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Abstract For mean-field type control problems, stochastic dynamic programming requires adaptation.

We propose to reformulate the problem as a distributed control problem by assuming that the PDF ρ of

the stochastic process exists. Then we show that Bellman’s principle applies to the dynamic programming

value function V (τ, ρτ ) where the dependency on ρτ is functional as in P.L. Lions’ analysis of mean-filed

games (2007). We derive HJB equations and apply them to two examples, a portfolio optimization and a

systemic risk model.

Programmation dynamique pour les problèmes de contrôle à champs moyen

Résumé Pour les problèmes de contrôle stochastique à champs moyen la programmation dynamique ne

s’applique pas sans adaptation ; mais si l’on reformule le problème avec l’équation de Fokker-Planck,

on peut le faire en utilisant une fonctionnelle valeur {τ, ρτ (·)} → V (τ, ρτ )) comme dans l’analyse des

problèmes de jeux à champs moyen par P.L. Lions (2007). Les résultats sont appliqués à un problème

d’optimisation de portefeuille et à un problème de risque systémique.

1. Introduction

Stochastic control is an old topic [5, 11, 13, 14] which has a renewed interest in economy and finance due

to mean-field games [8, 7, 12]. They lead, among other things, to stochastic control problems which involve

statistics of the Markov process like means and variance. Optimality conditions for these are derived either

by stochastic calculus of variation [1] or by stochastic dynamic programming in the quadratic case [2, 3],

but not in the general case for the fundamental reason that Bellman’s principle does not apply in its original

form on the stochastic trajectories of say Xt if those depend upon statistics of Xt like its mean value. As

noticed earlier in [9] and in [4] 1, there seems to be no such restriction if one works with the probability

measure of Xt and use the Fokker-Planck equation.

In this note we apply the dynamic programming argument to the value functional V (τ, ρτ (·)) where ρτ
is the PDF of Xτ . Of course this is at the cost of several regularity assumptions, in particular it requires the

existence of PDF at all times.

Once the problem is reformulated with the Fokker-Planck equation, it becomes a somewhat standard

exercise to find the optimality necessary conditions by a calculus of variations. So the note begins likewise.

Then a similar result is obtained by using dynamic programming and the connection with the previous

approach and with stochastic dynamic programming is established, with the advantage that sufficient con-

ditions for optimality are obtained. Finally we apply the method to two mean-field type control problems

stated in [1] and [7].

1. This preprint came to our knowledge after the submission of this note
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2. The Problem

Let d, s, r ∈ N
+. Consider a stochastic differential equation

dXt = u(Xt, t)dt+ σ(Xt, t, u(Xt, t))dWt, (2.1)

where T > 0, u : Rd× (0, T ) → R
d, σ : Rd× (0, T )×R

d → R
d×d and Wt is a d-vector of independent

Brownian motions. We make the usual assumptions for Xt to exist once X0 is known [13].

Let H̃ : Rd×(0, T )×R
d×R

r → R, h̃ : Rd×(0, T )×R
d → R

r, G : Rd×R
s → R, g : Rd → R

s.

Assume also that ρ0 is positive with unit measure on R
d.

Let Vd ⊂ R
d, Ud = {u ∈ (L∞(Rd ×R))d : u(x, t) ∈ Vd ∀x, t} and consider the problem

min
u∈Ud

J :=

∫ T

0

E[H̃(Xt, t, u(Xt, t),E[h̃(Xt, t, u(Xt, t))])]dt+E[G(XT ,E[g(XT )])]

subject to (2.1) and such that ρ0 is the PDF of X0 (2.2)

Andersson et al [1] analyzed this problem using stochastic calculus of variations, claiming rightly that

dynamic programming is not possible unless h̃ = 0, g = 0. Yet denoting Q = R
d × (0, T ) and µij =

1
2

∑

k σikσjk, with sufficient regularity, namely if Xt has a PDF ρt (for weaker hypotheses see [10]), the

problem is equivalent to

min
u∈Ud

J =

∫

Q

H(x, t, u(x, t), ρt(x), χ(t))ρt(x)dxdt+

∫

Rd

G(x, ξ)ρ|Tdx

where χ(t) =

∫

Rd

h(x, t, u(x, t), ρt(x))ρt(x)dx, ξ =

∫

Rd

g(x)ρT (x)dx and ρt s.t.

