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Abstract. We suggest a nonparametric version of the probability weighted empirical characteristic function
(PWECF) introduced by Meintanis et al. (2014) and use this PWECF in order to estimate the parameters
of arbitrary transformations to symmetry. The almost sure consistency of the resulting estimators is shown.
Finite-sample results for i.i.d. data are presented and are subsequently extended to the regression setting. Real
data illustrations are also included.
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1 Introduction

Transformations are applied on given data sets in order to facilitate statistical inference. These transformations
are often used so as to induce finite moments and light tails and/or symmetry. This is important as it is common
knowledge that certain statistical procedures are applicable or perform well only under such assumptions. Apart
from that, symmetry has definite advantages for identification and consistency of location estimators with i.i.d.
data, as well as in the context of regression where Bickel (1982) and Newey (1988) study the existence of adaptive
and efficient regression estimators under symmetric errors. The reader is referred to Chapter 6 of Horowitz (2009)
for a nice review of transformations in regression and other related models. Lately the symmetry assumption
has also been invoked for the consistency and efficiency of the quasi maximum likelihood estimator (QMLE) in
GARCH models; see Gonzalez—Rivera and Drost (1999) and Newey and Steigerwald (1997). Finally, we mention
that power transformations have recently been used by Savchuk and Schick (2013) in order to improve the rate
of convergence of the classical Parzen-Rosenblatt (Parzen, 1962; Rosenblatt, 1956) estimator of the probability

density function.

The purpose of this paper is to suggest a procedure by means of which a sample from an unknown distribution
is reduced to a sample from a symmetric distribution. To this end we employ the notion of the probability
weighted empirical characteristic function (PWECF), introduced recently in Meintanis et al. (2014). However,
the PWECF used in Meintanis et al. (2014) is defined in an entirely parametric context and it is therefore

not appropriate when pursuing nonparametric inference. In what follows we suggest a nonparametric version of



the PWECEF and use this quantity in order to estimate the parameters of a transformation to symmetry. The
remainder of this work is outlined as follows. In Section 2 we recall some properties of the PWCF and the
nonparametric PWECF is introduced. In Section 3 we introduce the new estimation procedure which is based
on an appropriate functional of this PWECF; the method is related to those in Yeo and Johnson (2014) and Yeo
et al. (2014). The strong consistency of our estimator is given in Section 4, while in Section 5 the finite-sample
properties of the method are investigated by means of a simulation study. Real data examples are included in

Section 6 while some auxiliary results and their proofs are deferred to the Appendix.

2 The nonparametric PWECF

Let X denote an arbitrary random variable with an absolutely continuous distribution function F(z) = P(X < z).

For v > 0, the probability weighted characteristic function (PWCF) of X is defined by
p(t;y) =E [W(X;’yt)eitX} = / W (z;yt)e " dF (z), t € R, (2.1)

where W (z;s) := [F(x)(1— F(z))]'*. It is noteworthy that the PWCF of X has various useful properties similar
to that of the characteristic function (CF) of X, see Meintanis et al. (2014); in particular, a distribution function
which is symmetric around zero must yield a real-valued PWCF, see property P5 there, and this will be the basis
of our transformation procedure in Section 3. The fact that for v > 0 the PWCF is no longer a Fourier transform,
however, makes it difficult to prove strong distributional results such as a one-to-one correspondence between
PWCFs and probability distributions. Interestingly though, in the context of location-scale families, which was

the original framework of Meintanis et al. (2014), we may state and prove such a result:

Proposition 1. Assume that F1 and F> belong to some location-scale family, namely

Vz €R, Fy <u> =P <m> =G(x)

o1 g2
where G is an absolutely continuous distribution function and pi, 2 € R, 01,02 > 0. Then, for any v > 0, F

and F» yield the same PWCF if and only if F1 = F>.

Proof of Proposition 1. Let ¢,,, be the PWCF related to F, ,(x) := G(ox + p). Since

oualtn) = [ T B (@)1 = Fpo (@)1 dE, o (x),

— 00

we get by the change of variables z = oy + u:

Puo(t;7) = /jo [G(y)(1 — Gy aG (y) = ™o 1 (at;7/0).

Assume now that Fy and F5 yield the same PWCF, with o1 # 02. Then

itpy

Mo (o1t;v/o1) = €2 g0 (02t v/02), t ER, (2.2)
which up to reparametrization is equivalent to

001 (T;T) = ™o (2T;T/%), T € R,

for some M € R, ¥ # 1 and I" > 0. Without loss of generality, we assume in what follows that ¥ > 1; in this

case, a straightforward proof by induction shows that for any positive integer m:

lpo1 (T5 1) = [o, (B T5T/5™)], T € R.



Observe now that ¢o,1(0; ) =1 and for any T > 0,
o1 (E"TiT/E™) = / [Gy)(1 = Gy DY g (y)dy

- %/j" [G(z/T)(1 — G(z/T) " g(z/T)e™ " *dz

where g is the probability density function related to G. The right-hand side is, up to a constant, the Fourier

transform of the integrable function
20 [G(z/T)(1 = G(z/T)]" M g(2/T),

evaluated at the point X™. Since ¥™ — oo, the Riemann-Lebesgue lemma states that this expression must

converge to 0 as m — co. As a conclusion,
©0,1(0;T) =1 and ¢o,1(T;T) =0, T > 0.

