
HAL Id: hal-01018575
https://hal.science/hal-01018575v2

Preprint submitted on 14 Apr 2015 (v2), last revised 2 Oct 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transformations to symmetry based on the probability
weighted characteristic function

Simos Meintanis, Gilles Stupfler

To cite this version:
Simos Meintanis, Gilles Stupfler. Transformations to symmetry based on the probability weighted
characteristic function. 2014. �hal-01018575v2�

https://hal.science/hal-01018575v2
https://hal.archives-ouvertes.fr


TRANSFORMATIONS TO SYMMETRY BASED ON THEPROBABILITY WEIGHTED CHARACTERISTIC FUNCTIONSimos G. Meintanisa,b, Gilles Stupflerc

aDepartment of Eonomis, National and Kapodistrian University of Athens, Athens, Greee,
bUnit for Business Mathematis and Informatis, North-West University, Pothefstroom, South Afriaand

cAix Marseille Université, CNRS, EHESS, Centrale Marseille, GREQAM UMR 7316,13002 Marseille, FraneAbstrat. We suggest a nonparametri version of the probability weighted empirial harateristi funtion(PWECF) introdued by Meintanis et al. (2014) and use this PWECF in order to estimate the parametersof arbitrary transformations to symmetry. The almost sure onsisteny of the resulting estimators is shown.Finite�sample results for i.i.d. data are presented and are subsequently extended to the regression setting. Realdata illustrations are also inluded.Keywords. Charateristi funtion; Empirial harateristi funtion; Probability weighted moments; SymmetrytransformationAMS 2000 lassi�ation numbers: 62G10, 62G201 IntrodutionTransformations are applied on given data sets in order to failitate statistial inferene. These transformationsare often used so as to indue �nite moments and light tails and/or symmetry. This is important as it is ommonknowledge that ertain statistial proedures are appliable or perform well only under suh assumptions. Apartfrom that, symmetry has de�nite advantages for identi�ation and onsisteny of loation estimators with i.i.d.data, as well as in the ontext of regression where Bikel (1982) and Newey (1988) study the existene of adaptiveand e�ient regression estimators under symmetri errors. The reader is referred to Chapter 6 of Horowitz (2009)for a nie review of transformations in regression and other related models. Lately the symmetry assumptionhas also been invoked for the onsisteny and e�ieny of the quasi maximum likelihood estimator (QMLE) inGARCH models; see González�Rivera and Drost (1999) and Newey and Steigerwald (1997). Finally, we mentionthat power transformations have reently been used by Savhuk and Shik (2013) in order to improve the rateof onvergene of the lassial Parzen-Rosenblatt (Parzen, 1962; Rosenblatt, 1956) estimator of the probabilitydensity funtion.The purpose of this paper is to suggest a proedure by means of whih a sample from an unknown distributionis redued to a sample from a symmetri distribution. To this end we employ the notion of the probabilityweighted empirial harateristi funtion (PWECF), introdued reently in Meintanis et al. (2014). However,the PWECF used in Meintanis et al. (2014) is de�ned in an entirely parametri ontext and it is thereforenot appropriate when pursuing nonparametri inferene. In what follows we suggest a nonparametri version of
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the PWECF and use this quantity in order to estimate the parameters of a transformation to symmetry. Theremainder of this work is outlined as follows. In Setion 2 we reall some properties of the PWCF and thenonparametri PWECF is introdued. In Setion 3 we introdue the new estimation proedure whih is basedon an appropriate funtional of this PWECF; the method is related to those in Yeo and Johnson (2014) and Yeoet al. (2014). The strong onsisteny of our estimator is given in Setion 4, while in Setion 5 the �nite�sampleproperties of the method are investigated by means of a simulation study. Real data examples are inluded inSetion 6 while some auxiliary results and their proofs are deferred to the Appendix.2 The nonparametri PWECFLetX denote an arbitrary random variable with an absolutely ontinuous distribution funtion F (x) = P(X ≤ x).For γ ≥ 0, the probability weighted harateristi funtion (PWCF) of X is de�ned by
ϕ(t; γ) := E

[
W (X;γt)eitX

]
=

∫ ∞

−∞

W (x;γt)eitxdF (x), t ∈ R, (2.1)where W (x;s) := [F (x)(1−F (x))]|s|. It is noteworthy that the PWCF of X has various useful properties similarto that of the harateristi funtion (CF) of X, see Meintanis et al. (2014); in partiular, a distribution funtionwhih is symmetri around zero must yield a real-valued PWCF, see property P5 there, and this will be the basisof our transformation proedure in Setion 3. The fat that for γ > 0 the PWCF is no longer a Fourier transform,however, makes it di�ult to prove strong distributional results suh as a one-to-one orrespondene betweenPWCFs and probability distributions. Interestingly though, in the ontext of loation-sale families, whih wasthe original framework of Meintanis et al. (2014), we may state and prove suh a result:Proposition 1. Assume that F1 and F2 belong to some loation-sale family, namely
∀x ∈ R, F1

(
x− µ1

σ1

)
= F2

(
x− µ2

σ2

)
= G(x)where G is an absolutely ontinuous distribution funtion and µ1, µ2 ∈ R, σ1, σ2 > 0. Then, for any γ > 0, F1and F2 yield the same PWCF if and only if F1 = F2.Proof of Proposition 1. Let ϕµ,σ be the PWCF related to Fµ,σ(x) := G(σx+ µ). Sine

ϕµ,σ(t; γ) =

∫ ∞

−∞

[Fµ,σ(x)(1− Fµ,σ(x))]
γ|t|eitxdFµ,σ(x),we get by the hange of variables x = σy + µ:

ϕµ,σ(t; γ) =

∫ ∞

−∞

[G(y)(1−G(y))]γ|t|ei(σt)y+µdG(y) = eitµϕ0,1(σt;γ/σ).Assume now that F1 and F2 yield the same PWCF, with σ1 6= σ2. Then
eitµ1ϕ0,1(σ1t; γ/σ1) = eitµ2ϕ0,1(σ2t; γ/σ2), t ∈ R, (2.2)whih up to reparametrization is equivalent to

