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Abstract. We suggest a nonparametric version of the probability weighted empirical characteristic function
(PWECF) introduced by Meintanis et al. (2014) and use this PWECF in order to estimate the parameters of
arbitrary transformations to symmetry. The almost sure consistency of the resulting estimators is shown. Results
with real and simulated data are also included.
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1 Introduction

Transformations are applied on given data sets in order to facilitate statistical inference. These transformations
are often used so as to induce finite moments and light tails and/or symmetry. This is important as it is common
knowledge that certain statistical procedures are applicable or perform well only under such assumptions. For
instance it is well known that the naive bootstrap for the sample mean fails with an infinite—variance underlying
distribution possessing asymmetric tails; see Abadir and Cornea (2014) for a recent account. Apart from that,
symmetry has definite advantages for identification and consistency of location estimators with i.i.d. data, as
well as in the context of regression where Bickel (1982) and Newey (1988) study the existence of adaptive and
efficient regression estimators under symmetric errors. The reader is referred to Chapter 6 of Horowitz (2009)
for a nice review of transformations in regression and other related models. Lately the symmetry assumption
has also been invoked for the consistency and efficiency of the quasi maximum likelihood estimator (QMLE) in
GARCH models; see Gonzalez—Rivera and Drost (1999) and Newey and Steigerwald (1997). Finally, we mention
that power transformations have recently been used by Savchuk and Schick (2013) in order to improve the rate
of convergence of the classical Parzen-Rosenblatt (Parzen, 1962; Rosenblatt, 1956) estimator of the probability

density function.

The purpose of this paper is to suggest a procedure by means of which a sample from an arbitrary distribution
is reduced to a sample from a symmetric distribution. To this end we employ the notion of the probability
weighted empirical characteristic function (PWECF), introduced recently in Meintanis et al. (2014). The idea
of the PWECF draws from earlier works in which probability weighted moments are employed in the context of

estimation of parameters; see for instance, Diebolt et al. (2004), Diebolt et al. (2007), Diebolt et al. (2008), Furrer



and Naveau (2007), and Caeiro and Ivette Gomes (2011). However, the PWECF used in Meintanis et al. (2014)
is defined in an entirely parametric context and it is therefore not appropriate when pursuing nonparametric
inference. In what follows we suggest a nonparametric version of the PWECF and use this quantity in order
to estimate the parameters of a transformation to symmetry. The remainder of this work is outlined as follows.
In Section 2 the nonparametric PWECF is introduced and we give some of its properties. In Section 3 we
introduce the new estimation procedures which is based on an appropriate functional of this PWECF. The
strong consistency of our estimator is given in Section 4, while in Section 5 the finite—sample properties of the
method are investigated by means of a simulation study. Three real data examples are included in Section 6.

Auxiliary results and their proofs are deferred to the Appendix.

2 The nonparametric PWECF

Let X denote an arbitrary random variable with an absolutely continuous distribution function F(z) = P(X < z).

For v > 0, the probability weighted characteristic function (PWCF) of X is defined by
p(t;y) =E [W(X;’yt)eitX} = / W (z;yt)e " dF (z), t € R, (2.1)

where W (z; s) := [F(2)(1— F(z))]'*l. It is well-known that the ordinary characteristic function (CF) of X, which
results from (2.1) by setting v = 0, is real if and only if F' is symmetric around zero. Interestingly the PWCF is

also related to symmetry via the following proposition:

Proposition 1. If F is symmetric around zero, then o(t;~y) is real for each (t,v) € R x RT. Conversely, if for

some v € RT the function ¢(t;7y) is real for each t, then F is symmetric around zero.

Proof of Proposition 1. The first part of this result is a consequence of the fact that o(—¢;v) = @(t;y) where
Z denotes the conjugate of a complex number z: see Meintanis et al. (2014). To prove the converse part, we note

that

T

go(t;y):[ e a1 (), with F[s](x):/ [F(u)(l—F(u))]de(u):/o [v(1 —v)]*dv.

—o0
Note that for any s > 0, the function F® has a finite positive limit F[S](oo) at infinity, and the function

G = FI/Fll(00) is a cumulative distribution function of a random variable, say Y. Consequently, we have

for all t € R:
o(t;7) € R= o(t;7) = @(—t;7) =>/ e dG (z) =/ e "G (z)

— o0

and the random variable Y has an absolutely continuous symmetric distribution around zero. In particular,

GVt (z) =1 — GDM(—2) for any =, which entails:
F(x) 1 1-F(—x)
vz € R, / [w(1 —v))Mdo = / [w(1 — o) Mdo = / (1 — )] dv.
0 F(—a) 0

Since the function y — [[v(1 — v)]"!"ldv is strictly increasing, we obtain F(z) = 1 — F(—x) for all z, which

means that F' is symmetric around zero. |

While Meintanis et al. (2014) estimated the PWCF in a parametric way, it would be interesting to consider the
case where I is completely unknown. In this context, it is a natural idea to define an estimator of the PWCEF in

an entirely nonparametric way. To this end notice that the PWCEF in (2.1) may be written as

p(tiy) = / (1 — )] g (2.2)



where Q(x) = inf{t € R|F(t) > z} denotes the quantile function of X.

In view of (2.2) we suggest the following nonparametric estimator of the PWCF:
1 .
Fulti) = [ fal1 = o) s, (23)
0

with Qn(z) denoting the empirical quantile function. We shall call $,(t;7) the probability weighted empirical

characteristic function (PWECF), and for the purpose of estimation we will use
k— 1 k ~
Vk € {1,...,7’1}, Va € |: n ) Qn( ) Xk::'ru

where Xi., < --- < Xy, denote the order statistics corresponding to independent copies Xi,..., X, of the

random variable X.

3 L2-type procedures for symmetry transformation

The problem which we shall consider is to estimate the parameters of a given transformation which, if applied
on the original nonsymmetrically distributed observations X, ..., X, yields transformed observations that are
approximately symmetrically distributed with location zero. To this end, write ¥ = (§,\) € © C R x A for the
transformation parameter—vector, where § denotes location and A denotes the shape parameter which is assumed
to lie in a subset A of the real line. For ¥ = (J,\) € O, we let Qz(+;¥) be the quantile function of the transformed

random variable Z(¥) = ¢(X; \) — J, where 1 is a specific transformation family, and we define

S(t;v;9 / [z(1 ]“’M sin(tQz(x;9))dz,

the imaginary part of the PWCEF of Z(¢). It is thus a consequence of Proposition 1 that the transformed random
variable Z has a symmetric distribution around zero if and only if S(¢;v;9) = 0 for all ¢ € R, or equivalently if
S Sty 0) = 0.