This is a contradiction since 7'+ o,1(T;T") is continuous, see property P7 in Meintanis et al. (2014). Hence

o1 = 02, and thus et = eth2 for all t € R by (2.2), which entails g1 = p2. The proof is complete. O

Remark 1. The location—scale context may actually be dropped under additional moment hypotheses, such
as the existence of the moment-generating function of Fi and F> in a neighborhood of 0, by using analytic
continuation. In any case, if the PWCF is unique, it can be used to assess symmetry around zero: It is indeed
clear that for any ¢ and ~, the PWCF of —X is equal to o(—t;7), and that ¢(—t;v) = (t;v), where Z denotes
the complex conjugate of z. Now if the PWCF of X is real-valued, this entails ¢(—t;v) = ¢(¢;) and thus X

and —X have the same PWCF, whence the fact that the distribution function of X is symmetric around zero.

While Meintanis et al. (2014) estimated the PWCF in a parametric way, it is interesting to consider the case
where F' is completely unknown. In this context, it is a natural idea to define an estimator of the PWCEF in an

entirely nonparametric way. To this end notice that the PWCEF in (2.1) may be written as

1
plti) = [ fo1 =), (23)
0
where Q(x) = inf{t € R|F(¢t) > x} denotes the quantile function of X.

In view of (2.3) we suggest the following nonparametric estimator of the PWCF:
1 .
Bulti) = [ lal1 = o) e, (2.4)
0

with @n(x) denoting the empirical quantile function. We shall call @, (¢;) the probability weighted empirical
characteristic function (PWECF), and for the purpose of estimation we will use

k—1 k

Vk € {l,..,n}, Vx € {T, ﬁ) , Qn(x) = Xiin,

where X1, < --- < X, denote the order statistics corresponding to independent copies Xi,..., X, of the

random variable X.

3 L2-type procedures for symmetry transformation

The problem we shall consider is to estimate the parameters of a given transformation which, if applied on

the original nonsymmetrically distributed observations Xi,...,X,, yields transformed observations that are



approximately symmetrically distributed with location zero. To this end, write ¥ = (§,\) € © C R x A for the
transformation parameter—vector, where ¢ denotes location and A denotes the shape parameter which is assumed
to lie in a subset A of the real line. For ¥ = (§,\) € O, we let Qz(; ) be the quantile function of the transformed

random variable Z () = ¢(X;\) — §, where ¢ is a specific transformation family, and we define

S(tiyid) = / (1 — 2)]" sin(tQz (a; 9))do

the imaginary part of the PWCF of Z(). It is thus a consequence of Remark 1 that if the transformed ran-

dom variable Z has a symmetric distribution around zero then S(¢;7v;¢) = 0 for all ¢ € R, or equivalently
S 82ty 9) = 0.

This observation is the basic idea we need to build our estimator: we introduce Zx(9) = ¥(Xi; ) — 6§, we let

Qz(x;9) be the empirical quantile function related to Z1 (), ..., Zn(9) and we define
n(t;y; 9 / [z(1 ]“" |sm(th(x 9))dx,

the imaginary part of the PWECF of Z1 (), ..., Zn(9). Then 8, (t;~; 9) is the empirical counterpart of S(t;y;9).
We suggest to estimate the true value Yo = (do, Ao) (see Section 4 for a discussion of the uniqueness of this

parameter) by ﬁn, where

O = arg min An (v;9), with Ay( / S t;y; 9 (3.1)
9O

Remark 2. The PWCF (t; ) and PWECF $,(t;7) of a random variable X are such that |o(t;~)| < (1/4)"!*
and |@n (t;7)] < (1/4) for every (t,7) € R x RT. As a consequence, for any 9, the integral A, () is positive
and finite.

Remark 3. Notice that while we write @n, the estimator implicitly depends on the value of v and therefore we

have essentially a family of estimators {571 (7), 0 < v < oo} indexed by ~.

Remark 4. Possible choices for the transformation family 1 are the Box-Cox transformation (1964), a family
introduced by Burbidge et al. (1988) as well as the recently introduced method of Yeo and Johnson (2000). Note
that while the popular Box-Cox transformation,

2 —1

if A#£0,
Y(z;A) =
log if A =0,

applies only to positive random variables (if A is not a nonzero integer), its modifications suggested by Manly

(1976), John and Draper (1980) and Bickel and Doksum (1981) were designed to allow negative values as well.

A favorable feature of the specific definition of the nonparametric PWECF in (2.4) is that it leads to a criterion
n (3.1) which is convenient from the computational point of view. To see this notice that from (2.4) it is

straightforward to compute the imaginary part of the PWECF of Z;(¥),..., Zn () as

k/n

Sp(t;vy;9) = ka,n(t;’y) Sin(tZg:n (9)) with ve,(t;y) = / [z(1 — z)]""da.
k=1 (k=1)/n

Then the criterion statistic in (3.1) follows by direct calculation as

n

Anlr9) = 5 3 (Lul9) — L))

Jyk=1

where 1}, (v;0) := 1(j, k;%; Zjin(0) — Zien(9)) and I}y (;9) = 1(§, k3 %; Zjin (V) + Zin (9)) with

(G, ki) = / " w5ty 0w (t57) cos(ta)dt.