ϕ0,1(T ; Γ) = eitMϕ0,1(ΣT ; Γ/Σ), T ∈ R,for some M ∈ R, Σ 6= 1 and Γ > 0. Without loss of generality, we assume in what follows that Σ > 1; in thisase, a straightforward proof by indution shows that for any positive integer m:
|ϕ0,1(T ; Γ)| = |ϕ0,1(Σ

mT ; Γ/Σm)|, T ∈ R.
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Observe now that ϕ0,1(0; Γ) = 1 and for any T > 0,
ϕ0,1(Σ

mT ; Γ/Σm) =

∫ ∞

−∞

[G(y)(1−G(y))]Γ|T |ei(Σ
mT )yg(y)dy

=
1

T

∫ ∞

−∞

[G(z/T )(1−G(z/T ))]Γ|T |g(z/T )eiΣ
mzdzwhere g is the probability density funtion related to G. The right-hand side is, up to a onstant, the Fouriertransform of the integrable funtion

z 7→ [G(z/T )(1−G(z/T ))]Γ|T |g(z/T ),evaluated at the point Σm. Sine Σm → ∞, the Riemann-Lebesgue lemma states that this expression mustonverge to 0 as m→ ∞. As a onlusion,
ϕ0,1(0; Γ) = 1 and ϕ0,1(T ; Γ) = 0, T > 0.This is a ontradition sine T 7→ ϕ0,1(T ; Γ) is ontinuous, see property P7 in Meintanis et al. (2014). Hene

σ1 = σ2, and thus eitµ1 = eitµ2 for all t ∈ R by (2.2), whih entails µ1 = µ2. The proof is omplete. �Remark 1. The loation�sale ontext may atually be dropped under additional moment hypotheses, suhas the existene of the moment-generating funtion of F1 and F2 in a neighborhood of 0, by using analytiontinuation. In any ase, if the PWCF is unique, it an be used to assess symmetry around zero: It is indeedlear that for any t and γ, the PWCF of −X is equal to ϕ(−t; γ), and that ϕ(−t; γ) = ϕ(t;γ), where z denotesthe omplex onjugate of z. Now if the PWCF of X is real-valued, this entails ϕ(−t; γ) = ϕ(t; γ) and thus Xand −X have the same PWCF, whene the fat that the distribution funtion of X is symmetri around zero.While Meintanis et al. (2014) estimated the PWCF in a parametri way, it is interesting to onsider the asewhere F is ompletely unknown. In this ontext, it is a natural idea to de�ne an estimator of the PWCF in anentirely nonparametri way. To this end notie that the PWCF in (2.1) may be written as
ϕ(t; γ) =

∫ 1

0

[x(1− x)]γ|t|eitQ(x)dx, (2.3)where Q(x) = inf{t ∈ R|F (t) ≥ x} denotes the quantile funtion of X.In view of (2.3) we suggest the following nonparametri estimator of the PWCF:
ϕ̂n(t; γ) =

∫ 1

0

[x(1− x)]γ|t|eitQ̂n(x)dx, (2.4)with Q̂n(x) denoting the empirial quantile funtion. We shall all ϕ̂n(t; γ) the probability weighted empirialharateristi funtion (PWECF), and for the purpose of estimation we will use
∀k ∈ {1, ..., n}, ∀x ∈

[
k − 1

n
,
k

n

)
, Q̂n(x) = Xk:n,where X1:n ≤ · · · ≤ Xn:n denote the order statistis orresponding to independent opies X1, . . . , Xn of therandom variable X.3 L2�type proedures for symmetry transformationThe problem we shall onsider is to estimate the parameters of a given transformation whih, if applied onthe original nonsymmetrially distributed observations X1, . . . , Xn, yields transformed observations that are
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approximately symmetrially distributed with loation zero. To this end, write ϑ = (δ, λ) ∈ Θ ⊂ R ×Λ for thetransformation parameter�vetor, where δ denotes loation and λ denotes the shape parameter whih is assumedto lie in a subset Λ of the real line. For ϑ = (δ, λ) ∈ Θ, we let QZ(·;ϑ) be the quantile funtion of the transformedrandom variable Z(ϑ) = ψ(X;λ)− δ, where ψ is a spei� transformation family, and we de�ne
S(t;γ;ϑ) =

∫ 1

0

[x(1− x)]γ|t| sin(tQZ(x;ϑ))dx,the imaginary part of the PWCF of Z(ϑ). It is thus a onsequene of Remark 1 that if the transformed ran-dom variable Z has a symmetri distribution around zero then S(t;γ;ϑ) = 0 for all t ∈ R, or equivalently
∫∞

−∞
S2(t;γ;ϑ) = 0.This observation is the basi idea we need to build our estimator: we introdue Zk(ϑ) = ψ(Xk;λ) − δ, we let

Q̂Z(x;ϑ) be the empirial quantile funtion related to Z1(ϑ), . . . , Zn(ϑ) and we de�ne
Ŝn(t; γ;ϑ) =

∫ 1

0

[x(1− x)]γ|t| sin(tQ̂Z(x;ϑ))dx,the imaginary part of the PWECF of Z1(ϑ), . . . , Zn(ϑ). Then Ŝn(t; γ;ϑ) is the empirial ounterpart of S(t;γ;ϑ).We suggest to estimate the true value ϑ0 = (δ0, λ0) (see Setion 4 for a disussion of the uniqueness of thisparameter) by ϑ̂n, where
ϑ̂n = argmin

ϑ∈Θ
∆n(γ;ϑ), with ∆n(γ; θ) =

∫ ∞

−∞

Ŝ2
n(t;γ;ϑ)dt. (3.1)Remark 2. The PWCF ϕ(t; γ) and PWECF ϕ̂n(t;γ) of a random variable X are suh that |ϕ(t; γ)| ≤ (1/4)γ|t|and |ϕ̂n(t; γ)| ≤ (1/4)γ|t| for every (t, γ) ∈ R × R+. As a onsequene, for any ϑ, the integral ∆n(ϑ) is positiveand �nite.Remark 3. Notie that while we write ϑ̂n, the estimator impliitly depends on the value of γ and therefore wehave essentially a family of estimators {ϑ̂n(γ), 0 < γ <∞} indexed by γ.Remark 4. Possible hoies for the transformation family ψ are the Box-Cox transformation (1964), a familyintrodued by Burbidge et al. (1988) as well as the reently introdued method of Yeo and Johnson (2000). Notethat while the popular Box-Cox transformation,

ψ(x;λ) =






xλ − 1

λ
if λ 6= 0,

log x if λ = 0,applies only to positive random variables (if λ is not a nonzero integer), its modi�ations suggested by Manly(1976), John and Draper (1980) and Bikel and Doksum (1981) were designed to allow negative values as well.A favorable feature of the spei� de�nition of the nonparametri PWECF in (2.4) is that it leads to a riterionin (3.1) whih is onvenient from the omputational point of view. To see this notie that from (2.4) it isstraightforward to ompute the imaginary part of the PWECF of Z1(ϑ), . . . , Zn(ϑ) as
Ŝn(t;γ;ϑ) =

n∑

k=1

υk,n(t; γ) sin(tZk:n(ϑ)) with υk,n(t; γ) =

∫ k/n

(k−1)/n

[x(1− x)]γ|t|dx.Then the riterion statisti in (3.1) follows by diret alulation as
∆n(γ;ϑ) =