∂tρ+∇ · (uρ)−∇ · ∇ · (µρ) = 0, ρ|0 = ρ0(x), x ∈ R
d (2.3)

where H̃ = H, h̃ = h if these are not functions of ρt(x).

HYPOTHESIS 1. – Assume that all data are continuously differentiable with respect to u and ρ and have

additional regularity so that the solution to the Fokker-Planck equation is unique and uniformly continu-

ously differentiable with respect to u and µ.

3. Calculus of Variations

PROPOSITION 1. – Let A : B = trace(ATB). A control u is optimal for (2.3) only if

∫

Rd

(

H ′
u + h′

u

∫

Rd

H ′
χρdx+∇ρ∗ − µ′

u : (∇∇ρ∗)

)

(v − u)ρdx ≥ 0 ∀t, ∀v ∈ Ud with (3.4)

∂tρ
∗ + u∇ρ∗ + µ : ∇∇ρ∗ = −

[

H ′
ρρ+H + (h′

ρρ+ h)

∫

Rd

H ′
χρdx

]

, ρ∗|T = g

∫

Rd

G′
ξρ|Tdx+G.

(3.5)

Proof . – Let us regularize problem (2.3) by replacing R
d by Ω := (−L,L)d with L ≫ 1. Now

Q = Ω× (0, T ). We add to the Fokker-Planck equation (2.3) the boundary conditions: ρ(x, t) = 0, ∀x ∈
∂Ω, t ∈ (0, T ). Consider an admissible variation λδu, i.e. u+λδu ∈ Ud for all λ ∈ (0, 1). Such a variation

induces a variation λδρ of ρ given by

∂tδρ+∇ · (uδρ+ ρδu+ λδuδρ)−∇ · ∇ · (µδρ+ µ′
uδu(ρ+ λδρ)) = 0, δρ|t=0 = 0, (3.6)

where µ′
u is evaluated at x, t, u+θδu for some θ ∈ (0, λ). By hypothesis the solution of the Fokker-Planck

eq. in (2.3) depends continuously on the data u, µ, so (3.6) with λ = 0 defines δρ. Also

δχ =

∫

Ω

[(h′
uδu+ h

′
ρδρ)ρ+ hδρ], δJ =

∫

Q

[(H ′
uδu+H

′
ρδρ+H

′
χδχ)ρ+Hδρ] +

∫

Ω

[G′
ξδξρ|T +Gδρ|T ]

2



=

∫

Q

[

(H ′
u + h

′
u

∫

Ω

[H ′
χρ])ρδu

]

+

∫

Q

[

(H ′
ρρ+H + (h′

ρρ+ h)

∫

Ω

[H ′
χρ])δρ

]

+

∫

Ω

[(

∫

Ω

[G′
ξρ|T ]g +G)δρ|T ]

The adjoint state ρ∗ is given by (3.5) and ρ∗|∂Ω = 0. Then, multiplied by δρ and integrated on Q (3.5) gives

∫

Q

δρ

[

H ′
ρρ+H + (h′

ρρ+ h)

∫

Ω

[H ′
χρ]

]

= −

∫

Q

δρ [∂tρ
∗ + u∇ρ∗ + µ : ∇∇ρ∗)]

=

∫

Q

[ρ∗(∂tδρ+∇ · (uδρ)−∇ · ∇ · (µδρ))]−

∫

Ω

ρ∗δρ|T0

= −

∫

Q

[ρ∗∇ · (ρδu−∇ · (µ′
uδuρ))]−

∫

Ω

[(g

∫

Ω

[G′
ξρ|T ] +G)δρ|T ]

Hence δJ =

∫

Q

[

(H ′
u + h′

u

∫

Ω

[H ′
χρ])ρδu

]

−

∫

Q

[ρ∗∇ · (ρδu−∇ · (µ′
uδuρ))]

=

∫

Q

[(

H ′
u + h′

u

∫

Ω

[H ′
χρ] +∇ρ∗ − (∇∇ρ∗)µ′

u

)

ρδu

]

(3.7)

