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Abstract. In a number of real-life applications, the user is interested
in analyzing non vectorial data, for which kernels are useful tools that
embed data into an (implicit) Euclidean space. However, when using
such approaches with prototype-based methods, the computational time
is related to the number of observations (because the prototypes are
expressed as convex combinations of the original data). Also, a side effect
of the method is that the interpretability of the prototypes is lost. In
the present paper, we propose to overcome these two issues by using a
bagging approach. The results are illustrated on simulated data sets and
compared to alternatives found in the literature.

1 Introduction

In a number of real-life applications, the user is interested in analyzing data that
are non described by numerical variables as is standard. For instance, in social
network analysis, the data are nodes of a graph which are described by their
relations to each others. Self-Organizing Maps (SOM) and other prototype based
algorithms have already been extended to the framework of non numerical data,
using various approaches. One of the most promising one is to rely on kernels to
map the original data into an (implicit) Euclidean space in which the standard
SOM can be used [1,2,3]. A closely related approach, called “relational SOM”
[4,5], extends this method to dissimilarity data which are pertaining to a pseudo-
Euclidean framework, as demonstrated in [4]. Further, in [6], we addressed the
issue of using several sources of (possibly non numeric) data by combining several
kernels. The combination of kernels is made optimal with a stochastic gradient
descent scheme that is included in the on-line version of the SOM algorithm.

However, while able to handle non Euclidean data, that can eventually come
from different sources, these approaches suffer from two drawbacks: as pointed
out in [7], when the data set is very large, the computational time of such ap-
proaches can be prohibitive. Indeed, prototypes are expressed as convex combi-
nations of the original data and are thus expressed with a number of coefficients
equal to the number of observations in the data set. Also, adding an extra gra-
dient descent step to optimize the kernel combination requires to increase the
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number of iterations of the algorithm, which yields to an augmented computa-
tional time. The second drawback is emphasized in [8]: as the prototypes are
expressed as a convex combination of the original data, they are no longer given
as explicit representative points in the data space and the interpretability of the
model is lost.

In the present paper, we propose to overcome these two issues by using
a bagging approach in which only a small subset of the original data set is
used. The results coming from several bags are combined to select the most
representative observations that are then utilized to define the prototypes in a
final map. This approach is both sparse (the resulting map is based on a small
subset of observations only), fast and parallelizable, which makes it an interesting
approach to analyze large samples. The rest of the paper is organized as follow:
Section 2 describes the method and its relations to previous approaches in the
literature. Section 3 provides the analysis of the results obtained on simulated
data sets and on a real-world data set which is a graph.

2 Method

2.1 A brief description of the kernel SOM approach

Let us suppose that we are given input data, (xi)i=1,...,n taking values in an
arbitrary space G. When G is not Euclidean, a solution to handle the data set
(xi)i with standard learning algorithms is to suppose that a kernel is known,
i.e., a function K : G × G → R which is symmetric (∀ z, z′ ∈ G, K(z, z′) =
K(z′, z)) and positive (∀N ∈ N, ∀ (zj)j=1,...,N ⊂ G and ∀ (αj)j=1,...,N ⊂ R,
∑

j,j′ αjαj′K(zj , zj′) ≥ 0). When such conditions are fulfilled, the so-called
kernel defines a dot product in an underlying Hilbert space: more precisely,
there exists a Hilbert space (H, 〈., .〉H), called the feature space, and a function
φ : G → H, called the feature map, such that

∀x, x′ ∈ G, 〈φ(x), φ(x′)〉H = K(x, x′)

(see [9]). Hence using the kernel as a mean to measure similarities between data
yields to implicitly rely on the Euclidean structure of H. Many algorithms have
been kernelized, i.e., modified to handle (possibly non vectorial) data described
by a kernel. In particular, the general framework of kernel SOM is described
in [1,2,3]. In this framework, as in the standard SOM, the data are clustered
into a low dimensional grid made of U neurons, {1, . . . , U} and these neurons
are related to each other by a neighborhood relationship on the grid, h. Each
neuron is also represented by a prototype pu (for some u ∈ {1, . . . , U}) but
unlike standard numerical SOM, this prototype does not take value in G but in
the previously defined feature space H. Actually, each prototype is expressed as
a convex combination of the image of the input data by the feature map:

pu =

n
∑

i=1

γuiφ(xi), with γui ≥ 0 and
∑

i

γui = 1.