1

2

n∑

j,k=1

(
I−jk(γ;ϑ)− I+jk(γ;ϑ)

)where I−jk(γ;ϑ) := I(j, k; γ;Zj:n(ϑ)− Zk:n(ϑ)) and I+jk(γ;ϑ) := I(j, k; γ;Zj:n(ϑ) + Zk:n(ϑ)) with
I(j, k; γ;x) =

∫ ∞

−∞

υj(t;γ)υk(t;γ) cos(tx)dt.
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4 Strong onsisteny of the estimatorHere, we assume that γ > 0 and that the following hold:
(A1) The support D of the distribution of X is an open interval and F is ontinuous and stritly inreasingon D.
(A2) The transformation family ψ is suh that (x, λ) 7→ ψ(x;λ) is ontinuous on D ×Λ.
(A3) For all λ ∈ Λ, x 7→ ψ(x;λ) is stritly inreasing.Assumption (A2) is also used in Yeo and Johnson (2001), while (A3) means that the family of transformationspreserves ordering: if two observations X1 and X2 are suh that X1 < X2, then the transformed observations

ψ(X1;λ) and ψ(X2;λ) are suh that ψ(X1;λ) < ψ(X2; λ). In partiular, in this setting, it is straightforward toshow that
QZ(x;ϑ) = ψ(Q(x);λ)− δ and Q̂Z(x;ϑ) = ψ(Q̂(x);λ)− δ. (4.1)Under these assumptions, we may state a strong onsisteny result for our estimator:Theorem 1. Assume that (A1), (A2) and (A3) hold. Let Θ be a ompat subset of R2 ontained in R ×Λ. If,over Θ, there exists a unique global minimum ϑ0 of the funtion

ϑ 7→

∫ ∞

−∞

S2(t;γ;ϑ)dtthen ϑ̂n → ϑ0 almost surely.Proof of Theorem 1. By Lemma 2 in the Appendix,
Hn(ϑ) :=

∫ ∞

−∞

Ŝ2
n(t; γ;ϑ)dt→ H(ϑ) :=

∫ ∞

−∞

S2(t;γ;ϑ)dtalmost surely, uniformly in ϑ ∈ Θ. Reall that
S(t;γ;ϑ) =

∫ 1

0

[x(1− x)]γ|t| sin(tQZ(x;ϑ))dx.Beause for any x the funtion ϑ 7→ QZ(x;ϑ) is ontinuous and the integrand in S(t;γ;ϑ) is dominated by theonstant 1, the dominated onvergene theorem entails that for any t, the funtion ϑ 7→ S(t;γ;ϑ) is ontinuous.Furthermore, sine for any ϑ, |S(t;γ;ϑ)| ≤ (1/4)γ|t| by Remark 2, it is again a orollary of the dominatedonvergene theorem that the funtion H is ontinuous as well. Applying Lemma 3 onludes the proof. �The existene of a global minimum of the funtion ϑ 7→
∫ ∞

−∞
S2(t; γ;ϑ)dt is for instane guaranteed if there exists

ϑ0 suh that the distribution of Z(ϑ0) is symmetri around 0, in whih ase S(t;γ;ϑ0) = 0 for eah t and therefore
∀ϑ ∈ Θ,

∫ ∞

−∞

S2(t; γ;ϑ)dt ≥ 0 =

∫ ∞

−∞

S2(t; γ;ϑ0)dt.The uniqueness of one suh ϑ0 is a more hallenging problem. The following proposition is a step towards solvingthis question for a large lass of transformations, inluding those mentioned in Remark 4.Proposition 2. Assume that (A1) holds and that X has a positive median. Let ψ be a family of transformations,satisfying (A2) and (A3), suh that
∀x > 0, ∀λ > 0, ψ(x;λ) =

[f(x)]λ − 1

λwhere f is a positive, ontinuous and stritly inreasing funtion on (0,∞). If there exists a pair (δ, λ) ∈ R×(0,∞)suh that ψ(X;λ)− δ is symmetrially distributed around zero, then (δ, λ) is the unique suh pair.
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Proof of Proposition 2. Sine (A1) holds and X has a positive median, we have Q(x) > 0 for all x in an openneighborhood U of 1/2. The monotoniity of f then yields QZ(x;ϑ) = ψ(Q(x);λ)− δ for all x ∈ U . In partiular,the median of Z(ϑ), whih is symmetrially distributed around zero, has to be 0 and thus 0 = [f ◦Q(1/2)]λ−c(ϑ),where c(ϑ) = 1 + δλ. In partiular, c(ϑ) is positive and f ◦ Q(1/2) = [c(ϑ)]1/λ. Besides, it must hold that
QZ(1/2− s;ϑ) = −QZ(1/2 + s;ϑ) for any s ∈ (0, 1/2) whih entails for all ε > 0 small enough:

[f ◦Q(1/2− ε)]λ − 1

λ
− δ = −

[
[f ◦Q(1/2 + ε)]λ − 1

λ
− δ

]or equivalently:
f ◦Q(1/2− ε) =

(
2c(ϑ)− [f ◦Q(1/2 + ε)]λ

)1/λ

. (4.2)Assume now that there exist two pairs ϑ1 = (δ1, λ1) and ϑ2 = (δ2, λ2) suh that Z(ϑ1) and Z(ϑ2) are symmetri-ally distributed around zero. Note that it is enough to show that λ1 = λ2. Using (4.2), we obtain for all ε > 0su�iently small:
(
2c(ϑ1)− [f ◦Q(1/2 + ε)]λ1

)1/λ1

=
(
2c(ϑ2)− [f ◦Q(1/2 + ε)]λ2

)1/λ2

.Sine f ◦ Q(1/2) = [c(ϑ1)]
1/λ1 = [c(ϑ2)]

1/λ2 and the funtion f ◦ Q is ontinuous and stritly inreasing, thisentails for all h > 0 small enough:
(
2c(ϑ1)−

[
[c(ϑ1)]

1/λ1 + h
]λ1

)1/λ1

=

(
2c(ϑ2)−

[
[c(ϑ2)]

1/λ2 + h
]λ2

)1/λ2

.Noting that [c(ϑ1)]
1/λ1 = [c(ϑ2)]

