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cAix Marseille Université, CNRS, EHESS, Centrale Marseille, GREQAM UMR 7316,13002 Marseille, Fran
eAbstra
t. We suggest a nonparametri
 version of the probability weighted empiri
al 
hara
teristi
 fun
tion(PWECF) introdu
ed by Meintanis et al. (2014) and use this PWECF in order to estimate the parametersof arbitrary transformations to symmetry. The almost sure 
onsisten
y of the resulting estimators is shown.Finite�sample results for i.i.d. data are presented and are subsequently extended to the regression setting. Realdata illustrations are also in
luded.Keywords. Chara
teristi
 fun
tion; Empiri
al 
hara
teristi
 fun
tion; Probability weighted moments; SymmetrytransformationAMS 2000 
lassi�
ation numbers: 62G10, 62G201 Introdu
tionTransformations are applied on given data sets in order to fa
ilitate statisti
al inferen
e. These transformationsare often used so as to indu
e �nite moments and light tails and/or symmetry. This is important as it is 
ommonknowledge that 
ertain statisti
al pro
edures are appli
able or perform well only under su
h assumptions. Apartfrom that, symmetry has de�nite advantages for identi�
ation and 
onsisten
y of lo
ation estimators with i.i.d.data, as well as in the 
ontext of regression where Bi
kel (1982) and Newey (1988) study the existen
e of adaptiveand e�
ient regression estimators under symmetri
 errors. The reader is referred to Chapter 6 of Horowitz (2009)for a ni
e review of transformations in regression and other related models. Lately the symmetry assumptionhas also been invoked for the 
onsisten
y and e�
ien
y of the quasi maximum likelihood estimator (QMLE) inGARCH models; see González�Rivera and Drost (1999) and Newey and Steigerwald (1997). Finally, we mentionthat power transformations have re
ently been used by Sav
huk and S
hi
k (2013) in order to improve the rateof 
onvergen
e of the 
lassi
al Parzen-Rosenblatt (Parzen, 1962; Rosenblatt, 1956) estimator of the probabilitydensity fun
tion.The purpose of this paper is to suggest a pro
edure by means of whi
h a sample from an unknown distributionis redu
ed to a sample from a symmetri
 distribution. To this end we employ the notion of the probabilityweighted empiri
al 
hara
teristi
 fun
tion (PWECF), introdu
ed re
ently in Meintanis et al. (2014). However,the PWECF used in Meintanis et al. (2014) is de�ned in an entirely parametri
 
ontext and it is thereforenot appropriate when pursuing nonparametri
 inferen
e. In what follows we suggest a nonparametri
 version of
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the PWECF and use this quantity in order to estimate the parameters of a transformation to symmetry. Theremainder of this work is outlined as follows. In Se
tion 2 we re
all some properties of the PWCF and thenonparametri
 PWECF is introdu
ed. In Se
tion 3 we introdu
e the new estimation pro
edure whi
h is basedon an appropriate fun
tional of this PWECF; the method is related to those in Yeo and Johnson (2014) and Yeoet al. (2014). The strong 
onsisten
y of our estimator is given in Se
tion 4, while in Se
tion 5 the �nite�sampleproperties of the method are investigated by means of a simulation study. Real data examples are in
luded inSe
tion 6 while some auxiliary results and their proofs are deferred to the Appendix.2 The nonparametri
 PWECFLetX denote an arbitrary random variable with an absolutely 
ontinuous distribution fun
tion F (x) = P(X ≤ x).For γ ≥ 0, the probability weighted 
hara
teristi
 fun
tion (PWCF) of X is de�ned by
ϕ(t; γ) := E

[
W (X;γt)eitX

]
=

∫ ∞

−∞

W (x;γt)eitxdF (x), t ∈ R, (2.1)where W (x;s) := [F (x)(1−F (x))]|s|. It is noteworthy that the PWCF of X has various useful properties similarto that of the 
hara
teristi
 fun
tion (CF) of X, see Meintanis et al. (2014); in parti
ular, a distribution fun
tionwhi
h is symmetri
 around zero must yield a real-valued PWCF, see property P5 there, and this will be the basisof our transformation pro
edure in Se
tion 3. The fa
t that for γ > 0 the PWCF is no longer a Fourier transform,however, makes it di�
ult to prove strong distributional results su
h as a one-to-one 
orresponden
e betweenPWCFs and probability distributions. Interestingly though, in the 
ontext of lo
ation-s
ale families, whi
h wasthe original framework of Meintanis et al. (2014), we may state and prove su
h a result:Proposition 1. Assume that F1 and F2 belong to some lo
ation-s
ale family, namely
∀x ∈ R, F1

(
x− µ1

σ1

)
= F2

(
x− µ2

σ2

)
= G(x)where G is an absolutely 
ontinuous distribution fun
tion and µ1, µ2 ∈ R, σ1, σ2 > 0. Then, for any γ > 0, F1and F2 yield the same PWCF if and only if F1 = F2.Proof of Proposition 1. Let ϕµ,σ be the PWCF related to Fµ,σ(x) := G(σx+ µ). Sin
e

ϕµ,σ(t; γ) =

∫ ∞

−∞

[Fµ,σ(x)(1− Fµ,σ(x))]
γ|t|eitxdFµ,σ(x),we get by the 
hange of variables x = σy + µ:

ϕµ,σ(t; γ) =

∫ ∞

−∞

[G(y)(1−G(y))]γ|t|ei(σt)y+µdG(y) = eitµϕ0,1(σt;γ/σ).Assume now that F1 and F2 yield the same PWCF, with σ1 6= σ2. Then
eitµ1ϕ0,1(σ1t; γ/σ1) = eitµ2ϕ0,1(σ2t; γ/σ2), t ∈ R, (2.2)whi
h up to reparametrization is equivalent to