�

4. Dynamic Programming

For notational clarity consider the more general case where H,G are functionals of ρt(·). For any τ ∈
[0, T ] and any ρτ ≥ 0 with unit measure on R

d, let

V (τ ; ρτ ) = min
u∈Ud

J(τ ; ρτ , u) :=

∫ T

τ

∫

Rd

H(x, t, u(x, t); ρt)ρt(x)dxdt+

∫

Rd

G(x; ρ|T )ρ|Tdx (4.8)

subject to (2.3), i.e. such that ρt is the PDF of Xt given by (2.1) starting with ρτ at time τ

Note that the second parameter in V is a function of x, yet it is not V (τ, ρτ (x)) but V (τ ; ρτ (·)). We now

prove the following version of Bellman’s principle of optimality :

PROPOSITION 2. – If the problem is regular, then for any τ ∈ [0, T ] and any positive ρτ with unit

measure on R
d, we have :

V (τ ; ρτ ) = min
u∈Ud

∫ τ+δτ

τ

∫

Rd

H(x, t, u(x, t); ρt)ρt(x)dxdt+ V (τ + δτ ; ρτ+δτ ) (4.9)

subject to ρt given by (2.3) on [τ, τ + δτ ] initialized by ρτ at time τ

Proof . – Denote the infimum of the right-hand side by V (τ ; ρτ ). For any ǫ > 0, there exists an u ∈ Ud

such that, if ρt is the solution of (2.3) with control u :

V (τ ; ρτ ) + ǫ > J(τ ; ρτ , u) =

∫ T

τ

∫

Rd

H(x, t, u(x, t); ρt)ρt(x)dxdt+

∫

Rd

G(x; ρ|T )ρ|Tdx

=

∫ τ+δτ

τ

∫

Rd

Hρt +

∫ T

τ+δτ

∫

Rd

Hρt +

∫

Rd

Gρ|T ≥

∫ τ+δτ

τ

∫

Rd

Hρt + V (τ + δτ ; ρτ+δτ ) ≥ V (τ ; ρτ )

Conversely, given u ∈ Ud and ǫ > 0, ∃ũ ∈ Ud which coincides with u on R
d × [τ, τ + δτ ], such that:

J(τ + δτ ; ρ̃τ+δτ , ũ) ≤ V (τ + δτ ; ρ̃τ+δτ ) + ǫ

3
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where ρ̃t is the solution of (2.3) at t with control ũ starting with ρτ at time τ . Hence :

V (τ ; ρτ ) = V (τ ; ρ̃τ ) ≤ J(τ ; ρ̃τ , ũ) =

∫ T

τ

∫

Rd

H(x, t, ũ(x, t); ρ̃t)ρ̃t(x)dxdt+

∫

Rd

G(x; ρ̃|T )ρ̃|Tdx

=

∫ τ+δτ

τ

∫

Rd

H(x, t, u(x, t); ρ̃t)ρ̃t(x)dxdt+ J(τ + δτ ; ρ̃τ+δτ , ũ)

≤

∫ τ+δτ

τ

∫

Rd

H(x, t, u(x, t); ρ̃t)ρ̃t(x)dxdt+ V (τ + δτ ; ρ̃τ+δτ ) + ǫ

We obtain the conclusion by letting ǫ → 0 and by taking the infimum over u ∈ Ud. �

PROPOSITION 3. – (HJB minimum principle). There exists {x, τ, ρτ (·)} → V ′ ∈ R such that :

0 = min
v∈Vd

∫

Rd

(

H(x, τ, v(x); ρτ ) +H ′
ρ(x, τ, v(x); ρτ ) · ρτ

+∂τV
′ + µ(x, τ, v(x)) : ∇x∇xV

′ + v(x) · ∇xV
′
)

ρτdx (4.10)

where H ′
ρ · ν = limλ→0[H(x, τ ; ρ+ λν)−H(x, τ, ρ)]/λ.