1/λ2 > 0, we get that for all h > 0 small enough:
(
2− [1 + h]λ1

)1/λ1

=
(
2− [1 + h]λ2

)1/λ2

.Taking logarithms and di�erentiating twie, we obtain for h > 0 su�iently small:
(1 + h)λ1−2

[
2(λ1 − 1) + (1 + h)λ1

]

[2− (1 + h)λ1 ]2
=

(1 + h)λ2−2
[
2(λ2 − 1) + (1 + h)λ2

]

[2− (1 + h)λ2 ]2
.Letting h ↓ 0 entails λ1 = λ2, whih ompletes the proof. �We note that this result requires the median of X to be positive. For some families suh as the Bikel-Doksumfamily (1981),

∀x ∈ R, ∀λ > 0, ψ(x;λ) =
sgn(x)|x|λ − 1

λ
, with sgn(x) =






1 if x > 0,

−1 if x < 0,

0 if x = 0,

(4.3)this assumption may atually be dropped, as shown by Corollary 1 below. This partiular family of transforma-tions, whih oinides with the Box-Cox family of transformations for positive values of x and λ, is the one weshall onsider in our simulation study.Corollary 1. Let ψ be the Bikel-Doksum family of transformations. Assume that (A1) holds and that thedistribution of X is not symmetri around zero. If there exists a pair (δ, λ) ∈ R × (0,∞) suh that ψ(X;λ) − δis symmetrially distributed around zero, then (δ, λ) is the unique suh pair.Proof of Corollary 1. We �rst note that for any suh pair ϑ = (δ, λ), then δ 6= −1/λ. If indeed we had that
δ = −1/λ, then using (4.3), the random variable sgn(X)|X|λ would be symmetri. This would imply, for any
x ≤ 0, that

P(X ≤ x) = P(sgn(X)|X|λ ≤ −(−x)λ) = P(sgn(X)|X|λ ≥ (−x)λ) = P(X ≥ −x).
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Then X would be symmetrially distributed around zero, whih is a ontradition. Moreover, we may assumewithout loss of generality that the median Q(1/2) of X is nonnegative: if indeed this is not the ase then −Xhas a nonnegative median and, letting δ′ = −(δ + 2/λ) 6= −1/λ, the random variable
ψ(−X;λ)− δ′ = −[ψ(X;λ)− δ]is symmetrially distributed around zero. Finally, sine (A1) holds and (A2) and (A3) are satis�ed for the Bikel-Doksum family, we have QZ(x;ϑ) = ψ(Q(x);λ) − δ by (4.1). Sine Z(ϑ) is symmetrially distributed aroundzero, we must have 0 = Q(1/2)λ − (1+ δλ). Espeially, the median Q(1/2) = [c(ϑ)]1/λ of X is positive. ApplyingProposition 2 onludes the proof. �5 A Monte-Carlo simulation study5.1 Finite sample performane of the presented tehniqueIn this setion, we present the results of a Monte-Carlo study onduted to assess the performane of our method.In what follows, the transformation family onsidered is the Bikel-Doksum family (4.3). The following estimatorsare ompared:

• our estimator (3.1), denoted by Mγ , with γ ∈ {1, 2};
• the estimator

argmin
ϑ∈Θ

∫ ∞

−∞

[
1

n

n∑

k=1

sin(tZk(ϑ))

]2

e−|t|dtwhih orresponds to using the ECF with an exponential weighting funtion (see Yeo and Johnson, 2001),and will be denoted by EECF;
• the Gaussian maximum likelihood estimator (GMLE), assuming that the target symmetri distribution isGaussian. While this estimator atually attempts to transform to normality, we inlude it for omparativereasons. The shape estimator is λ̂ and the loation estimator is δ̂(λ̂) where

λ̂ = argmax
λ∈Λ

{
−
n

2
log(σ̂2(λ))−

1

2

n∑

k=1

(ψ(Xk;λ)− δ̂(λ))2

σ̂2(λ)
+ (λ− 1)

n∑

k=1

logXk

}

= argmax
λ∈Λ

{
−
n

2
log(σ̂2(λ)) + (λ− 1)

n∑

k=1

logXk

}with δ̂(λ) =
1

n

n∑

k=1

ψ(Xk;λ)and σ̂2(λ) =
1

n

n∑

k=1

(ψ(Xk;λ)− δ̂(λ))2.To get a grasp of how these estimators behave in pratie, we use the following generating algorithm: for a given
n−independent sample Y1, . . . , Yn of random opies of a symmetri random variable Y , we pik (known) valuesof λ and δ and we onsider the n−independent sample X1, . . . , Xn suh that Xk = τ (Yk + δ;λ) where

τ (y;λ) = sgn(λy + 1)|λy + 1|1/λis the inverse of the Bikel-Doksum transformation. With this notation, we thus have ψ(Xk;λ)−δ = Yk whih aresymmetri random variables and we may apply our various proedures to assess the quality of the estimation of λand δ in eah ase. In what follows, λ is piked in the set {1/4, 1/2, 3/4}, δ = 1 and the symmetri distributionsonsidered are the following:
7



• Y = W exp(hW 2/2) with W standard normal, namely Y follows a Tukey(0, h) distribution. The higher is
h, the higher is the kurtosis of Y ; when h = 0, Y is standard Gaussian, denoted by N(0, 1);

• Y |V = v is Gaussian entered with variane v, where V is Gamma distributed with shape parameter k > 0and unit sale. This distribution is denoted by Variane Γ(k, 1);
• Y follows a symmetri stable distribution with shape parameter α, loation parameter zero and unit sale.This distribution is denoted by Stable(α, 0, 1).In eah ase, the estimation is arried out on 1000 samples of size n = 100 and we ompute the mean L1−error(i.e. the mean absolute deviation) related to λ̂ and δ̂. We display in Tables 1 and 2 the mean L1−error for λand δ as well as the standard deviation of the estimates.It appears from these tables that our Mγ estimator performs fairly well in all ases for both values of γ. Inpartiular, it performs better than the EECF method at estimating λ, and equally well at estimating δ exeptwhen the tail is very heavy as is the ase for the Stable(1, 0, 1) distribution. Furthermore, while the GMLE methodappears superior at estimating λ when the tail is light or when the distribution is leptokurti, our tehnique isomparable to and sometimes better than this method when λ ≥ 1/2 and the tail is heavy (for instane, thestable distribution) or if the distribution is platykurti (as is the ase for the Tukey(0, 3/4) distribution). Finally,it an be seen by omputing the sum of the mean L1−errors that overall, our tehnique ompetes well with theGMLE method and outperforms the EECF tehnique.We onlude this setion by highlighting how our tehnique may be used prior to a statistial analysis of a data set.The ontext is the following: We assume that we observe a sample of independent opies (X1, Z1), . . . , (Xn, Zn)of a random pair (X,Z) suh that for some (λ, δ):

