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Asymptotic-preserving methods for an

anisotropic model of electrical potential in a

tokamak

Philippe Angot, Thomas Auphan and Olivier Guès

Abstract A 2D nonlinear model for the electrical potential in the edge plasma in a

tokamak generates a stiff problem due to the low resistivity in the direction parallel

to the magnetic field lines. An asymptotic-preserving method based on a micro-

macro decomposition is studied in order to have a well-posed problem, even when

the parallel resistivity goes to 0. Numerical tests with a finite difference scheme

show a bounded condition number for the linearised discrete problem solved at each

time step, which confirms the theoretical analysis on the continuous problem.

Key words: Evolution problem, nonlinear anisotropic model, asymptotic-preserving

method, numerical tests
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1 Introduction

The fusion reaction can be performed using a tokamak, a machine whose shape is

toroidal. The plasma is confined and warmed in the core of the tokamak to produce

the fusion reaction. This technique is expected to maintain the fusion reaction during

a long time (more than five minutes, for the ITER project).

One of the main challenges for this objective is to control the wall-plasma inter-

actions. Indeed, the magnetic confinement is not perfect and the plasma is in contact

with the wall. In a tokamak such as TORE SUPRA, an obstacle called the limiter,

is settled at the bottom of the machine. Due to the strong magnetic confinement, the

plasma transport essentially occurs along the magnetic field lines. Thus, the parallel

resistivity η is very small (typically, η = 10−6), generating a strong anisotropy in

the model. The area where the magnetic lines are interrupted by the limiter is called

Philippe Angot, Thomas Auphan · Olivier Guès
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the scrape-off layer. The numerical simulation of the edge plasma transport allows

us to better understand the interactions with the wall.

2 Anisotropic model of the electrical potential

In this paper, we focus on a 2D model of the electrical potential of the edge plasma

φη in a tokamak with a limiter configuration. A schematic representation of the do-

main is given in Fig. 1. The x axis corresponds to the curvilinear coordinates along

a magnetic field line and the y axis is the radial direction. In the following equa-

tions, the curvature terms have been neglected. As the magnetic field lines above

the limiter set are closed, periodic boundary conditions are imposed at x = ±0.5.

The dimensionless problem for the electrical potential reads:

L
im

it
er

L
im

it
er

P
er

io
d

ic
B

C

P
er

io
d

ic
B

C
−0.5
0

1

−L L 0.5

Σ‖

Σ‖

l
Σ‖Σ‖

x

y

Plasma

Ω

Wall

Center

Fig. 1 Schematic representation of the 2D domain.



















































−∂t∂
2
y φη − 1

η
∂ 2

x φη +ν∂ 4
y φη = S in ]0,T [×Ω

∂yφη |t=0 = ∂yφini in Ω

∂yφη |Σ‖ = 0 and ∂ 3
y φη |Σ‖ = 0 on ]0,T [×Σ‖

∂xφη |x=−L = η
(

1− eΛ−φη |x=−L

)

on ]0,T [×]0, l[×{−L}

∂xφη |x=L =−η
(

1− eΛ−φη |x=L

)

on ]0,T [×]0, l[×{L},

(1)

where ν corresponds to the ionic viscosity in the perpendicular direction and

Λ stands for the reference potential inside the limiter. The initial condition is

∂yφη |t=0 = ∂yφini. Negulescu et al. [4] proved that, for a fixed value of η > 0, the

problem (1) admits a unique weak solution, under suitable hypotheses on the data

φini and S.

The boundary conditions at the limiter interface x = ±L, are nonlinear. Setting

directly η = 0 in the system (1) (after multiplying the first equation by η) leads to an
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under-determined problem since there are only homogeneous Neumann boundary

conditions at the limiter surface x =±L. Thus, when η is small the numerical reso-

lution of the problem (1) becomes stiff. This issue can be avoided by reformulating

the problem (1) thanks to asymptotic-preserving methods.

3 The micro macro asymptotic-preserving method

We study the Asymptotic-Preserving (AP) method introduced by Degond et al. [3]

for a linear anisotropic elliptic problem. It consists in a decomposition of the so-

lution φη as φη = pη +ηqη where ∂x pη = 0 and qη |x=−L = 0. Then, it yields the

problem below where the unknowns are (φη ,qη):































































































−∂t∂
2
y φη −∂ 2

x qη +ν∂ 4
y φη = S in ]0,T [×Ω

∂ 2
x φη = η∂ 2

x qη in ]0,T [×Ω

∂xφη |x=−L = η∂xqη |x=−L on ]0,T [×]0, l[×{−L}
∂xφη |x=L = η∂xqη |x=L on ]0,T [×]0, l[×{L}
∂xφη |x=−0.5 = η∂xqη |x=−0.5 on ]0,T [×]l,1[×{−0.5}
∂xφη |x=0.5 = η∂xqη |x=0.5 on ]0,T [×]l,1[×{0.5}
∂yφη |t=0 = ∂yφini in Ω