Proof . – A first order approximation of the time derivative in the Fokker-Planck equation gives

δρτ := ρτ+δτ − ρτ = δτ [∇ · ∇ · (µτρτ )−∇ · (uτρ)] + o(δτ) (4.11)

When everything is differentiable and smooth,

V (τ + δτ ; ρτ+δτ ) = V (τ ; ρτ ) + ∂τV (τ ; ρτ )δτ + V ′
ρ(τ ; ρτ ) · δρτ + o(δτ) (4.12)

Using (4.12) and the mean value theorem for the time integral, (4.9) yields

V (τ ; ρτ ) = min
u∈Ud

{

δτ

∫

Rd

Hρτdx+ V (τ ; ρτ ) + ∂τV (τ ; ρτ )δτ + V ′
ρ(τ ; ρτ ) · δρτ + o(δτ)

}

The terms V (τ ; ρτ ) cancel; divided by δτ and combined with (4.11) and letting δτ → 0, (4.13) gives

0 = min
u∈Ud

{

∫

Rd

Hρτdx+ ∂τV (τ ; ρτ ) + V ′
ρ(τ ; ρτ ) · [∇ · ∇ · (µτρτ )−∇ · (uτρ)]

}

(4.13)

To finalize the proof we need to relate V to V ′
ρ and to its Riesz representative V ′:

PROPOSITION 4. – For any τ ∈ [0, T ] and any initial PDF ρτ , let û and ρ̂ denote respectively the

optimal control and the corresponding solution of (2.3). Then:

∫

Rd

V ′(τ ; ρτ )ρτdx = V ′
ρ(τ ; ρτ ) · ρτ = V (τ ; ρτ ) +

∫ T

τ

∫

Rd

(

H ′
ρ(x, t, û(x, t); ρ̂t) · ρ̂t

)

ρ̂t(x)dxdt

+

∫

Rd

(

G′
ρ(x; ρ̂T ) · ρ̂T

)

ρ̂T (x)dx (4.14)

4



Proof . – Notice that Fokker-Planck implies ρt = G(t− τ) ∗ ρτ where G is a semi-group operator. Let

(ût)t∈[0,T ] be the optimal control and (ρ̂t)t∈[0,T ] the corresponding solution of (2.3). Then :

V (τ ; ρ̂τ ) =

∫ T

τ

∫

Rd

H(x, t, û(x, t);G(t− τ) ∗ ρ̂τ )G(t− τ) ∗ ρ̂τdxdt+

∫

Rd

G(x; ρ̂|T )ρ̂|Tdx

This can be differentiated with respect to ρ by computing limλ→0
1
λ

[

V (τ ; ρ̂τ + λν) − V (τ ; ρ̂τ )
]

, for a

given function x → ν(x) :

V ′
ρ(τ ; ρ̂τ ) · ν =

∫ T

τ

∫

Rd

H(x, t, û(x, t);G(t− τ) ∗ ρ̂τ )G(t− τ) ∗ νdxdt+

∫

Rd

G(x; ρ̂|T )G(T − τ) ∗ νdx

+

∫ T

τ

∫

Rd

(

H ′
ρ(x, t, û(x, t);G(t− τ) ∗ ρ̂τ ) · [G(t− τ) ∗ ν]

)

G(t− τ) ∗ ρ̂τdxdt

+

∫

Rd

(

G′
ρ(x;G(T − τ) ∗ ρ̂τ ) · [G(T − τ) ∗ ν]

)

G(T − τ) ∗ ρ̂τdx

Taking ν = ρ̂τ leads to (4.14). �

End of proof of Proposition 3 Differentiating (4.14) w.r. to τ leads to

∂τV (τ ; ρτ ) =
(

∂τV
′
ρ(τ ; ρτ )

)

· ρτ +

∫

Rd

(

H ′
ρ(x, τ, ûτ (x); ρτ ) · ρτ

)

ρτ (x)dx

where ûτ is the optimal control at time τ . Now, let us go back to (4.13), which we rewrite:

0 = min
uτ

{

∫

Rd

(

H(x, τ, uτ (x); ρτ ) +H ′
ρ(x, τ, uτ (x); ρτ ) · ρτ

)

ρτ (x)dx

+
(

∂τV
′
ρ(τ ; ρτ )

)

· ρτ + V ′
ρ(τ ; ρτ ) · [∇ · ∇ · (µτρτ )−∇ · (uτρτ )]

}

(4.15)

By integrating by parts the last term, Proposition 1 is proved. �

REMARK 1. – Notice that (4.14) and (4.8) implies :

∫

Rd

V ′
|T ρ̂Tdx = V (T, ρ̂T ) =

∫

Rd

(

G+ g

∫

Rd

∂ξGρ̂Tdx
)

ρ̂Tdx, ξ̂ =

∫

Rd

g(x, ρ̂T )ρ̂Tdx (4.16)

REMARK 2. – By taking ρτ = δ(x− x0) the usual HJB principle is found if h = g = 0.