—o0



4 Strong consistency of the estimator
Here, we assume that v > 0 and that the following hold:

(A1) The support D of the distribution of X is an open interval and F is continuous and strictly increasing
on D.

(A2) The transformation family 4 is such that (z, \) — 1 (z; A) is continuous on D X A.
(A3) For all A € A, = +— 1(x; A) is strictly increasing.

Assumption (A2) is also used in Yeo and Johnson (2001), while (As) means that the family of transformations
preserves ordering: if two observations X; and Xs are such that X; < X3, then the transformed observations
P(X1;A) and 9 (X2; A) are such that (X1;A) < ¥(X2; A). In particular, in this setting, it is straightforward to
show that

Qz(x:9) = ¥(Q(2);3) — & and Qz(2;9) = ¥(Q(x):A) — 4. (4.1)
Under these assumptions, we may state a strong consistency result for our estimator:

Theorem 1. Assume that (A1), (A2) and (As) hold. Let © be a compact subset of R* contained in R x A. If,

over O, there exists a unique global minimum 9o of the function
9 — /Oo S?(t;;0)dt
then '3,1 — Yo almost surely.
Proof of Theorem 1. By Lemma 2 in the Appendix,
1.(0) = [~ Sitoyie— 1) = [ S0
almost surely, uniformly in ¢ € ©. Recall that

S(t;y;ﬂ):/g [2(1 — 2)]"" sin(tQz (x;9))da.

Because for any x the function 9 — Qz(x;9) is continuous and the integrand in S(¢;+;¥) is dominated by the
constant 1, the dominated convergence theorem entails that for any ¢, the function ¢ — S(¢;7; ) is continuous.
Furthermore, since for any 9, |S(t;v;9)| < (1/4)""! by Remark 2, it is again a corollary of the dominated

convergence theorem that the function H is continuous as well. Applying Lemma 3 concludes the proof. (]

The existence of a global minimum of the function ¥ — [*_S?(t;~;9)dt is for instance guaranteed if there exists

Yo such that the distribution of Z(vo) is symmetric around 0, in which case S(t;~y; o) = 0 for each ¢ and therefore
VY € O, / S?(t;y;9)dt > 0 = / S?(t;y; 00)dt.

The uniqueness of one such ¥ is a more challenging problem. The following proposition is a step towards solving

this question for a large class of transformations, including those mentioned in Remark 4.

Proposition 2. Assume that (A1) holds and that X has a positive median. Let 1 be a family of transformations,
satisfying (Az2) and (As), such that
A
-1
Vx>0, VA >0, ¢¥(z;\) = %
where f is a positive, continuous and strictly increasing function on (0, 00). If there ezists a pair (5, \) € Rx (0, co)

such that ¥(X; X) — 0 is symmetrically distributed around zero, then (9, \) is the unique such pasir.



Proof of Proposition 2. Since (A1) holds and X has a positive median, we have Q(x) > 0 for all z in an open
neighborhood U of 1/2. The monotonicity of f then yields Qz(z;9¥) = ¢¥(Q(z); \) — ¢ for all € U. In particular,
the median of Z(«9), which is symmetrically distributed around zero, has to be 0 and thus 0 = [foQ(1/2)]* —c(¢9),
where ¢(9) = 1+ d\. In particular, c(¥) is positive and f o Q(1/2) = [¢(9)]"/*. Besides, it must hold that
Qz(1/2 —s;9) = —Qz(1/2 + s;9) for any s € (0,1/2) which entails for all € > 0 small enough:

[foQ/2—e)* -1 -  [[foQ(/2+¢)] -1
A _5*_[ A _5]

or equivalently:
A\ /A
FoQ(/2—e) = (2e0) ~ [foQU/2+2)) . (4.2)
Assume now that there exist two pairs ¥1 = (d1, A1) and J2 = (2, A2) such that Z(¥1) and Z(J2) are symmetri-

cally distributed around zero. Note that it is enough to show that A1 = A2. Using (4.2), we obtain for all ¢ > 0

sufficiently small:

1/X2

(2e092) ~ 17 0 QU2+ )M ) ™ = (2e(92) - [ 0 Q12 +2))2)

Since f o Q(1/2) = [¢(91)]** = [¢(92)]"/*2 and the function f o Q is continuous and strictly increasing, this

entails for all ~ > 0 small enough:

A\ /A Ao\ 1/ A2
<2c(§1)~— [[e(@)]/ + 1] 1) - <2C(§2)<- [[e(2)/ + 1] 2) .
Noting that [c(91)]*/* = [c(92)]*/*2 > 0, we get that for all A > 0 small enough:
1/ /A
(2—u+mh) 1:(2_u+hrﬂ ’

Taking logarithms and differentiating twice, we obtain for ~ > 0 sufficiently small:

I+ 2200 =)+ (1+h)M]  Q+Rr)M272[2(02 — 1) + (1 + h)*2]

2- (@ +m)M]? ; 2 — (1 +h)A2]?