ϕ0,1(T ; Γ) = eitMϕ0,1(ΣT ; Γ/Σ), T ∈ R,for some M ∈ R, Σ 6= 1 and Γ > 0. Without loss of generality, we assume in what follows that Σ > 1; in this
ase, a straightforward proof by indu
tion shows that for any positive integer m:
|ϕ0,1(T ; Γ)| = |ϕ0,1(Σ

mT ; Γ/Σm)|, T ∈ R.
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Observe now that ϕ0,1(0; Γ) = 1 and for any T > 0,
ϕ0,1(Σ

mT ; Γ/Σm) =

∫ ∞

−∞

[G(y)(1−G(y))]Γ|T |ei(Σ
mT )yg(y)dy

=
1

T

∫ ∞

−∞

[G(z/T )(1−G(z/T ))]Γ|T |g(z/T )eiΣ
mzdzwhere g is the probability density fun
tion related to G. The right-hand side is, up to a 
onstant, the Fouriertransform of the integrable fun
tion

z 7→ [G(z/T )(1−G(z/T ))]Γ|T |g(z/T ),evaluated at the point Σm. Sin
e Σm → ∞, the Riemann-Lebesgue lemma states that this expression must
onverge to 0 as m→ ∞. As a 
on
lusion,
ϕ0,1(0; Γ) = 1 and ϕ0,1(T ; Γ) = 0, T > 0.This is a 
ontradi
tion sin
e T 7→ ϕ0,1(T ; Γ) is 
ontinuous, see property P7 in Meintanis et al. (2014). Hen
e

σ1 = σ2, and thus eitµ1 = eitµ2 for all t ∈ R by (2.2), whi
h entails µ1 = µ2. The proof is 
omplete. �Remark 1. The lo
ation�s
ale 
ontext may a
tually be dropped under additional moment hypotheses, su
has the existen
e of the moment-generating fun
tion of F1 and F2 in a neighborhood of 0, by using analyti

ontinuation. In any 
ase, if the PWCF is unique, it 
an be used to assess symmetry around zero: It is indeed
lear that for any t and γ, the PWCF of −X is equal to ϕ(−t; γ), and that ϕ(−t; γ) = ϕ(t;γ), where z denotesthe 
omplex 
onjugate of z. Now if the PWCF of X is real-valued, this entails ϕ(−t; γ) = ϕ(t; γ) and thus Xand −X have the same PWCF, when
e the fa
t that the distribution fun
tion of X is symmetri
 around zero.While Meintanis et al. (2014) estimated the PWCF in a parametri
 way, it is interesting to 
onsider the 
asewhere F is 
ompletely unknown. In this 
ontext, it is a natural idea to de�ne an estimator of the PWCF in anentirely nonparametri
 way. To this end noti
e that the PWCF in (2.1) may be written as
ϕ(t; γ) =

∫ 1

0

[x(1− x)]γ|t|eitQ(x)dx, (2.3)where Q(x) = inf{t ∈ R|F (t) ≥ x} denotes the quantile fun
tion of X.In view of (2.3) we suggest the following nonparametri
 estimator of the PWCF:
ϕ̂n(t; γ) =

∫ 1

0

[x(1− x)]γ|t|eitQ̂n(x)dx, (2.4)with Q̂n(x) denoting the empiri
al quantile fun
tion. We shall 
all ϕ̂n(t; γ) the probability weighted empiri
al
hara
teristi
 fun
tion (PWECF), and for the purpose of estimation we will use
∀k ∈ {1, ..., n}, ∀x ∈

[
k − 1

n
,
k

n

)
, Q̂n(x) = Xk:n,where X1:n ≤ · · · ≤ Xn:n denote the order statisti
s 
orresponding to independent 
opies X1, . . . , Xn of therandom variable X.3 L2�type pro
edures for symmetry transformationThe problem we shall 
onsider is to estimate the parameters of a given transformation whi
h, if applied onthe original nonsymmetri
ally distributed observations X1, . . . , Xn, yields transformed observations that are
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approximately symmetri
ally distributed with lo
ation zero. To this end, write ϑ = (δ, λ) ∈ Θ ⊂ R ×Λ for thetransformation parameter�ve
tor, where δ denotes lo
ation and λ denotes the shape parameter whi
h is assumedto lie in a subset Λ of the real line. For ϑ = (δ, λ) ∈ Θ, we let QZ(·;ϑ) be the quantile fun
tion of the transformedrandom variable Z(ϑ) = ψ(X;λ)− δ, where ψ is a spe
i�
 transformation family, and we de�ne
S(t;γ;ϑ) =

∫ 1

0

[x(1− x)]γ|t| sin(tQZ(x;ϑ))dx,the imaginary part of the PWCF of Z(ϑ). It is thus a 
onsequen
e of Remark 1 that if the transformed ran-dom variable Z has a symmetri
 distribution around zero then S(t;γ;ϑ) = 0 for all t ∈ R, or equivalently
∫∞

−∞
S2(t;γ;ϑ) = 0.This observation is the basi
 idea we need to build our estimator: we introdu
e Zk(ϑ) = ψ(Xk;λ) − δ, we let

Q̂Z(x;ϑ) be the empiri
al quantile fun
tion related to Z1(ϑ), . . . , Zn(ϑ) and we de�ne
Ŝn(t; γ;ϑ) =

∫ 1

0

[x(1− x)]γ|t| sin(tQ̂Z(x;ϑ))dx,the imaginary part of the PWECF of Z1(ϑ), . . . , Zn(ϑ). Then Ŝn(t; γ;ϑ) is the empiri
al 
ounterpart of S(t;γ;ϑ).We suggest to estimate the true value ϑ0 = (δ0, λ0) (see Se
tion 4 for a dis
ussion of the uniqueness of thisparameter) by ϑ̂n, where
ϑ̂n = argmin

ϑ∈Θ
∆n(γ;ϑ), with ∆n(γ; θ) =

∫ ∞

−∞

Ŝ2
n(t;γ;ϑ)dt. (3.1)Remark 2. The PWCF ϕ(t; γ) and PWECF ϕ̂n(t;γ) of a random variable X are su
h that |ϕ(t; γ)| ≤ (1/4)γ|t|and |ϕ̂n(t; γ)| ≤ (1/4)γ|t| for every (t, γ) ∈ R × R+. As a 
onsequen
e, for any ϑ, the integral ∆n(ϑ) is positiveand �nite.Remark 3. Noti
e that while we write ϑ̂n, the estimator impli
itly depends on the value of γ and therefore wehave essentially a family of estimators {ϑ̂n(γ), 0 < γ <∞} indexed by γ.Remark 4. Possible 
hoi
es for the transformation family ψ are the Box-Cox transformation (1964), a familyintrodu
ed by Burbidge et al. (1988) as well as the re
ently introdu
ed method of Yeo and Johnson (2000). Notethat while the popular Box-Cox transformation,