This observation is the basic idea we need to build our estimator: we introduce Zx (%) = ¥(Xk; A) — 6§, we let

Qz(x;9) be the empirical quantile function related to Z1(9),.. ., Zn(9) and we define
(t5:9) = [ ot = )" sntQ s 9))

the imaginary part of the PWECF of Z;(9), ..., Zn(¥). Then S, (t;v; ) is the empirical counterpart of S(¢;v; ).
We suggest to estimate ¥ = (d, ) by O, where

Oy = argmin Ay (y;9), with Ap(y;9 / S (t;y; 9 (3.1)
V€O

Remark 1. The PWCF (t;) and PWECF $,(t;7) of a random variable X are such that |o(t;)| < (1/4)"!"!
and |Bn(t;7)] < (1/4)"! for every (t,7) € R x R*. As a consequence, for any 9, the integral A, (0) is positive

and finite.

Remark 2. Notice that while we write 1§n, the estimator implicitly depends on the value of v and therefore we

have essentially a family of estimators {1§n(fy)7 0 < v < oo} indexed by 7.

Remark 3. Possible choices for the transformation family 1 are the Box-Cox transformation (1964), a family

introduced by Burbidge et al. (1988) as well as the recently introduced method of Yeo and Johnson (2000). Note



that while the popular Box-Cox transformation,

2 —1

if A#0,
Y(x; ) =
log x if A=0,

applies only to positive random variables (if A is not a nonzero integer), its modifications suggested by Manly

(1976), John and Draper (1980) and Bickel and Doksum (1981) were designed to allow negative values as well.

A favorable feature of the specific definition of the nonparametric PWECEF in (2.3) is that it leads to a criterion
in (3.1) which is convenient from the computational point of view. To see this notice that from (2.3) it is
straightforward to compute the imaginary part of the PWECF of Z,(¥),..., Zx () as

k/n

Sn(t;7) =D vkn(t;y) sin(tZxn (9)) with vk n(t;7) :/ (z(1 — z))""dz.

k=1 (k=1)/n

Then the criterion statistic in (3.1) follows by direct calculation as

n

An(y;9) =% > (L) = I (v )

Jyk=1

where 15, (v;0) := 1(j, k; %; Zjin(0) = Zien(9)) and I}y (;9) = 1(§, k3 %; Zjin(9) + Zin (9)) with

1(j,k;ys ) = /Oo v; (t;7)vk(t; ) cos(tx)dt.

We close this section by noting that the new procedures are in the same spirit as the symmetry procedures
suggested by Quiroz et al. (1996) and Yeo and Johnson (2001). However while in the aforementioned works the
ordinary ECF is employed, we expect that the introduction of the PWECF will yield more efficient estimators,
particularly by proper choice of the tuning parameters involved. These expectations will be put to test with

simulated as well as with real data.

4 Strong consistency of the estimator

Here, we assume that v > 0 and that the following hold:

(A1) The support D of the distribution of X contains a nonempty open interval and F' is continuous and

strictly increasing on D.

(A2) The transformation family ¢ is such that (z,A) — (z;\) is continuous on E x A, where E is the
support of F.

(A3) For all A € A, z+— 1(x; A) is strictly increasing.

Assumption (A2) is also used in Yeo and Johnson (2001), while (A3) means that the family of transformations
preserves ordering: if two observations X; and Xs are such that X; < X3, then the transformed observations
¥(X1;A) and 9(X2; A) are such that ¥(X1;A) < ¥(X2; A). In particular, in this setting, it is straightforward to
show that

Qz(x;¥) = ¥(Q(x);\) — 6 and Qz(z;9) = ¥(Q(x); \) — 4. (4.1)

Under these assumptions, we may state a strong consistency result for our estimator:



Theorem 1. Assume that (A1), (A2) and (A3) hold. Let © be a compact subset of R? contained in R x A. If,

over O, there exists a unique global minimum Yo of the function
9 — /oo S?(t;;0)dt
then 1§n — Yo almost surely.
Proof of Theorem 1. By Lemma 2,
H,(9) := /C><> S2(t;y;0)dt — H(V) := /00 S2(t;;0)dt
almost surely, uniformly in ¢ € ©. Recall that
St = [ el = ) sin(1Qz(r:0))de
0

Because for any x the function 9 — Qz(x;9) is continuous and the integrand in S(¢;+;¥) is dominated by the
constant 1, the dominated convergence theorem entails that for any ¢, the function ¥ — S(¢;7;9) is continuous.
Furthermore, since for any ¥, |S(t;7;9)] < (1/4)""*! by Remark 1, it is again a corollary of the dominated

convergence theorem that the function H is continuous as well. Applying Lemma 3 concludes the proof. |

The existence of a global minimum of the function ¢ — [*_8?(t;~;9)dt is for instance guaranteed if there exists

Jo such that the distribution of Z(¥9) is symmetric around 0, in which case S(¢;7; ¥9) = 0 for each ¢ and therefore
VY € O, / S?(t;y;9)dt > 0 = / S?(t;y; 00)dt.
Conversely, if one can find ¥ such that [*°_S*(t;~;90)dt = 0, then the distribution of Z(9Jo) must be symmetric

around 0 by Proposition 1. The uniqueness of one such g is a more challenging problem: the last result of this

section examines what can be said for the Bickel-Doksum family (1981), for which

\ 1 ifx>0,
—1
YA> 0, Yz € R, (a3 ) = %, with sgn(z) =< -1 ifz <0, (4.2)
0 ifx=0.

This particular family of transformations, which coincides with the Box-Cox family of transformations for positive

values of  and ), is the one we shall consider in our simulation study below.

Proposition 2. Let ¢ be the Bickel-Doksum family of transformations. Assume that (A1) holds and that the
distribution of X is not symmetric around zero. If there exists a pair (6, \) € R X (0,00) such that p(X;\) — 0

is symmetrically distributed with location zero, then (5,\) is the unique such pair.

Proof of Proposition 2. We first note that for any such pair ¥ = (4, A), then § # —1/\. If indeed we had that
§ = —1/), then using (4.2), the random variable sgn(X)|X|* would be symmetric. Since (A;) holds, this would
imply, for any x < 0, that

B(X < 2) = P(sgn(X)[X]* < —(=2)") = 1 - P(sgn(X)[X]* > (=2)*) = 1 — B(X > ).