Letting h | 0 entails A1 = A2, which completes the proof. O

We note that this result requires the median of X to be positive. For some families such as the Bickel-Doksum

family (1981),

\ 1 ifx>0,
Vz €R, VA >0, (a3 \) = %, with sgn(z) =< —1 ifz <0, (4.3)
0 ifz=0,

this assumption may actually be dropped, as shown by Corollary 1 below. This particular family of transforma-
tions, which coincides with the Box-Cox family of transformations for positive values of = and A, is the one we

shall consider in our simulation study.

Corollary 1. Let ¢ be the Bickel-Doksum family of transformations. Assume that (A1) holds and that the
distribution of X is not symmetric around zero. If there ezists a pair (6,\) € R x (0,00) such that (X;X) — 0

is symmetrically distributed around zero, then (3, \) is the unique such pair.

Proof of Corollary 1. We first note that for any such pair ¥ = (J,\), then 6 # —1/X. If indeed we had that
§ = —1/), then using (4.3), the random variable sgn(X)|X|* would be symmetric. This would imply, for any
z <0, that

P(X < 2) = Plsgn(X)|X]* < —(~2)*) = P(sgn(X)|X]* > (—2)") = P(X > —2),



Then X would be symmetrically distributed around zero, which is a contradiction. Moreover, we may assume
without loss of generality that the median Q(1/2) of X is nonnegative: if indeed this is not the case then —X
has a nonnegative median and, letting &’ = — (8 +2/)\) # —1/), the random variable

P(=X;2) = 0" = —[(X; ) = g]

is symmetrically distributed around zero. Finally, since (A1) holds and (A2) and (As) are satisfied for the Bickel-
Doksum family, we have Qz(z;9) = ¥(Q(z);A\) — ¢ by (4.1). Since Z(9) is symmetrically distributed around
zero, we must have 0 = Q(1/2)* — (14 6)). Especially, the median Q(1/2) = [¢(19)]*/* of X is positive. Applying

Proposition 2 concludes the proof. O

5 A Monte-Carlo simulation study

5.1 Finite sample performance of the presented technique

In this section, we present the results of a Monte-Carlo study conducted to assess the performance of our method.
In what follows, the transformation family considered is the Bickel-Doksum family (4.3). The following estimators

are compared:
e our estimator (3.1), denoted by M., with v € {1, 2};

e the estimator )

oo 1 n _
' - in(t Zy (9 1t ¢
argmm/ [n g:lsm( k(0))] e

vYeO —o0

which corresponds to using the ECF with an exponential weighting function (see Yeo and Johnson, 2001),

and will be denoted by EECF;

e the Gaussian maximum likelihood estimator (GMLE), assuming that the target symmetric distribution is
Gaussian. While this estimator actually attempts to transform to normality, we include it for comparative
reasons. The shape estimator is X and the location estimator is S(X) where

X = argmax {—g log(gg()\)) 1 Z (d)(Xk’,):) — () +(A-1) Zlong}
k=1

AeA 2= a*(A)

= argmax {—E log(c;g()\)) +(A-1) Zlong}
XEA 2 —

with (\) = %iqb(Xk;A)
k=1

and G2() =+ 3 ((XkA) — S
k=1

To get a grasp of how these estimators behave in practice, we use the following generating algorithm: for a given
n—independent sample Y7, ...,Y, of random copies of a symmetric random variable Y, we pick (known) values

of X and ¢ and we consider the n—independent sample X1, ..., X, such that X, = 7(Y% + d; \) where

T(y; A) = sgn(Ay + 1)[Ay + 1]/

is the inverse of the Bickel-Doksum transformation. With this notation, we thus have (Xx; A) —d = Y3 which are
symmetric random variables and we may apply our various procedures to assess the quality of the estimation of A
and ¢ in each case. In what follows, X is picked in the set {1/4,1/2,3/4}, § = 1 and the symmetric distributions

considered are the following:



e Y = Wexp(hW?/2) with W standard normal, namely Y follows a Tukey(0, h) distribution. The higher is
h, the higher is the kurtosis of Y; when h = 0, Y is standard Gaussian, denoted by N(0, 1);

e Y|V = v is Gaussian centered with variance v, where V' is Gamma distributed with shape parameter k£ > 0

and unit scale. This distribution is denoted by Variance I'(k, 1);

e Y follows a symmetric stable distribution with shape parameter «, location parameter zero and unit scale.

This distribution is denoted by Stable(«, 0, 1).

In each case, the estimation is carried out on 1000 samples of size n = 100 and we compute the mean L' —error
(i.e. the mean absolute deviation) related to A and 6. We display in Tables 1 and 2 the mean L'—error for A

and ¢ as well as the standard deviation of the estimates.

It appears from these tables that our M, estimator performs fairly well in all cases for both values of v. In
particular, it performs better than the EECF method at estimating A, and equally well at estimating J except
when the tail is very heavy as is the case for the Stable(1, 0, 1) distribution. Furthermore, while the GMLE method
appears superior at estimating A when the tail is light or when the distribution is leptokurtic, our technique is
comparable to and sometimes better than this method when A > 1/2 and the tail is heavy (for instance, the
stable distribution) or if the distribution is platykurtic (as is the case for the Tukey(0, 3/4) distribution). Finally,
it can be seen by computing the sum of the mean L'—errors that overall, our technique competes well with the

GMLE method and outperforms the EECF technique.