ψ(X;λ)− δ = m0 +m1Z + εwhere ψ is a given family of transformations, m0, m1 ∈ R and (Z, ε) are suh that Z and ε are two independentrandom variables whih both possess symmetri around zero distributions. The goal is to estimate the parameters
m0 and m1. In the framework of linear regression, one an think of m0 as the interept and m1 as the slope,
Z is the regressor and ε is the random error. For a nie aount of transformations in the ontext of regressionthe reader is referred to Chen et al. (2002). Of ourse, a �rst, ruial task is to estimate (λ, δ) as aurately aspossible so as to reover enough information on the hidden regression setting. Note that

ψ(X;λ)− (δ +m0) = m1Z + εso that without loss of generality, we may assume that the interept m0 is zero. Observe then that the right-handside is a symmetri random variable, whih makes it possible to implement our method in order to estimate (λ, δ).A possible proedure is as follows:1. estimate (λ, δ) by a symmetry proedure, suh as our PWECF�based tehnique or the GMLE;2. if (λ̂, δ̂) is the estimate, ompute the transformed observations Ŷk = ψ(Xk; λ̂)− δ̂;3. hoose an estimation proedure for the regression parameters (m0,m1), suh as ordinary least squares(OLS) and use the random pairs (Zk, Ŷk) for the estimation.In fat, a robust method suh as the Theil�Sen estimator (Theil 1950, Sen 1968), may be preferred to the basiOLS estimator at the �nal step beause nothing is known regarding the moments of ε. In this onnetion, a smallsimulation study whih we do not report here tends to indiate that the Theil�Sen estimator ombined with ourtehnique works better than the lassial GMLE�OLS method under a heavy�tailed error distribution.
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6 Real data examplesIn this setion, we showase our method on a set of real data. We onsider the daily losing values (pt) ofthe DAX index from Otober 1, 2007 to April 1, 2009, and our data is either the daily perentage of return
rt,1 = 100(pt/pt−1 − 1) of size n = 378 or the 2�day perentage of return rt,2 = 100(p2t+1/p2t−1 − 1) of size
n = 190. During this period of time, European markets generally followed a downward trend, so that we anexpet these perentages to have a left�skewed distribution.We ompare the results found with the M1 and M2 methods with what we �nd when using the GMLE method.In Table 3, we summarize the results, along with the mean, variane, skewness and kurtosis of the transformeddata set (using the Bikel-Doksum family) with the estimated parameters given by eah method. Histograms ofthe raw and transformed data sets are given on Figures 1�2.In Table 3, we see that in eah ase, the absolute value of the skewness of the transformed data set is smallerthan that of the raw data set. Note at this point that while the value of the skewness of the daily DAX dataset is positive and thus seems to indiate a right-skewed distribution, the 2% trimmed skewness is atually
−0.292, whih on�rms that we have a left-skewed data set. It is also interesting that the transformations yieldtransformed data sets having lower kurtosis in all ases. Finally, we mention that although the values of λ̂ and
δ̂ are similar for the daily DAX data set, they di�er substantially in for the 2-day DAX data set. In the latterase, the Mγ method seems to detet a bimodal distribution, whereas the GMLE method points to a unimodaldistribution.Appendix: auxiliary results and their proofsThe �rst lemma is a useful result of real analysis:Lemma 1. Assume that H is a ontinuous real-valued funtion on E × E′, where E and E′ are two subsets of
R. Let K, K′ be ompat subsets of R whih are ontained in E and E′ respetively. Then the family of funtions
x 7→ H(x;λ), λ ∈ K′, is uniformly equiontinuous on K, in the sense that

lim
h→0

sup
(x,λ)∈K×K′

sup
y∈K

|y−x|≤h

|H(y;λ)−H(x;λ)| = 0.Proof of Lemma 1. If the statement were false then one ould �nd a sequene (xn, λn) ⊂ K × K′ and asequene (yn) ⊂ K′ suh that |yn − xn| → 0 with
lim inf
n→∞

|H(yn;λn)−H(xn;λn)| > 0.Sine K and K′ are ompat subsets of R, we may assume, up to extrating a suitable subsequene, that
(xn, λn) → (x∗, λ∗) ∈ K×K′. In partiular, yn → x∗ as well. By the ontinuity ofH , |H(yn;λn)−H(xn;λn)| → 0,whih is a ontradition. �The seond lemma is the ornerstone to prove Theorem 1.Lemma 2. Assume that (A1), (A2) and (A3) hold. If K is a ompat subset of R ontained in Λ then

∫ ∞

−∞

Ŝ2
n(t;γ;ϑ)dt→

∫ ∞

−∞

S2(t; γ;ϑ)dtalmost surely, uniformly in ϑ = (δ, λ) ∈ R×K as n→ ∞.
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Proof of Lemma 2. Sine |Ŝn(t;γ;ϑ)| ≤ 1, |S(t;γ;ϑ)| ≤ 1 and the imaginary part of a omplex number is lessthan its modulus, it is lear that for any ϑ,
∫ ∞

−∞

∣∣∣Ŝ2
n(t; γ;ϑ)dt− S2(t;γ;ϑ)

∣∣∣ dt ≤ 2

∫ ∞

−∞

|ϕ̂Z(t;γ;ϑ)dt− ϕZ(t;γ;ϑ)| dtwhere ϕZ(·; γ;ϑ) and ϕ̂Z,n(·; γ;ϑ) are the PWCF and PWECF related to Z(ϑ). Pik ε > 0; Remark 2 thus makesit possible to hoose M > 0 suh that for any ϑ:
∫ ∞

−∞

∣∣∣Ŝ2
n(t; γ;ϑ)dt− S2(t;γ;ϑ)

∣∣∣ dt ≤
ε

4
+ 2

∫ M

−M

|ϕ̂Z,n(t; γ;ϑ)dt− ϕZ(t; γ;ϑ)| dt

≤
ε

4
+ 4M sup

−M≤t≤M
|ϕ̂Z,n(t; γ;ϑ)dt− ϕZ(t; γ;ϑ)| . (6.1)Let ε′ = ε/(64M) > 0 and observe that for any t:

|ϕ̂Z,n(t; γ;ϑ)− ϕZ(t; γ;ϑ)| =

∣∣∣∣
∫ 1

0

[x(1− x)]γ|t|
{
eitQ̂Z,n(x;ϑ) − eitQZ(x;ϑ)