Then X would be symmetrically distributed around zero, which is a contradiction. Moreover, we may assume
without loss of generality that the median Q(1/2) of X is nonnegative: if indeed this is not the case then —X
has a nonnegative median and, letting 6’ = —(§ + 2/\) # —1/), the random variable

Y(=X;0) = 0" = —[(X; ) = g]



is symmetrically distributed around zero. Furthermore, since (A1) holds and (A2) and (As) are satisfied for the
Bickel-Doksum family, we may use (4.1) to write that Qz(z;9¥) = ¥(Q(z); \) — 6. Since Z(1) is symmetrically
distributed around zero, its median is 0 and thus 0 = Q(1/2)* — (), where ¢(¥) = 1+ ). In particular, c(9) is
positive and Q(1/2) = [¢(99)]"/*. Finally, it must hold that Qz(1/2—z;9) = —Qz(1/2+x;¥) for any = € (0,1/2),
which, since @ is continuous and Q(1/2) > 0, entails for all £ > 0 small enough:

12— -1 1/2+¢)* -1 1/
M iy {M “i| e Quz-e = (20 - Q2+ ) . @3
Assume now that there exist two pairs ¥1 = (d1, A1) and 92 = (2, A2) such that Z(¥1) and Z(92) are symmetri-
cally distributed around zero. Note that it is enough to show that A1 = A2. Using (4.3), we obtain for all ¢ > 0
sufficiently small:

1/X0

1/7
(2e00) — QU2 +)) T = (2e(92) — [Q(L/2+ £)]?)
Since Q(1/2) = [¢(91)]'/** = [¢(92)]'/*? and the quantile function of X is continuous and strictly increasing, this

entails for all A > 0 small enough:

1/A A\ M 1/A A\ 1/
<2c(191) — [fe0) > + ] ) - (2C(§2) — [le@a)]"2 + 1] ) :
Noting that [c(91)]*/* = [c(92)]"/*2 > 0, we get that for all A > 0 small enough:
1/x 1/
(2—[1+h]h) 1:(2—[1+h]A2) ’

Taking logarithms and differentiating twice in a neighborhood of 0, we obtain for all A in an open neighborhood

of 0:
! (T+mM 220 =D+ A +n)M]  (1+h) 722002 —1) + (14 h)*?]

21 +h)M]? B (2 - (1 +h)]?
Setting h = 0 entails Ay = A2, which completes the proof. |

5 A Monte-Carlo simulation study

In this section, we present the results of a Monte-Carlo study conducted to assess the performance of our method.
In what follows, the transformation family considered is the Bickel-Doksum family (4.2). The following estimators

are compared:
e our estimator (3.1), denoted by M., with v € {1, 2};

e our estimator (3.1), with the weight [z(1 —z)]"'*! replaced by [1/4 — z(1 —z)]”'*|. In other words, the mass

is shifted from the median of the distribution to its tails; this estimator is denoted by T’, and we consider
v €{1/2,1};

e the estimator )

Y DI -
argmln/ |:E kZﬂsm(tZﬂq?)) et

YEO —oo

which corresponds to using the ECF with an exponential weighting function (see Yeo and Johnson, 2001),

and will be denoted by EECF;

e the Gaussian maximum likelihood estimator (GMLE), assuming that the target symmetric distribution is

Gaussian. While this estimator actually attempts to transform to normality, we include it for comparative



reasons. The shape estimator is A and the location estimator is g(X) where

A= argmax{—glog(ﬁ()\))—lz(q’b(Xk’ N = 3()° (A—l)Zlong}
k=1

AEA 24 a2(N)

= argmax {—g log(gi()\)) +(A-1) Zlog Xk}
XEA st

%Zw(xk;x

and o%(\) = —Z G(Xi; A) — (V)%

with 0()\)

e a minimum-distance estimator by Nakamura and Ruppert (1990; see also Quiroz et al., 1996), denoted by

NR, which is obtained by minimizing
2
19»—)/ (2 9) + Fo(— x;ﬁ)—l) 22 dx

where ﬁ’n(% 1) is the empirical cumulative distribution function of the Zj(19).

To get a grasp of how these estimators behave in practice, we use the following generating algorithm: for a given
n—independent sample Y7, ...,Y, of random copies of a symmetric random variable Y, we pick (known) values

of XA and ¢ and we consider the n—independent sample X1, ..., X, such that X, = 7(Y% + d; \) where
) — /A
T(y; A) = sgn(Ay + 1)[Ay + 1

is the inverse of the Bickel-Doksum transformation. With this notation, we thus have 1)(Xx; A) —d = Y}, which are
symmetric random variables and we may apply our various procedures to assess the quality of the estimation of A
and § in each case. In what follows, A is picked in the set {1/4,1/2,3/4}, 6 = 1 and the symmetric distributions

considered are the following:

o Y = Wexp(hW?/2) with W standard normal, namely Y follows a Tukey(0, %) distribution. The higher is
h, the higher is the kurtosis of Y; when h =0, Y is standard Gaussian;

e Y follows a Laplace(0, 1) distribution;

e Y|V = v is Gaussian centered with variance v, where V' is Gamma distributed with shape parameter k£ > 0

and unit scale. This distribution is denoted by Variance I'(k, 1);

e Y|V = v is Gaussian centered with variance v, where V is Inverse-Gaussian distributed with location

parameter p and shape parameter o. This distribution is denoted by Variance IG(u, 0);

e Y follows a stable distribution with shape parameter «, location parameter zero and unit scale. This

distribution is denoted by Stable(c, 0, 1).

In each case, the estimation is carried out on 1000 samples of size n = 100 and we compute the mean L'—error
(é.e. the mean absolute deviation) related to X and 5. We display on Tables 1-3 the mean L'—error for A and §

and on Tables 4-6 the sum of the mean L'—errors.

It appears from these tables that our M, estimator performs fairly well in all cases for both values of v. In
particular, it performs better than the EECF method at estimating A, and equally well at estimating & except
when the tail is very heavy as is the case for the Stable(1,0,1) distribution. Furthermore, while the GMLE and
NR methods appear superior at estimating A when the tail is light or when the distribution is leptokurtic, our

technique is comparable to and sometimes better than these two methods when A\ > 1/2 and the tail is heavy



(for instance, the stable distribution) or if the distribution is platykurtic (as is the case for the Tukey(0,3/4)
distribution). Note further that for light-tailed or leptokurtic distributions, the estimator 7T, is most often
comparable to or better than the M, estimator. Our method is however superior in most cases when estimating
0, in particular for heavy-tailed and platykurtic distributions. Finally, according to Tables 4-6, it appears that

the M> and GMLE methods are the most competitive overall in these examples.