ψ(x;λ) =






xλ − 1

λ
if λ 6= 0,

log x if λ = 0,applies only to positive random variables (if λ is not a nonzero integer), its modi�
ations suggested by Manly(1976), John and Draper (1980) and Bi
kel and Doksum (1981) were designed to allow negative values as well.A favorable feature of the spe
i�
 de�nition of the nonparametri
 PWECF in (2.4) is that it leads to a 
riterionin (3.1) whi
h is 
onvenient from the 
omputational point of view. To see this noti
e that from (2.4) it isstraightforward to 
ompute the imaginary part of the PWECF of Z1(ϑ), . . . , Zn(ϑ) as
Ŝn(t;γ;ϑ) =

n∑

k=1

υk,n(t; γ) sin(tZk:n(ϑ)) with υk,n(t; γ) =

∫ k/n

(k−1)/n

[x(1− x)]γ|t|dx.Then the 
riterion statisti
 in (3.1) follows by dire
t 
al
ulation as
∆n(γ;ϑ) =

1

2

n∑

j,k=1

(
I−jk(γ;ϑ)− I+jk(γ;ϑ)

)where I−jk(γ;ϑ) := I(j, k; γ;Zj:n(ϑ)− Zk:n(ϑ)) and I+jk(γ;ϑ) := I(j, k; γ;Zj:n(ϑ) + Zk:n(ϑ)) with
I(j, k; γ;x) =

∫ ∞

−∞

υj(t;γ)υk(t;γ) cos(tx)dt.
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4 Strong 
onsisten
y of the estimatorHere, we assume that γ > 0 and that the following hold:
(A1) The support D of the distribution of X is an open interval and F is 
ontinuous and stri
tly in
reasingon D.
(A2) The transformation family ψ is su
h that (x, λ) 7→ ψ(x;λ) is 
ontinuous on D ×Λ.
(A3) For all λ ∈ Λ, x 7→ ψ(x;λ) is stri
tly in
reasing.Assumption (A2) is also used in Yeo and Johnson (2001), while (A3) means that the family of transformationspreserves ordering: if two observations X1 and X2 are su
h that X1 < X2, then the transformed observations

ψ(X1;λ) and ψ(X2;λ) are su
h that ψ(X1;λ) < ψ(X2; λ). In parti
ular, in this setting, it is straightforward toshow that
QZ(x;ϑ) = ψ(Q(x);λ)− δ and Q̂Z(x;ϑ) = ψ(Q̂(x);λ)− δ. (4.1)Under these assumptions, we may state a strong 
onsisten
y result for our estimator:Theorem 1. Assume that (A1), (A2) and (A3) hold. Let Θ be a 
ompa
t subset of R2 
ontained in R ×Λ. If,over Θ, there exists a unique global minimum ϑ0 of the fun
tion

ϑ 7→

∫ ∞

−∞

S2(t;γ;ϑ)dtthen ϑ̂n → ϑ0 almost surely.Proof of Theorem 1. By Lemma 2 in the Appendix,
Hn(ϑ) :=

∫ ∞

−∞

Ŝ2
n(t; γ;ϑ)dt→ H(ϑ) :=

∫ ∞

−∞

S2(t;γ;ϑ)dtalmost surely, uniformly in ϑ ∈ Θ. Re
all that
S(t;γ;ϑ) =

∫ 1

0

[x(1− x)]γ|t| sin(tQZ(x;ϑ))dx.Be
ause for any x the fun
tion ϑ 7→ QZ(x;ϑ) is 
ontinuous and the integrand in S(t;γ;ϑ) is dominated by the
onstant 1, the dominated 
onvergen
e theorem entails that for any t, the fun
tion ϑ 7→ S(t;γ;ϑ) is 
ontinuous.Furthermore, sin
e for any ϑ, |S(t;γ;ϑ)| ≤ (1/4)γ|t| by Remark 2, it is again a 
orollary of the dominated
onvergen
e theorem that the fun
tion H is 
ontinuous as well. Applying Lemma 3 
on
ludes the proof. �The existen
e of a global minimum of the fun
tion ϑ 7→
∫ ∞

−∞
S2(t; γ;ϑ)dt is for instan
e guaranteed if there exists

ϑ0 su
h that the distribution of Z(ϑ0) is symmetri
 around 0, in whi
h 
ase S(t;γ;ϑ0) = 0 for ea
h t and therefore
∀ϑ ∈ Θ,

∫ ∞

−∞

S2(t; γ;ϑ)dt ≥ 0 =

∫ ∞

−∞

S2(t; γ;ϑ0)dt.The uniqueness of one su
h ϑ0 is a more 
hallenging problem. The following proposition is a step towards solvingthis question for a large 
lass of transformations, in
luding those mentioned in Remark 4.Proposition 2. Assume that (A1) holds and that X has a positive median. Let ψ be a family of transformations,satisfying (A2) and (A3), su
h that
∀x > 0, ∀λ > 0, ψ(x;λ) =

[f(x)]λ − 1

λwhere f is a positive, 
ontinuous and stri
tly in
reasing fun
tion on (0,∞). If there exists a pair (δ, λ) ∈ R×(0,∞)su
h that ψ(X;λ)− δ is symmetri
ally distributed around zero, then (δ, λ) is the unique su
h pair.
5



Proof of Proposition 2. Sin
e (A1) holds and X has a positive median, we have Q(x) > 0 for all x in an openneighborhood U of 1/2. The monotoni
ity of f then yields QZ(x;ϑ) = ψ(Q(x);λ)− δ for all x ∈ U . In parti
ular,the median of Z(ϑ), whi
h is symmetri
ally distributed around zero, has to be 0 and thus 0 = [f ◦Q(1/2)]λ−c(ϑ),where c(ϑ) = 1 + δλ. In parti
ular, c(ϑ) is positive and f ◦ Q(1/2) = [c(ϑ)]1/λ. Besides, it must hold that
QZ(1/2− s;ϑ) = −QZ(1/2 + s;ϑ) for any s ∈ (0, 1/2) whi
h entails for all ε > 0 small enough:

[f ◦Q(1/2− ε)]λ − 1

λ
− δ = −

[
[f ◦Q(1/2 + ε)]λ − 1

λ
− δ

]or equivalently:
f ◦Q(1/2− ε) =

(
2c(ϑ)− [f ◦Q(1/2 + ε)]λ

)1/λ

. (4.2)Assume now that there exist two pairs ϑ1 = (δ1, λ1) and ϑ2 = (δ2, λ2) su
h that Z(ϑ1) and Z(ϑ2) are symmetri-
ally distributed around zero. Note that it is enough to show that λ1 = λ2. Using (4.2), we obtain for all ε > 0su�
iently small:
(
2c(ϑ1)− [f ◦Q(1/2 + ε)]λ1

)1/λ1

=
(
2c(ϑ2)− [f ◦Q(1/2 + ε)]λ2

)1/λ2

.Sin
e f ◦ Q(1/2) = [c(ϑ1)]
1/λ1 = [c(ϑ2)]

1/λ2 and the fun
tion f ◦ Q is 
ontinuous and stri
tly in
reasing, thisentails for all h > 0 small enough:
(
2c(ϑ1)−

[
[c(ϑ1)]

1/λ1 + h
]λ1

)1/λ1

=

(
2c(ϑ2)−

[
[c(ϑ2)]

1/λ2 + h
]λ2

)1/λ2

.Noting that [c(ϑ1)]
1/λ1 = [c(ϑ2)]

1/λ2 > 0, we get that for all h > 0 small enough:
(
2− [1 + h]λ1

)1/λ1

=
(
2− [1 + h]λ2

)1/λ2

.Taking logarithms and di�erentiating twi
e, we obtain for h > 0 su�
iently small:
(1 + h)λ1−2

[
2(λ1 − 1) + (1 + h)λ1

]

[2− (1 + h)λ1 ]2
=

(1 + h)λ2−2
[
2(λ2 − 1) + (1 + h)λ2

]

[2− (1 + h)λ2 ]2
.Letting h ↓ 0 entails λ1 = λ2, whi
h 
ompletes the proof. �We note that this result requires the median of X to be positive. For some families su
h as the Bi
kel-Doksumfamily (1981),

∀x ∈ R, ∀λ > 0, ψ(x;λ) =
sgn(x)|x|λ − 1

λ
, with sgn(x) =






1 if x > 0,

−1 if x < 0,

0 if x = 0,

(4.3)this assumption may a
tually be dropped, as shown by Corollary 1 below. This parti
ular family of transforma-tions, whi
h 
oin
ides with the Box-Cox family of transformations for positive values of x and λ, is the one weshall 
onsider in our simulation study.Corollary 1. Let ψ be the Bi
kel-Doksum family of transformations. Assume that (A1) holds and that thedistribution of X is not symmetri
 around zero. If there exists a pair (δ, λ) ∈ R × (0,∞) su
h that ψ(X;λ) − δis symmetri
ally distributed around zero, then (δ, λ) is the unique su
h pair.Proof of Corollary 1. We �rst note that for any su
h pair ϑ = (δ, λ), then δ 6= −1/λ. If indeed we had that
δ = −1/λ, then using (4.3), the random variable sgn(X)|X|λ would be symmetri
. This would imply, for any
x ≤ 0, that

P(X ≤ x) = P(sgn(X)|X|λ ≤ −(−x)λ) = P(sgn(X)|X|λ ≥ (−x)λ) = P(X ≥ −x).
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Then X would be symmetri
ally distributed around zero, whi
h is a 
ontradi
tion. Moreover, we may assumewithout loss of generality that the median Q(1/2) of X is nonnegative: if indeed this is not the 
ase then −Xhas a nonnegative median and, letting δ′ = −(δ + 2/λ) 6= −1/λ, the random variable
ψ(−X;λ)− δ′ = −[ψ(X;λ)− δ]is symmetri
ally distributed around zero. Finally, sin
e (A1) holds and (A2) and (A3) are satis�ed for the Bi
kel-Doksum family, we have QZ(x;ϑ) = ψ(Q(x);λ) − δ by (4.1). Sin
e Z(ϑ) is symmetri
ally distributed aroundzero, we must have 0 = Q(1/2)λ − (1+ δλ). Espe
ially, the median Q(1/2) = [c(ϑ)]1/λ of X is positive. ApplyingProposition 2 
on
ludes the proof. �5 A Monte-Carlo simulation study5.1 Finite sample performan
e of the presented te
hniqueIn this se
tion, we present the results of a Monte-Carlo study 
ondu
ted to assess the performan
e of our method.In what follows, the transformation family 
onsidered is the Bi
kel-Doksum family (4.3). The following estimatorsare 
ompared:

• our estimator (3.1), denoted by Mγ , with γ ∈ {1, 2};
• the estimator

argmin
ϑ∈Θ

∫ ∞

−∞

[
1

n

n∑

k=1

sin(tZk(ϑ))

]2

e−|t|dtwhi
h 
orresponds to using the ECF with an exponential weighting fun
tion (see Yeo and Johnson, 2001),and will be denoted by EECF;
• the Gaussian maximum likelihood estimator (GMLE), assuming that the target symmetri
 distribution isGaussian. While this estimator a
tually attempts to transform to normality, we in
lude it for 
omparativereasons. The shape estimator is λ̂ and the lo
ation estimator is δ̂(λ̂) where

λ̂ = argmax
λ∈Λ

{
−
n

2
log(σ̂2(λ))−

1

2

n∑

k=1

(ψ(Xk;λ)− δ̂(λ))2

σ̂2(λ)
+ (λ− 1)

n∑

k=1

logXk

}

= argmax
λ∈Λ

{
−
n

2
log(σ̂2(λ)) + (λ− 1)

n∑

k=1

logXk

}with δ̂(λ) =
1

n

n∑

k=1

ψ(Xk;λ)and σ̂2(λ) =
1

n

n∑

k=1

(ψ(Xk;λ)− δ̂(λ))2.To get a grasp of how these estimators behave in pra
ti
e, we use the following generating algorithm: for a given
n−independent sample Y1, . . . , Yn of random 
opies of a symmetri
 random variable Y , we pi
k (known) valuesof λ and δ and we 
onsider the n−independent sample X1, . . . , Xn su
h that Xk = τ (Yk + δ;λ) where

τ (y;λ) = sgn(λy + 1)|λy + 1|1/λis the inverse of the Bi
kel-Doksum transformation. With this notation, we thus have ψ(Xk;λ)−δ = Yk whi
h aresymmetri
 random variables and we may apply our various pro
edures to assess the quality of the estimation of λand δ in ea
h 
ase. In what follows, λ is pi
ked in the set {1/4, 1/2, 3/4}, δ = 1 and the symmetri
 distributions
onsidered are the following:
7



