. First we see that I Lap detects more the edge than the filament while I Bilap (and also the Hessian indicator but less clearly) detects more the filament than the edge. In Figure 2 we display both I Hes and I Bilap for a very noisy image containing a filament, and we see that I Hes is less robust with respect to noise than the TG I Bilap . On Figure 3 we compare I Bilap , I Lap and I Hes on a satellite image of a road network. We can see that I Bilap detects the center of the roads while I Lap is high on the edges of the image and on the border of the roads. I Hes is sensitive to texture and is high both on the center of the roads and on edges. 

Experimental results in 3D

Here we illustrate the fact that the method can easily be extended to 3D imaging with the TG [START_REF] Aubert | A topological gradient based model for the detection of fine structures in 2D images[END_REF]. The DCT is again 

CONCLUSION

In this paper we have proposed a new detector (the topological gradient) of fine structures in 2D or 3D imaging. The main qualities of this detector are its simplicity and rapidity. Moreover it is quite efficient and robust both in the case of noisy and blurred images. More extensive simulations and comparisons on real images as well as results for perforated domains can be found in [START_REF] Drogoul | Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in imaging[END_REF][START_REF] Aubert | A topological gradient based model for the detection of fine structures in 2D images[END_REF].
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 1 Fig. 1. Comparison of I Bilap (α = 10 -4 ) with the indicators I Lap (α = 10 2 ) and I Hes (σ = 5/4) on a simple non noisy image

Figure 4

 4 displays the TG I Bilap and the indicator I Hes for a blurred and noisy image. The result is clear : I Hes is inefficient in this case while the TG always detects the filament. The dimension of images are : 49×49 for Figure 1, 132×112 for Figure 2, 493 × 351 for Figure 3 and 193 × 165 for Figure 4. The computation times for Figures 1, 2, 3 and 4 are about 0.2 sec.
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 23 Fig. 2. Comparison of I Bilap (α = 0.5) with the indicator I Hes (σ = 7/4) on a noisy image (PSNR=14dB)
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 45 Fig. 4. Comparison of I Bilap (α = 0.7) with the indicator I Hes (σ = 9/4) on a motion blurred (θ = 90 o , len=7) and Gaussian noisy image (PSNR=16dB)