In the on-line version of the algorithm, two steps are iteratively performed:
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– an affectation step in which an observation xi is picked at random and
affected to its closest prototype using the distance induced by K:

f(xi) = argmin
u

‖pu − φ(xi)‖
2
H,

where ‖pu − φ(xi)‖
2
H = K(xi, xi) − 2

∑

l γujK(xi, xj) +
∑

jj′ γujγuj′K(xj , xj′).
– a representation step in which the prototypes are updated according to

their value at the previous step t and to the observation chosen in the pre-
vious step. A gradient descent-like step is used for this update:

∀u = 1, . . . , U, γt+1
u = γt

u + µ(t)ht(f(xi), u)
(

δni − γt
u

)

where δni is the n-dimensional vector in which only entries indexed by i is
non zero and equal to 1, µ(t) ∼ 1/t is a vanishing coefficient and, usually,
the neighborhood relationship ht also vanishes with until being restricted to
the neuron itself.

Note that this algorithm has also been extended to the case where the obser-
vations are described by several kernels, each corresponding to one particular
type of data, in the multiple Kernel SOM algorithm [6]. In this algorithm, an
additional gradient descent step is added to the algorithm to tune the respective
contribution of each kernel in an optimal way.

2.2 Ensemble of SOMs

Despite their generalization properties to complex data, kernel SOM and related
methods are not well-suited for large data sets since the algorithms generally
require the storage of the entire Gram matrix and since the prototypes are
expressed as convex combinations of the input data and thus have a very high
dimension. Another important drawback of the prototype representation is that,
being expressed as a very large linear correlation of the mapped input data, they
are not easy to interpret. Indeed, for non vectorial data, such as e.g., nodes in a
graph whose similarities can be described by several types of kernels (see [10]),
there is no way to describe the prototypes in terms of an object in the input space
(here, the graph). As prototypes are commonly used to deciphter the clusters’
meaning, one of the main interesting feature of the SOM algorithm is lost in the
process, as pointed out in [8].

Several techniques have been proposed in the literature to overcome the di-
mensionality issues, which can be adapted to the kernel SOM framework: some
are related to sparse representations and some to bootstraping and bagging. In
[4], the large size of the data set is handled using “patch clustering”, which is
particularly suited for streaming data but can also be used to handle large di-
mensional data. The initial data set is randomly split into several patches, Pb

and the algorithm processes each patch iteratively. At step b, the b-th patch is
clustered until convergence. Each of the resulting prototypes is approximated
by the closest P input data points. During the next step, the index set of the
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P -approximations of all prototypes and the index set of the next patch Pb+1

are put together into the extended patch P⋆
b+1

and the clustering process is per-
formed on all the observations indexed by P⋆

b+1
. This is iterated until all patches

are clustered. This approach leads to good clustering results, however it is not
parallelizable and the algorithm may be sensitive to the order in which patches
are processed. Another technique for handling large data sets is to use bootstrap
and bagging. In [11], bagging is applied to a batch version of the SOM algo-
rithm for numerical data in a semi-supervised context. The prototypes of the
map trained on the first bag are initialized to lie in the first principal component
and each trained map is used to initialize the subsequent map for the subsequent
bag. This procedure reduces the dimensionality and improves the classification
error, but it is not parallelizable. Alternatively, [12,13] propose by combining
SOM based on separate bootstrap samples with a fusion of their prototypes.
These approach, which can be used in parallel are however only valid if the pro-
totypes are expressed on the same representation space, which is not directly
generalizable when using kernel SOM in which prototypes are directly expressed
with the bootstrap sample.

2.3 Bagged kernel SOM

Our proposal is to use a bagging approach that is both parallelizable and sparse.
Bagging uses a large number of small sub-samples, all randomly chosen, to select
the most relevant observations: B subsets, (Sb)b each of size nB ≪ n, are built,
at random, within the original data set {x1, . . . , xn}. Using the on-line algorithm
described in [14], a map with U neurons is trained, which results in the prototypes
pbu =

∑

xi∈Sb
γb
uiφ(xi) where φ is the feature map associated with the kernel K.

The most representative observations are chosen as the first P largest weights
for each prototype: ∀u = 1, . . . , U ,

Ib
u :=

{

xi : γui is one of the first P largest weights among (γb
uj)xj∈Sb

}

,

and Ib = ∪uI
b
u. Alternative methods to select the most interesting prototypes

are reported in [8]; the one we chose is referred in this paper as the K-convex

hull but it would be interesting to test other methods for selecting the most
interesting observations.

Then, the number of times each observation (xi)i=1,...,n is selected in one
sub-sample is computed: N (xi) := ♯ {b : xi ∈ Ib} which is finally used as a
quality criterion to select the most important variables which are the first P ×U
observations with the largest values for N (xi):

S := {xi : N (xi) is one of the first PU largest numbers among (N (xj))j≥n} .