We conclude this section by highlighting how our technique may be used prior to a statistical analysis of a data set.
The context is the following: We assume that we observe a sample of independent copies (X1, Z1),...,(Xn, Zn)

of a random pair (X, Z) such that for some (X, d):
P(X;AN) —d=mo+miZ+e¢

where 1 is a given family of transformations, mo, m1 € R and (Z,¢) are such that Z and ¢ are two independent
random variables which both possess symmetric around zero distributions. The goal is to estimate the parameters
mo and mi. In the framework of linear regression, one can think of mo as the intercept and mi as the slope,
Z is the regressor and ¢ is the random error. For a nice account of transformations in the context of regression
the reader is referred to Chen et al. (2002). Of course, a first, crucial task is to estimate (A, d) as accurately as

possible so as to recover enough information on the hidden regression setting. Note that
P(X5A) — (0 +mo) =maZ +e

so that without loss of generality, we may assume that the intercept mo is zero. Observe then that the right-hand
side is a symmetric random variable, which makes it possible to implement our method in order to estimate (A, d).

A possible procedure is as follows:

1. estimate (A, J) by a symmetry procedure, such as our PWECF-based technique or the GMLE;

-~

2. if (/):7 ) is the estimate, compute the transformed observations Ve = Y (Xg; X) — S;

3. choose an estimation procedure for the regression parameters (mo,m1), such as ordinary least squares

(OLS) and use the random pairs (Zj, f’k) for the estimation.

In fact, a robust method such as the Theil-Sen estimator (Theil 1950, Sen 1968), may be preferred to the basic
OLS estimator at the final step because nothing is known regarding the moments of €. In this connection, a small
simulation study which we do not report here tends to indicate that the Theil-Sen estimator combined with our

technique works better than the classical GMLE-OLS method under a heavy-tailed error distribution.



6 Real data examples

In this section, we showcase our method on a set of real data. We consider the daily closing values (p:) of
the DAX index from October 1, 2007 to April 1, 2009, and our data is either the daily percentage of return
re,1 = 100(pe/pe—1 — 1) of size n = 378 or the 2-day percentage of return r¢2 = 100(p2¢41/p2t—1 — 1) of size
n = 190. During this period of time, European markets generally followed a downward trend, so that we can

expect these percentages to have a left—-skewed distribution.

We compare the results found with the M; and M2 methods with what we find when using the GMLE method.
In Table 3, we summarize the results, along with the mean, variance, skewness and kurtosis of the transformed
data set (using the Bickel-Doksum family) with the estimated parameters given by each method. Histograms of

the raw and transformed data sets are given on Figures 1-2.

In Table 3, we see that in each case, the absolute value of the skewness of the transformed data set is smaller
than that of the raw data set. Note at this point that while the value of the skewness of the daily DAX data
set is positive and thus seems to indicate a right-skewed distribution, the 2% trimmed skewness is actually
—0.292, which confirms that we have a left-skewed data set. It is also interesting that the transformations yield
transformed data sets having lower kurtosis in all cases. Finally, we mention that although the values of X and
§ are similar for the daily DAX data set, they differ substantially in for the 2-day DAX data set. In the latter
case, the M, method seems to detect a bimodal distribution, whereas the GMLE method points to a unimodal

distribution.

Appendix: auxiliary results and their proofs
The first lemma is a useful result of real analysis:

Lemma 1. Assume that H is a continuous real-valued function on E X E', where E and E' are two subsets of
R. Let K, K’ be compact subsets of R which are contained in E and E’ respectively. Then the family of functions

x> H(z;0\), A € K', is uniformly equicontinuous on K, in the sense that

lim sup sup |H(y;\) — H(z;\)| = 0.
h—0 (ac,A)EKXK" yE‘K
y—x|<h

Proof of Lemma 1. If the statement were false then one could find a sequence (zn,A\n) C K X K’ and a

sequence (yn) C K’ such that |y, — zn| — 0 with
liminf |H (yn; An) — H(zn; An)| > 0.
n— o0

Since K and K’ are compact subsets of R, we may assume, up to extracting a suitable subsequence, that
(Tn, An) = (2%, X\*) € KxK'. In particular, y, — z* as well. By the continuity of H, |H (yn; An)—H (n; \)| — 0,

which is a contradiction. (]
The second lemma is the cornerstone to prove Theorem 1.
Lemma 2. Assume that (A1), (A2) and (A3) hold. If K is a compact subset of R contained in A then

/OO S2(t;y;9)dt — /OO S?(t;v; 0)dt

almost surely, uniformly in ¥ = (5,\) € R x K as n — oo.