6 Real data examples

In this section, we showcase our method on three sets of real data. For the first one, we consider the daily closing
values (p:) of the DAX index from October 1, 2007 to April 1, 2009, and our data is either the daily percentage
of return 7,1 = 100(p¢/pe—1 — 1) of size n = 378 or the 2—day percentage of return r¢2 = 100(p2s41/p2t—1 — 1)
of size n = 190. During this period of time, European markets generally followed a downward trend, so that
we can expect these percentages to have a left-skewed distribution. The second data set is the Florida data
set from Risebrough (1972). The variable of interest is the concentration in parts per million of the pollutant
PCB (polychlorinated biphenyl) in n = 87 brown pelican eggs. The third data set consists of the hourly wages
of n = 533 people selected at random from the 1985 U.S. Current Population Survey; this data set was also
considered by Savchuk and Schick (2013). Observe that the last two data sets consist of positive values, and thus

in these cases the Bickel-Doksum transformation coincides with a Box-Cox transformation.

We compare the results found with the M; and M2 methods with what we find when using the GMLE method.
In Table 7, we summarize the results, along with the mean, variance, skewness and kurtosis of the transformed
data set (using the Bickel-Doksum family) with the estimated parameters given by each method. Histograms of

the raw and transformed data sets are given on Figures 1-4.

All in all, the data sets transformed using the M; and M, methods look somewhat “more” symmetric than
the original data sets, particularly in the case of the PCB-Florida and wage data sets. This is confirmed by
Table 7, in which we see that in each case, the absolute value of the skewness of the transformed data set is
smaller than that of the raw data set. Note at this point that while the value of the skewness of the daily DAX
data set is positive and thus seems to indicate a right-skewed distribution, the 2% trimmed skewness is actually
—0.292, which confirms that we have a left-skewed data set. It is also interesting that the transformations yield
transformed data sets having lower kurtosis in all cases. Finally, we mention that although the values of X and
& are almost identical for all methods when considering the PCB-Florida and wage data sets and similar for the
daily DAX data set, they are actually quite different for the 2-day DAX data set. In the latter case, the M,

method seems to detect a bimodal distribution, whereas the GMLE method points to a unimodal distribution.

Appendix: auxiliary results and their proofs

The first lemma is a useful result of real analysis:

Lemma 1. Assume that H is a continuous real-valued function on E X E', where E and E' are two subsets of
R. Let K, K' be compact subsets of R which are contained in E and E' respectively. Then the family of functions
x> H(z;\), A € K', is uniformly equicontinuous on K, in the sense that

lim sup sup |H(y;\) — H(z;\)| = 0.

h=0 (g NeKxK' yeK
ly—z|<h



Proof of Lemma 1. If the statement were false then one could find a sequence (z,,\,) C K x K’ and a

sequence (y») C K’ such that |y, — zn| — 0 with
liminf |H (yn; An) — H(zn; An)| > 0.
n— o0

Since K and K’ are compact subsets of R, we may assume, up to extracting a suitable subsequence, that
(@n, An) = (z*,\*) € KxK'. Inparticular, y, — z* as well. By the continuity of H, |H (yn; An)—H (xn; An)| — 0,

which is a contradiction. ]
The second lemma is the cornerstone to prove Theorem 1.

Lemma 2. Assume that (A1), (A2) and (A3) hold. If K is a compact subset of R contained in A then

/ Q(t;v;ﬁ)dt%/ S2(t;y;9)dt

almost surely, uniformly in 9 = (5,\) € R x K as n — oo.

Proof of Lemma 2. Since |S,,(t;v;9)| < 1, |S(t;7;9)| < 1 and the imaginary part of a complex number is less

than its modulus, it is clear that for any ¢,

oo

| |82 — s ar <2 [ gt 0yt - oz isms)

— o0

where @z (-;v;9) and $z,5(+;v;¥) are the PWCF and PWECEF related to Z(19). Pick € > 0; Remark 1 thus makes
it possible to choose M > 0 such that for any :

o M
13 —~
/ Si(t;y; 0)dt — Sz(tw;ﬁ)’dt < 2 +2/ |P2,n(t;7; D)dt — @z (t;7; 9)| dt
oo —-M
€ ~
< JHAM s [Bza(tyiY)dt — ez (ty;9)]- (6.1)
—M<t<M
Let ¢’ = ¢/(64M) > 0 and observe that for any ¢:
1 .
Bzn(t959) — w2ty ) = | | (- )" { Q) Q2 | gy
1—¢’ .
< 16M / 2 |#t@zn @) _ 1th(w;19)’dm
< + sup |eQzn(@®) _ ith(ﬂc;ﬂ)" 6.2
o oW (6.2)
Moreover ~
By m(@9)  itQy(z;9) L, [QEnE@?) PN
ez T _ gtz T ‘: it edz| < |t|‘QZ,n(x;79)—QZ($;19)‘. (6.3)
Qz (w59)

Collecting (6.1), (6.2) and (6.3) entails
sup /
VERXK J —c0

Furthermore, since K is a compact subset of R contained in A, we get by using (4.1):

S2(t:y; 0)dt — S2(t:7; 19)‘ dt < S 1aM? sup
2 e/ <z<1—g’
VERX K

Qzn(w:9) = Qz(:9)|.

swp | Qzn(@i9) — Qul@iv)| < sup [B(Qn(@)iN) — ¥(Q()N)|.
e/ <z<i—g’ e/ <z<1—g’
YERX K AEK

It is then enough to show that the supremum on the right-hand side of this inequality converges to 0 almost
surely. To this end, we note that since the function F' is continuous and strictly increasing on D, so is () on

(0,1). Especially, Q maps the interval [¢’, 1 — &'] onto a compact interval I = [@min, Gmax]. Moreover, since with



probability 1, @n is a nondecreasing sequence of functions which converges pointwise to the continuous function
Q on (0,1), by a well-known result due to Polya (see e.g. Problem 127 p.270 in Pélya and Szegs, 1998) the

convergence must be uniform on compact intervals contained in (0, 1); in particular

sup  |Qn(z) — Q(z)| —» 0 almost surely,
e/ <zx<l—¢g’

which entails that with probability 1, we have @n(x) € J = [amin — 1, amax + 1] for any = € [¢', 1 —£'] if n is large
enough. As a consequence, for any positive integer NV, we have with probability 1