A final map is then trained with the selected observations in S which has pro-
totypes expressed as pu =

∑

xi∈S γuiφ(xi). The final classification for all obser-
vations (xi)i=1,...,n is deduced from these prototypes by applying the standard
affectation rule: C(xi) := argminu=1,...,U ‖pu − φ(xi)‖

2 where ‖pu − φ(xi)‖
2
H is
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Algorithm 1 Multiple online kernel SOM

1: Initialize for all i = 1, . . . , n, N (xi)← 0
2: for b = 1→ B do

3: Sample randomly with replacement nB observations in (xi)i=1,...,n return Sb
4: Perform kernel SOM with Sb return prototypes (pbu)u ∼ (γb

ui)ui
5: for u = 1→ U do

6: Select the P largest (γb
ui)xi∈Sb

return Ibu (set of the observations corre-
sponding to the selected γb

ui)
7: end for

8: for i = 1→ n do

9: if xi ∈ ∪uI
b
u then

10: N (xi)← N (xi) + 1
11: end if

12: end for

13: end for

14: Select the PU observations xi corresponding to the largest N (xi) return S
15: Perform kernel SOM with S return prototypes (pu)u ∼ (γui)u=1,...,U,xi∈S and

classification (f(xi))xi∈S

16: Affect (xi)xi /∈S with
f(xi) := argmin

u
‖φ(xi)− pu‖

2

H

17: return final classification (f(xi))i=1,...,n and sparse prototypes (pu)u ∼
(γui)u=1,...,U,xi∈S

computed using K, as described in Section 2.1. The algorithm is described in
Algorithm 1.

Note that, strictly speaking, only the sub-kernels KS̄,S := (K(xi, xj))i/∈S,j∈S

and KS = (K(xj , x
′
j))j,j′∈S are required to perform the final affectation step

because the closest prototype does not depend on the term K(xi, xi) and thus
the affectation step for (xi)i/∈S can be performed by computing:

−2KS̄,Sγ + 1|S̄|

[

Diag
(

γTKSγ
)]T

,

where γ = (γui)u=1,...,U,i∈S and 1|S̄| if the vector with all entries equal to 1 and

having length the number of elements in S̄ = {xi : xi /∈ S}.
The complexity of the approach is O(Un2

BB+U2P ), compared to the direct
approach which has a complexity equal to O(Un2). Hence, the computational
time is reduced as long as Bn2

B + U2P < n2 and is even more reduced if the
B sub-SOMs are performed in parallel. Usually, B is chosen to be large, nB is
small compared to n and P is only a few observations to obtain sparse repre-
sentations of the prototypes. However, the computational times are not directly
comparable since the bagged approach can be performed in parallel, unlike the
direct approach or the patch SOM.

3 Applications

Bagged kernel SOM on simulated data



6 J. Mariette, M. Olteanu, and J. Bolaert, N. Villa-Vialaneix

First, a simple simulated dataset with 5000 observations is considered. The
observations are randomly generated in [0, 1]20 and are then mapped onto a 5×5
grid using the kernel SOM algorithm with a Gaussian kernel. Several algorithms
are compared with varying parameters:

– the patch SOM with different numbers of patches (250, 375, 500, 1 000)
and different values for P (2, 5, 10, 15, 20, 30 and 50). A last kernel SOM
was trained with the selected observations to make the results (based on P
selected observations) comparable with those of the patch SOM;

– the bagged SOM with different values for nB (5%, 7.5%, 10% and 20% of
the original data set size) and for B (500 and 1000) and the same values for
P as with the patch SOM;

– a full kernel SOM used on the whole data set and aimed at being the
reference method.

Figure 1 gives the quantization and topographic [15] errors of the resulting maps
versus the value of P . In this figure, two classical quality criteria for SOM results

Fig. 1. Evolution of the quantization (left) and topographic (right) errors versus P .
Error bars indicates the first and last quantiles and dots the average values over all
simulations.

are used: the quantization error (which assesses the quality of the clustering) and
the topographic error (which assesses the quality of the organization; see [15]). In
some cases, the results can be even better than the full kernel SOM. Considering
the bootstrap version, the performances are consistent with the full kernel SOM
(for about P ∼ 5−10, which corresponds to using only 250 observations at most,
instead of 5000, to represent the prototypes).

The analysis of the other parameters of the algorithm (bag size nB and
number of bootstrap samples B) does not show any particular feature. This is
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explained because the final clustering is obtained from the PU most represen-
tative observations and thus P has a much greater impact on the performances
than, e.g., nB .