Proof of Lemma 2. Since |S,,(t;v;9)| < 1, |S(t;7;9)| < 1 and the imaginary part of a complex number is less
than its modulus, it is clear that for any ¢,

where @z (-;v;9) and $z,,(+;v;¥) are the PWCF and PWECEF related to Z(19). Pick € > 0; Remark 2 thus makes
it possible to choose M > 0 such that for any J:

St 0)dt - St )| d <2 [ [Pt 0)dt — (i )] de

— o0

%) M
/ ﬁ(t;v;ﬁ)dt—sz(tw;ﬁ)’dt < Z+2/ |B2,n (t;v;0)dt — @z (t;y;0)| dt
oo —-M
15 ~
< ;7 TAM sup |Pz,n (t;7; 9)dt — pz(t;v;9)] - (6.1)
—M<t<M

Let ¢’ = ¢/(64M) > 0 and observe that for any ¢:

1 =~ .
/ [e(1 — z)" {enczz,mw) _ ezt@z(z;ﬁ)} du
0

1820 (t;7;9) — oz (L7 0)] =

1-¢’
€
< _ vt
S M +/E/ [z(1 —z)]
€

(itQzn (w39) _ eit@z(acu?)’ ' (6.2)

(i1Qz,n () _ itQz (x:9) ’ da

< + sup
16M  cp<ioo

Moreover

Qz,n(z:9) it
it/ e'"*dz

<t ‘@Z,n(wsﬁ) - Qz(xn?)‘ . (6.3)
Qz (x:9)

i1Qzn (@) _ 6it@z<z;0>‘ —

Collecting (6.1), (6.2) and (6.3) entails

oo
sup / é\i(t;y;ﬁ)dt—sz(t;fy;ﬁ)‘dtg S 4am? sup
YERXK J —o0 2 e/ <z<1—¢’
DERX K

Qzn(w:9) = Qz(x:9)|.

We thus get by using (4.1):

Qzn(w:?) — Qa(esd)| < sup

o~ ‘

sup P(Qn(z); A) — (Q(z); )|
e/ <x<1—¢’ e/ <x<1—¢’
YERXK AEK

It is then enough to show that the supremum on the right-hand side of this inequality converges to 0 almost
surely. To this end, we note that since the function F' is continuous and strictly increasing on D, so is @ on (0, 1).
Especially, Q maps the interval [¢',1 —&’] onto a compact interval I C D. Moreover, since with probability 1, @n
is a nondecreasing sequence of functions which converges pointwise to the continuous function @ on (0,1), by a
well-known result due to Polya (see e.g. Problem 127 p.270 in Poélya and Szegd, 1998) the convergence must be

uniform on compact intervals contained in (0, 1); in particular

sup |@n(x) — Q(x)| — 0 almost surely,
e/ <zx<l-—¢’

which entails that there is a compact interval J C D such that with probability 1, we have Qn(z) € J for any
x € [¢',1 —¢'] if n is large enough. As a consequence, for any positive integer N, we have with probability 1
sup  |[Y(Qn(x);A) —(Q(z); A)| < sup sup  [1h(y; A) — (25 A)|
e/ <z<1—g’ (z,\)eJ XK yeJ
NEK ly—z|<1/N
for n large enough. By Lemma 1, the right-hand side can be made arbitrarily small as N — oo, which concludes

the proof. O

The last lemma is a classical result (see Lemma 2 in Yeo and Johnson, 2001) which essentially states that under
some conditions, if a sequence of random functions (H,) converges to a (nonrandom) function H which has a

unique minimum z*, then the sequence of the minima of the (H,) converges to x*.
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Lemma 3. Assume that (Hy) is a sequence of random functions on a compact metric space E such that
e (Hy) converges uniformly almost surely to a continuous function H on E;

e H has a unique global minimum z*.

Then if (xn) is any sequence such that x, = argmin, ., Hn(x), it holds that x, — 2™ almost surely.

Proof of Lemma 3. If the result were false, we could find a set A with positive probability such that on A,

(zn) fails to converge to =* but (H,) converges uniformly almost surely to H on E. Choose w € A and define

Yn = Tn(w), hn = Hn(;;w). The compactness of E would entail that one could find a subsequence of (y,) which

converges to zo # z*. Since hyn(yn) < hn(z™) and

1hn(yn) — H(zo)| < [hn(yn) — H(yn)| + [H(yn) — H(zo)|

we would obtain in the limit H(zo) < H(z™), which is a contradiction. O
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Figure 1: DAX daily data set, top left: original data, top right: data transformed with the parameters
obtained by the M; technique, bottom left: data transformed with the parameters obtained by the M,
technique, bottom right: data transformed with the parameters obtained by the GMLE technique.
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Case A\ =1/4 My Moy EECF GMLE
N(0,1) 0.112 (0.141) 0.104 (0.131) 0.116 (0.145) | 0.0774 (0.0972)
Tukey(0, 1/4) 0.107 (0.136) 0.0984 (0.138) 0.147 (0.172) 0.0904 (0.112)
Tukey(0,1/2) 0.126 (0.182) 0.114 (0.175) 0.147 (0.173) | 0.0664 (0.0827)
Tukey(0, 3/4) 0.144 (0.199) 0.135 (0.195) 0.150 (0.183) | 0.0853 (0.0635)
Variance I'(1,1) 0.124 (0.151) 0.116 (0.143) 0.151 (0.181) 0.106 (0.128)
Variance I'(2,1) | 0.0917 (0.115) 0.0813 (0.102) 0.119 (0.144) | 0.0630 (0.0792)
Variance I'(3,1) | 0.0722 (0.0912) | 0.0639 (0.0818) | 0.0962 (0.124) | 0.0484 (0.0611)
Variance I'(4,1) | 0.0678 (0.0884) | 0.0562 (0.0737) | 0.0876 (0.114) | 0.0390 (0.0504)
Stable(7/4,0,1) 0.132 (0.185) 0.125 (0.176) 0.142 (0.173) 0.131 (0.156)
Stable(3/2,0,1) 0.141 (0.191) 0.141 (0.208) 0.161 (0.194) 0.116 (0.142)
Stable(5/4,0,1) 0.165 (0.229) 0.189 (0.273) 0.155 (0.174) 0.101 (0.120)
Stable(1,0,1) 0.213 (0.156) 0.207 (0.203) 0.196 (0.0918) 0.110 (0.111)