• Y = W exp(hW 2/2) with W standard normal, namely Y follows a Tukey(0, h) distribution. The higher is
h, the higher is the kurtosis of Y ; when h = 0, Y is standard Gaussian, denoted by N(0, 1);

• Y |V = v is Gaussian 
entered with varian
e v, where V is Gamma distributed with shape parameter k > 0and unit s
ale. This distribution is denoted by Varian
e Γ(k, 1);
• Y follows a symmetri
 stable distribution with shape parameter α, lo
ation parameter zero and unit s
ale.This distribution is denoted by Stable(α, 0, 1).In ea
h 
ase, the estimation is 
arried out on 1000 samples of size n = 100 and we 
ompute the mean L1−error(i.e. the mean absolute deviation) related to λ̂ and δ̂. We display in Tables 1 and 2 the mean L1−error for λand δ as well as the standard deviation of the estimates.It appears from these tables that our Mγ estimator performs fairly well in all 
ases for both values of γ. Inparti
ular, it performs better than the EECF method at estimating λ, and equally well at estimating δ ex
eptwhen the tail is very heavy as is the 
ase for the Stable(1, 0, 1) distribution. Furthermore, while the GMLE methodappears superior at estimating λ when the tail is light or when the distribution is leptokurti
, our te
hnique is
omparable to and sometimes better than this method when λ ≥ 1/2 and the tail is heavy (for instan
e, thestable distribution) or if the distribution is platykurti
 (as is the 
ase for the Tukey(0, 3/4) distribution). Finally,it 
an be seen by 
omputing the sum of the mean L1−errors that overall, our te
hnique 
ompetes well with theGMLE method and outperforms the EECF te
hnique.We 
on
lude this se
tion by highlighting how our te
hnique may be used prior to a statisti
al analysis of a data set.The 
ontext is the following: We assume that we observe a sample of independent 
opies (X1, Z1), . . . , (Xn, Zn)of a random pair (X,Z) su
h that for some (λ, δ):

ψ(X;λ)− δ = m0 +m1Z + εwhere ψ is a given family of transformations, m0, m1 ∈ R and (Z, ε) are su
h that Z and ε are two independentrandom variables whi
h both possess symmetri
 around zero distributions. The goal is to estimate the parameters
m0 and m1. In the framework of linear regression, one 
an think of m0 as the inter
ept and m1 as the slope,
Z is the regressor and ε is the random error. For a ni
e a

ount of transformations in the 
ontext of regressionthe reader is referred to Chen et al. (2002). Of 
ourse, a �rst, 
ru
ial task is to estimate (λ, δ) as a

urately aspossible so as to re
over enough information on the hidden regression setting. Note that

ψ(X;λ)− (δ +m0) = m1Z + εso that without loss of generality, we may assume that the inter
ept m0 is zero. Observe then that the right-handside is a symmetri
 random variable, whi
h makes it possible to implement our method in order to estimate (λ, δ).A possible pro
edure is as follows:1. estimate (λ, δ) by a symmetry pro
edure, su
h as our PWECF�based te
hnique or the GMLE;2. if (λ̂, δ̂) is the estimate, 
ompute the transformed observations Ŷk = ψ(Xk; λ̂)− δ̂;3. 
hoose an estimation pro
edure for the regression parameters (m0,m1), su
h as ordinary least squares(OLS) and use the random pairs (Zk, Ŷk) for the estimation.In fa
t, a robust method su
h as the Theil�Sen estimator (Theil 1950, Sen 1968), may be preferred to the basi
OLS estimator at the �nal step be
ause nothing is known regarding the moments of ε. In this 
onne
tion, a smallsimulation study whi
h we do not report here tends to indi
ate that the Theil�Sen estimator 
ombined with ourte
hnique works better than the 
lassi
al GMLE�OLS method under a heavy�tailed error distribution.
8



6 Real data examplesIn this se
tion, we show
ase our method on a set of real data. We 
onsider the daily 
losing values (pt) ofthe DAX index from O
tober 1, 2007 to April 1, 2009, and our data is either the daily per
entage of return
rt,1 = 100(pt/pt−1 − 1) of size n = 378 or the 2�day per
entage of return rt,2 = 100(p2t+1/p2t−1 − 1) of size
n = 190. During this period of time, European markets generally followed a downward trend, so that we 
anexpe
t these per
entages to have a left�skewed distribution.We 
ompare the results found with the M1 and M2 methods with what we �nd when using the GMLE method.In Table 3, we summarize the results, along with the mean, varian
e, skewness and kurtosis of the transformeddata set (using the Bi
kel-Doksum family) with the estimated parameters given by ea
h method. Histograms ofthe raw and transformed data sets are given on Figures 1�2.In Table 3, we see that in ea
h 
ase, the absolute value of the skewness of the transformed data set is smallerthan that of the raw data set. Note at this point that while the value of the skewness of the daily DAX dataset is positive and thus seems to indi
ate a right-skewed distribution, the 2% trimmed skewness is a
tually
−0.292, whi
h 
on�rms that we have a left-skewed data set. It is also interesting that the transformations yieldtransformed data sets having lower kurtosis in all 
ases. Finally, we mention that although the values of λ̂ and
δ̂ are similar for the daily DAX data set, they di�er substantially in for the 2-day DAX data set. In the latter
ase, the Mγ method seems to dete
t a bimodal distribution, whereas the GMLE method points to a unimodaldistribution.Appendix: auxiliary results and their proofsThe �rst lemma is a useful result of real analysis:Lemma 1. Assume that H is a 
ontinuous real-valued fun
tion on E × E′, where E and E′ are two subsets of
R. Let K, K′ be 
ompa
t subsets of R whi
h are 
ontained in E and E′ respe
tively. Then the family of fun
tions
x 7→ H(x;λ), λ ∈ K′, is uniformly equi
ontinuous on K, in the sense that

lim
h→0

sup
(x,λ)∈K×K′

sup
y∈K

|y−x|≤h

|H(y;λ)−H(x;λ)| = 0.Proof of Lemma 1. If the statement were false then one 
ould �nd a sequen
e (xn, λn) ⊂ K × K′ and asequen
e (yn) ⊂ K′ su
h that |yn − xn| → 0 with
lim inf
n→∞

|H(yn;λn)−H(xn;λn)| > 0.Sin
e K and K′ are 
ompa
t subsets of R, we may assume, up to extra
ting a suitable subsequen
e, that
(xn, λn) → (x∗, λ∗) ∈ K×K′. In parti
ular, yn → x∗ as well. By the 
ontinuity ofH , |H(yn;λn)−H(xn;λn)| → 0,whi
h is a 
ontradi
tion. �The se
ond lemma is the 
ornerstone to prove Theorem 1.Lemma 2. Assume that (A1), (A2) and (A3) hold. If K is a 
ompa
t subset of R 
ontained in Λ then