∂yφη |Σ‖ = 0 and ∂ 3
y φ|Σ‖ = 0 on ]0,T [×Σ‖

∂xqη |x=−L =
(

1− eΛ−φη |x=−L

)

on ]0,T [×]0, l[×{−L}

∂xqη |x=L =−
(

1− eΛ−φη |x=L

)

on ]0,T [×]0, l[×{L},

(2)

One important advantage of this AP method is that it can be easily implemented even

if the mesh is not aligned with the directions (Ox) and (Oy). The main drawback is

the need to compute two unknowns (φη and qη ) on the 2D domain though only φη

is interesting for the physics.

Let us give the theoretical result which ensures that the modified problem is well-

posed for η = 0, and that φη converges towards φ0. First, we provide the definitions

of the spaces used for the variational formulation of the problem (2).

Definition 1. Let us define the following Hilbert spaces:

• V =
{

f ∈ H1(Ω),∂ 2
y f ∈ L2(Ω), f periodic on {−0.5,0.5}×]l,1[,∂y f = 0 on Σ‖

}

with the scalar product:

〈 f ,u〉V =
∫

Ω
∂x f ∂xudydx+

∫

Ω
∂ 2

y f ∂ 2
y udydx+2

∫ l

0
f|x=L u|x=L dy.

• Q =
{

f ∈ L2(Ω),∂x f ∈ L2(Ω), f|x=−L = 0 on ]0,1[
}

, with the scalar product:
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〈 f ,u〉Q =
∫

Ω
∂x f ∂xudydx.

Definition 2. The space A is the set of functions φ such that:

• φ ∈ L2(0,T ;V ).
• ∂yφ ∈ L∞(0,T ;L2(Ω)).

• ∂yφ ∈ L2
(

0,T ;{ f ∈ H1(Ω),∂ 2
y f ∈ L2(Ω), f|Σ‖ = 0}

)

.

• ∂ 2
y φ ∈ L∞(0,T ;L2(Ω)).

• ∂tφ ∈ L2(0,T ;V ).
• ∂y∂tφ ∈ L∞(0,T ;L2(Ω)).

The weak solution φη of (2) is then searched in the space A .

Assumption 3.1 Assume that S and φini verify:

1. S,∂yS,∂ 2
y S,∂tS,∂

2
t S ∈ L2(]0,T [×Ω), ‖S‖L∞(]0,T [×Ω) ≤Cs and ‖S|t=T‖L∞(Ω) ≤Cs

with Cs sufficiently small.

2. φini ∈ H4(Ω).
3. φini does not depend on x.

4.

∫

Ω
S|t=0 dydx = ν

∫

Ω
∂ 4

y φini dydx+2

∫ l

0

(

1− eΛ−φini|x=L

)

dy.

The two last hypotheses are compatibility conditions for the initial and boundary

conditions with the source term.

We can now write the theorem which asserts the convergence of φη to φ0 when

η goes to 0:

Theorem 1. With the assumption 3.1, the weak formulation of (2):

find (φη ,qη) ∈ A ×L2(0,T ;Q) verifying
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∀ξ ∈ H1(]0,T [),∀u ∈V ∩H2(Ω),∀w ∈ Q,

∫

Ω
∂yφη |t=T ∂yudydxξ (T )−

∫ T

0

∫

Ω
∂yφη |t=T ∂yudydxξ ′ dt

+
∫ T

0

∫

Ω
∂xqη ∂xudydxξ dt +ν

∫ T

0

∫

Ω
∂ 2

y φη ∂ 2
y udydxξ dt

+
∫ T

0

∫ l

0

(

1− eΛ−φη |x=−L

)

u|x=−L dyξ dt +
∫ T

0

∫ l

0

(

1− eΛ−φη |x=L

)

u|x=L dyξ dt

=
∫

Ω
∂yφini ∂yudydxξ (0)+

∫ T

0

∫

Ω
Sudydxξ dt

η

∫ T

0

∫

Ω
∂xqη ∂xwdydxξ dt =

∫ T

0

∫

Ω
∂xφη ∂xwdydxξ dt,

(3)

admits a unique solution. Besides, (φη ,qη) converges weakly in L2(]0,T [×Ω)2,

towards (φ0,q0) ∈ A ×L2(0,T ;Q) the solution of (3) when η equals 0.

Finally, the following error estimate holds:
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‖φη −φ0‖L1(0,T ;L2(Ω)) ≤ c(T,Ω ,φ0,S,Λ)
√

η ,

where c(T,Ω ,φ0,S,Λ)> 0 does not depend on η .