PROPOSITION 5. – (Hamilton-Jacobi-Bellman equation) When Vd = R
d, at the optimal solution û

∇uH +∇uH
′ · ρ̂τ +∇xV

′ + ∂uµ : ∇x∇xV
′ = 0 (4.17)

∫

Rd

(H +H ′ · ρ̂τ + ∂τV
′ + µ̂ : ∇x∇xV

′ + û · ∇xV
′)ρ̂τdx = 0 (4.18)

REMARK 3. – When H = H(x, t, u(x, t), ρt(x), χ(t)) with χ(t) =

∫

Rd

h(x, t, u(x, t), ρt(x))ρt(x)dx,

H ′
ρ(x, τ, u(x, τ); ρτ ) · ρτ = ρτ∂ρH +

(

∫

Rd

∂χHρτdx
)

(h+ ρτ∂ρh). (4.19)

5
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Figure 1 – The control is v = M when x < x0, affine when x0 < v < x1, and v = m when x > x1 with

x0 = −Mσ2

b
+ ( 1

2γ +ETx)e
−a(T−t), x1 = −mσ2

b
+ ( 1

2γ +ETx)e
−a(T−t)

Then for the optimal û and ρ̂ (4.18) yields

∂τV
′ + µ̂ : ∇x∇xV

′ + û · ∇xV
′ = −

[

H + ρ̂∂ρH +
(

∫

Rd

∂χHρ̂dx
)

(h+ ρ̂∂ρh)

]

. (4.20)

The link with Section 3. is established: (3.5) and (4.20)coincide with V ′ = ρ∗.

5. Portfolio Optimization

Following [1], a portfolio of value xt made of a risky asset and a riskless one is optimally managed at t
if the quantity v invested at t in the risky asset minimizes, with ρ|0 given,

J =
1

2

∫

Ω

(γx2 − x)ρ|Tdx−
γ

2

[
∫

Ω

xρ|Tdx

]2

, ∂tρ+ ∂x[(ax+ bv)ρ]− ∂xx[
σ2v2

2
ρ] = 0 (5.21)

where a is the interest rate b is a minus the drift of the risky asset and σ is its volatility. We assume that v
is a feedback function x, t → v(x, t) there are bounds on v, at each time m ≤ v ≤ M . Thus d = 1 and

H = 0, h = 0, G =
1

2
(γx2 − x− γx

∫

Ω

xρ|Tdx), u = ax+ bv, µ =
σ2v2

2
(5.22)

The problem deviates slightly from framework (2.3) but the methodology is the same and gives:

δJ =

∫

Q

[(b∂xρ
∗ + σ2v∂xxρ

∗)ρδv] with ρ∗(±∞) = 0, and

∂tρ
∗ + (ax+ bv)∂xρ

∗ +
σ2v2

2
∂xxρ

∗ = 0, ρ∗|T =
1

2
(γx2 − x)− γx

∫

R

[xρ|T ] (5.23)

5.1. Polynomial Solution

Assume ρ∗ = qx2+ rx+s and v = Ax+B ∈ (m,M). Then the adjoint equation gives solvable ODEs

for q(t),r(t) and s(t). Because of the constraints, the general solution has 3 regimes as shown on figure ??.

Proof . – In what follows we denote ETx :=
∫

R
xρ|T (x)dx. and I an interval.