Case A =1/2 My My EECF GMLE
N(0,1) 0.133 (0.169) 0.121 (0.156) 0.140 (0.179) 0.0835 (0.105)
Tukey(0,1/4) 0.118 (0.150) 0.109 (0.139) 0.196 (0.229) 0.0962 (0.122)
Tukey(0,1/2) 0.129 (0.167) 0.123 (0.162) 0.223 (0.243) 0.122 (0.109)
Tukey(0, 3/4) 0.146 (0.188) 0.147 (0.194) 0.212 (0.240) 0.191 (0.0891)
Variance I'(1, 1) 0.147 (0.187) 0.138 (0.176) 0.207 (0.245) 0.126 (0.156)
Variance I'(2,1) | 0.0994 (0.127) 0.0886 (0.114) 0.151 (0.191) | 0.0711 (0.0916)
Variance I'(3,1) | 0.0818 (0.110) | 0.0689 (0.0874) | 0.120 (0.162) | 0.0517 (0.0640)
Variance I'(4,1) | 0.0794 (0.116) | 0.0601 (0.0776) | 0.0974 (0.139) | 0.0418 (0.0531)
Stable(7/4,0,1) 0.138 (0.175) 0.131 (0.163) 0.174 (0.212) 0.147 (0.184)
Stable(3/2,0,1) 0.155 (0.198) 0.150 (0.193) 0.226 (0.254) 0.144 (0.171)
Stable(5/4,0,1) 0.171 (0.213) 0.173 (0.223) 0.245 (0.265) 0.160 (0.147)
Stable(1,0,1) 0.222 (0.258) 0.231 (0.291) 0.420 (0.128) 0.201 (0.160)

Case A =3/4 M, My EECF GMLE
N(0,1) 0.153 (0.194) | 0.138 (0.175) | 0.169 (0.220) | 0.0940 (0.119)
Tukey(0,1/4) | 0.132 (0.169) | 0.128 (0.162) | 0.235 (0.292) | 0.106 (0.133)
Tukey(0,1/2) | 0.151 (0.189) | 0.148 (0.186) | 0.239 (0.287) | 0.192 (0.132)
Tukey(0,3/4) | 0.155 (0.197) | 0.155 (0.192) | 0.239 (0.278) | 0.308 (0.124)
Variance T'(1,1) | 0.167 (0.215) | 0.155 (0.199) | 0.243 (0.304) | 0.136 (0.165)
Variance T'(2,1) | 0.108 (0.140) | 0.0987 (0.129) | 0.162 (0.224) | 0.0783 (0.0963)
Variance T'(3,1) | 0.0898 (0.115) | 0.0813 (0.104) | 0.125 (0.185) | 0.0630 (0.0791)
Variance T'(4,1) | 0.0824 (0.103) | 0.0748 (0.0944) | 0.101 (0.143) | 0.0560 (0.0709)
Stable(7/4,0,1) | 0.156 (0.201) | 0.154 (0.195) | 0.212 (0.263) | 0.156 (0.195)
Stable(3/2,0,1) | 0.176 (0.222) | 0.179 (0.224) | 0.269 (0.301) | 0.193 (0.210)
Stable(5/4,0,1) | 0.194 (0.242) | 0.191 (0.238) | 0.307 (0.322) | 0.245 (0.180)
Stable(1,0,1) | 0.282 (0.325) | 0.273 (0.319) | 0.545 (0.213) | 0.307 (0.204)

Table 1: Mean L'—errors for the parameter \; in each case, § = 1. Between brackets: sample standard