~

sup  [Y(Q@n(z);A) —¥(Q(z);A)| < sup  sup sup |[Y(y; A) — (25 M)
e/ <x<1—¢’ h<1/N (z,\)EJxK y€J
TAEK ly—=z|<h

for n large enough. By Lemma 1, the right-hand side can be made arbitrarily small as N — oo, which concludes

the proof. O

The last lemma is a classical result (see Lemma 2 in Yeo and Johnson, 2001) which essentially states that under
some conditions, if a sequence of random functions (H,) converges to a (nonrandom) function H which has a
unique minimum z*, then the sequence of the minima of the (H,) converges to x*.
Lemma 3. Assume that (Hy) is a sequence of random functions on a compact metric space E such that

e (Hy) converges uniformly almost surely to a continuous function H on E;

e H has a unique global minimum x™.
Then if (zn) is any sequence such that xn, = argmin,cp Hn(x), it holds that xn — =™ almost surely.
Proof of Lemma 3. If the result were false, we could find a set A with positive probability such that on A,
(zn) fails to converge to =* but (H,) converges uniformly almost surely to H on E. Choose w € A and define

Yn = Tn(w), hn = Hp(;;w). The compactness of E would entail that one could find a subsequence of (y») which

converges to xo # z*. Since hn(yn) < hn(z*) and
|hn(yn) = H(zo)| < [hn(yn) — H(yn)| + [H (yn) — H(xo)|

we would obtain in the limit H(xzo) < H(z*), which is a contradiction. O
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¢l

Case

My

M

T2

Ty

EECF

GMLE

NR

Standard Gaussian

[0.112, 0.124]

[0.104, 0.120]

[0.0867, 0.111]

[0.0844, 0.112]

[0.116, 0.119]

[0.0774, 0.105]

[0.0875, 0.111]

Tukey(0,1/4)

[0.107, 0.0987]

[0.0984, 0.0995]

[0.116, 0.101]

0.103, 0.110]

0.148, 0.0984]

[0.0905, 0.119]

[0.0888, 0.136]

Tukey(0,1/2)

[0.126, 0.104]

[0.114,0.109)

[0.112, 0.108]

[0.0970, 0.117]

[0.148, 0.0876]

[0.0664, 0.215]

[0.0745, 0.273]

Tukey(0,3/4)

[0.144, 0.105]

[0.135, 0.123)]

[0.123, 0.119]

[0.0995, 0.138]

[0.151, 0.0885]

[0.0847, 0.507]

[0.0859, 0.660]

Laplace(0, 1)

[0.0929, 0.0946]

[0.0821, 0.0933]

[0.0924, 0.112]

[0.0783, 0.120]

[0.131, 0.0937]

0.0722, 0.113]

[0.0734, 0.138]

Variance I'

7

[0.126, 0.0803]

[0.119, 0.0786]

[0.120, 0.0919]

[0.110, 0.101]

[0.152, 0.0850]

[0.108, 0.0891]

[0.107, 0.107]

Variance I'

)

[0.0888, 0.118]

[0.0783, 0.115]

[0.0807, 0.122]

[0.0692, 0.126]

[0.117, 0.117]

[0.0630, 0.116]

[0.0683, 0.135]

Variance I'

[0.0702, 0.150]

[0.0612, 0.144]

[0.0596, 0.147]

0.0522, 0.149]

[0.0939, 0.146]

0.0460, 0.144]

[0.0508, 0.159]

(1
(2
(3,
Variance I'(4

7

[0.0669, 0.166]

[0.0557, 0.161]

[0.0537, 0.166]

[0.0450, 0.165]

[0.0877, 0.164]

[0.0378, 0.158]

[0.0417, 0.177]

Variance IG

[0.125, 0.0937]

[0.118, 0.0914]

[0.123, 0.0950]

[0.114, 0.0998]

[0.153, 0.0983]

[0.111, 0.0924]

[0.114, 0.103]

[0.100, 0.0986]

[0.0837, 0.0963]

[0.107, 0.108]

[0.0869, 0.116]

[0.151, 0.0954]

[0.0727, 0.126]

[0.0682, 0.148]

(1,1)
Variance IG(3,1)
Variance 1G(6,1)

[0.101, 0.101]

[0.0870, 0.106]

0.105, 0.121]

[0.0828, 0.130]

[0.150, 0.101]

[0.0592, 0.155]

[0.0623, 0.195]

Variance IG(10,1)

[0.104, 0.104]

[0.0956, 0.113]

[0.109, 0.130]

[0.0851, 0.144]

[0.146, 0.0996]

[0.0476, 0.199]

[0.0564, 0.261]

Variance IG(1,10)

[0.113, 0.116]

[0.106, 0.113)

[0.0960, 0.108]

[0.0916, 0.110]

[0.122, 0.113]

[0.0847, 0.103]

[0.0957, 0.109]

Variance 1G(10, 10)

[0.0589, 0.215]

[0.0503, 0.209]

[0.0441, 0.241]

0.0348, 0.244]

[0.0760, 0.231]

[0.0276, 0.246]

[0.0325, 0.269]

Stable(7/4,0,1)

[0.129, 0.115]

[0.122, 0.111]

[0.121, 0.104]

[0.130, 0.115]

[0.149, 0.113]

[0.127, 0.122]

[0.127, 0.133]

Stable(3/2,0,1)

[0.145, 0.104]

[0.146, 0.114]

[0.146, 0.0917]

[0.139, 0.100]

[0.167, 0.0961]

[0.115, 0.146]

0.107, 0.164]

Stable(5/4,0,1)

[0.165, 0.104]

[0.192, 0.140]

[0.146, 0.0861]

[0.134, 0.0987]

[0.163, 0.0724]

[0.0939, 0.232]

[0.0991, 0.279]

Stable(1,0,1)

[0.213, 0.142]

[0.202, 0.174]

[0.203, 0.180]

[0.188, 0.196]

[0.197, 0.133]

[0.114, 0.323]

[0.118, 0.385]

Table 1: Case A = 1/4 and § = 1: mean L' —errors. First number: error related to the estimator of A\, second number: error related to the estimator of 4.