}
dx

∣∣∣∣

≤
ε

16M
+

∫ 1−ε′

ε′
[x(1− x)]γ|t|

∣∣∣eitQ̂Z,n(x;ϑ) − eitQZ(x;ϑ)
∣∣∣ dx

≤
ε

16M
+ sup

ε′≤x≤1−ε′

∣∣∣eitQ̂Z,n(x;ϑ) − eitQZ(x;ϑ)
∣∣∣ . (6.2)Moreover

∣∣∣eitQ̂Z,n(x;ϑ) − eitQZ(x;ϑ)
∣∣∣ =

∣∣∣∣∣it
∫ Q̂Z,n(x;ϑ)

QZ(x;ϑ)

eitzdz

∣∣∣∣∣ ≤ |t|
∣∣∣Q̂Z,n(x;ϑ)−QZ(x;ϑ)

∣∣∣ . (6.3)Colleting (6.1), (6.2) and (6.3) entails
sup

ϑ∈R×K

∫ ∞

−∞

∣∣∣Ŝ2
n(t; γ;ϑ)dt− S2(t; γ;ϑ)

∣∣∣ dt ≤ ε

2
+ 4M2 sup

ε′≤x≤1−ε′

ϑ∈R×K

∣∣∣Q̂Z,n(x;ϑ)−QZ(x;ϑ)
∣∣∣ .We thus get by using (4.1):

sup
ε′≤x≤1−ε′

ϑ∈R×K

∣∣∣Q̂Z,n(x;ϑ)−QZ(x;ϑ)
∣∣∣ ≤ sup

ε′≤x≤1−ε′

λ∈K

∣∣∣ψ(Q̂n(x);λ)− ψ(Q(x);λ)
∣∣∣ .It is then enough to show that the supremum on the right-hand side of this inequality onverges to 0 almostsurely. To this end, we note that sine the funtion F is ontinuous and stritly inreasing on D, so is Q on (0, 1).Espeially, Q maps the interval [ε′, 1− ε′] onto a ompat interval I ( D. Moreover, sine with probability 1, Q̂nis a nondereasing sequene of funtions whih onverges pointwise to the ontinuous funtion Q on (0, 1), by awell-known result due to Pólya (see e.g. Problem 127 p.270 in Pólya and Szeg®, 1998) the onvergene must beuniform on ompat intervals ontained in (0, 1); in partiular

sup
ε′≤x≤1−ε′

|Q̂n(x)−Q(x)| → 0 almost surely,whih entails that there is a ompat interval J ( D suh that with probability 1, we have Q̂n(x) ∈ J for any
x ∈ [ε′, 1− ε′] if n is large enough. As a onsequene, for any positive integer N , we have with probability 1

sup
ε′≤x≤1−ε′

λ∈K

∣∣∣ψ(Q̂n(x);λ)− ψ(Q(x);λ)
∣∣∣ ≤ sup

(z,λ)∈J×K

sup
y∈J

|y−z|≤1/N

|ψ(y;λ)− ψ(z;λ)|for n large enough. By Lemma 1, the right-hand side an be made arbitrarily small as N → ∞, whih onludesthe proof. �The last lemma is a lassial result (see Lemma 2 in Yeo and Johnson, 2001) whih essentially states that undersome onditions, if a sequene of random funtions (Hn) onverges to a (nonrandom) funtion H whih has aunique minimum x∗, then the sequene of the minima of the (Hn) onverges to x∗.
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Lemma 3. Assume that (Hn) is a sequene of random funtions on a ompat metri spae E suh that
• (Hn) onverges uniformly almost surely to a ontinuous funtion H on E;
• H has a unique global minimum x∗.Then if (xn) is any sequene suh that xn = argminx∈EHn(x), it holds that xn → x∗ almost surely.Proof of Lemma 3. If the result were false, we ould �nd a set A with positive probability suh that on A,

(xn) fails to onverge to x∗ but (Hn) onverges uniformly almost surely to H on E. Choose ω ∈ A and de�ne
yn = xn(ω), hn = Hn(·;ω). The ompatness of E would entail that one ould �nd a subsequene of (yn) whihonverges to x0 6= x∗. Sine hn(yn) ≤ hn(x