deviation of estimator.
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Case A\=1/4 My Mo EECF GMLE
N(0,1) 0.124 (0.156) 0.120 (0.151) 0.119 (0.149) 0.105 (0.131)
Tukey (0, 1/4) 0.0987 (0.129) | 0.0995 (0.137) | 0.0972 (0.126) 0.119 (0.150)
Tukey(0,1/2) 0.104 (0.139) 0.109 (0.151) 0.0861 (0.112) 0.215 (0.302)
Tukey(0, 3/4) 0.105 (0.138) 0.123 (0.162) 0.0873 (0.113) 0.507 (0.567)
Variance I'(1,1) | 0.0807 (0.102) | 0.0792 (0.100) | 0.0848 (0.108) | 0.0881 (0.112)
Variance I'(2,1) | 0.120 (0.153) 0.116 (0.148) 0.117 (0.150) 0.115 (0.144)
Variance I'(3,1) | 0.150 (0.191) 0.144 (0.181) 0.146 (0.185) 0.142 (0.181)
Variance I'(4,1) | 0.173 (0.220) 0.167 (0.213) 0.173 (0.218) 0.169 (0.212)
Stable(7/4,0,1) | 0.117 (0.162) 0.113 (0.162) 0.111 (0.141) 0.124 (0.157)
Stable(3/2,0,1) | 0.112 (0.151) 0.116 (0.169) 0.102 (0.134) 0.148 (0.209)
Stable(5/4,0,1) | 0.101 (0.152) 0.133 (0.208) | 0.0655 (0.0858) | 0.228 (0.339)
Stable(1,0,1) 0.140 (0.0979) | 0.175 (0.125) 0.133 (0.0645) 0.336 (0.449)
Case A =1/2 My Mo EECF GMLE
N(0,1) 0.125 (0.160) | 0.122 (0.156) | 0.121 (0.153) | 0.105 (0.129)
Tukey(0,1/4) | 0.104 (0.130) | 0.103 (0.128) | 0.102 (0.125) | 0.125 (0.161)
Tukey(0,1/2) | 0.103 (0.133) | 0.106 (0.138) | 0.0838 (0.102) | 0.258 (0.286)
Tukey(0,3/4) | 0.105 (0.135) | 0.120 (0.161) | 0.0778 (0.0976) | 0.530 (0.438)
Variance T'(1,1) | 0.0887 (0.113) | 0.0871 (0.110) | 0.100 (0.122) | 0.0996 (0.122)
Variance T'(2,1) | 0.117 (0.0916) | 0.116 (0.149) | 0.119 (0.152) | 0.119 (0.150)
Variance '(3,1) | 0.145 (0.181) | 0.147 (0.184) | 0.143 (0.180) | 0.147 (0.183)
Variance I'(4,1) | 0.159 (0.201) | 0.169 (0.215) | 0.165 (0.213) | 0.166 (0.211)
Stable(7/4,0,1) | 0.110 (0.141) | 0.107 (0.136) | 0.112 (0.142) | 0.131 (0.168)
Stable(3/2,0,1) | 0.105 (0.138) | 0.104 (0.142) | 0.107 (0.132) | 0.153 (0.196)
Stable(5/4,0,1) | 0.0880 (0.114) | 0.0956 (0.136) | 0.0854 (0.101) | 0.251 (0.293)
Stable(1,0,1) | 0.200 (0.152) | 0.264 (0.200) | 0.0415 (0.0656) | 0.266 (0.353)
Case A = 3/4 M, M,y EECF GMLE
N(0,1) 0.130 (0.168) | 0.125 (0.161) | 0.126 (0.161) | 0.102 (0.129)
Tukey(0,1/4) | 0.0996 (0.129) | 0.0995 (0.127) | 0.104 (0.128) | 0.127 (0.162)
Tukey(0,1/2) | 0.104 (0.132) | 0.107 (0.136) | 0.0931 (0.115) | 0.290 (0.271)
Tukey(0,3/4) | 0.103 (0.131) | 0.111 (0.143) | 0.0862 (0.107) | 0.561 (0.389)
Variance I'(1,1) | 0.0917 (0.115) | 0.0885 (0.111) | 0.108 (0.130) | 0.101 (0.120)
Variance I'(2,1) | 0.119 (0.152) 0.116 (0.147) 0.118 (0.148) 0.119 (0.146)
Variance I'(3,1) | 0.150 (0.188) | 0.147 (0.184) | 0.143 (0.178) | 0.148 (0.183)
Variance T'(4,1) | 0.184 (0.232) | 0.182 (0.229) | 0.180 (0.228) | 0.178 (0.222)
Stable(7/4,0,1) | 0.119 (0.155) | 0.114 (0.146) | 0.121 (0.150) | 0.133 (0.170)
Stable(3/2,0,1) | 0.106 (0.137) | 0.104 (0.133) | 0.110 (0.130) | 0.183 (0.221)
Stable(5/4,0,1) | 0.0946 (0.119) | 0.0971 (0.123) | 0.103 (0.113) | 0.272 (0.250)
Stable(1,0,1) | 0.201 (0.177) | 0.215 (0.181) | 0.0690 (0.0926) | 0.233 (0.297)

deviation of estimator.
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Table 2: Mean L' —errors for the parameter 6; in each case, § = 1. Between brackets: sample standard




h) 5 Mean Std. deviation | Skewness | Kurtosis
Raw data 1 -1 —0.148 2.208 0.641 8.702
M, 0.629 | —1.756 | 0.00568 2.173 0.152 3.244
Daily DAX data set
My 0.611 | —1.808 | 0.00883 2.196 0.142 3.086
GMLE 0.722 | —1.541 0 2.101 0.221 4.193
Raw data 1 -1 —0.300 2.902 —0.173 4.580
M, 0.460 | —2.352 | —0.0321 3.025 —0.0227 1.725
2-day DAX data set
Mo 0.440 | —2.462 | —0.0164 3.092 —0.0177 1.669
GMLE 0.805 | —1.495 0 2.681 —0.126 3.244

Table 3: Estimated values of A and ¢ for our real data sets
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Figure 2: DAX 2-day data set, top left: original data, top right: data transformed with the parameters
obtained by the M; technique, bottom left: data transformed with the parameters obtained by the M,
technique, bottom right: data transformed with the parameters obtained by the GMLE technique.
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