∫ ∞

−∞

Ŝ2
n(t;γ;ϑ)dt→

∫ ∞

−∞

S2(t; γ;ϑ)dtalmost surely, uniformly in ϑ = (δ, λ) ∈ R×K as n→ ∞.
9



Proof of Lemma 2. Sin
e |Ŝn(t;γ;ϑ)| ≤ 1, |S(t;γ;ϑ)| ≤ 1 and the imaginary part of a 
omplex number is lessthan its modulus, it is 
lear that for any ϑ,
∫ ∞

−∞

∣∣∣Ŝ2
n(t; γ;ϑ)dt− S2(t;γ;ϑ)

∣∣∣ dt ≤ 2

∫ ∞

−∞

|ϕ̂Z(t;γ;ϑ)dt− ϕZ(t;γ;ϑ)| dtwhere ϕZ(·; γ;ϑ) and ϕ̂Z,n(·; γ;ϑ) are the PWCF and PWECF related to Z(ϑ). Pi
k ε > 0; Remark 2 thus makesit possible to 
hoose M > 0 su
h that for any ϑ:
∫ ∞

−∞

∣∣∣Ŝ2
n(t; γ;ϑ)dt− S2(t;γ;ϑ)

∣∣∣ dt ≤
ε

4
+ 2

∫ M

−M

|ϕ̂Z,n(t; γ;ϑ)dt− ϕZ(t; γ;ϑ)| dt

≤
ε

4
+ 4M sup

−M≤t≤M
|ϕ̂Z,n(t; γ;ϑ)dt− ϕZ(t; γ;ϑ)| . (6.1)Let ε′ = ε/(64M) > 0 and observe that for any t:

|ϕ̂Z,n(t; γ;ϑ)− ϕZ(t; γ;ϑ)| =

∣∣∣∣
∫ 1

0

[x(1− x)]γ|t|
{
eitQ̂Z,n(x;ϑ) − eitQZ(x;ϑ)

}
dx

∣∣∣∣

≤
ε

16M
+

∫ 1−ε′

ε′
[x(1− x)]γ|t|

∣∣∣eitQ̂Z,n(x;ϑ) − eitQZ(x;ϑ)
∣∣∣ dx

≤
ε

16M
+ sup

ε′≤x≤1−ε′

∣∣∣eitQ̂Z,n(x;ϑ) − eitQZ(x;ϑ)
∣∣∣ . (6.2)Moreover

∣∣∣eitQ̂Z,n(x;ϑ) − eitQZ(x;ϑ)
∣∣∣ =

∣∣∣∣∣it
∫ Q̂Z,n(x;ϑ)

QZ(x;ϑ)

eitzdz

∣∣∣∣∣ ≤ |t|
∣∣∣Q̂Z,n(x;ϑ)−QZ(x;ϑ)

∣∣∣ . (6.3)Colle
ting (6.1), (6.2) and (6.3) entails
sup

ϑ∈R×K

∫ ∞

−∞

∣∣∣Ŝ2
n(t; γ;ϑ)dt− S2(t; γ;ϑ)

∣∣∣ dt ≤ ε

2
+ 4M2 sup

ε′≤x≤1−ε′

ϑ∈R×K

∣∣∣Q̂Z,n(x;ϑ)−QZ(x;ϑ)
∣∣∣ .We thus get by using (4.1):

sup
ε′≤x≤1−ε′

ϑ∈R×K

∣∣∣Q̂Z,n(x;ϑ)−QZ(x;ϑ)
∣∣∣ ≤ sup

ε′≤x≤1−ε′

λ∈K

∣∣∣ψ(Q̂n(x);λ)− ψ(Q(x);λ)
∣∣∣ .It is then enough to show that the supremum on the right-hand side of this inequality 
onverges to 0 almostsurely. To this end, we note that sin
e the fun
tion F is 
ontinuous and stri
tly in
reasing on D, so is Q on (0, 1).Espe
ially, Q maps the interval [ε′, 1− ε′] onto a 
ompa
t interval I ( D. Moreover, sin
e with probability 1, Q̂nis a nonde
reasing sequen
e of fun
tions whi
h 
onverges pointwise to the 
ontinuous fun
tion Q on (0, 1), by awell-known result due to Pólya (see e.g. Problem 127 p.270 in Pólya and Szeg®, 1998) the 
onvergen
e must beuniform on 
ompa
t intervals 
ontained in (0, 1); in parti
ular

sup
ε′≤x≤1−ε′

|Q̂n(x)−Q(x)| → 0 almost surely,whi
h entails that there is a 
ompa
t interval J ( D su
h that with probability 1, we have Q̂n(x) ∈ J for any
x ∈ [ε′, 1− ε′] if n is large enough. As a 
onsequen
e, for any positive integer N , we have with probability 1

sup
ε′≤x≤1−ε′

λ∈K

∣∣∣ψ(Q̂n(x);λ)− ψ(Q(x);λ)
∣∣∣ ≤ sup

(z,λ)∈J×K

sup
y∈J

|y−z|≤1/N

|ψ(y;λ)− ψ(z;λ)|for n large enough. By Lemma 1, the right-hand side 
an be made arbitrarily small as N → ∞, whi
h 
on
ludesthe proof. �The last lemma is a 
lassi
al result (see Lemma 2 in Yeo and Johnson, 2001) whi
h essentially states that undersome 
onditions, if a sequen
e of random fun
tions (Hn) 
onverges to a (nonrandom) fun
tion H whi
h has aunique minimum x∗, then the sequen
e of the minima of the (Hn) 
onverges to x∗.
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Lemma 3. Assume that (Hn) is a sequen
e of random fun
tions on a 
ompa
t metri
 spa
e E su
h that
• (Hn) 
onverges uniformly almost surely to a 
ontinuous fun
tion H on E;
• H has a unique global minimum x∗.Then if (xn) is any sequen
e su
h that xn = argminx∈EHn(x), it holds that xn → x∗ almost surely.Proof of Lemma 3. If the result were false, we 
ould �nd a set A with positive probability su
h that on A,