∗) and
|hn(yn)−H(x0)| ≤ |hn(yn)−H(yn)|+ |H(yn)−H(x0)|we would obtain in the limit H(x0) ≤ H(x∗), whih is a ontradition. �Referenes[1℄ Bikel, P.J. (1982). On adaptive estimation. Ann. Statist., 10, 647�671.[2℄ Bikel, P.J., Doksum, K.A. (1981). An analysis of transformations revisited. J. Amer. Statist. Asso., 76,296�311.[3℄ Box, G.E.P., Cox, D.R. (1964). An analysis of transformations. J. Roy. Statist. So. B, 26, 211�243.[4℄ Burbidge, J.B., Magee, L., Robb, A.L. (1988). Alternative transformations to handle extreme values of thedependent variable. J. Amer. Statist. Asso., 83, 123�127.[5℄ Chen, G., Lokhart, R., Stephens, M.A. (2002). Box�Cox transformations in linear models: large sampletheory and tests for normality (with disussion). Canad. J. Statist., 30, 1�59.[6℄ González�Rivera, G., Drost, F.C. (1999). E�ieny omparisons of maximum�likelihood�based estimatorsin GARCH models. J. Eonometr., 93, 93�111.[7℄ Horowitz, J.L. (2009). Semiparametri and Nonparametri Methods in Eonometris, Springer.[8℄ John, J.A., Draper, N.R. (1980). An alternative family of transformations. J. Roy. Statist. So. C, 29,190�197.[9℄ Manly, B.F.J. (1976). Exponential data transformations. J. Roy. Statist. So. D, 25, 37�42.[10℄ Meintanis, S.G., Swanepoel, J., Allison, J. (2014). The probability weighted harateristi funtion andgoodness-of-�t testing. J. Statist. Plann. Infer., 146, 122�132.[11℄ Newey, W.K. (1988). Adaptive estimation of regression models via moment restritions. J. Eonometr., 38,301�339.[12℄ Newey, W.K., Steigerwald, D.G. (1997). Asymptoti bias for quasi�maximum�likelihood estimators in on-ditional heteroskedastiity models. Eonometria, 65, 587�599.[13℄ Parzen, E. (1962). On estimation of a probability density funtion and mode. Ann. Math. Statist., 33,1065�1076.[14℄ Pólya, G., Szeg®, G. (1998). Problems and Theorems in Analysis, Vol. I., Springer.[15℄ Risebrough, R. (1972). E�ets of environmental pollutants upon animals other than man. Pro. Sixth Berke-ley Symp. on Math. Statist. and Prob., 6, 443�463.
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[16℄ Rosenblatt, M. (1956). Remarks on some nonparametri estimates of a density funtion. Ann. Math. Statist.,27, 832�837.[17℄ Savhuk, O.Y., Shik, A. (2013). Density estimation for power transformations. J. Nonparametr. Statist.,25, 545�559.[18℄ Sen, P.K. (1968). Estimates of the regression oe�ient based on Kendall's tau. J. Amer. Statist. Asso.,63, 1379�1389.[19℄ Theil, H. (1950). A rank�invariant method of linear and polynomial regression analysis. I, II, III, Nederl.Akad. Wetensh. Pro., 53, 386�392, 521�525, 1397�1412.[20℄ Yeo, I.-K., Johnson, R.A. (2000). A new family of power transformations to improve normality or symmetry.Biometrika, 87, 954�959.[21℄ Yeo, I.-K., Johnson, R.A. (2001). A uniform law of large numbers for U�statistis with appliation totransforming to near symmetry. Statist. Probab. Lett., 51, 63�69.[22℄ Yeo, I.-K., Johnson, R.A. (2014). An empirial harateristi funtion approah to seleting a transformationto symmetry. In Contemporary Developments in Statistial Theory, S. Lahiri, A. Shik, A. SenGupta andT. Sriram, editors, 191�202, Springer.[23℄ Yeo, I.-K., Johnson, R.A., Deng, X.W. (2014) An empirial harateristi funtion approah to seleting atransformation to normality. Commun. Stat. Appl. Methods, 21, 213�224.
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Figure 1: DAX daily data set, top left: original data, top right: data transformed with the parametersobtained by the M1 tehnique, bottom left: data transformed with the parameters obtained by the M2tehnique, bottom right: data transformed with the parameters obtained by the GMLE tehnique.
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Case λ = 1/4 M1 M2 EECF GMLEN(0, 1) 0.112 (0.141) 0.104 (0.131) 0.116 (0.145) 0.0774 (0.0972)Tukey(0, 1/4) 0.107 (0.136) 0.0984 (0.138) 0.147 (0.172) 0.0904 (0.112)Tukey(0, 1/2) 0.126 (0.182) 0.114 (0.175) 0.147 (0.173) 0.0664 (0.0827)Tukey(0, 3/4) 0.144 (0.199) 0.135 (0.195) 0.150 (0.183) 0.0853 (0.0635)Variane Γ(1, 1) 0.124 (0.151) 0.116 (0.143) 0.151 (0.181) 0.106 (0.128)Variane Γ(2, 1) 0.0917 (0.115) 0.0813 (0.102) 0.119 (0.144) 0.0630 (0.0792)Variane Γ(3, 1) 0.0722 (0.0912) 0.0639 (0.0818) 0.0962 (0.124) 0.0484 (0.0611)Variane Γ(4, 1) 0.0678 (0.0884) 0.0562 (0.0737) 0.0876 (0.114) 0.0390 (0.0504)Stable(7/4, 0, 1) 0.132 (0.185) 0.125 (0.176) 0.142 (0.173) 0.131 (0.156)Stable(3/2, 0, 1) 0.141 (0.191) 0.141 (0.208) 0.161 (0.194) 0.116 (0.142)Stable(5/4, 0, 1) 0.165 (0.229) 0.189 (0.273) 0.155 (0.174) 0.101 (0.120)Stable(1, 0, 1) 0.213 (0.156) 0.207 (0.203) 0.196 (0.0918) 0.110 (0.111)Case λ = 1/2 M1 M2 EECF GMLEN(0, 1) 0.133 (0.169) 0.121 (0.156) 0.140 (0.179) 0.0835 (0.105)Tukey(0, 1/4) 0.118 (0.150) 0.109 (0.139) 0.196 (0.229) 0.0962 (0.122)Tukey(0, 1/2) 0.129 (0.167) 0.123 (0.162) 0.223 (0.243) 0.122 (0.109)Tukey(0, 3/4) 0.146 (0.188) 0.147 (0.194) 0.212 (0.240) 0.191 (0.0891)Variane Γ(1, 1) 0.147 (0.187) 0.138 (0.176) 0.207 (0.245) 0.126 (0.156)Variane Γ(2, 1) 0.0994 (0.127) 0.0886 (0.114) 0.151 (0.191) 0.0711 (0.0916)Variane Γ(3, 1) 0.0818 (0.110) 0.0689 (0.0874) 0.120 (0.162) 0.0517 (0.0640)Variane Γ(4, 1) 0.0794 (0.116) 0.0601 (0.0776) 0.0974 (0.139) 0.0418 (0.0531)Stable(7/4, 0, 1) 0.138 (0.175) 0.131 (0.163) 0.174 (0.212) 0.147 (0.184)Stable(3/2, 0, 1) 0.155 (0.198) 0.150 (0.193) 0.226 (0.254) 0.144 (0.171)Stable(5/4, 0, 1) 0.171 (0.213) 0.173 (0.223) 0.245 (0.265) 0.160 (0.147)Stable(1, 0, 1) 0.222 (0.258) 0.231 (0.291) 0.420 (0.128) 0.201 (0.160)Case λ = 3/4 M1 M2 EECF GMLEN(0, 1) 0.153 (0.194) 0.138 (0.175) 0.169 (0.220) 0.0940 (0.119)Tukey(0, 1/4) 0.132 (0.169) 0.128 (0.162) 0.235 (0.292) 0.106 (0.133)Tukey(0, 1/2) 0.151 (0.189) 0.148 (0.186) 0.239 (0.287) 0.192 (0.132)Tukey(0, 3/4) 0.155 (0.197) 0.155 (0.192) 0.239 (0.278) 0.308 (0.124)Variane Γ(1, 1) 0.167 (0.215) 0.155 (0.199) 0.243 (0.304) 0.136 (0.165)Variane Γ(2, 1) 0.108 (0.140) 0.0987 (0.129) 0.162 (0.224) 0.0783 (0.0963)Variane Γ(3, 1) 0.0898 (0.115) 0.0813 (0.104) 0.125 (0.185) 0.0630 (0.0791)Variane Γ(4, 1) 0.0824 (0.103) 0.0748 (0.0944) 0.101 (0.143) 0.0560 (0.0709)Stable(7/4, 0, 1) 0.156 (0.201) 0.154 (0.195) 0.212 (0.263) 0.156 (0.195)Stable(3/2, 0, 1) 0.176 (0.222) 0.179 (0.224) 0.269 (0.301) 0.193 (0.210)Stable(5/4, 0, 1) 0.194 (0.242) 0.191 (0.238) 0.307 (0.322) 0.245 (0.180)Stable(1, 0, 1) 0.282 (0.325) 0.273 (0.319) 0.545 (0.213) 0.307 (0.204)Table 1: Mean L1
−errors for the parameter λ; in eah ase, δ = 1. Between brakets: sample standarddeviation of estimator.14