By assuming ρ∗ and v polynomial, the adjoint equation becomes:

q̇x2 + ṙx+ ṡ+ (ax+ b(Ax+B))(2qx+ r) + σ2(Ax+B)2q = 0 (5.24)

6



In turn, it implies q̇ + q(2a+ 2bA+A2σ2) = 0, q(T ) = γ
2 , s(T ) = 0, r(T ) = − 1

2 − γ
∫

R
xρ|T and

ṙ + (a+ bA)r + 2qBb+ 2σ2ABq = 0, ṡ+ rBb+ σ2B2q = 0, s(T ) = 0,
b∂xρ

∗ + σ2v∂xxρ
∗ = 2(b+ σ2A)qx+ br + 2σ2Bq (5.25)

Regime 1 v = Ax + B = m(t) ∀x ∈ I ⇒ A = 0, B = m. This happens only when b(2qx + r) +

2mσ2q ≥ 0. Then q = γ
2 e

2a(T−t), r = −( 12 + γETx)e
a(T−t) − bγea(T−t)

∫ T

t
m(τ)ea(T−τ)dτ . Hence

x > −mσ2

b
− r

2q = −mσ2

b
+ ( 1

2γ +ETx)e
−a(T−t) + b

∫ T

t
m(τ)e−a(τ−t)dτ is required for this regime.

Regime 2 b + σ2A = br + 2σ2Bq = 0 and m < v = Ax + B < M . Then A = − b
σ2 , B = − br

2σ2q

q = γ
2 e

(2a− b
2

σ2
)(T−t), r = −( 12 +γETx)e

(a− b
2

σ2
)(T−t)giving B = b

σ2 (
1
2γ +ETx)e

−a(T−t) and Ax+B =

− b
σ2x+ b

σ2 (
1
2γ +ETx)e

−a(T−t). Thus this regime holds only if ∀x ∈ I

−
Mσ2

b
+ (

1

2γ
+ETx)e

−a(T−t) < x < −
mσ2

b
+ (

1

2γ
+ETx)e

−a(T−t).

Regime 3 Similar to Regime 1, v = M(t) requires x > −Mσ2

b
+( 1

2γ+ETx)e
−a(T−t)+b

∫ T

t
M(τ)e−a(τ−t)dτ .

�

REMARK 4. – The advantage here compared with [1] is that we do not need to guess the shape of the

control nor of the adjoint state, once it is assumed polynomial. The analysis also handles constraints.

6. Numerical Solution of a Systemic Risk Problem

In [7] it is shown that the rare event probability that the state of a system of N banks, depending on the

mean situation of all, transits from a stable situation ρ0 to a critical one ρT at time T is given finding the

minimum in g of J with

J(g) =
1

2σ2

∫

Q

g2ρ : ∂tρ+ ∂x(b(x, g)ρ)−
σ2

2
∂xxρ = 0, ρ(x, 0) = ρ0(x) (6.26)

subject to b = −hx3 + (h − θ)x − θ
∫

R
xρ − g, ρ(x, T ) = ρT (x) where h, θ ∈ R are given. With

κ = h− θ., this is also

min
u

J =
1

2σ2

∫

Q

(hx3 − κx− χ+
u

ρ
)2ρ : ∂tρ−

σ2

2
∂xxρ = −∂xu, ρ|0, ρ|T given, χ = θ

∫

R

xρ.

Now we notice that ρ = ρ̃ + t
T
(ρT − ρ̃|T ) satisfies the conditions at 0 and T and the PDE with u =

ũ− 1
T

∫ x
(ρT − ρ̃|T )dx+

tσ2

2T ∂x(ρT − ρ̃|T ) provided ∂tρ̃−
σ2

2 ∂xxρ̃ = −∂xũ. This means that the problem

is in the form analyzed above with state variable {ρ̃, ρ} and control ũ; naturally the adjoint state has also

two components: {ρ∗, ρ̃∗}.

Based on the variation of J with respect to u we have used 100 iterations of a gradient method with fixed

step size, ω = 0.3. The parameters of the problem are T = 2, h = 0.1, θ = 1, σ2 = 2
3θ and ρ0, ρT are as

in [7]. The numerical method for the PDEs is a centered space-time finite element method of degree 1 on a

mesh of 150 points and 40 time steps.
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Figure 2 – Left: x, t → ρ(x, t); x ∈ (−15, 15) is horizontal, t ∈ (0, 2) is from front to back with origin

x = −15, t = 0 on the lower left corner. Right: x, t → g(x, t).

Figure 3 – ρ∗ (left) and ρ̃∗ (right) versus x (horizontal) and t (vertical).
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Figure 4 – Iteration history: values of J (top curve) and ‖graduJ |
2 versus iteration count.
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