€1

Case

My

M

T2

Ty

EECF

GMLE

NR

Standard Gaussian

[0.133, 0.125]

[0.121, 0.122]

[0.102, 0.114]

[0.0967, 0.115]

[0.140, 0.121]

[0.0835, 0.105]

[0.103, 0.116]

Tukey/(0, 1/4)

[0.118, 0.104]

[0.109, 0.103]

[0.127, 0.107]

[0.111, 0.116]

0.195, 0.104]

[0.0962, 0.125]

[0.105, 0.145]

Tukey(0, 1/2)

[0.129, 0.103]

[0.123, 0.106]

0.142, 0.108]

[0.123, 0.126]

[0.221, 0.0863]

[0.122, 0.259]

[0.131, 0.341]

Tukey(0,3/4)

[0.146, 0.105]

[0.147, 0.120]

[0.139, 0.122]

[0.122, 0.144]

[0.210, 0.0803]

[0.190, 0.530]

[0.183, 0.724]

Laplace(0, 1)

[0.113, 0.0985]

[0.101, 0.0980]

[0.109, 0.114]

[0.0885, 0.122]

[0.188, 0.0999)

[0.0793, 0.118]

[0.0807, 0.141]

Variance I'(1,1

[0.150, 0.0855]

[0.139, 0.0836]

[0.142, 0.0982]

[0.124, 0.105]

[0.197, 0.0935]

[0.123, 0.0991]

[0.119, 0.115]

Variance I'(2, 1

)
)

[0.0959, 0.113]

[0.0840, 0.113]

[0.0852, 0.119]

[0.0737, 0.123]

[0.145, 0.116]

[0.0687, 0.122]

[0.0692, 0.133]

Variance I'(3,

[0.0883, 0.148]

[0.0744, 0.149]

[0.0702, 0.149]

[0.0618, 0.151]

[0.127, 0.148]

[0.0519, 0.148]

[0.0578, 0.161]

1
Variance I'(4, 1

)
)

[0.0770, 0.158]

[0.0592, 0.168]

[0.0551, 0.166]

[0.0510, 0.169]

[0.0946, 0.165]

[0.0437, 0.163]

[0.0503, 0.174]

Variance 1G

)

[0.144, 0.0962]

[0.135, 0.0929]

[0.145, 0.101]

[0.128, 0.106]

[0.198, 0.105]

[0.119, 0.0989]

0.122, 0.108]

[0.112, 0.102]

[0.0989, 0.101]

[0.123, 0.112]

[0.103, 0.122]

[0.211, 0.0981]

[0.0773, 0.125]

[0.0865, 0.152]

(1,1)
Variance IG(3,1)
(6,1)

Variance 1G

)

[0.108, 0.107]

[0.0966, 0.110]

[0.124, 0.125]

0.100, 0.141]

[0.205, 0.0973]

[0.0691, 0.180]

[0.0873, 0.224]

Variance 1G(10, 1)

[0.109, 0.108]

[0.100, 0.111]

[0.117, 0.129]

[0.101, 0.145]

[0.196, 0.0939]

0.0827, 0.231]

[0.0947, 0.297]

Variance IG(1,10)

[0.132, 0.118]

[0.121, 0.113]

[0.104, 0.104]

[0.101, 0.107]

[0.149, 0.117]

[0.0896, 0.0982]

[0.104, 0.107]

Variance IG(10,10)

[0.0857, 0.205]

[0.0566, 0.227]

[0.0545, 0.248]

[0.0537, 0.255]

[0.0828, 0.236]

[0.0432, 0.259]

[0.0530, 0.285]

Stable(7/4,0,1

)

[0.145, 0.114]

[0.142, 0.112]

[0.155, 0.112]

[0.168, 0.127]

[0.186, 0.118]

[0.157, 0.133]

[0.165, 0.147]

Stable(3/2,0,1

)

[0.158, 0.103]

[0.153, 0.102]

[0.181, 0.101]

[0.171, 0.115]

0.224, 0.106]

[0.148, 0.155]

0.161, 0.177]

Stable(5/4,0,1

)

[0.172, 0.0935]

[0.170, 0.102]

[0.195, 0.0926]

[0.169, 0.109]

[0.252, 0.0901]

[0.157, 0.256]

0.172, 0.318]

Stable(1,0,1)

[0.222, 0.198]

[0.231, 0.264]

[0.363, 0.128]

[0.332, 0.172]

[0.419, 0.0443]

[0.210, 0.281]

[0.218, 0.345]

Table 2: Case A = 1/2 and § = 1: mean L' —errors. First number: error related to the estimator of A\, second number: error related to the estimator of 4.




VI

Case

M,y

Moy

Ty9

Ty

EECF

GMLE

NR

Standard Gaussian

[0.153, 0.130]

[0.138, 0.125]

[0.108, 0.111]

[0.100, 0.111]

[0.169, 0.126]

[0.0941, 0.102]

[0.105, 0.113]

Tukey(0,1/4)

[0.132, 0.0996]

[0.128, 0.0995]

[0.137, 0.108]

[0.130, 0.124]

[0.231, 0.104]

[0.106, 0.127]

[0.126, 0.154]

Tukey(0,1/2)

[0.151, 0.104]

[0.148, 0.107]

[0.158, 0.114]

[0.145, 0.138)]

[0.239, 0.0951]

[0.192, 0.290]

[0.198, 0.382]

Tukey(0,3/4)

[0.155, 0.103]

[0.155, 0.111]

[0.163, 0.124]

[0.156, 0.157]

0.240, 0.0896]

[0.306, 0.562]

[0.293, 0.779]

Laplace(0, 1)

0.127, 0.100]

0.118, 0.0998]

[0.118, 0.114]

[0.107, 0.125]

[0.200, 0.104]

[0.0946, 0.118]

0.101, 0.135]

Variance I'

7

0.170, 0.0863]

[0.157, 0.0834]

[0.152, 0.0947]

[0.133, 0.102]

[0.239, 0.0994]

[0.137, 0.101]

[0.130, 0.107]

Variance I'

)

[0.107, 0.120]

[0.0975, 0.118]

[0.0946, 0.118]

[0.0889, 0.124]

[0.158, 0.119]

[0.0798, 0.119]

[0.0876, 0.129]

Variance I'

[0.0954, 0.153]

0.0864, 0.151]

[0.0784, 0.150]

[0.0772, 0.157]

[0.126, 0.147]

0.0642, 0.148]