(xn) fails to 
onverge to x∗ but (Hn) 
onverges uniformly almost surely to H on E. Choose ω ∈ A and de�ne
yn = xn(ω), hn = Hn(·;ω). The 
ompa
tness of E would entail that one 
ould �nd a subsequen
e of (yn) whi
h
onverges to x0 6= x∗. Sin
e hn(yn) ≤ hn(x

∗) and
|hn(yn)−H(x0)| ≤ |hn(yn)−H(yn)|+ |H(yn)−H(x0)|we would obtain in the limit H(x0) ≤ H(x∗), whi
h is a 
ontradi
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Figure 1: DAX daily data set, top left: original data, top right: data transformed with the parametersobtained by the M1 te
hnique, bottom left: data transformed with the parameters obtained by the M2te
hnique, bottom right: data transformed with the parameters obtained by the GMLE te
hnique.
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Case λ = 1/4 M1 M2 EECF GMLEN(0, 1) 0.112 (0.141) 0.104 (0.131) 0.116 (0.145) 0.0774 (0.0972)Tukey(0, 1/4) 0.107 (0.136) 0.0984 (0.138) 0.147 (0.172) 0.0904 (0.112)Tukey(0, 1/2) 0.126 (0.182) 0.114 (0.175) 0.147 (0.173) 0.0664 (0.0827)Tukey(0, 3/4) 0.144 (0.199) 0.135 (0.195) 0.150 (0.183) 0.0853 (0.0635)Varian
e Γ(1, 1) 0.124 (0.151) 0.116 (0.143) 0.151 (0.181) 0.106 (0.128)Varian
e Γ(2, 1) 0.0917 (0.115) 0.0813 (0.102) 0.119 (0.144) 0.0630 (0.0792)Varian
e Γ(3, 1) 0.0722 (0.0912) 0.0639 (0.0818) 0.0962 (0.124) 0.0484 (0.0611)Varian
e Γ(4, 1) 0.0678 (0.0884) 0.0562 (0.0737) 0.0876 (0.114) 0.0390 (0.0504)Stable(7/4, 0, 1) 0.132 (0.185) 0.125 (0.176) 0.142 (0.173) 0.131 (0.156)Stable(3/2, 0, 1) 0.141 (0.191) 0.141 (0.208) 0.161 (0.194) 0.116 (0.142)Stable(5/4, 0, 1) 0.165 (0.229) 0.189 (0.273) 0.155 (0.174) 0.101 (0.120)Stable(1, 0, 1) 0.213 (0.156) 0.207 (0.203) 0.196 (0.0918) 0.110 (0.111)Case λ = 1/2 M1 M2 EECF GMLEN(0, 1) 0.133 (0.169) 0.121 (0.156) 0.140 (0.179) 0.0835 (0.105)Tukey(0, 1/4) 0.118 (0.150) 0.109 (0.139) 0.196 (0.229) 0.0962 (0.122)Tukey(0, 1/2) 0.129 (0.167) 0.123 (0.162) 0.223 (0.243) 0.122 (0.109)Tukey(0, 3/4) 0.146 (0.188) 0.147 (0.194) 0.212 (0.240) 0.191 (0.0891)Varian
e Γ(1, 1) 0.147 (0.187) 0.138 (0.176) 0.207 (0.245) 0.126 (0.156)Varian
e Γ(2, 1) 0.0994 (0.127) 0.0886 (0.114) 0.151 (0.191) 0.0711 (0.0916)Varian
e Γ(3, 1) 0.0818 (0.110) 0.0689 (0.0874) 0.120 (0.162) 0.0517 (0.0640)Varian
e Γ(4, 1) 0.0794 (0.116) 0.0601 (0.0776) 0.0974 (0.139) 0.0418 (0.0531)Stable(7/4, 0, 1) 0.138 (0.175) 0.131 (0.163) 0.174 (0.212) 0.147 (0.184)Stable(3/2, 0, 1) 0.155 (0.198) 0.150 (0.193) 0.226 (0.254) 0.144 (0.171)Stable(5/4, 0, 1) 0.171 (0.213) 0.173 (0.223) 0.245 (0.265) 0.160 (0.147)Stable(1, 0, 1) 0.222 (0.258) 0.231 (0.291) 0.420 (0.128) 0.201 (0.160)Case λ = 3/4 M1 M2 EECF GMLEN(0, 1) 0.153 (0.194) 0.138 (0.175) 0.169 (0.220) 0.0940 (0.119)Tukey(0, 1/4) 0.132 (0.169) 0.128 (0.162) 0.235 (0.292) 0.106 (0.133)Tukey(0, 1/2) 0.151 (0.189) 0.148 (0.186) 0.239 (0.287) 0.192 (0.132)Tukey(0, 3/4) 0.155 (0.197) 0.155 (0.192) 0.239 (0.278) 0.308 (0.124)Varian
e Γ(1, 1) 0.167 (0.215) 0.155 (0.199) 0.243 (0.304) 0.136 (0.165)Varian
e Γ(2, 1) 0.108 (0.140) 0.0987 (0.129) 0.162 (0.224) 0.0783 (0.0963)Varian
e Γ(3, 1) 0.0898 (0.115) 0.0813 (0.104) 0.125 (0.185) 0.0630 (0.0791)Varian
e Γ(4, 1) 0.0824 (0.103) 0.0748 (0.0944) 0.101 (0.143) 0.0560 (0.0709)Stable(7/4, 0, 1) 0.156 (0.201) 0.154 (0.195) 0.212 (0.263) 0.156 (0.195)Stable(3/2, 0, 1) 0.176 (0.222) 0.179 (0.224) 0.269 (0.301) 0.193 (0.210)Stable(5/4, 0, 1) 0.194 (0.242) 0.191 (0.238) 0.307 (0.322) 0.245 (0.180)Stable(1, 0, 1) 0.282 (0.325) 0.273 (0.319) 0.545 (0.213) 0.307 (0.204)Table 1: Mean L1
−errors for the parameter λ; in ea
h 
ase, δ = 1. Between bra
kets: sample standarddeviation of estimator.14