Application to ego-facebook c© network

The bagging method is then applied to one of the ego-facebook c© networks
described in [16]4. The data used in this section are the ones extracted from the
network number 107: the largest connected component of the facebook c© network
was extracted, which contained 1 034 nodes. This section presents the compara-
ison of bagged SOM and standard SOM to map the nodes of the graph onto a
two-dimensional grid (having sizes 10 × 10). As explained in [3,17], using such
mappings can provide a simplified representation of the graph, which is useful for
the user to help him or her understand its macro-structure before focusing more
deeply on some chosen clusters. The kernel used to compute similarities between
nodes in the facebook c© network was the commute time kernel, [18]. If the graph
is denoted by G = (V,E,W ), with V = {x1, . . . , xn} the set of vertices, E the
set of edges which is a subset of V × V and W a weight matrix (a symmetric
matrix with positive entries and null diagonal), the commute time kernel is the

generalized inverse of the graph Laplacian, L, which is: Lij =

{

di if i = j
−Wij otherwise

where di =
∑

j Wij is the degree of node xi. As explained in [19], the Laplacian
is closely related to the graph structure and thus, it is not surprising that a
number of kernel has been derived from this matrix [10]. As shown in [18], the
commute kernel yields to a simple similarity interpretation because it computes
the average time needed for a random walk on the graph to reach a node from
another one.

Different approaches were compared: (i) the standard kernel SOM (on-line
version), using all available data; (ii) the bagged kernel SOM, as described in
Section 2, with B = 1000 bootstrap sample, nB = 200 in each sample and P = 3
observations selected per prototype and (iii) a standard kernel SOM trained
with an equivalent number of randomly chosen observations. The relevance of
the results was assessed using different quality measures. Some quality measures
were related to the quality of the map (quantification error and topographic
error) and some were related to a ground truth: some of the nodes have been
indeed labeled by users to belong to one “list” (as named by facebook c©). We
confronted these groups to the clusters obtained on the map calculating (i) the
average node purity (i.e., the mean over all clusters of the maximal proportion
of one list in a given cluster; only individuals belonging to one list were used
to compute this quality measure) and (ii) the normalized mutual information
[20] (also restricted to individuals belonging to one list only) and also to the
graph structure using the modularity [21], which is a standard quality measure
for node clustering.

The results are summarized in Table 1. Surprisingly, the maps trained with a
reduced number of samples (bagged K-SOM and random K-SOM) obtain better
quality measures than the map trained with all samples. Using a bootstraping

4 available at http://snap.stanford.edu/data/egonets-Facebook.html

http://snap.stanford.edu/data/egonets-Facebook.html
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Quantification Topographic Node Normalized Modularity
Error (×100) Error Purity Mutual Information

bagged K-SOM 7.66 4.35 89.65 70.10 0.47
full K-SOM 9.06 5.22 86.53 53.79 0.34

random K-SOM 8.08 6.09 87.26 60.79 0.40

Table 1. Quality measures for different versions of kernel SOM (standard using all
data, bagged, standard using randomly selected data) on facebook c© data

approach to select the relevant observations also significantly improves all quality
measures as compared to a random choice with the same number of observations.
The results obtain with the bagged SOM are displayed in Figures 2 and 3 (from,
respectively, the map and the network points of view). They show that the
nodes are mainly dispatched into three big clusters, which correspond each to
approximately only one “list”, as defined by the user. The results provided

Fig. 2. Simplified representation of the facebook c© network projected on the map re-
sulting from bagged K-SOM. The circle sizes are proportional to the number of nodes
classified in the cluster and the edge width are proportional to the number of edges be-
tween the nodes in the two clusters. Colors correspond to the proportion of user-defined
lists (black is used for “no list”).

with the K-SOM using all the data tend to provide smaller communities and to
scatter the biggest lists on the map. Using this approach, it is however hard to
conclude if interpretability has been increased (i.e., if the selected observations
used for training are representative of their cluster) as, in Figure 3, they do not
seem to have a particularly high degree or centrality.
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Fig. 3. The facebook c© network represented with a force-directed placement algorithm
[22]. Colors represent the clusters on the map and selected nodes used to train the map
are represented by squares (instead of circles)

4 Conclusion

This paper presents a parallelizable bagged approach which results in a reduced
computational time and a sparse representation of prototypes for kernel SOM.
The simulations show good performances and only a small loss of accuracy which
is compensated by a faster computational time. Obtained prototypes are also
easier to interpret, as based on a smaller number of observations.
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