[0.0741, 0.161]

(1
(2
(3,
(4

Variance I’

[0.0796, 0.171]

[0.0699, 0.169]

[0.0646, 0.172]

[0.0652, 0.177]

[0.102, 0.169]

[0.0529, 0.169]

[0.0632, 0.184]

Variance IG

0.172, 0.106]

[0.159, 0.102]

[0.160, 0.103]

[0.148, 0.111]

[0.241, 0.116]

[0.143, 0.107]

[0.144, 0.110]

[0.128, 0.101]

[0.123, 0.102]

[0.134, 0.113]

[0.123, 0.131]

[0.225, 0.100]

[0.0918, 0.130]

[0.115, 0.158)]

(
Variance IG(3,
(

Variance 1G(6,

[0.132, 0.111]

[0.123, 0.113]

[0.134, 0.129]

[0.119, 0.153]

0.223, 0.103]

[0.112, 0.194]

[0.122, 0.248]

Variance I1G(10,

D

[0.138, 0.110]

[0.135, 0.114]

[0.141, 0.131]

[0.132, 0.157]

[0.215, 0.0972]

[0.149, 0.279]

[0.151, 0.383]

Variance IG(1, 10)

[0.151, 0.125]

[0.138, 0.120]

[0.117, 0.107]

[0.109, 0.109]

[0.171, 0.124]

[0.104, 0.103]

[0.114, 0.110]

Variance 1G(10, 10)

[0.0829, 0.223]

[0.0761, 0.225]

[0.0768, 0.246]

[0.0834, 0.257]

0.0974, 0.231]

[0.0743, 0.268]

[0.0863, 0.320]

Stable(7/4,0,1)

[0.157, 0.117]

[0.153, 0.113]

[0.161, 0.112]

[0.172, 0.126]

[0.213, 0.120]

[0.159, 0.130]

[0.183, 0.152]

Stable(3/2,0,1)

[0.171, 0.104]

[0.173, 0.106]

[0.193, 0.111]

[0.185, 0.132

[0.264, 0.115]

[0.186, 0.180]

[0.212, 0.214]

Stable(5/4,0,1)

[0.192, 0.0936]

[0.193, 0.0984]

[0.230, 0.0997]

[0.199, 0.121]

[0.299, 0.101]

[0.247, 0.270]

[0.264, 0.344]

Stable(1,0,1)

[0.271, 0.199]

[0.260, 0.210]

[0.461, 0.119]

[0.380, 0.185]

[0.526, 0.0712]

[0.300, 0.233]

[0.320, 0.311]

Table 3: Case A = 3/4 and § = 1: mean L' —errors. First number: error related to the estimator of A\, second number: error related to the estimator of 4.




a1

Case M,y My T2 Ty EECF | GMLE | NR
Standard Gaussian | 0.236 | 0.224 | 0.198 | 0.196 | 0.235 0.182 | 0.199
Tukey(0,1/4) 0.206 | 0.198 | 0.217 | 0.213 | 0.246 | 0.210 | 0.225
Tukey(0,1/2) 0.230 | 0.223 | 0.220 | 0.214 | 0.236 0.281 0.348
Tukey(0, 3/4) 0.249 | 0.258 | 0.242 | 0.238 | 0.240 | 0.592 | 0.746
Laplace(0, 1) 0.188 | 0.175 | 0.204 | 0.198 | 0.225 0.185 | 0.211
Variance I'(1, 1) 0.206 | 0.198 | 0.212 | 0.211 | 0.237 | 0.197 | 0.214
Variance I'(2, 1) 0.207 | 0.193 | 0.203 | 0.195 | 0.234 | 0.179 | 0.203
Variance I'(3,1) 0.220 | 0.205 | 0.207 | 0.201 | 0.240 0.190 | 0.210
Variance I'(4,1) 0.233 | 0.217 | 0.220 | 0.210 | 0.252 | 0.196 | 0.219
Variance IG(1,1) 0.219 | 0.209 | 0.218 | 0.214 | 0.251 0.203 | 0.217
Variance IG(3,1) | 0.199 | 0.180 | 0.215 | 0.203 | 0.246 | 0.199 | 0.216
Variance IG(6,1) | 0.202 | 0.193 | 0.226 | 0.213 | 0.251 | 0.214 | 0.257
Variance IG(10,1) | 0.208 | 0.209 | 0.239 | 0.229 | 0.246 | 0.247 | 0.317
Variance IG(1,10) | 0.229 | 0.219 | 0.204 | 0.202 | 0.235 | 0.188 | 0.205
Variance IG(10,10) | 0.274 | 0.259 | 0.285 | 0.279 | 0.307 | 0.274 | 0.302
Stable(7/4,0,1) | 0.244 | 0.233 | 0.225 | 0.245 | 0.262 | 0.249 | 0.260
Stable(3/2,0,1) 0.249 | 0.260 | 0.238 | 0.239 | 0.263 | 0.261 | 0.271
Stable(5/4,0,1) 0.269 | 0.332 | 0.232 | 0.233 | 0.235 | 0.326 | 0.378
Stable(1,0,1) 0.355 | 0.376 | 0.383 | 0.384 | 0.330 | 0.437 | 0.503