Case λ = 1/4 M1 M2 EECF GMLEN(0, 1) 0.124 (0.156) 0.120 (0.151) 0.119 (0.149) 0.105 (0.131)Tukey(0, 1/4) 0.0987 (0.129) 0.0995 (0.137) 0.0972 (0.126) 0.119 (0.150)Tukey(0, 1/2) 0.104 (0.139) 0.109 (0.151) 0.0861 (0.112) 0.215 (0.302)Tukey(0, 3/4) 0.105 (0.138) 0.123 (0.162) 0.0873 (0.113) 0.507 (0.567)Varian
e Γ(1, 1) 0.0807 (0.102) 0.0792 (0.100) 0.0848 (0.108) 0.0881 (0.112)Varian
e Γ(2, 1) 0.120 (0.153) 0.116 (0.148) 0.117 (0.150) 0.115 (0.144)Varian
e Γ(3, 1) 0.150 (0.191) 0.144 (0.181) 0.146 (0.185) 0.142 (0.181)Varian
e Γ(4, 1) 0.173 (0.220) 0.167 (0.213) 0.173 (0.218) 0.169 (0.212)Stable(7/4, 0, 1) 0.117 (0.162) 0.113 (0.162) 0.111 (0.141) 0.124 (0.157)Stable(3/2, 0, 1) 0.112 (0.151) 0.116 (0.169) 0.102 (0.134) 0.148 (0.209)Stable(5/4, 0, 1) 0.101 (0.152) 0.133 (0.208) 0.0655 (0.0858) 0.228 (0.339)Stable(1, 0, 1) 0.140 (0.0979) 0.175 (0.125) 0.133 (0.0645) 0.336 (0.449)Case λ = 1/2 M1 M2 EECF GMLEN(0, 1) 0.125 (0.160) 0.122 (0.156) 0.121 (0.153) 0.105 (0.129)Tukey(0, 1/4) 0.104 (0.130) 0.103 (0.128) 0.102 (0.125) 0.125 (0.161)Tukey(0, 1/2) 0.103 (0.133) 0.106 (0.138) 0.0838 (0.102) 0.258 (0.286)Tukey(0, 3/4) 0.105 (0.135) 0.120 (0.161) 0.0778 (0.0976) 0.530 (0.438)Varian
e Γ(1, 1) 0.0887 (0.113) 0.0871 (0.110) 0.100 (0.122) 0.0996 (0.122)Varian
e Γ(2, 1) 0.117 (0.0916) 0.116 (0.149) 0.119 (0.152) 0.119 (0.150)Varian
e Γ(3, 1) 0.145 (0.181) 0.147 (0.184) 0.143 (0.180) 0.147 (0.183)Varian
e Γ(4, 1) 0.159 (0.201) 0.169 (0.215) 0.165 (0.213) 0.166 (0.211)Stable(7/4, 0, 1) 0.110 (0.141) 0.107 (0.136) 0.112 (0.142) 0.131 (0.168)Stable(3/2, 0, 1) 0.105 (0.138) 0.104 (0.142) 0.107 (0.132) 0.153 (0.196)Stable(5/4, 0, 1) 0.0880 (0.114) 0.0956 (0.136) 0.0854 (0.101) 0.251 (0.293)Stable(1, 0, 1) 0.200 (0.152) 0.264 (0.200) 0.0415 (0.0656) 0.266 (0.353)Case λ = 3/4 M1 M2 EECF GMLEN(0, 1) 0.130 (0.168) 0.125 (0.161) 0.126 (0.161) 0.102 (0.129)Tukey(0, 1/4) 0.0996 (0.129) 0.0995 (0.127) 0.104 (0.128) 0.127 (0.162)Tukey(0, 1/2) 0.104 (0.132) 0.107 (0.136) 0.0931 (0.115) 0.290 (0.271)Tukey(0, 3/4) 0.103 (0.131) 0.111 (0.143) 0.0862 (0.107) 0.561 (0.389)Varian
e Γ(1, 1) 0.0917 (0.115) 0.0885 (0.111) 0.108 (0.130) 0.101 (0.120)Varian
e Γ(2, 1) 0.119 (0.152) 0.116 (0.147) 0.118 (0.148) 0.119 (0.146)Varian
e Γ(3, 1) 0.150 (0.188) 0.147 (0.184) 0.143 (0.178) 0.148 (0.183)Varian
e Γ(4, 1) 0.184 (0.232) 0.182 (0.229) 0.180 (0.228) 0.178 (0.222)Stable(7/4, 0, 1) 0.119 (0.155) 0.114 (0.146) 0.121 (0.150) 0.133 (0.170)Stable(3/2, 0, 1) 0.106 (0.137) 0.104 (0.133) 0.110 (0.130) 0.183 (0.221)Stable(5/4, 0, 1) 0.0946 (0.119) 0.0971 (0.123) 0.103 (0.113) 0.272 (0.250)Stable(1, 0, 1) 0.201 (0.177) 0.215 (0.181) 0.0690 (0.0926) 0.233 (0.297)Table 2: Mean L1
−errors for the parameter δ; in ea
h 
ase, δ = 1. Between bra
kets: sample standarddeviation of estimator.15



λ̂ δ̂ Mean Std. deviation Skewness KurtosisDaily DAX data set Raw data 1 −1 −0.148 2.208 0.641 8.702
M1 0.629 −1.756 0.00568 2.173 0.152 3.244
M2 0.611 −1.808 0.00883 2.196 0.142 3.086

GMLE 0.722 −1.541 0 2.101 0.221 4.1932-day DAX data set Raw data 1 −1 −0.300 2.902 −0.173 4.580
M1 0.460 −2.352 −0.0321 3.025 −0.0227 1.725
M2 0.440 −2.462 −0.0164 3.092 −0.0177 1.669

GMLE 0.805 −1.495 0 2.681 −0.126 3.244Table 3: Estimated values of λ and δ for our real data sets
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Figure 2: DAX 2�day data set, top left: original data, top right: data transformed with the parametersobtained by the M1 te
hnique, bottom left: data transformed with the parameters obtained by the M2te
hnique, bottom right: data transformed with the parameters obtained by the GMLE te
hnique.
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