Case λ = 1/4 M1 M2 EECF GMLEN(0, 1) 0.124 (0.156) 0.120 (0.151) 0.119 (0.149) 0.105 (0.131)Tukey(0, 1/4) 0.0987 (0.129) 0.0995 (0.137) 0.0972 (0.126) 0.119 (0.150)Tukey(0, 1/2) 0.104 (0.139) 0.109 (0.151) 0.0861 (0.112) 0.215 (0.302)Tukey(0, 3/4) 0.105 (0.138) 0.123 (0.162) 0.0873 (0.113) 0.507 (0.567)Variane Γ(1, 1) 0.0807 (0.102) 0.0792 (0.100) 0.0848 (0.108) 0.0881 (0.112)Variane Γ(2, 1) 0.120 (0.153) 0.116 (0.148) 0.117 (0.150) 0.115 (0.144)Variane Γ(3, 1) 0.150 (0.191) 0.144 (0.181) 0.146 (0.185) 0.142 (0.181)Variane Γ(4, 1) 0.173 (0.220) 0.167 (0.213) 0.173 (0.218) 0.169 (0.212)Stable(7/4, 0, 1) 0.117 (0.162) 0.113 (0.162) 0.111 (0.141) 0.124 (0.157)Stable(3/2, 0, 1) 0.112 (0.151) 0.116 (0.169) 0.102 (0.134) 0.148 (0.209)Stable(5/4, 0, 1) 0.101 (0.152) 0.133 (0.208) 0.0655 (0.0858) 0.228 (0.339)Stable(1, 0, 1) 0.140 (0.0979) 0.175 (0.125) 0.133 (0.0645) 0.336 (0.449)Case λ = 1/2 M1 M2 EECF GMLEN(0, 1) 0.125 (0.160) 0.122 (0.156) 0.121 (0.153) 0.105 (0.129)Tukey(0, 1/4) 0.104 (0.130) 0.103 (0.128) 0.102 (0.125) 0.125 (0.161)Tukey(0, 1/2) 0.103 (0.133) 0.106 (0.138) 0.0838 (0.102) 0.258 (0.286)Tukey(0, 3/4) 0.105 (0.135) 0.120 (0.161) 0.0778 (0.0976) 0.530 (0.438)Variane Γ(1, 1) 0.0887 (0.113) 0.0871 (0.110) 0.100 (0.122) 0.0996 (0.122)Variane Γ(2, 1) 0.117 (0.0916) 0.116 (0.149) 0.119 (0.152) 0.119 (0.150)Variane Γ(3, 1) 0.145 (0.181) 0.147 (0.184) 0.143 (0.180) 0.147 (0.183)Variane Γ(4, 1) 0.159 (0.201) 0.169 (0.215) 0.165 (0.213) 0.166 (0.211)Stable(7/4, 0, 1) 0.110 (0.141) 0.107 (0.136) 0.112 (0.142) 0.131 (0.168)Stable(3/2, 0, 1) 0.105 (0.138) 0.104 (0.142) 0.107 (0.132) 0.153 (0.196)Stable(5/4, 0, 1) 0.0880 (0.114) 0.0956 (0.136) 0.0854 (0.101) 0.251 (0.293)Stable(1, 0, 1) 0.200 (0.152) 0.264 (0.200) 0.0415 (0.0656) 0.266 (0.353)Case λ = 3/4 M1 M2 EECF GMLEN(0, 1) 0.130 (0.168) 0.125 (0.161) 0.126 (0.161) 0.102 (0.129)Tukey(0, 1/4) 0.0996 (0.129) 0.0995 (0.127) 0.104 (0.128) 0.127 (0.162)Tukey(0, 1/2) 0.104 (0.132) 0.107 (0.136) 0.0931 (0.115) 0.290 (0.271)Tukey(0, 3/4) 0.103 (0.131) 0.111 (0.143) 0.0862 (0.107) 0.561 (0.389)Variane Γ(1, 1) 0.0917 (0.115) 0.0885 (0.111) 0.108 (0.130) 0.101 (0.120)Variane Γ(2, 1) 0.119 (0.152) 0.116 (0.147) 0.118 (0.148) 0.119 (0.146)Variane Γ(3, 1) 0.150 (0.188) 0.147 (0.184) 0.143 (0.178) 0.148 (0.183)Variane Γ(4, 1) 0.184 (0.232) 0.182 (0.229) 0.180 (0.228) 0.178 (0.222)Stable(7/4, 0, 1) 0.119 (0.155) 0.114 (0.146) 0.121 (0.150) 0.133 (0.170)Stable(3/2, 0, 1) 0.106 (0.137) 0.104 (0.133) 0.110 (0.130) 0.183 (0.221)Stable(5/4, 0, 1) 0.0946 (0.119) 0.0971 (0.123) 0.103 (0.113) 0.272 (0.250)Stable(1, 0, 1) 0.201 (0.177) 0.215 (0.181) 0.0690 (0.0926) 0.233 (0.297)Table 2: Mean L1
−errors for the parameter δ; in eah ase, δ = 1. Between brakets: sample standarddeviation of estimator.15



λ̂ δ̂ Mean Std. deviation Skewness KurtosisDaily DAX data set Raw data 1 −1 −0.148 2.208 0.641 8.702
M1 0.629 −1.756 0.00568 2.173 0.152 3.244
M2 0.611 −1.808 0.00883 2.196 0.142 3.086

GMLE 0.722 −1.541 0 2.101 0.221 4.1932-day DAX data set Raw data 1 −1 −0.300 2.902 −0.173 4.580
M1 0.460 −2.352 −0.0321 3.025 −0.0227 1.725
M2 0.440 −2.462 −0.0164 3.092 −0.0177 1.669

GMLE 0.805 −1.495 0 2.681 −0.126 3.244Table 3: Estimated values of λ and δ for our real data sets
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Figure 2: DAX 2�day data set, top left: original data, top right: data transformed with the parametersobtained by the M1 tehnique, bottom left: data transformed with the parameters obtained by the M2tehnique, bottom right: data transformed with the parameters obtained by the GMLE tehnique.
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