Table 4: Case A = 1/4 and § = 1: sum of the mean L!—errors related to the estimators.
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Case My | My | Ty | Tv | EECF | GMLE | NR
Standard Gaussian | 0.258 | 0.243 | 0.216 | 0.212 | 0.261 | 0.189 | 0.219
Tukey(0,1/4) 0.222 | 0.212 | 0.234 | 0.227 | 0.299 | 0.221 | 0.250
Tukey(0,1/2) 0.232 | 0.229 | 0.250 | 0.249 | 0.307 | 0.381 | 0.472
Tukey(0, 3/4) 0.251 | 0.267 | 0.261 | 0.266 | 0.290 | 0.720 | 0.907
Laplace(0, 1) 0.212 | 0.199 | 0.223 | 0.211 | 0.288 | 0.197 | 0.222
Variance I'(1,1) | 0.236 | 0.223 | 0.240 | 0.229 | 0.291 | 0.222 | 0.234
Variance I'(2,1) | 0.209 | 0.197 | 0.204 | 0.197 | 0.261 | 0.191 | 0.202
Variance I'(3,1) | 0.236 | 0.223 | 0.219 | 0.213 | 0.275 | 0.200 | 0.219
Variance ['(4,1) | 0.235 | 0.227 | 0.221 | 0.220 | 0.260 | 0.207 | 0.224
Variance IG(1,1) | 0.240 | 0.228 | 0.246 | 0.234 | 0.303 | 0.218 | 0.230
Variance IG(3,1) | 0.214 | 0.200 | 0.235 | 0.225 | 0.309 | 0.202 | 0.239
Variance IG(6,1) | 0.215 | 0.207 | 0.249 | 0.241 | 0.302 | 0.249 | 0.311
Variance IG(10,1) | 0.217 | 0.211 | 0.246 | 0.246 | 0.290 | 0.314 | 0.392
Variance IG(1,10) | 0.250 | 0.234 | 0.208 | 0.208 | 0.266 | 0.188 | 0.211
Variance IG(10,10) | 0.291 | 0.284 | 0.303 | 0.309 | 0.319 | 0.302 | 0.338
Stable(7/4,0,1) | 0.259 | 0.254 | 0.267 | 0.295 | 0.304 | 0.290 | 0.312
Stable(3/2,0,1) | 0.261 | 0.255 | 0.282 | 0.286 | 0.330 | 0.303 | 0.338
Stable(5/4,0,1) | 0.266 | 0.272 | 0.288 | 0.278 | 0.342 | 0.413 | 0.490
Stable(1,0, 1) 0.420 | 0.495 | 0.491 | 0.504 | 0.463 | 0.491 | 0.563

Table 5: Case A = 1/2 and 6 = 1: sum of the mean L!—errors related to the estimators.
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Case M,y My T2 Ty EECF | GMLE | NR
Standard Gaussian | 0.283 | 0.263 | 0.219 | 0.211 | 0.295 0.196 | 0.218
Tukey(0,1/4) 0.232 | 0.228 | 0.245 | 0.254 | 0.335 | 0.233 | 0.280
Tukey(0,1/2) 0.255 | 0.255 | 0.272 | 0.283 | 0.334 | 0.482 | 0.580
Tukey(0, 3/4) 0.258 | 0.266 | 0.287 | 0.313 | 0.330 | 0.868 | 1.072
Laplace(0, 1) 0.227 | 0.218 | 0.232 | 0.232 | 0.304 0.213 | 0.236
Variance I'(1, 1) 0.256 | 0.240 | 0.247 | 0.235 | 0.338 | 0.238 | 0.237
Variance I'(2, 1) 0.227 | 0.216 | 0.213 | 0.213 | 0.277 | 0.199 | 0.217
Variance I'(3,1) 0.248 | 0.237 | 0.228 | 0.234 | 0.273 0.212 | 0.235
Variance I'(4,1) 0.251 | 0.239 | 0.237 | 0.242 | 0.271 | 0.222 | 0.247
Variance IG(1,1) | 0.278 | 0.261 | 0.263 | 0.259 | 0.357 | 0.250 | 0.254
Variance I1G(3,1) 0.229 | 0.225 | 0.247 | 0.254 | 0.325 0.222 | 0.273
Variance IG(6,1) | 0.243 | 0.236 | 0.263 | 0.272 | 0.326 | 0.306 | 0.370
Variance IG(10,1) | 0.248 | 0.249 | 0.272 | 0.289 | 0.312 0.428 | 0.534
Variance IG(1,10) | 0.276 | 0.258 | 0.224 | 0.218 | 0.295 | 0.207 | 0.224
Variance IG(10,10) | 0.306 | 0.301 | 0.323 | 0.340 | 0.328 | 0.342 | 0.406
Stable(7/4,0,1) 0.274 | 0.266 | 0.273 | 0.298 | 0.333 | 0.289 | 0.335
Stable(3/2,0,1) 0.275 | 0.279 | 0.304 | 0.317 | 0.379 | 0.366 | 0.426
Stable(5/4,0,1) 0.286 | 0.291 | 0.330 | 0.320 | 0.400 | 0.517 | 0.608
Stable(1,0,1) 0.470 | 0.470 | 0.580 | 0.565 | 0.597 | 0.533 | 0.631

Table 6: Case A = 3/4 and 6§ = 1: sum of the mean L!—errors related to the estimators.




A 5 Mean Std. deviation | Skewness | Kurtosis

Raw data 1 -1 —0.148 2.208 0.641 8.702
M, 0.629 | —1.756 | 0.00568 2.173 0.152 3.244

Daily DAX data set
M, 0.611 | —1.808 | 0.00883 2.196 0.142 3.086
GMLE 0.722 | —1.541 0 2.101 0.221 4.193
Raw data 1 -1 —0.300 2.902 —0.173 4.580
M, 0.460 | —2.352 | —0.0321 3.025 —0.0227 1.725

2-day DAX data set
Mo 0.440 | —2.462 | —0.0164 3.092 —0.0177 1.669
GMLE 0.805 | —1.495 0 2.681 —0.126 3.244
Raw data 1 -1 71.248 52.47 2.113 9.822
My 0.214 | 6.511 0.00351 1.704 0.0314 3.480

PCB-Florida data set
M, 0.210 6.458 0.00218 1.681 0.0220 3.481
GMLE 0.213 | 6.495 0 1.696 0.0281 3.480
Raw data 1 -1 8.958 4.908 1.273 4.465
My 0 2.049 0.00662 0.523 0.0521 2.749

Wage data set

Mo 0 2.050 0.00642 0.523 0.0521 2.749
GMLE 0 2.056 0 0.523 0.0523 2.749

Table 7: Estimated values of X\ and ¢ for our real data sets
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Figure 1: DAX daily data set, top left: original data, top right: data transformed with the parameters
obtained by the M; technique, bottom left: data transformed with the parameters obtained by the M,
technique, bottom right: data transformed with the parameters obtained by the GMLE technique.
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Figure 2: DAX 2—day data set, top left: original data, top right: data transformed with the parameters
obtained by the M; technique, bottom left: data transformed with the parameters obtained by the M,
technique, bottom right: data transformed with the parameters obtained by the GMLE technique.
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Figure 3: PCB data set, top left: original data, top right: data transformed with the parameters
obtained by the M; technique, bottom left: data transformed with the parameters obtained by the M,
technique, bottom right: data transformed with the parameters obtained by the GMLE technique.
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Figure 4: Wage data set, top left: original data, top right: data transformed with the parameters

obtained by the M; technique, bottom left: data transformed with the parameters obtained by the M,

technique, bottom right: data transformed with the parameters obtained by the GMLE technique.
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