Theorem 1 provides an error estimate for the norm in L1(0,T ;L2(Ω)), but not for

the L2(]0,T [×Ω) norm. This point can be subject to further improvements.

This result is shown in [1, 2]. The proof of the existence and uniqueness of φ0

follows the same steps of [4], based on a fixed point method. The existence and

uniqueness of q0 and the convergence of (φη ,qη) when η goes to 0 are shown by

extending to a nonlinear case the proof provided in [3] for a linear elliptic problem.

4 Numerical experiments

In this section, some numerical tests are presented for the system (2). The space

discretisation is done by the centred finite difference scheme. The time resolution

uses Euler semi-implicit method.

At first glance, a directional splitting method seems to be interesting. But, the

discrete problems obtained in the directions x and y are not invertible. The problem

is thus discretised implicitly, except for the nonlinear term. At each time step, a

linear system has to be solved to compute the approximations of φη and qη .

Let us consider a rectangular mesh of the space domain Ω with a constant mesh

step δx (for the direction (Ox)) and δy (for the direction (Oy)). The time step

writes δ t. The scalar quantities φ n
i, j,q

n
i, j stands respectively for the approximations

of φη(nδ t,−0.5+ iδx, jδy) and qη(nδ t,−0.5+ iδx, jδy). The boundary condition

at x =−L is discretised as:

qn+1
I1+1, j −qn+1

I1−1, j

2δx
−φ n+1

I1, j
=
(

1− e
Λ−φn

I1 , j −φ n
I1, j

)

,

where I1 is the index such that −0.5+ I1δx =−L.

For the boundary condition at x = L, the same technique is used. This time lin-

earisation enables us to have an invertible matrix which is the same at each time

step.

The mesh convergence test is performed using a configuration where the limiter

goes up to the top of the computational domain, i.e. l = 1. This does not change the

results proven for l < 1. For L = 0.4, the chosen manufacturated solution is

φη(t,x,y) = η
( t

π

)2

cos(πy)cos(1.25πx)− ln

(

1− 1.25t2

π cos(πy)

)

+Λ . (4)

Let us note that the source term S associated to the manufactured solution (4) de-

pends on η but is not singular when η goes to 0. This differs from the hypotheses

made for Theorem 1.

The plot of the approximated solution is shown in Fig. 2. Studying the L2 error in

Fig. 3, we observe that the numerical scheme is of second-order accuracy in space.
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In Fig. 4, we observe that the condition number obtained with the AP method is

high but it is bounded independently from η . This is not the case for the matrix ob-

tained for the resolution of (1) without the asymptotic-preserving method. In order

to avoid the issues due to the bad conditioning, we choose a LU method to solve

the linear problem at each time step, which is faster than a GMRES solver with

PETSc library. Finding an efficient preconditioner in order to use iterative methods

is a future enhancement of this work.

For the convergence when η tends to 0, the same domain is considered (l = 1,L=
0.4) but another source term is chosen :

S(t,x,y) = 40 t cos(2π y) sin
( π

2L
x
)

, φini(x,y) = Λ = 0 (5)

This configuration (5) with l = 1 leads to φ0(t,x,y)= 0, which enables us to compute

numerically ‖φη −φ0‖L1(0,T ;L2(Ω)) and ‖φη −φ0‖L2(0,T ;L2(Ω)). For these two norms,

we observe a convergence in O(η), see Fig. 5. This suggests that the estimate of

Theorem 1 might be improved.
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Fig. 2 Approximate fields of φη and qη for δx = δy = 0.003125, δ t = 0.0001 and η = 0.001. The

reference solution is given by (4). Recall that the limiter area corresponds to x ≤−0.4 and x ≥ 0.4:

the values of φη do not have any physical sense in this zone.

5 Conclusion

The high anisotropy of the 2D model for the edge plasma electrical potential in a

tokamak leads to an ill-conditioned matrix for the numerical approximation using

classical methods. The micro-macro decomposition induced by Degond et al. [3]

for a linear anisotropic elliptic problem is studied and analysed for the nonlinear

evolution problem of the electrical potential. This method yields a weak formulation

which is not degenerated when the parallel resistivity η tends to 0. Moreover, we
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linear system approaching (the same at each time step) the solution (4) with δx = δy = 0.025 and

δ t = 0.001.
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Fig. 5 ‖φη −φ0‖L1(0,T ;L2(Ω)) (∆ ) and ‖φη −φ0‖L2(]0,T [×Ω) (+) as a function of η . The configura-

tion is given by Eqs. (5) with T = 1, δx = δy = 0.003125 and δ t = 0.0001.

have the estimate

‖φη −φ0‖L1(0,T,L2(Ω)) = O (
√

η) ,

which can probably be improved, as suggested by the numerical results.
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